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Abstract Anew bilateral continuous terminal sliding
mode control method is proposed to attenuate the high-
order time-varying disturbance in teleoperation sys-
temsbasedon enhancednonlinear disturbance observer
(ENDOB). Firstly, the control task of the teleoperation
systems is transformed into stabilization of the posi-
tion and force tracking errors. And then, the ENDOBs
are introduced to estimate the high-order lumped dis-
turbances in position and force tracking error subsys-
tems. Finally, based on the estimation of lumped dis-
turbances, a bilateral continuous terminal sliding mode
controller is developed. The proposed bilateral con-
troller not only guarantees the continuity of the control
action but also guarantees the position and force track-
ing errors converge to a small bounded region even
when there exist high-order time-varying disturbances.
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1 Introduction

Teleoperation denotes the local operator manipulates
objects remotely with similar conditions as those at the
remote location [1]. The teleoperated robot systems
extend operator’s manipulation capability to remote
location, and they are widely utilized in practical engi-
neering [2], such as outer space exploration [3], min-
imally invasive telesurgery [4], walking robot design
[5], etc. Teleoperation systems usually contain five
parts (see Fig. 1): human operator and master robot in
local site, slave robot and environment in remote site,
and communication channel which combines local and
remote sites. The ideal teleoperation systems guaran-
tee the operator manipulates and haptic environment
directly as if it were mechanically connected with envi-
ronment [6].

Figure 1 demonstrates the internal signal flow of
a teleoperation system: (1) the operator manipulates
the master robot and leads to its displacement xm in
local site and (2) master and slave robots generate
specified control actions τm and τs to guarantee the
slave robot in the remote site has the same displace-
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Fig. 1 Internal signal flow of a teleoperation system

ment and the master–operator contact force in the local
site are the same with the slave–environment contact
force. Since the information flows between local and
remote environment, the control strategy for teleop-
eration systems is called bilateral control [7]. If the
slave robot accurately reproduces the master’s motion
(i.e., xs = xm) and the master robot exactly displays
the slave–environment contact force to human operator
(i.e., f ′

h = fe), the ideal transparency is achieved [8].
To achieve high transparency, based on the linear

models of master and slave robots, various control
methods, such as the adaptive control [9], passivity-
based approach [10], and acceleration-based control
methods [11], have been proposed. These methods
improve the position and force tracking performance
when master and slave robots are free of disturbances.
To deal with the influence of disturbances, the lin-
ear disturbance observer (LDOB) [12] is introduced
in the bilateral controller design [13,14]. In [13], the
LDOBs are designed both in master and slave robots
to estimate the disturbances in them independently,
and then, a composite controller is developed based
on the LDOBs’ estimation. In [14], the LDOBs are
designed to estimate the couplings’ influences between
the force and position tracking error dynamics, and
then, a composite bilateral controller is constructed
based on the estimation. Although the above methods
have improved the transparency from different aspects,
they all view the nominal model of teleoperation sys-
tems as linear systems. However, robots usually have
serious nonlinearity due to its mechanical configura-
tion [15], and the control performance of teleoperation
systems degrades significantly in this case.

To attenuate the influences of nonlinearity, many
advanced nonlinear control methods such as finite-time
control method [16], predictive control method [17],
and sliding mode control method [18] have been pro-
posed for teleoperation systems. These methods intro-

duce the nonlinear terms into bilateral controller design
in a feedback way and achieve good transparencywhen
system model is accurate and free of disturbances. To
deal with the disturbances in the teleoperation sys-
tem, the nonlinear disturbance observer (NDOB) [19] is
introduced in the nonlinear bilateral controller design.
In [20] and [21], based on the NDOB technique, the
nonlinear composite bilateral control framework is pro-
posed for one-degree-of freedom and n-dof teleoper-
ation systems, respectively. This nonlinear compos-
ite bilateral control framework guarantees the conver-
gence of position and force tracking errorwhen the tele-
operation system in the presence of uncertainties and
disturbances. Many advanced effective observer meth-
ods have been proposed, such as the enhanced non-
linear disturbance observer (ENDOB) [22], fixed-time
observer [23], and sliding mode observer [24]; they
guarantee high-precision estimation of generous time-
varying disturbances. However, only the slow time-
varying disturbances are considered in the existing
bilateral control methods.

Due to its strong robustness against uncertainties
[25], sliding mode control method has attracted wide
attentions in control engineering field [26]. Consid-
ering the wide applications of sliding mode control
method on practical engineering, such as the flight
control systems [27], mechatronic systems [28], and
also telerobotic systems [29], the sliding mode control
method is employed for the bilateral controller design
in this paper: a new composite continuous terminal
sliding mode control method based on the ENDOB
is proposed to deal with the high-order time-varying
disturbances in teleoperation systems. Firstly, the con-
trol task of the teleoperation systems is transformed
into stabilizing the position and force tracking errors.
Secondly, the ENDOBs are introduced to estimate the
high-order lumped disturbances in position and force
tracking error dynamics. And then, based on the esti-
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mation of the ENDOBs, the composite continuous ter-
minal sliding mode bilateral controllers are developed
both in position and force tracking subsystems. Finally,
the real control actions of the teleoperation, i.e., the
electrical torques of master and slave robots, are calcu-
lated based on a nonlinear transformation. Compared
with the existing methods, the proposed method has
the following major merits: (1) guarantee position and
force tracking errors convergence to a bounded region
in finite-time even in the presence of high-order time-
varying disturbances and (2) guarantee the continuity
of control action.

The rest of the paper is organized as follows: in
Sect. 2, the model and control problem formulation of
the teleoperation systems are given. Section3 demon-
strates the controller design details and also gives a
strict stability analysis of the proposed method. Simu-
lations based on the proposed method for a bilateral lift
robot system are carried out in Sect. 4. Section5 ends
the paper with a conclusion.

2 Problem formulation

2.1 Model of teleoperation systems

Without loss of generality, the master and slave robots
are both considered as single-degree-of-freedom actu-
ators to simplify the deduction. Let the subscriptm and
s represent master and slave robot, respectively, qm ,
qs and q̇m , q̇s denote the generalized joint positions
and velocities of master and slave robots. The model
of master and slave robots can be obtained as [30]:

am(qm)q̈m + bm(qm , q̇m) + gm(qm) = τm − τmext − τh ,

as(qs)q̈s + bs(qs , q̇s) + gs(qs) = τs − τsext − τe,

(1)

where am(qm) and as(qs) denote the inertia of mas-
ter and slave robots, bm(qm) and bs(qs) are the inter-
nal torques due to the Coriolis and centrifugal forces,
gm(qm) and gs(qs) are the internal torques due to the
gravity force. τm and τs are the electrical torques of
master and slave robots, and they are also the control
input of the teleoperation system; τmext and τsext are
the external unmodeled torques due to friction force
or other unknown torques. τh and τe are the external
torques due to the contact force, and they could bemod-
eled as:

τh = fhlm, τe = fels,

where fh are the contact force exerted on master by
operator, fe are the contact force exerted on slave by
environment, lm and ls are the distances between the
shaft and the point where the contact force is applied.
The contact force fh and fe is usually modeled as mass
spring damper [13]:

fh = Dh(ṡm − ṡh) + Kh(sm − sh), sh > sm;
fe = De(ṡs − ṡe) + Ke(ss − se), ss > se; (2)

with

sm = qmlm, ss = qsls,

where sh , sm , ss , se are the displacements of operator,
master, slave and environment, respectively; Dh , Kh ,
De, and Ke are the spring coefficients, damping coef-
ficients of the operator, and environment. It should be
noted that the contact forces fh and fe appear only
when the contact happens (i.e., sh > sm , ss > se). If
the contact vanishes, the contact force will disappear:{

fh = 0, i f sh ≤ sm;
fe = 0, i f ss ≤ se.

(3)

To describe the dynamics of operator and environment
more intuitively, a practical teleoperation system i.e.,
the teleoperation lift robot system (as shown inFig. 2) is
considered in this paper, and the dynamics of operator
and environment is modeled based on the lift robot
system. f ′

h and f ′
e are contacted forces acted on the

operator and environment, they are the reaction force
of fh and fe, and they satisfy f ′

h = fh , f ′
e = fe. The

dynamics of operator can be modeled as the human
hands [31]:

Mhs̈h = Mhs̈
r
h + kh(ṡ

r
h − ṡh)

+ bh(s
r
h − sh) + f Hh − f ′

h, (4)

where Mh , kh , and bh are the coefficients decided by
the operator and srh is the desired position of operator
and f Hh is the internal control action of operator. Since
human beings can regulate the internal control action
f Hh based on the haptic of force f ′

h adaptively, f
H
h can

be modeled as [31]:

f Hh = (1 + λh) f
′
h = (1 + λh) fh,

where λh is a feedback coefficient for the contact force.
Considering the function of teleoperation lift robot sys-
tem, the dynamics of environment (i.e., the body which
are lifted by the slave robot) is modeled as:

Mes̈e = f ′
e − Meg = | fe| − Meg, (5)

where Me is the mass of environment object and g is
the gravitational acceleration.
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Fig. 2 Demonstration of teleoperation lift robot system

Remark 1 Considering the fact that the displacement
difference between the operator and the master robot
(i.e., sh and sm) is usually very small due to the large
value of Kh in (2), the operator manipulated the master
robot through transmitted its displacement sh to sm .
As a result, the operator controls its displacement sh
by regulating its internal control action f Hh to achieve
certain movement in master robot system.

2.2 Problem Formulation

The control objective of the teleoperation system is to
realize the bilateral haptic transmission between the
remote side and the local side [20]. To achieve this
object, the positions of master and slave robot should
be the same and the contact force between human and
master fh with that between slave and environment
should be the same:

sm − ss = 0, fh + fe = 0. (6)

Define the position tracking error of master and slave
robots as eP , the contact force tracking error as eF . The
values of eP and eF can be calculated as:

eP = sm − αss, eF = fh + β fe, (7)

where α and β are two positive scaling constants, and
they are introduced to promote the wide applications
of teleoperation system, such as amplifying operator’s
force by choosing a big β. Therefore, the control objec-
tives of teleoperation are transferred into stabilizing eP
and eF .

Considering Eqs. (1)-(2), the dynamics of position
tracking error can be obtained as:⎧⎨
⎩
ėP =q̇mlm − αq̇sls,

ëP = lmτm

am(qm)
− αlsτs

as(qs)
+ f1(t)

(8)

with

f1(t) = − lm
τmext + fhlm + bm(qm, q̇m) + gm(qm)

am(qm)

+ αls
τsext + fels + bs(qs, q̇s) + gs(qs)

as(qs)
.

Similarly, with the definition of eF in mind, combining
Eqs. (1) and (2) yields the force tracking dynamics:

ėF = Dhlmτm

am(qm)
+ βDelsτs

as(qs)
+ f2(t),

sh > sm, ss > se (9)

with

f2(t)

= −Dhlm
τmext + fhlm + bm(qm, q̇m) + gm(qm)

am(qm)

− βDels
τsext + fels + bs(qs, q̇s) + gs(qs)

as(qs)

+ Kh(q̇mlm − ṡh) + βKe(q̇sls − ṡe)

− (Dhlms̈h + βDels s̈e).

In this paper, it is assumed that the information of joint
positions (qm and qs) and joint velocities (q̇m and q̇s) is
available and the contact force fh and fe is available.
Considering the engineering practice, it is also assumed
that there exist perturbations in the model of teleoper-
ation system (1) and (2), and only their nominal model
can be obtained. Therefore, the dynamics of position
tracking error (8) can be rewritten as:{

ėP =q̇mlm − αq̇sls,

ëP =uP + f1n(t) + dP (t)
(10)

with

uP = lmτm

amn(qm)
− αlsτs

asn(qs)
, (11)

f1n(t) = − lm
fhlm + bmn(qm, q̇m) + gmn(qm)

amn(qm)

+ αls
fels + bsn(qs, q̇s) + gsn(qs)

asn(qs)
,

dP (t) =dP (qm, qs, q̇m, q̇s, τm, τs, fh, fe, τmext , τsext ),

where amn(qm), asn(qs), bmn(qm, q̇m), bsn(qs, q̇s),
gmn(qm), gsn(qs) are the nominal model of the inertia
moment, Coriolis and gravity force torques of master
and slave, respectively; uP is the virtual controller for
position tracking. Similarly, the model of contact force
tracking error can be rewritten as:

ėF = uF + f2n(t) + dF (t), sh > sm, ss > se (12)
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with

uF = Dhnlmτm

amn(qm)
+ βDenlsτs

asn(qs)
, (13)

f2n(t) = − Dhnlm
fhlm + bmn(qm, q̇m) + gmn(qm)

amn(qm)

− βDenls
fels + bsn(qs, q̇s) + gsn(qs)

asn(qs)
,

dF (t) =dF (qm, qs, q̇m, q̇s, τm, τs, fh, fe, τmext , τsext ),

where Dhn and Den are the nominal values of the coef-
ficients; uF is the virtual controller for force tracking.

The real control action of the teleoperation system
is the electrician torques τm and τs in master and slave
robots, and they can be calculated from Eqs. (11) and
(13) as:

τm = amn(qm) (βDenuP + αuF )

(βDen + αDhn)lm
,

τs = asn(qs) (uF − DhnuP )

(βDen + αDhn)ls
.

(14)

It should be noted that the virtual controller uF in Eq.
(13) is defined under the conditions sh > sm and ss >

se, and it is set as uF = 0 when the conditions are
not satisfied. It can be verified that the transfer (14) is
still established in this case. Therefore, the design of
bilateral controller τm and τs can be transformed to the
design of virtual controller uP and uF .

3 Controller design and stability analysis

3.1 Enhanced nonlinear disturbance observer design

Assumption 1 The lumped disturbance dP (t) in posi-
tion tracking error dynamics (10) is r1th-order differ-
entiable, and the steady state of its r1th-order derivative
converges to zero, i.e., lim

t→∞ d(r1)
P (t) = 0.

Assumption 2 The lumped disturbance dF (t) in force
tracking error dynamics (12) is r2th-order differen-
tiable, and the steady state of its r2th-order derivative
converges to zero, i.e., lim

t→∞ d(r2)
F (t) = 0.

Lemma 1 [32] The following single-input linear sys-
tem:

ẋ = Ax + Bu (15)

is asymptotically stable if A is Hurwitz matrix and u is
bounded and satisfies lim

t→∞ u(t) = 0.

It is well known that a function in terms of time t
can be locally represented by a family of Taylor time
polynomial inputs and a residual term. Therefore, the
disturbance dP (t) and dF (t) in Eqs. (10) and (12) can
be represented in the following form as:

dP =
r1−1∑
i=0

diP t
i + o1(t), dF =

r2−1∑
i=0

diF t
i + o2(t),(16)

where d0P , d1P , · · · , dr1−1
P and d0F , d1F , · · · , dr2−1

F
are unknown constants; o1(t) and o2(t) denote the
unknown residual terms. Since diP and diF are assumed
unknown, the approximation model (16) can be regard
ed as an unknown internal model which can be used to
describe a general disturbance.

With the model (16) in mind, the dynamics of dis-
turbances dP (t) and dF (t) can be described as:

ξ̇P = APξP + BPd
(r1)
P (t), dP (t) = CPξP , (17)

ξ̇F = AFξF + BFd
(r2)
F (t), dF (t) = CFξF, (18)

with

AP =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦
r1×r1

, AF =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦
r2×r2

,

BP = [0 0 · · · 0 1]T1×r1 , CP = [1 0 · · · 0 0]1×r1 ,

BF = [0 0 · · · 0 1]T1×r2 , CF = [1 0 · · · 0 0]1×r2 ,

where ξP =
[
ξ1P ξ2P · · · ξ

r1−1
P ξ

r1
P

]T
is the internal

dynamics of dP (t), ξF = [
ξ1F · · · ξ

r2
F

]T
is the internal

dynamics of dF (t). With the disturbance model (17)
in mind, the enhanced nonlinear disturbance observers
(ENDOBs) [22] for the position and force tracking error
system (10) and (12) are designed as:{

ż1 = (AP − LPCP ) ε1 − LP [uP + f1n(t)] ,

ε1 = z1 + LP ėP , d̂P = CPε1,
(19)

{
ż2 = (AF − LFCF)ε2 − LF [uF + f2n(t)] ,

ε2 = z2 + LFeF , d̂F = CFε2,
(20)

where z1 = [z11 z21 · · · zr11 ]T , ε1 = [ε11 ε21 · · · ε
r1
1 ]T ,

and z2 = [z12 z22 · · · zr22 ]T , ε2 = [ε12 ε22 · · · ε
r2
2 ]T

are the virtual state vectors of ENDOBs, zi1 and εi1 with
1 ≤ i ≤ r1 are the elements of z1 and ε1, zi2 and εi2 with
1 ≤ i ≤ r2 are the elements of z2 and ε2, respectively;

LP = [l1P l2P · · · lr1P ]T and LF = [
l1F l2F · · · lr2F

]T
1×r2

,

are the observer gain vectors and their elements l1P , · · · ,
lr1P and l1F , · · · , lr2F are positive constants.

123



5350 Z. Zhao et al.

Theorem 1 Suppose that Assumptions 1 and 2 are sat-
isfied for systems (10) and (12), the ENDOBs (19) and
(20) guarantee the disturbance estimation d̂P and d̂F
converges to their real values dP and dF asymptoti-
cally if the observer gains are designed such that the
polynomials sr1 + l1Ps

r1−1 + · · · + lr1−1
P s + lr1P and

sr2 + l1Fs
r2−1 + · · · + lr2F are Hurwitz.

Proof Since ENDOBs (19), (20) and disturbance dyn
amics (17), (18) have similar formulation, the conver-
gence of ENDOBs (19), (20) is also similar. Without of
loss, we choose ENDOB (19) as an example to prove
Theorem 1.

Define the disturbance estimation error of dP as:

edP = d̂P − dP .

Define the disturbance internal dynamics estimation
error as:

ei1 = εi1 − ξ iP , 1 ≤ i ≤ r1,

e1 = ε1 − ξP = [e11 · · · er11 ]T .

Combining Eqs. (17) and (19) yields:

edP = ε11 − ξ1P = e11 (21)

With Eq. (10) in mind, combining Eqs. (17) and (19)
yields:

ė1 = ε̇1 − ξ̇P

= ż1 + LP ëP − [APξP + BPd
(r1)
P (t)]

= AP (ε1 − ξP ) − LPCPε1 + LPdP − BPd
(r1)
P (t)

= (AP − LPCP )(ε1 − ξP ) − BPd
(r1)
P (t)

= (AP − LPCP )e1 − BPd
(r1)
P (t)

Substituting the values of Ap, LP and CP into above
equations obtains:

ė1 = APee1 − BPd
(r1)
P (t) (22)

with

APe =

⎡
⎢⎢⎢⎢⎢⎣

−l1P 1 0 · · · 0
−l2P 0 1 · · · 0

...
...

...
...

...

−lr1−1
P 0 0 · · · 1

−lr1P 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ .

The characteristic equation of system (22) is

|s I − Ape| = sr1 + l1Ps
r1−1 + · · · + lr1−1

P s + lr1P . (23)

Since the polynomial sr1+l1Ps
r1−1+· · ·+lr1−1

P s+lr1P is
Hurwitz, Ape is a Hurwitz matrix. With Assumption 1
in mind, it concludes from Lemma 1 that e1 converges
to zero asymptotically. It deduces from Eq. (21) that
edP is an element of e1, and it also converges to zero
asymptotically. Therefore, the disturbance estimation
d̂P converges to its real value dP asymptotically, which
completes the proof.

Remark 2 The order of Taylor polynomial r in Eq. (16)
is chosen based on the nature of disturbances dP (t) and
dF (t). For example, r = 1, r = 2 and r = 3 represent
the unknown piecewise constant, slope and parabolic
disturbances, respectively.Generally, a larger r means a
better approximation and a higher estimation accuracy
of the unknowndisturbances, but a heavier computation
burden is induced simultaneously. Therefore, a tradeoff
should be taken into account between the estimation
accuracy and the computational burdenwhendesigning
the ENDOB under the case we have no information of
the disturbance’s order.

Remark 3 Since the lumped disturbances dP in (10)
and dF in (12) are multi-source disturbances which
include model uncertainties and external disturbances,
it is hard to obtain their order. A tradeoff between the
estimation accuracy and the computational burden is
considered here, and the Taylor polynomial orders r1
and r2 in Eq. (16) are chosen as r1 = r2 = 3 in the
simulation part of this paper. In this case, the ENDOBs
for Eqs. (10) and (12) degenerate into:

ż11 = − l1P (z11 + l1P ėP ) − l1P [uP + f1n(t)]
+ z12 + l2P ėP ,

ż12 = − l2P (z11 + l1P ėP ) − l2P [uP + f1n(t)]
+ z13 + l3P ėP ,

ż13 = − l3P (z11 + l1P ėP ) − l3P [uP + f1n(t)]
d̂P =z11 + l1P ėP .

(24)

ż21 = − l1F (z21 + l1FeF ) − l1F [uF + f2n(t)]
+ z22 + l2FeF ,

ż22 = − l2F (z21 + l1FeF ) − l2F [uF + f2n(t)]
+ z23 + l3FeF ,

ż23 = − l3F (z21 + l1FeF ) − l3F [uF + f2n(t)]
d̂F =z21 + l1FeF .

(25)

The ENDOBs (24) and (25) guarantee the asymptoti-
cal convergence of estimation error when dP and dF
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are unknown piecewise constants, slopes or parabolic
disturbances.

3.2 Bilateral continuous TSM controller design

Design a terminal sliding mode manifold for the posi-
tion control subsystem (10) as:

σ = eP + c1|ėP |γ sign(ėP ), (26)

where c1 > 0, γ = p
q , p, q are positive odds and

satisfy q < p < 2q.

Theorem 2 For the teleoperation system tracking err
or dynamics (10) and (12), the following bilateral con-
tinuous TSM controller:

uP = − f1n(t) − d̂P − 1

c1γ
|ėP |2−γ sign(ėP )

− KPσ − η1|σ |ρ1sign(σ ),

(27)

uF = − f2n(t) − d̂F − η2|eF |ρ2sign(eF )

−KFeF , (28)

where d̂P , d̂F are obtained from the ENDOBs (19) and
(20), η1 > 0, η2 > 0, 0 < ρ1 < 1, 0 < ρ2 < 1,
KP > 0 and KF > 0, guarantees the position and
force tracking error eP and eF converge to the follow-
ing regions:

|eP | ≤ 2δ1 = 2min

{
|edP |
KP

,

( |edP |
η1

)1/ρ1
}

, (29)

|eF | ≤ δ2 = min

{
|edF |
KF

,

( |edF |
η2

)1/ρ2
}

. (30)

The structure of the proposed bilateral continuous ter-
minal sliding model controller is shown in Fig. 3.

3.3 Stability analysis

The proof is divided into twoparts: controller (27) guar-
antees eP converge to region (29) and controller (28)
guarantees eF converge to region (30).
Part A: finite-time convergence of eP : The proof is
divided into two steps: convergence of sliding variable
and convergence of position tracking error.
Step 1: convergence of sliding variable:
With Eqs. (10) and (27) in mind, taking the derivative
of sliding variable σ in terms of time yields:

σ̇ = c1γ |ėP |γ−1[−edP − η1|σ |ρ1sign(σ ) − KPσ ].(31)

Define a Lyapunov function in term of σ as:

Vσ = 1

2
σ 2. (32)

Taking the derivative of Vσ along Eq. (31) yields:

V̇σ = −c1γ |ėP |γ−1
(
σedP + η1|σ |ρ1+1 + KPσ 2

)
≤ −c1γ |ėP |γ−1 (

η1|σ |ρ1 + KP |σ | − |edP |) |σ |
= −c1b1Vσ

1/2

(33)

with

c1=c1γ |ėP |γ−1, b1=√
2

(
η1|σ |ρ1+KP |σ |−|edP |) .

We divided the analysis into two cases based on the
value of ėP in the following part.

1. Case I: ėP �= 0
We have c1 > 0 and b1 > 0 if σ satisfies:

|σ | >
|edP |
KP

, or |σ | >

( |edP |
η1

)1/ρ1
.

Integrating both sides of Eq. (33) yields:

Vσ (t)1/2 ≤ Vσ (t0)
1/2 − c1b1

2
(t − t0),

where Vσ (t0) denotes the initial value of Vσ . There-
fore, σ decreases monotonically until it reaches the
region:

|σ | ≤ δ1, δ1 = min

{
|edP |
KP

,

( |edP |
η1

)1/ρ1
}

. (34)

2. Case II: ėP = 0
Substituting the controller (27) into the dynamics
of position subsystem (10) yields:

ëP = − edP − 1

c1γ
|ėP |2−γ sign(ėP ) − KPσ

− η1|σ |ρ1sign(σ )

= −sign(σ )

[
edP

sign(σ )
+ η1|σ |ρ1 + KP |σ |

]

Both in the cases |σ | >
|edP |
KP

and |σ | > (
|edP |
η1

)1/ρ1 ,
we have

KP |σ | + edP
sign(σ )

+ η1|σ |ρ1 > 0.

It concludes that ėP = 0 cannot be kept if |σ | > δ1,
and once ėP = 0, ėP will change to ėP �= 0. This
denotes ėP �= 0 is always established if |σ | > δ1.
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Fig. 3 Block diagram of the bilateral continuous terminal sliding mode controller based on enhanced nonlinear disturbance observer

Therefore, σ converges to the region (34) with a finite
time in both of the two cases.
Step 2: convergence of position tracking error:
It yields from Eq. (26) that

eP + Δ|ėP |γ sign(ėP ) = 0 (35)

with

Δ = c1 − σ

|ėP |γ sign(ėP )
.

Considering that γ = p/q, p, q are positive odds and
satisfy q < p < 2q, it obtains from Eq. (35) that

ėP = −Δ−1/γ |eP |1/γ sign(eP ). (36)

After the sliding variable σ reaches the region (34), for

the case |ėP | >
(

δ1
c1

)1/γ
, we have

Δ = c1 − σ

|ėP |γ sign(ėP )
≥ c1 − δ1

|ėP |γ sign(ėP )
> 0.

Let us define a Lyapunov function in terms of eP as:

VP = 1

2
e2P .

Taking the derivative of VP along Eq. (36) yields

V̇P = −Δ−1/γ |eP | γ+1
γ = −2

γ+1
2γ Δ−1/γ VP

γ+1
2γ .

Integrating both sides of the above equation yields:

VP (t)
γ−1
2γ = VP (t1)

γ−1
2γ − γ̄ (t − t1) (37)

with

γ̄ = γ − 1

2γ
2

γ+1
2γ Δ−1/γ ,

where t1 is the time when the sliding variable σ reaches
the region |σ | ≤ δ1. Since 1 < γ < 2 and Δ > 0, we
have γ̄ > 0.Therefore, it deduces fromEq. (37) thatVP

decreasesmonotonically, which denotes |eP | decreases
monotonically.

It yields from Eq. (36) that |ėP | will decrease
when |eP | decreases. Considering that when Δ > 0,
|eP | decreases monotonically, the inequality |ėP | >(

δ1
c1

)1/γ
would be broken with time goes on, and

this would lead that Δ ≤ 0. This means that once

|ėP | >
(

δ1
c1

)1/γ
, ėP will always converge to the fol-
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lowing region:

|ėP | ≤
(

δ1

c1

)1/γ

. (38)

With Eq.(38) in mind, it can be deduced from Eq. (26)
that

|eP | ≤ c1|ėP |γ + |σ | ≤ δ1 + |σ |.
Considering the convergence region of σ in (34) and ėP
in (38), it yields that eP will converge to the following
region:

|eP | ≤ 2δ1 = 2min

{
|edP |
KP

,

( |edP |
η1

)1/ρ1
}

, (39)

which completes the proof of Part A.
Part B: finite-time convergence of eF : Substitut-

ing the controller (28) into the force control subsystem
yields:

ėF = −edF − η2|eF |ρ2sign(eF ) − KFeF . (40)

Define a Lyapunov function in terms of eF as:

VF = 1

2
e2F . (41)

Taking the derivative of VF along Eq. (40) yields:

V̇F = −edFeF − η2|eF |ρ2+1 − KFe
2
F

≤ (|edF | − η2|eF |ρ2 − KF |eF |) |eF |
= −b2

√
VF

(42)

with

b2 = √
2

(−|edF | + η2|eF |ρ2 + KF |eF |) .

We have b2 > 0 if eF satisfy:

|eF | >
|edF |
KF

, or |eF | >

( |edF |
η2

)1/ρ2
.

In this case, we have

V̇F < −b2
√
VF < 0.

Integrating both sides of above equation yields:

VF (t)1/2 ≤ VF (t0)
1/2 − b2

2
(t − t0),

whereVF (t0) denotes the initial value ofVF . Therefore,
eF converges to region (30),which completes the proof.

Remark 4 For the bilateral controllers (27) and (28),
if the control parameters of liner terms (i.e., KP , KF )
and TSM terms (i.e., η1 and η2) are chosen the same
and big enough:

KP = η1 > |edP |, KF = η2 > |edF |,

the convergence bounds (29) and (30) will decrease to
δ1 < 1 and δ2 < 1. In this case, the exponential terms
1/ρ1 and1/ρ2 will reduce the boundof the convergence
region greatly since( |edP |

η1

)1/ρ1
<

|edP |
KP

,

( |edF |
η2

)1/ρ2
<

|edP |
KP

.

This implies that the proposed controller guarantees
smaller convergence bound than linear methods.

4 Simulation study

To validate the effectiveness of the proposed bilateral
TSMcontroller, the simulations on the teleoperation lift
robot systems (as shown in Fig. 2) are carried out in this
part. Both themaster and slave robots are equippedwith
force sensors to measure the contact force. The model
of teleoperation lift robot systems, i.e., the dynamic
models of master and slave robots, human operator,
and environment, is built based on the SIMULINK-
MATLAB software.

4.1 Simulation setting

The inertias and the internal torques due to Coriolis
force, external force, and gravity force of master and
slave robots in (1) are set based on [30] as:

am(qm) = amn[1 + d11] = 5[1 + 0.1 cos(π t)],
bm(qm, q̇m) = bmn[1 + d12] = (−16qm − 8q̇m)

[1 − 0.1 sin(π t)],
gm(qm) = gmn[1 + d13] = 0.5[1 + 0.1 sin(qm)],
τmext = 0.1 sin(2π t),

as(qs) = asn[1 + d21] = 10[1 + 0.2 cos(π t)],
bs(qs, q̇s) = bsn[1 + d22] = (−10qs − 4q̇s)

[1 + 0.1 cos(2π t)],
gs(qs) = gsn[1 + d23] = 0.5[1 + 0.1 sin(qs)],
τsext = 0.1 sin(2π t),

where amn , bmn , gmn and asn , bsn , gsn are the nominal
values or functions in master and slave robots dynam-
ics. The model parameters for contact force in (2) are
set based on the experimental result in [31] as:

Dh = Dhn(1 + dDh ) = 25.882(1 + 0.1),
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Kh = Khn(1 + dKh ) = 28683(1 − 0.05),

De = Den(1 + dDe ) = 20(1 − 0.1),

Ke = Ken(1 + dKe ) = 30000(1 + 0.1),

where Dhn , Khn and Den , Ken are the nominal val-
ues of the spring and damping coefficients. The dis-
tances between the shaft and the point where the con-
tact force is applied are set as lm = 0.5 and ls = 0.5.
The parameters for operator dynamics in (4) and envi-
ronment dynamics in (5) are set as the same with the
experimental platform in [31]:

Mh = 0.2525, kh = 10.1, bh = 101, λh = 0.5, Me = 80.

To demonstrate the lift process more vividly, both the
lift and drop cases are considered and the desired posi-
tion of the operator in (4) is set as:

srh(t) =
{
0.2(1 − e−t ) 0 ≤ t < 5,
0.2(1 − et−10) 5 ≤ t < 10.

The scaling constants for motion and force in (7) are
set as:

α = 0.2, β = 0.1.

The initial vales of positions for operator, master, slave,
and environment are set as

sh(0) = 0, sm(0) = 0, ss(0) = 0, se(0) = 0.

Tomake a tradeoff between the estimation accuracy and
the computational burden, the order of Taylor polyno-
mial for dP and dF is set as 3. The observer gains for
ENDOBs (24) and (25) are set as

l1P = 3oP , l2P = 3o2P , l3P = o3P , oP = 100,

l1F = 3oF , l2F = 3o2F , l3F = o3F , oF = 200.

The parameters of controllers (27) and (28) are chosen
as
γ = 5/3, c1 = 5, η1 = 10, ρ1 = 0.5, KP = 10,
η2 = 50, ρ2 = 0.5, KF = 20.

Considering the wide existences of control constraints
in practical engineering, the real control action of the
bilateral lift robot system is set to suffer the following
constraints:

|τm | ≤ 500, |τs | ≤ 500.

To make the simulation results more persuasive, sim-
ulations under the traditional nonlinear disturbance
observer-based composite continuous TSM controller
(NDOB based method) and the baseline continu-
ous TSM method without observer (baseline method)
are also carried out as comparisons of the proposed
method.

Fig. 4 Position responses of the teleoperation systems

Fig. 5 Response curves of position tracking subsystem: a posi-
tion of master and slave robot sm and ss ; b position tracking error
under different methods

4.2 Simulation results and analysis

The simulation results of the teleoperation system
under the proposed controller are given in Figs. 4, 5, 6,
7, 8, 9. The position responses of the whole teleopera-
tion system (including operator position sh , master and
slave robots’ positions sm, se, environment position se,
and the desired position of operator srh) are illustrated
in Fig. 4. As shown in Fig. 4, the position response
curves of the operator sh andmaster robot sm are almost
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Fig. 6 Response curves of force tracking subsystem: a contact
force acted on operator and environment fh and fe; b contact
force tracking error under different methods

the same, and the operator can manipulate the master’s
position sm through control its own position sh , and this
verifies the statement in Remark 1. It can be observed
that the response curves of the operator’s position sh
and its desired position srh are different, while the trend
of them is similar. Since the internal control action of
the operator f Hh in Eq. (4) is decided by the feedback
of contact force fh , sh and srh are not the same. Due
to the dynamics of srh being built in the operator, the
changing trend of sh and srh is similar.

Figure 5 demonstrates the control performances of
the position control subsystem. Figure 5a shows that
the human motion sm in the local site is transmitted
and amplified in the remote site (i.e., ss). Figure 5b
demonstrates the position tracking errors under differ-
ent methods: (1) both the proposed method and the
NDOB-based method guarantee the position tracking
error converge to a very small bounded region (less
than 5 × 10−8 m), while the convergence bound of
the baseline controller is bigger than 2 × 10−5 m; (2)
the proposedmethod has the fastest convergence speed,
and this denotes the high precisionmotion transmission

Fig. 7 Response curves of virtual control action: a virtual posi-
tion controller uP ; b virtual force controller uF

is achieved by the proposed ENDOB based composite
continuous TSM bilateral controller.

Figure 6 gives the response curves of the force con-
trol subsystem. As shown in Fig. 6a, the operator not
only haptics the contact force in the remote site accu-
rately but also realizes the amplify of force in the local
site. Figure 6b demonstrates the force tracking error
responses under different methods: 1) both the pro-
posed method and the NDOB-based method guarantee
the force tracking error converge to a small bounded
region (less than 10× 10−5 N ), while the convergence
bound of the baseline method is very large; 2) the
proposed method guarantees the fastest convergence
speed.

Figure 7 demonstrates the response curves of the
virtual control action both in position and force track-
ing subsystem under different methods. It illustrates
that the virtual control action in position loop uP and
that in force loop uF are both continuous under the
method. The response curves of real control action (i.e.,
the electrical torques of themaster and slave robots) are
demonstrated in Fig. 8. It can be observed from Fig. 7
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Fig. 8 Response curves of real control action: a electrical torque
of master robot; b electrical torque of slave robot

and Fig. 8 that both the virtual control actions and the
real control actions under the three methods are guar-
anteed continuous, and the control level of the three
methods is also similar which denotes the fair of the
simulation comparisons.

To demonstrate the effectiveness of the proposed
ENDOB, the response curves of disturbances in posi-
tion and force control subsystems and their estimations
are given in Fig. 9. It can be found from Fig. 9 that
although both of the lumped disturbances dP in the
position subsystem and dF in the force subsystem are
high-order time-varying disturbances, they could be
quickly estimated with high precision. Figure 9 also
illustrates that the proposed ENDOB achieves high-
precision estimation of disturbances even under the
case we have no information of disturbance’s order,
and this verifies the statement in Remark 3.

(a)

(b)

Fig. 9 Disturbance and its estimation: a lumped disturbance in
position control subsystem dP and its estimation d̂P ; b lumped
disturbance in force control subsystem dF and its estimation d̂F

5 Conclusion

This paper investigates the bilateral control prob-
lem of nonlinear teleoperation system with high-order
time-varying disturbances. A new enhanced nonlinear
disturbance observer (ENDOB) is proposed through
employing the Taylor polynomials to approximate the
dynamics of unknown high-order time-varying distur-
bances.And then the composite bilateral controllers are
developed based on the estimations of ENDOBs and
the continuous terminal sliding mode control methods.
The proposed controller not only guarantees the con-
vergence of position and force tracking errors even in
the presence of high-order time-varying disturbances
but also keeps the continuity of control action. The
simulation results on a bilateral lift robot system have
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demonstrated the remarkable merits of the proposed
controller.

Time delay has huge impact on teleoperation sys-
tem’s stability and transparency [3,33]; wewill explore
its impact on the bilateral systems in the future research.
Considering the wide existence of passivity problem
caused by time-delay [34,35], further work would also
focus on the handle of passivity problem.
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