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Abstract Nonlinear bistable structures have

received significant attention in the field of energy

harvesting and vibration absorption. Obtaining their

precise nonlinear restoring force is of significance to

predict and enhance the system’s performance. How-

ever, it is difficult to measure their nonlinear restoring

force in experiments due to the distinct characteristic

of snap-through. Moreover, the traditional Hilbert

transform-based method may have insufficient iden-

tification accuracy or even be incapable because

numerical integration or differentiation procedure is

sensitive to noise disturbance. To address these issues,

an optimal Hilbert transform parameter identification

is proposed to precisely estimate the parameters in the

bistable dynamic equation. The Hilbert transform

interval estimation of mass, damping and nonlinear

restoring force coefficients are derived for obtaining

the reasonable range of identified parameters. Fur-

thermore, an optimization fitness function is estab-

lished to obtain the optimal value of nonlinear

parameters in bistable structures. Numerical simula-

tion of an asymmetric bistable dynamic equation

shows that the proposed method exhibits an NMSE

value of 2.52% for free vibration and 1.64% for forced

periodic oscillation under 20 dB noise level. Besides,

the damping effects on identification results are

discussed. Experimental measurements of a magnetic

coupled bistable cantilever beam under different

conditions are performed to identify the nonlinear

system parameters. Results indicate that the proposed

method can effectively identify the nonlinear

bistable structures with an average NMSE value of

8.23% for free vibration and 6.39% for forced periodic

responses, respectively.

Keywords Bistable structures � Nonlinear restoring
force � Optimal Hilbert transform identification �
Parameter identification

1 Introduction

Over the past decade, bistable structures have received

significant attention due to their distinct advantages of

effectively improving the low-frequency response,

bandwidth, and large displacement transitions. The

intrinsic features of bistability render them versatile

and promising candidates in a wider range of appli-

cations, examples include energy harvesting [1, 2],

vibration absorption [3, 4], smart sensors [5, 6], and

morphing structures [7, 8]. The performance enhance-

ment of these bistable systems is highly dependent on

nonlinear restoring force design and characterization

[9, 10]. However, robust nonlinear restoring force
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parameter identification is an open issue in practical

applications due to the distinct characteristics of snap-

through and disturbance of the high-level noise in

dynamic responses.

For the purpose of characterizing the nonlinear

restoring force in bistable structures. Stanton et al.

deduced the dynamic model of the magnetic coupled

bistable piezoelectric energy harvester using the

energy principles and magnetic dipoles theory [11].

Zou et al. adopted the magnetic dipoles theory to

calculate an underwater magnetically coupled

bistable beam energy harvester [12]. Yan et al.

[13, 14] introduced the equivalent magnetic current

method to obtain nonlinear restoring force in a

bistable vibration isolator and then fitted it with a

higher-order polynomial function. Yang et al. [15]

utilized Lagrange’s equations to derive parameters of

the nonlinear restoring force of a bistable electromag-

netic actuator. The nonlinear restoring force analytical

calculation and simplification methods are necessary

for the initial bistable structures design. However, the

characteristics of a bistable system are easily changed

in experimental vibration conditions due to high

sensitivity to structural parameters. Moreover, the

quasi-static measurement and then polynomial fitting

was also widely used to directly obtain the nonlinear

restoring force of the bistable system. Shaw et al. [16]

measured the nonlinear restoring force of a

bistable composite plate in a high static low dynamic

stiffness vibration isolator. Zou et al. [17] used force

gauges and screw micrometers to measure the cus-

tomized tristable nonlinear forces in a piezoelectric

cantilever beam. However, the nonlinear restoring

force is required to be measured repeatedly for

reducing the measurement error due to snap-through

characteristics.

System identification techniques can effectively

estimate parameters of nonlinear vibrating structures

under practical situations. Many identification meth-

ods have been successfully developed and applied to

nonlinear restoring force identification of monos-

table structures. Yuan et al. [18] used the Hilbert

transform method to identify hardening and softening

nonlinearity in a circular piezoelectric laminated plate.

Wang et al. [19] employed Hilbert vibration decom-

position to estimate a nonlinear vibration absorber

with quadratic and cubic stiffness. Noël et al. [20]

identified piecewise nonlinear stiffness force in an

aerospace structure using wavelet transform and the

restoring force surface method. Xu et al. [21] devel-

oped a double Chebyshev polynomials-based

approach to identify nonlinear restoring force in shape

memory alloy dampers. In recent years, the identifi-

cation of bistable systems has also attracted extensive

attention. Zhou et al. [22] utilized a genetic algorithm

to identify the damping and electromechanical cou-

pling coefficient in a magnetic coupled bistable energy

harvester. Feldman developed the method of the

‘‘FREEVIB’’ identification and Hilbert Vibration

Decomposition to estimate the stiffness force curves

of the Duffing-Holmes autonomous oscillator [23, 24].

Cohen et al. [25] presented the slow and fast decom-

position method to identify the backbone curves of the

two asymmetric potential wells and the linearized

nonlinear stiffness force in a bistable electromagnetic

energy harvester. Liu et al. [26] comparatively

analyzed the displacement and acceleration measure-

ment restoring force surface method for identifying

bistable nonlinear restoring force. Anastasio com-

bined restoring force surface and nonlinear subspace

methods to estimate an asymmetric double-well

Duffing system’s nonlinear stiffness and damping

characters [27, 28]. Liu et al. [29] developed a two-

stage nonlinear subspace method to estimate the

parameters of a nonlinear bistable piezoelectric energy

harvesting structure. However, the traditional restor-

ing force surface and Hilbert transformmethod always

encounter the difficulty of numerical differentiation

and dynamic response selection to identify

bistable structures [26, 30]. Moreover, it is difficult

to perform the model selection in the nonlinear

subspace method because the prior knowledge of a

nonlinear restoring force function should be obtained

before identification.

Therefore, statistical and optimization methods

were introduced to enhance the performance of

classical parameter identification methods. Zhu et al.

[31] employed the Bayesian probability method in

nonlinear subspace identification to select the best

model and improve the accuracy. Miguel et al. [32]

introduced the Bayesian model identification through

the harmonic balance method for predicting the

nonlinear behavior of bolted structures. Tang et al.

[33] proposed the technique of combining the Hilbert

transform and the Bayesian approach to identify the

stiffness and damping of a nonlinear absorber using

free-response. Although these methods improve iden-

tification accuracy, there is still a lack of investigation
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into bistable structures combining nonparametric

methods with modern statistical or optimization

methods.

To enhance the identification performance of

bistable structures, it is necessary to search for the

optimal nonlinear restoring force from the estimated

interval by nonparametric identification. Inspired by

natural evolutionary optimization methods used in

phenomenological model identification [34, 35], an

optimal Hilbert transform method is proposed to

identify bistable vibrating structures under the distur-

bance of high-level noise. The value range of mass,

damping, and nonlinear restoring force coefficients are

estimated through the Hilbert transform identification

method. The optimal values can be searched based on

evolutionary optimization. Numerical simulation of an

asymmetric bistable equation under different noise

levels and dynamic responses is carried out to

investigate the identification accuracy. The numerical

results indicate that the proposed method is preferable

to the traditional one. Moreover, an experimental

evaluation based on a magnetic coupled bistable can-

tilever beam verifies the effectiveness of the proposed

method. The reconstructed dynamic response of the

identified system equation is in good agreement with

the measured response of the bistable structure.

The remainder of this paper is organized as follows.

Section 2 introduces the modeling of a bistable vibrat-

ing structure. In Sect. 3, the optimal identification

method is provided. Section 4 numerically investi-

gates the dynamic response selection. Finally, exper-

imental verification is conducted on a magnetic

coupled bistable cantilever beam in Sect. 5.

2 Modeling and dynamic analysis

of a bistable structure

2.1 Modeling of bistable vibrating structures

A bistable structure can be realized by coupling

nonlinear negative stiffness force on the linear oscil-

lator. The oblique spring, buckled beam and magnetic

coupling are commonly used approaches to achieve

negative stiffness. It should be noted that the identi-

fication method proposed in this paper is only suited

for a single-degree-of-freedom system with constant

mass, linear viscous damping and bistable nonlinear

restoring force. Therefore, the mass and damping are

assumed to be linear. Then, the governing equation of

the single-degree-of-freedom nonlinear bistable vi-

brating structure, as shown in Fig. 1a, can be modeled

as

m€xþ c _xþ kxþ fnðxÞ ¼ fext ð1Þ

where m, c and k are the equivalent mass, linear

viscous damping, and stiffness. And fnðxÞ ¼
Pn

i¼1 aix
i

is the external nonlinear restoring force, commonly

described by a polynomial function.

Bistable systems with asymmetric nonlinear restor-

ing force functions have received considerable interest

due to fabrication imperfections and installation

uncertainties [36, 37]. Therefore, asymmetric

bistable structures are also employed in this paper to

investigate the identification method. The most simple

nonlinear restoring force equation [38] of an asym-

metric bistable structure can be deduced as

fnðxÞ ¼ ðk þ a1Þxþ a2x
2 þ a3x

3¼a3ðx� x1Þðx
� x2Þðx� x3Þ ð2Þ

where k þ a1 ¼ a3x1x3 represents the first-order term
of combined nonlinear restoring for-

ce;a2 ¼ �a3ðx1 þ x3Þ; x1 and x3 are stable equilibrium
points; x2 is unstable equilibria and is often set as zero,

as shown in Fig. 1b. It has been verified that only when

ðk þ a1Þ is negative and a3 is positive, the dynamic

response of Eq. (1) can exhibit bistable characteristics.

The parameter a2 determines the degree of asymmetry

of the bistable system.

2.2 Dynamic response selection and identification

analysis

Dataset selection is essential in the nonlinear system

identification procedure. The commonly used excita-

tion approaches for obtaining identification datasets

are frequency-swept, random and sine excitation, etc.

For nonlinear monostable structures, such as piece-

wise linear and cubic nonlinear stiffness structures, the

physical parameters and nonlinear restoring force

functions can be identified by the ‘FORCEVIB’

algorithm [39] using frequency-swept excitation.

However, the nonlinear restoring force of a bistable vi-

brating structure cannot be calculated straightfor-

wardly by the frequency-swept response due to

incapable to extract the envelope and instantaneous

natural frequency characteristics while the large
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periodic inter-well oscillations occur across two

potential energy wells.

Therefore, the identification process needs to be

divided into two stages for all parameter identification

in bistable structures. The coupled nonlinear stiffness

force in bistable structures can be removed in many

situations. The mass and damping coefficient can be

identified using the traditional Hilbert transform-based

method. Moreover, bistable vibrating structures can be

regarded as two nonlinear monostable oscillators

around their equilibrium points. The frequency-swept

response can also identify the mass and damping. For

nonlinear restoring force identification, the free

vibration signal around two potential wells can be

decomposed into slowly-varying components. Then,

the congruent envelope and congruent natural fre-

quency can be calculated. The nonlinear restoring

force is equal to the product of the congruent envelope

and congruent natural frequency [23].

It should be noted that the differentiator with a

filtering procedure is necessary for modern Hilbert

transform-based parameter identification [39, 40]. A

higher quality of displacement signal acquisition is

required. Moreover, the nonlinear restoring force to be

identified is nonparametric, and curve fitting is

essential for accurate characterization [18, 41]. There-

fore, the noise levels will greatly affect the

identification accuracy. To address these issues, the

optimal Hilbert transform is introduced in the follow-

ing section.

3 Optimal Hilbert transform method

In this section, the optimal Hilbert transformmethod is

proposed to enhance the identification performance of

bistable structures. The optimal method has the

following characteristics: all parameters to be identi-

fied are set in a reasonable interval due to the effect of

noise; all parameters to be identified are optimal

values based on an evolutionary optimization algo-

rithm. The specific process is as follows.

3.1 Linear parameter identification

The governing equation of a bistable vibrating struc-

ture becomes linear when the coupled nonlinear

stiffness force is removed, and Eq. (1) can be rewritten

as

€xðtÞ þ h0 _xðtÞ þ x2
0xðtÞ ¼

fext
m

ð3Þ

where h0 = c/m and x2
0 ¼ k=m.

Fig. 1 a Schematic representation of lumped parameter model of a bistable vibrating structure; b the nonlinear restoring force

characteristics
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In the Hilbert transform method, all signals need to

be expressed in analytical signal form. The real-valued

Eq. (3) is transformed into an analytical signal equa-

tion based on the balance of the real part and the

imaginary part.

€Ax

Ax
� x2

x þ x2
0 þ h0

_Ax

Ax
¼ a

m

2
_Ax

Ax
xx þ _xx þ h0xx

� �

¼ jb
m

8
>>><

>>>:

ð4Þ

where

a ¼ xf þ ~x ~f

x2 þ ~x2
; b ¼ ~xf � x ~f

x2 þ ~x2
; Ax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ~x2

p
ð5Þ

The ~x and ~f are related to x and f by Hilbert

transform, respectively. The envelope Ax and instan-

taneous frequency xx are calculated from the dis-

placement response.

The natural frequency and damping can be deduced

from Eqs. (4). Moreover, the natural frequency x0

does not vary for a short period Dt because of the

constant value of mass. Finally, the mass can also be

solved from Eqs. (4). Therefore, linear parameters are

derived as the following equations:

x2
0 ¼

a
m
þ x2

x �
€Ax

Ax
þ 2

_A2
x

A2
x

þ
_Ax _xx

Axxx
�

_Axb
Axmxx

ð6Þ

h0 ¼
b

mxx
� 2

_Ax

Ax
� _xx

xx
ð7Þ

m ¼
D a� b _Ax

Axxx

� �

D �x2
x þ

€Ax

Ax
� 2

_A2
x

A2
x
� _Ax _xx

Axxx

� � ð8Þ

Thus, the underlying linear system’s mass, damp-

ing coefficient and stiffness of Eq. (1) can be

estimated by Eqs. (6)–(8). Due to the extraction of

instantaneous natural frequency and instantaneous

amplitude, the high-level noise will affect the identi-

fication results of these parameters. Therefore, each

identified parameter in this stage is in a certain interval

with upper and lower boundaries, not an exact value.

3.2 Nonlinear restoring force identification

For bistable vibrating structures, the Hilbert Vibration

Decomposition [42–44] can be used for signal decom-

position of free vibration responses. The congruent

envelope Ac(t) and congruent natural frequency xc(t)

can be described by the sum of high-order syn-

chronous components [23]. The deduced equations are

as follows

AcðtÞ ¼
XL

n¼1

AnðtÞ coswnðtÞ;

xc tð Þ ¼
XL

n¼1

x0nðtÞ coswnðtÞ
ð9Þ

where An and x0n(t) represent the envelope and

instantaneous natural frequency of the n-order har-

monics, respectively. The wn is the phase angle

between the primary and the n-order harmonic

components.

For asymmetrical bistable vibrating structures,

congruent functions must be separated into four parts

due to the two steady-state points and the asymmetric

characteristics. Furthermore, the nonlinear restoring

force per unit mass can be expressed as the product of

four congruent envelopes and their congruent natural

frequencies [23].

fnon ¼

x2
cn1Acn1 ðx\0Þ

x2
cn2Acn2 ðx[ 0Þ
x2

cp1Acp1 ðx\0Þ
x2

cp2Acp2 ðx[ 0Þ

8
>>>><

>>>>:

ð10Þ

where subscript p stands for positive envelope and

n represents negative envelope.

Due to the fact that the above procedure can only

obtain the nonlinear restoring force trajectory, a fitting

function is required to characterize nonlinear restoring

force. However, the optimal Hilbert transform does

not take the static fitting function as the final

identification result. The proposed method attempts

to search for the optimal nonlinear restoring force

function from the dynamic response instead of the

static fitting.

3.3 Evolutionary optimization

The prior knowledge of mass, damping and nonlinear

restoring force coefficients is provided in Sects. 3.1

and 3.2. Therefore, each parameter can be assigned to

a region with upper and lower boundaries. Assuming

that m, c, k, and ai are subjected to side constraints as

follows:
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mlb �m�mub; clb � c� cub; klb � k� kub; ailb � ai � aiub

ð11Þ

where subscripts lb and ub represent lower boundary

and upper boundary, respectively.

In order to obtain the optimal value in the above

intervals, a Normalized Mean-Square Error (NMSE)

between the ‘measured’ dynamic response and that

predicted by the identified system [45] is introduced to

estimate the optimization performance. The fitness

function of optimization is given by:

Jðm; c; k; aiÞ ¼
100

Nr2x

XN

i¼1

ðxi � x̂iðm; c; k; aiÞÞ2 ð12Þ

where r2x is the variance of the ‘‘measured’’ displace-

ment xi, and x̂i is the reconstructed response by the

identified parameters.

Particle swarm optimizer with passive congrega-

tion [46] is employed for the optimization of

bistable second-order differential equations. It is

assumed that the population consists of d individuals.

Every individual has its position and velocity, corre-

sponding to st and vt, respectively. The initial particles

are randomly distributed in the designed vector space.

The next position vector of individual d is iterated by

the following equations

sdtþ1 ¼ sdt þ vdtþ1

vdtþ1 ¼ wtv
d
t þ c1r1 � ðpdt � sdt Þ þ c2r2

� ðpdg � sdt Þ þ c2r3ðRd
t � sdt Þ

8
>><

>>:
ð13Þ

where wt is the inertia factor at time instant t; the c1, c2,
c3 represent the cognitive parameter, social parameter

and passive congregation coefficient, respectively; the

r1, r2, r3 are pseudo-random variables with uniform

distribution in the value range [0, 1]. The best previous

position vector of individual d is at time instant t and

pg is the best last position vector among all individuals

at time instant t. TheRd
t is a particle selected randomly

in the swarm. The symbol� denotes the term-by-term

product.

The optimal Hilbert transform method for the

identification of bistable vibrating structures can be

summarized in Fig. 2. The Hilbert transform interval

estimation of mass, damping and nonlinear restoring

force coefficients are conducted firstly for obtaining

the reasonable range of identified parameters. Fur-

thermore, an optimization fitness function is

established to obtain the optimal value of nonlinear

parameters in bistable vibrating structures.

Due to that the whole identification process

involves different excitations, the step to step identi-

fication data sets acquisition procedure are listed as

follows:

1. Frequency-sweeping test is conducted on the

underlying linear system if the external rotat-

able magnets are removed;

2. The two free-vibration responses are obtained by

giving the bistable structure different impacts or

large displacements. The two free-vibration

responses need to contain both inter-well and

intra-well motions. Besides, they must finally

move into different stable equilibrium points.

3. Finally, the free-vibration response and sinusoidal

vibration responses can be used for optimal

identification procedure.

4 Numerical investigations

In this section, an asymmetric bistable system

described by Eq. (1) is selected for the numerical

investigation of the proposed identification method.

System parameters of Eq. (1) is assumed that

m = 0.01 kg, c = 0.01 N/(m/s), k = 150 N/m, the

external nonlinear restoring force fn-
= - 250x ? 2500x2 ? 1250000x3. The bistable vi-

brator has an unstable equilibrium point of zero and

two steady-state points- 0.01 m and 0.008 m. Due to

the bistable characteristics, the mass, damping coef-

ficient and nonlinear restoring force cannot be iden-

tified simultaneously [29]. Therefore, the linear

parameters of m and c are firstly estimated by the

frequency-swept response and then the nonlinear

restoring force is identified by free attenuation

responses.

4.1 Underlying linear parameter identification

Linearly increasing frequency excitation simulation is

performed over the frequency range of 10–30 Hz and

a constant base acceleration of 2.5 m/s2. The sampling

frequency is 500 Hz and the sweeping frequency rate

is 30 Hz/min. The dynamic displacement response is

depicted in Fig. 3a and the envelope can be extracted

by the Hilbert transform. The backbone curve with a

123

5454 Q. Liu et al.



blue line is calculated using Eq. (6), as shown in

Fig. 3b. The result indicates that the instantaneous

natural frequency is 19.35 Hz and does not change

with the amplitude increases. Meanwhile, the damping

coefficient per unit mass is plotted in Fig. 3c using

Eq. (7). It can be estimated that the damping coeffi-

cient c = 1.014*0.01&0.01 N�s/m. In Fig. 3d, the

linear elastic force trajectory is plotted by the product

of instantaneous natural frequency and envelope. The

linear stiffness is obtained by the least-square fitting

and the final k = 150 N/m. Finally, the mass is

calculated by Eq. (8) and the value is 0.01 kg.

The above identification results indicate that the

relative error of each parameter is almost zero when

there is no noise disturbance. However, the Hilbert

transform identification involves differential proce-

dures, and the noise level significantly influences the

identification results. In this paper, the white Gaussian

noise with Signal-to-Noise-Ratio (SNR) of 40 dB,

30 dB and 20 dB are added to the dynamic response to

investigate the effect of noise levels. The relative error

Re for each parameter is defined as the following

equation:

Re ¼
Ri � Rr

Rr

�
�
�
�

�
�
�
�� 100% ð14Þ

where Re and Rr represent identified and real value,

respectively.

Fig. 2 Flowchart of the optimal Hilbert transform identification of bistable vibrating structures
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Table 1 summarizes the identification results under

different noise level disturbances. It can be observed

in Table 1 that m, c, k have the relative error of 5%,

17% and 6.7% under 40 dB noise level, respectively.

When the noise level increases to 30 dB, the identified

relative error raise to 21%, 18% and 20%. Moreover,

the relative error of identified parameters under 20 dB

noise are 26%, 46% and 27%, respectively. Therefore,

the noise level has a great impact on the identification

results.

4.2 Nonlinear restoring force identification

To identify nonlinear restoring force, two correspond-

ing free attenuation responses around two steady-state

points should be obtained. In this simulation, two large

values of the initial displacement 9 0 = ± 0.018 m

with zero velocity are selected and two corresponding

attenuation responses with 30 dB noise level are

shown in Fig. 4a. It can be observed that the oscillator

moves across two potential wells and then falls to

different potential wells of - 0.01 m and 0.008 m.

The free vibration response of nonlinear bistable struc-

tures is generally rich in harmonic contents with the

Fig. 3 Identification of underlying linear parameters. a envelope extraction; b backbone curve calculation; c damping curve; d linear

force trajectories

Table 1 Estimated linear system parameters under different

noise levels

SNR m (Re) c (Re) k (Re)

Theoretical 0.0100 0.0100 150

40 dB 0.0095 (5%) 0.0117 (17%) 140 (6.7%)

30 dB 0.0079 (21%) 0.0118 (18%) 120 (20%)

20 dB 0.0074 (26%) 0.01459 (46%) 110 (27%)
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major component having a primary natural frequency

and other minor components containing higher fre-

quencies. Therefore, two attenuation responses are

decomposed into four slow-varying components by

using the Hilbert Vibration Decomposition [23], as

shown in Fig. 4b. The decomposed 8 components are

employed for the congruent envelope and natural

frequency calculation by using Eq. (9). The congruent

envelopes around 0.008 m and - 0.01 m are plotted

with blue, pink, red and green curves, as depicted in

Fig. 4c. Finally, the blue, pink, red and green nonlin-

ear restoring force trajectories corresponding to four

congruent envelopes are calculated by Eq. (10), as

shown in Fig. 4d. The identified trajectories have a

good agreement with the theoretical nonlinear restor-

ing force curve drawn with a black line.

Table 2 lists the estimated nonlinear restoring force

functions with the different white noise levels. It can

be observed that the nonlinear restoring force coeffi-

cients have little difference from the theoretical one

under 40 dB noise. However, it becomes worse when

the noise level increases to 30 dB and the relative error

of a1, a2, a3 are 20%, 4% and 8.8%, respectively.

When the noise level is increased to 20 dB, the

identified accuracy of nonlinear restoring force dis-

tinctly reduces. It must be noted that the nonlinear

restoring force function is governed by four parame-

ters a0, a1, a2, a3. The identification accuracy may not

be defined by simply comparing the relative error of

each coefficient. Therefore, comparing the recon-

structed dynamic response with the simulated one is

more reasonable and will take considered in the

following sections.

Fig. 4 Identification of nonlinear restoring force characteris-

tics. a two free attenuation responses with 30 dB white noise;

b four decomposed slow-varying components by Hilbert

Vibration Decomposition; c four segments of congruent

envelopes; d the estimated four segments of nonlinear restoring

force trajectories
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From the above Hilbert transform analysis, physical

parameters m, c, k and the polynomial coefficients of

the nonlinear restoring force fn can be estimated

reasonably under weak noise conditions. However, the

identification accuracy decreases dramatically with

the noise level increases. In the following analysis, all

simulations are under 20 dB noise level. Therefore,

the interval of each parameter in the Hilbert transform

identification is obtained. The mass, damping and

nonlinear restoring force coefficients are assigned at

an error of 50%, 50% and 20%, respectively. The

specific values range is as follows:

0:005�m� 0:015; 0:005� c� 0:015; �120� k þ a1 � � 80;

1920� a2 � 2880; 960000� a2� 1440000:

ð15Þ

Moreover, all optimal identification in the follow-

ing procedure selects the following parameter condi-

tions: (1) population size d = 100; (2) the cognitive

parameter and passive parameter c2 = c2 = 0.6. (3) the

passive congregation coefficient c3 = 0.6 ? c3step*it-

eration; (4) the inertia factor w = 0.8.

4.3 Optimal identification under free vibration

In the optimal identification procedure, the datasets

use free attenuation response as in Sect. 4.2 is

considered. The displacement response does not need

to include oscillations around two potential energy

wells. Therefore, only the first six seconds of datasets

with 20 dB noise level are selected for optimal

identification. In Fig. 5a, the free attenuation response

is plotted with a blue line. Then, the damping and

nonlinear restoring force can be estimated by Eq. (15)

and the evolutionary optimization algorithm. It can be

viewed from Fig. 5b that the value of NMSE gradually

converged to 2.52% after 1000 analyses. Finally, the

optimized damping c is 0.0099 N s/m with a relative

error of 1% and the nonlinear restoring function is

fnon = - 98.98x ? 2592x2 ? 1.25 9 106x3. It is

observed in Fig. 5c that the identified nonlinear

restoring force has a good agreement with the

theoretical curve. The reconstructed dynamic response

is compared to the simulated one with the 20 dB noise

level, as depicted in Fig. 5d. The results indicate that

the reconstructed system identified by the proposed

method has the same vibration response as the

simulation system.

4.4 Optimal identification under forced vibration

To verify the effectiveness of evolutionary optimiza-

tion using forced vibration signals, periodic oscillation

is adopted because of its easy acquisition. When the

excitation acceleration is 50 m/s2 with the frequency

of 19 Hz is adopted to excite the same bistable struc-

ture, inter-well periodic oscillations may be observed

in the simulation. It can be viewed in Fig. 6a that the

oscillator moves across two potential wells at high

speed when the transient response of the system

disappears in 0.5 s. The amplitude of the system

fluctuates slightly due to the 20 dB noise level. Then,

the optimization identification is carried out, and the

NMSE finally converged to 1.64% after 2000 analy-

ses, as shown in Fig. 6b. The identified mass and

damping coefficients are 0.0098 kg and 0.0129 N�s/m
with a relative error of 2% and 29%, respectively.

Moreover, the optimal estimated nonlinear restoring

force function is fnon = - 90.48x ? 2423x2

? 1.17 9 106x3. It is observed in Fig. 6c that the

identified nonlinear restoring force has an excellent fit

with the theoretical curve. Moreover, the comparison

between the reconstructed dynamic response and the

simulated one is depicted in Fig. 6d. The results verify

the effectiveness of the proposed method.

From the numerical investigation of optimal iden-

tification under free and forced vibration, the results

demonstrated that free vibration is more desirable for

Table 2 Estimated nonlinear restoring force function and its relative error under different noise levels

SNR Nonlinear restoring force function a1 a2 a3

Theoretical fn = - 100x ? 2500x2 ? 1200000x3 0 0 0

40 dB fn = 0.026 - 100x ? 2500x2 ? 1200000x3 0 0 4%

30 dB fn = 0.025 - 120x ? 2600x2 ? 1360000x3 20% 4% 9%

20 dB fn = 0.035 - 110x ? 2300x2 ? 1300000x3 10% 8% 8%
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obtaining damping coefficient and nonlinear restoring

force function. Moreover, forced vibration is suit-

able for mass estimation.

4.5 The influence of damping

The traditional Hilbert transform-based method and

the optimal one are all based on the free vibration

responses of bistable vibrators. Then, a question is

raised here ‘‘If the damping ratio continues to increase

and the free attenuation becomes faster and faster, then

is the proposed method still effective?’’. In this

section, numerical simulations will be conducted to

explore the damping ratio effects on identification

results.

In these simulations, the equivalent damping ratios

are set as 0.02, 0.06, 0.1 and 0.3, respectively. The two

free vibration responses with different damping ratios

are obtained under no noise disturbance, as shown in

Fig. 7a–d. It can be observed that as the damping

ratios increase, the bistable oscillator used less time

moving to stable equilibrium points. The less free

attenuation responses can be used for the calculation

of nonlinear congruent envelopes and congruent

natural frequencies. The identified nonlinear restoring

force trajectory is obtained, as shown in Fig. 7e–h

with black asterisk lines. The third-order polynomial

function is used to fit the identified nonlinear restoring

force trajectory. The fitted results are then compared

with the theoretical ones. The results demonstrate that

the identified nonlinear restoring forces all have good

agreements with the theoretical ones. However, with

the increasing of equivalent damping ratio, there will

be fewer and less useful free attenuation responses for

Fig. 5 Optimal identification under free vibration response.

a free attenuation response with 20 dB white noise; b NMSE

changes with the analyses; c the identified nonlinear restoring

force and the theoretical one; d reconstructed dynamic response

versus simulated datasets under 20 dB noise
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nonlinear restoring force calculation. The proposed

method is applicable as long as there are sufficient

attenuation trajectories.

5 Experimental validations

An experimental setup is established to verify the

effectiveness of optimal Hilbert transform parameter

identification for bistable structures. A magnetically

coupled cantilever beam is designed to make a typical

bistable structure for experimental investigation. Fig-

ure 8 shows the schematic of the whole experimental

setup. A vibration exciter (JZK-50, Econ Technolo-

gies Co., Ltd), a power amplifier (YE5874A, Econ

Technologies Co., Ltd), and a controller (VT-9002–1,

Econ Technologies Co., Ltd)) are employed for

generating acceleration generation and signal control.

An acceleration sensor (CXL04GP3, MEMSIC., Inc)

and a displacement sensor (HL-G112-A-C5, Keyence)

are utilized to acquire excitation acceleration and

displacement response, respectively. The datasets are

synchronously recorded to the oscilloscope

(TBS2000, Tektronix). The cantilever beam is made

of spring steel with a size of 200 9 15 9 0.8mm3.

The tip magnets have a dimension of

20 9 10 9 3.5mm3, and the external magnet has a

diameter of 10 9 10 9 10mm3. Besides, the nonlin-

ear restoring force around two stable equilibrium

points can be repeatedly measured based on arranged

measuring instruments. The force and displacement

can be simultaneously obtained by reciprocating the

Fig. 6 Optimal identification under large periodic oscillation.

a forced response with 20 dB white noise and the oscillator

exhibits large oscillations across two potential wells; b NMSE

changes with the analyses; c comparison between the

identification of nonlinear restoring force and theoretical one;

d the reconstructed dynamic response versus simulated datasets

under 20 dB noise
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ball screw structure. The final measurement force–

displacement trajectory will be compared with the

identified results.

A forward and reverse sine sweep signal with an

amplitude of 4 m/s2 ranging from 5 to 20 Hz is

utilized to excite the cantilever beam for identification

of the underlying linear system’s mass, damping, and

stiffness. The sampling time is 64 s with a sampling

frequency of 312.5 Hz. The base excitation and

displacement response are depicted in Fig. 9a and

the resonance occurred at 23 s and 46 s. Then, the

envelope is extracted with a black line, as shown in

Fig. 9b. The instantaneous natural frequency is a

straight line due to linear sweeping and will not be

depicted here. Finally, the underlying linear system

parameters of linear stiffness, damping coefficient and

mass are calculated by Eq. (6) to Eq. (8). The

estimated linear stiffness k = 93 N/m, damping coef-

ficient c = 0.014 N/(m/s) and mass m = 0.012 kg.

According to the numerical results in Sect. 4.2, it is

more effective to utilize free attenuation response

around two-steady points of the bistable system to

identify nonlinear restoring force coefficients. There-

fore, the end of the cantilever beam in the experimen-

tal setup is placed in large deformation and then

released. The displacement response history of free

attenuation with the sampling frequency of 312.5 Hz

is recorded. The first and second attenuation responses

started from 0.02311 m and 0.02005 m and moved to

two different potential energy well locations, respec-

tively, as depicted in Fig. 10a. Then, the Hilbert

Vibration Decomposition is adopted here for signal

decomposition. In Fig. 10b, the black, blue, red and

green line depicts the decomposed signal components.

The blue line shows the largest slow-varying compo-

nent and the black line determines which potential

energy well the oscillator will eventually move to.

When four slowly-varying components are extracted

from the attenuation response, the congruent envelope

can be calculated by Eq. (9). As depicted in Fig. 10c,

the blue and green lines represent the congruent

envelopes around positive potential energy well.

Meanwhile, the congruent envelopes around the

negative potential energy well are drawn by blue and

pink lines. The amplitude envelope far away from two

bistable potential energy wells does not need to make

further analysis because the above four congruent

envelopes are enough for nonlinear restoring force

characterization. Finally, the four segments of

nonlinear restoring force corresponding to four con-

gruent envelopes are calculated by Eq. (10), as shown

in Fig. 10d. By taking least-square fitting, a seventh-

order polynomial is used to characterize these nonlin-

ear restoring force trajectories and the final function is

fnon = 0.4 - 220x - 1.3 9 104x2 ? 4.2 9 106x3 ?

1.1 9 108x4 - 2.2 9 1010x5 - 2.7 9 1011x6 ?

4.2 9 1013x7.

The numerical simulation in Sect. 4 shows that the

traditional Hilbert transform-based method to identify

bistable structures is not optimal or cannot estimate

due to high noise levels. Therefore, the physical and

nonlinear restoring force parameters identified above

are assigned a value range. Assuming that there is a

tolerance of ± 20% for each parameter in this exper-

iment. Therefore, the value range of each parameter is

assigned as

0:0096�m� 0:0144; 0:0112� c� 0:0168; 0:32� a0� 0:48;

� 264� a1 � � 176; �1:56� 104 � a2 � � 1:04

� 104; 3:36� 106 � a3� 5:04� 106; 8:8� 107

� a4 � 1:32� 108; �2:64� 1010 � a5 � � 1:76� 1010;

� 3:24� 1011 � a6� � 2:16� 1011; 3:36

� 1013 � a7 � 5:04� 1013:

ð16Þ

The numerical simulations indicate that free atten-

uation and periodic oscillation under constant fre-

quency excitation can obtain the optimal nonlinear

restoring force parameters. Therefore, these two types

of dynamic responses are performed under experi-

mental conditions. It should be noted that the fitted

nonlinear restoring force is effective in the deflection

range of - 0.015 to 0.015 m because of the geometric

nonlinearity of the cantilever beam. The measured

responses need to be intercepted in the range of

[- 0.015 0.015], and then the evolutionary optimiza-

tion identification is conducted.

Firstly, the intercepted free attenuation response

with an initial displacement of 0.01568 m is selected

for optimal identification. In this case, the oscillator

finally moved to the positive potential well. It is

observed in Fig. 11a that after 1000 analyses, the

NMSE converged to 6.63%. The comparison between

reconstructed dynamic responses with measured

datasets is shown in Fig. 11b. The results indicate

that the reconstructed system identified by the pro-

posed method has almost the same vibration response

as the measured datasets. Secondly, the intercepted
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free attenuation response with an initial displacement

of 0.01508 m is adopted for identification. The

oscillator moved to negative potential well in this

situation. The relationship between NMSE and

analyses steps is depicted in Fig. 11c and the NMSE

value finally converged to 9.83% after 1000 analyses.

The reconstructed dynamic response has a good

agreement with the measured datasets, as shown in

Fig. 11d. Through the above analysis, the average

NMSE of two free attenuation responses around two

potential wells is 8.23%. The damping c = 0.015 N/

(m/s) and nonlinear restoring force function fnon-
= 0.40–195.94x - 1.35 9 104x2 ? 4.18 9 106x3 ?

1.07 9 108x4 - 2.28 9 1010x5 - 2.60 9 1011x6-

? 4.24 9 1013x7 are finally identified.

bFig. 7 The influence of damping ratios on identification results.

a–d Two free vibration responses with damping ratios of 0.02,

0.06, 0.1 and 0.3, respectively. e–h The comparisons between

the identified results with the theoretical ones(damping ratio of

0.02, 0.06, 0.1 and 0.3, respectively)

Fig. 8 Experimental setup for identifying a magnetically coupled bistable cantilever beam

Fig. 9 Underlying linear system parameter identification. a the excitation and dynamic response of linear cantilever beam; b the

calculated envelope based on Hilbert transform
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Two intra-well periodic oscillations are selected for

parameter optimization of mass value to improve the

identification accuracy. The periodic response around

the negative potential well is obtained under the level

of 15 m/s2 and the frequency of 18 Hz. The evolu-

tionary optimization is conducted and the NMSE

converged to 4.13% after 1000 analyses, as shown in

Fig. 12a. The reconstructed dynamic response has a

good agreement with the measured datasets between

- 0.012 and - 0.006 m, as depicted in Fig. 12b. The

result indicates that the mass and nonlinear restoring

characteristics in the range of - 0.012 to - 0.006 m

can be estimated by the proposed method. Moreover,

the periodic response around positive potential well

under excitation of 5 m/s2 is also investigated.

Figure 12c shows the NMSE of 8.65% is obtained

after 1000 analyses. The comparison between the

reconstructed dynamic response with the measured

datasets is shown in Fig. 12d. The result demonstrates

that the mass and nonlinear restoring characteristics in

the range of 0.008 m to 0.011 m can also be identified.

At this stage, the final identified mass value is equal to

0.0119 kg.

The proposed optimal Hilbert transform parameter

identification shows that the bistable vibrating struc-

tures can be optimally identified under free and forced

vibration. Moreover, free attenuation response and

periodic oscillation under constant frequency

Fig. 10 Experimental identification of nonlinear restoring

force. a two free attenuation responses around two-steady

points; b signal decomposition of two free attenuation responses

using Hilbert Vibration Decomposition; c four segments of

congruent envelopes; d the calculated four segments of

nonlinear restoring force trajectories and a seventh-order

polynomial fitting curve
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excitation are easily collected datasets in practical

situations, which is convenient for optimal

identification.

To give a quantitative evaluation index of the

proposed optimal method against the classic one. The

NMSE between the identified nonlinear restoring

force functions with the experimentally measured

one is finally adopted. Due to that large deformation

will increase the measurement error in quasi-static

measurement, the nonlinear restoring force is mea-

sured in the range of- 0.01 m and 0.01 m with a step

of 0.001 m. The classic Hilbert transform-based

identified, the proposed optimal identified and exper-

imentally measured one are plotted in Fig. 13,

respectively. The final NMSE of the nonlinear restor-

ing force of the optimal one and the classic one is

1.20% and 4.55%, respectively. The results demon-

strate that the proposed method increases the accuracy

by 3.35% for identification of nonlinear restoring

force.

Fig. 11 Optimal identification by two intercepted free attenu-

ation datasets. a First intercepted free attenuation response with
the initial displacement of 0.01568 m; b comparison between

reconstructed response and experimental data; c second

intercepted free attenuation response with the initial displace-

ment of 0.01508 m; d comparison of reconstructed steady-state

response and experimentally measured response
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6 Conclusions

This paper proposed an optimal Hilbert transform

method for the accurate identification of bistable vi-

brating structures. The proposed method can identify

bistable vibrating structures under high-level noise.

Numerical investigation of an asymmetric bistable dy-

namic equation shows that the proposed method can

effectively identify mass, damping and nonlinear

restoring force under 20 dB noise level. The recon-

structed dynamic response exhibits an NMSE of

2.52% for free vibration and 1.64% for forced

vibration response. Moreover, the evolutionary opti-

mization identification under free and forced vibration

response shows that choosing free vibration to deter-

mine damping and nonlinear restoring force is more

desirable. Meanwhile, the mass value can be identified

by forced periodic oscillation. As all know, the decay

time of free attenuation responses is highly dependent

on the damping ratio. Thus, the investigation of the

damping ratio from 0.04 to 0.3 on nonlinear restoring

force identification results is conducted. The results

Fig. 12 Optimal identification by two forced responses.

a Forced response under base excitation of 15 m/s2 at 18 Hz;

b comparison between reconstructed response and experimental

data; c forced response under base excitation of 5 m/s2 at 18 Hz;

d comparison of reconstructed response and experimentally

measured response

123

5466 Q. Liu et al.



show that the identification of nonlinear restoring

force is not affected as long as there are sufficient

attenuation trajectories around two steady-state points.

Experimental measurements of a magnetic coupled

bistable cantilever beam under different conditions are

performed to identify the nonlinear system parame-

ters. Experimental results indicate that the proposed

method can effectively identify the nonlinear

bistable structures with an average NMSE value of

8.23% for free vibration and 6.39% for forced

vibration, respectively. Moreover, the optimal identi-

fied nonlinear restoring force can improve the NMSE

of 4.55% to 1.20% compared to classic Hilbert

transform-based identification method.
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