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Abstract The (3+1)-dimensional Kadomtsev-Pet-
viashvili-Bogoyavlensky-Konopelchenko equation is
used to simulate the evolution of shallow water waves
with weakly nonlinear restorative forces andwaves in a
strong magnetic medium, as well as ion acoustic waves
and stratified ocean internal waves in incompressible
fluids. The bilinear representation, Bäcklund transfor-
mation, Lax pair and infinite conservation laws of the
equation are systematically constructed by using the
Bell polynomial method. Based on the Hirota bilin-
ear method and some propositions, several new ana-
lytic solutions are studied, including the hybrid solu-
tions among the lumpwaves and periodicwaves,mixed
solutions between the lump waves and periodic waves,
mixed solutions between periodic waves. The dynamic
behaviors of these analytical solutions are studied by
means of three-dimensional diagrams, and some new
structures and properties of waves are found. The
research results provide a newmethod for us to explore
the model. The obtained results can be widely used to
report various interesting physical phenomena in the
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1 Introduction

With the rapid development of modern science and
technology, soliton theory has attracted wide atten-
tion in the fields of oceanography, plasma physics,
condensed state physics and atmospheric oceanogra-
phy [1–8]. Nonlinear evolution equations can simulate
many complex physical phenomena observed in nature
[9–12]. Therefore, the study of analytical solutions of
nonlinear evolution equations has become one of the
important research topics in nonlinear science [13,14].
People have been committed to find the analytical solu-
tions for nonlinear evolution equations, including the
lump solutions [15,16], rogue wave solutions [17–
20], rational solutions [21,22], periodic solutions [23],
breathers [24–26], bifurcation solitons [27] and so on.
In order to explore the analytical solutions of nonlinear
evolution equations and to figure out these phenom-
ena in nature, many methods have been studied, such
as the inverse scattering transformation method [28],
nonlocal symmetry method [29,30], Riemann–Hilbert
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method [31,32], Lie group method [33–37], Hirota
bilinear method [38–40], long wave limit approach
[41,42], Darboux transformation [43,44] and many
others.

In this study, we will focus our attention on the
following (3+1)-dimensional Kadomtsev-Petviashvili-
Bogoyavlensky-Konopelchenko equation to simulate
the evolution of shallow water waves with weakly non-
linear restorative forces andwaves in a strongmagnetic
medium, as well as ion acoustic waves and stratified
ocean internal waves in incompressible fluids.

h1uxxxx + h2uxxxy + h3uxxxz + h4uxuxx

+h5(uxuy)x + h6(uxuz)x

+h7uxt + h8uyt + h9uzt

+h10uxz + h11uyz + h12uzz = 0, (1)

where u = u(x, y, z, t) is a function of the three scaled
spatial variables x, y, z and the temporal variable t ,
with the parameters of hi (i = 1, 2, · · · , 12) are real
constants. Changing the parameters of Eq. (1) can be
simplified into the following equations.

(1) When we restrict u to being z-independent and
h7 = 1, h3 = h6 = h8 = h9 = h10 = h11 = h12 = 0.
Equation (1) has been reduced to the (2+1)-dimensional
generalized Bogoyavlensky-Konopelchenko equation
[45]

uxt+h1uxxxx+h2uxxxy+h4uxuxx+h5(uxuy)x =0,

(2)

which can be used to describe the interaction of a Rie-
mann wave propagating along y-axis and a long wave
propagating along x-axis. The complete integrability
of Eq. (2) is studied, and the periodic wave solutions
and soliton solutions are obtained [45].

(2) By plugging h1 = h4 = 0, h2 = 1, h5 =
3, h6 = 3h3 in Eq. (1), simplify the generalized (3+1)-
dimensional Kadomtsev-Petviashvili equation [46]

uxxxy + 3(uxuy)x + h3uxxxz + 3h3(uxuz)x

+h7uxt + h8uyt + h9uzt

+h10uxz + h11uyz + h12uzz = 0, (3)

the lumpand lump strip solutions ofEq. (3) are obtained
based on the Hirota bilinear method [46]. In addition,
the breather and lump solutions, shock wave solutions
and travelling-wave solutions of Eq. (3) are also widely
studied [47].

(3) For the parameter value case of h2 = h3 =
h8 = h9 = 1, h5 = h6 = −3, h1 = h4 = h7 =

h10 = h11 = h12 = 0. Equation (1) can be reduced to
the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli
equation [48]

uyt+uzt+uxxxy+uxxxz−3(uxuy)x−3(uxuz)x =0,

(4)

which describes the evolutions of ion acousticwave and
stratified ocean internal wave in incompressible fluid
[49]. Breather, rational solutions, lump-kink solutions
and localized excitation solutions as well as new non-
traveling wave solutions of Eq. (4) were constructed
[49–51].

(4) For the parameter value case of h1 = h2 = h3 =
λ1, h7 = h8 = h9 = 1, h10 = h11 = h12 = 0, h4 =
2h5 = 2h6 = 2λ2. Equation (1) has been reduced to a
new (3+1)-dimensional Boiti-Leon-Manna-Pempinelli
equation with constant coefficients [52]

uxt + uyt + uzt + λ1(uxxxx + uxxxy + uxxxz)

+λ2[ux (ux + uy + uz)]x = 0, (5)

which describes the wave propagation in incompress-
ible fluid [52]. Lump solutions, interaction solutions
between lump wave and solitary waves, breather solu-
tions and N -soliton solutions of Eq. (5) were studied
[53,54].

(5) Setting h2 = 1, h5 = 3, h8 = 2, h10 =
−3, h1 = h3 = h4 = h6 = h7 = h9 = h11 = h12 =
0 in Eq. (1) gives the (3+1)-dimensional Jimbo-Miwa
equation [55]

uxxxy + 3(uxuy)x + 2uyt − 3uxz = 0, (6)

which comes from the second equation in the well-
known KP hierarchy of integrable systems and can be
used to describe certain interesting (3+1)-dimensional
waves in physics [55]. Exact cross kink-wave and peri-
odic solitary-wave solutions of the (3+1)-dimensional
Jimbo-Miwa equation are studied by using the Hirota
bilinear method [56]. Wazwaz proposed the following
two extended (3+1)-dimensional Jimbo-Miwa equa-
tions [57]

uxxxy + 3(uxuy)x + 2(uxt + uyt + uzt ) − 3uxz = 0,

uxxxy+3(uxuy)x+2uyt − 3(uxz+uyz + uzz)=0,

(7)

lump solutions, lump-kink solutions, high-order lumps,
high-order breathers and hybrid solutions of Eq. (7) are
derived [58,59]. The analytical solutions of the above
special equations have been extensively studied, and
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the analysis of these solutions has greatly enriched the
soliton theory.

In the following, wemainly use the binaryBell poly-
nomial method to study the Bäcklund transformation,
Lax pair and infinite conservation laws of Eq. (1). The
main purpose of this paper is to construct some new
multiwave interaction solutions by using the Hirota
bilinear method through the transformation of nonzero
seed solutions, including the hybrid solutions among
the lump waves and periodic waves, mixed solutions
between the lump waves and periodic waves, mixed
solutions between periodic waves. Then, several new
analytic solutions are obtained by constructing new
auxiliary functions which include a few free functions
with respect to t . These new types of mixed solutions
greatly enrich the types of analytical solutions, and they
can well explain some nonlinear phenomena. As far as
the authors know, the multiwave interaction solutions
and relevant dynamical behaviors of Eq. (1) have not
been reported before. Next, the dynamic characteris-
tics of the multiwave interaction solutions are analyzed
through appropriate parameters and functions to better
simulate some new physical phenomena.

2 Bilinear representation, Lax pair, Bäcklund
transformation and infinite conservation laws

Hirota bilinear method and binary Bell polynomial
method are the most effective and direct tools to
study the integrability of nonlinear evolution equations.
Bilinear representation, Bäcklund transformation, Lax
pair and infinite conservation laws of Eq. (1) are sys-
tematically constructed by using the binary Bell poly-
nomial method.

2.1 Bilinear representation

Consider the following integrable constraints

h2 = h3 = h1, h4 = 6h1, h5 = h6 = 3h1,

h7 = h8 = h9 = h10 = h11 = h12 = 1, (8)

inserting the variable transformation u = px into Eq.
(1), integrating it with respect to x once and taking the
integration constant as zero, the following equation can
be obtained:

E(p) = h1(pxxxx + 3p2xx + pxxxy

+3pxx pxy + pxxxz + 3pxx pxz) + pxt + pyt

+pzt + pxz + pyz + pzz = 0, (9)

where the variable p = p(x, y, z, t) is the function of
x , y, z and t .With the help of the binaryBell polynomial
method [60], Eq. (9) can be reduced to the following
P-polynomial system

Pxt (p) + Pyt (p) + Pzt (p) + Pxz(p)

+Pyz(p) + Pzz(p)

+h1[Pxxxx (p) + Pxxxy(p) + Pxxxz(p)] = 0.

(10)

By means of the transformation p = 2 ln f , the system
(10) is converted to bilinear representation

[h1D4
x + h1D

3
x Dy + h1D

3
x Dz + Dx Dt + DyDt

+DzDt + Dx Dz + DyDz + D2
z ] f · f = 0. (11)

2.2 Bäcklund transformation and Lax pair

Assuming that p and p̄ are two different solutions of
Eq. (9), select the variable transformation p = 2 ln f
and p̄ = 2 ln g. Meanwhile, with the assumptions p̄ −
p = 2v, p̄ + p = 2w, we have

E( p̄) − E(p) = 2h1(vxxxx + 6vxxwxx + vxxxy

+3vxxwxy + 3wxxvxy + vxxxz

+3vxxwxz + 3wxxvxz) + 2(vxt

+vyt + vzt + vxz + vyz + vzz) = 0. (12)

With the help of the binary Bell polynomial method
[60], Eq. (12) is rewritten as follows:

E( p̄) − E(p) = 2∂x [h1Yxxx (v,w) + Yt (v)

+Yz(v)] + 6h1(vxxwxx − vxwxxx − v2xvxx )

+2∂y[h1Yxxx (v,w) + Yt (v) + Yz(v)]
+6h1(vxxwxy − vxwxxy − v2xvxy)

+2∂z[h1Yxxx (v,w) + Yt (v) + Yz(v)]
+6h1(vxxwxz − vxwxxz − v2xvxz) = 0. (13)

We introduce the appropriate constraint

wxx + v2x + wxy + vxvy + wxz + vxvz = λvx , (14)

with λ being an arbitrary constant. With the aid of con-
dition (14), Eq. (13) is converted to the following form:

E( p̄)−E(p)=2∂x [h1Yxxx (v,w)+Yt (v) + Yz(v)]
+2∂y[h1Yxxx (v,w) + Yt (v) + Yz(v)]
+2∂z[h1Yxxx (v,w) + Yt (v) + Yz(v)] = 0. (15)
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Eqs. (14) and (15) can be rewritten as a pair of linear
combinations about Y -polynomials [60]

h1Yxxx (v,w) + Yt (v) + Yz(v) = 0,

Yxx (v,w)+Yxy(v,w)+Yxz(v,w) − λYx (v)=0.

(16)

Due to the relationship between Y -polynomials [60]
andHirota bilinear operator [61], the system (16) yields
the Bäcklund transformation with the form

(h1D
3
x + Dt + Dz) f · g = 0,

(D2
x + Dx Dy + Dx Dz − λDx ) f · g = 0. (17)

Then, we suppose v = lnψ and w = p + lnψ , Eq.
(16) can be reduced to the linear system

h1ψxxx + 3h1uxψx + ψt + ψz = 0,

ψxx + ψxy + ψxz + ψ(ux + uy + uz) − λψx = 0.

(18)

It is easy to prove that the above system is just the Lax
pair of the (3+1)-dimensional generalized Kadomtsev-
Petviashvili-Bogoyavlensky-Konopelchenko equation
under the constraint condition (8).

2.3 Infinite conservation laws

By introducing a new potential function 2δ = p̄x − px ,
Eqs. (14) and (15) can be rewritten as

pxx + pxy + pxz + δx + δy + δz + δ2

+δ∂−1
x δy + δ∂−1

x δz − λδ = 0,

∂x

{
h1[δxx + δ3 + 3δ(δx + pxx )] + ∂−1

x δt

}

+∂y

{
h1[δxx + δ3 + 3δ(δx + pxx )] + ∂−1

x δz

}

+∂z

{
h1[δxx + δ3 + 3δ(δx + pxx )] + δ + ∂−1

x δz

}

+∂t (∂
−1
x δy + ∂−1

x δz) = 0. (19)

Assume that the function δ and arbitrary parameter λ

are as follows:

λ = ε, δ = ε +
∞∑
n=1

In(p, px , · · · )ε−n . (20)

Considering the first equation of Eq. (19), make the
power coefficients of the parameter ε equal, and give
the recursive formula of conversed densities In .

I1 = −pxx = −ux ,I2 = −I1,x = pxxx = uxx ,

∂−1
x (In+1,x + In+1,y + In+1,z)

= −In,x − In,y − In,z

−
n∑

k=1

Ik(In−k + ∂−1
x In−k,y

+∂−1
x In−k,z), n = 2, 3, · · · . (21)

By analyzing the second equation in Eq. (19), the infi-
nite conservation laws of Eq. (1) can be composed of
the following components:

Tn,t + Xn,x + Mn,y + Zn,z = 0, n = 1, 2, 3, · · · ,

(22)

where Tn ,Xn ,Mn and Zn are shown as

Tn = ∂−1
x (In,y + In,z). (23)

Xn = h1(In,xx + 3In+1,x + 3pxxIn + 3In+2

+3
n∑

k=1

IkIn−k,x + 3
n+1∑
k=1

IkIn+1−k

+
∑

i+ j+k=n

IiI jIk) + ∂−1
x In,t . (24)

Mn = h1(In,xx + 3In+1,x + 3qxxIn + 3In+2

+3
n∑

k=1

IkIn−k,x + 3
n+1∑
k=1

IkIn+1−k

+
∑

i+ j+k=n

IiI jIk) + ∂−1
x In,z . (25)

Zn = h1(In,xx + 3In+1,x + 3qxxIn + 3In+2

+3
n∑

k=1

IkIn−k,x + 3
n+1∑
k=1

IkIn+1−k

+
∑

i+ j+k=n

IiI jIk) + In + ∂−1
x In,z . (26)

3 Multiwave interaction solutions

Hybrid solutions play important role in multiple wave
interactions, as a new type of soliton solutions, have
been reported in many nonlinear systems [62]. In this
section, we study the multiwave interaction solutions
of Eq. (1) with the help of the Hirota bilinear method
[61], including hybrid solutions among the lumpwaves
and periodic waves, mixed solutions between the lump
waves and periodic waves, mixed solutions between
periodic waves.
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3.1 Hybrid solutions among the lump waves and
periodic waves

Consider the following integrable constraints

h2 = h3 = h1, h4 = 6h1, h5 = h6 = 3h1,

h8 = h9 = h7, h11 = h12 = h10, (27)

and through the Cole-Hopf transformation [61]

u = 2(ln f )x + u0(t), (28)

then the bilinear form of Eq.(1) can be written as fol-
lows:

[(Dx+Dy+Dz)(h1D
3
x+h7Dt+h10Dz)] f · f = 0,

(29)

whereu0(t) is an undetermined function of t . In order to
investigate the hybrid solutions among the lump waves
and periodic waves of Eq. (1), we assume some test
functions composed of N multiple functions and M
arbitrary elementary functions.

f A = α0(t) +
N∑
i=1

ki (t)[αi (t)x + βi (t)y

+γi (t)z + ωi (t)]ηi +
M∑
j=1

r j (t)�
ρ j
j

[m j (t)x + n j (t)y + p j (t)z + q j (t)], (30)

where α0(t), ki (t), αi (t), βi (t), γi (t), ωi (t), r j (t),m j

(t), n j (t), p j (t) and q j (t) are undetermined functions
about t , with ηi and ρ j are integers, N and M are pos-
itive integers, � j represents any elementary function.

Proposition 1 When these test functions (30) meet the
following constraints, then these test functions (30) are
the solutions of the bilinear equation (29).

αi (t)+βi (t)+γi (t)=0,m j (t) + n j (t) + p j (t) = 0.

(31)

We have successfully studied the superposition
behaviors between lump solutions and different ele-
mentary functions. Hybrid solutions among the lump
waves andperiodicwaves contain various test functions
that have been studied, including the lump solutions
[63], the mixed lump stripe solutions [64], the inter-
action solutions between one lump wave and multi-
kink waves [65], the mixed lump-kink solutions [66]
and some others. The extensive study of these differ-
ent types of solutions enriches the physical phenomena

in nature, the study of variable coefficient solutions is
more helpful to discover new dynamic behaviors. Ana-
lytical solutions reflect many nonlinear phenomena in
physics, such as the fusion and fission of solitons, the
annihilation of solitons and so on. Some solutions are
selected below to study the new dynamic behavior of
the hybrid solutions among the lump waves and peri-
odic waves.

Case 1.1 In the case of β1(t) = −α1(t) −
γ1(t), γ2(t) = −α2(t) − β2(t) are selected in the con-
straint conditions (31) and inserting N = η1 = η2 = 2
into the test functions (30), we attain

f A1 = α0(t) + k1(t)[α1(t)(x − y) + γ1(t)(z − y) + ω1(t)]2
+k2(t)[α2(t)(x − z) + β2(t)(y − z) + ω2(t)]2.

(32)

Inserting the test function (32) into transformation
(28), the periodic double lump waves solution uA1 is
described by three-dimensional surfaces, x-curve and
t-curve plots in Figs. 1a,b,c, y-curve and t-curve plots
in Figs. 1d,e,f. From Fig. 1 a, we found that the double
lumps in the periodic double lumpwaves solution were
composed of two peaks on both sides of the horizontal
plane and two valleys on both sides of the horizontal
plane, and their shapes presented a ∨-shape. With the
change of parameters, the periodic double lump waves
solution moves along the positive direction of the x-
axis, and the amplitude does not change during the
whole process. However, it is observed in Fig. 1b that
two adjacent lump waves collide with each other and
move in opposite directions, and the distance between
them gradually increases. Subsequently, in Fig. 1c, it
was found that the double lump waves reached a stable
state, and then presented a∧-shape. Similarly, the adja-
cent lump waves collision process has similar results
in Figs. 1d,e,f. The periodic double lump waves move
along the positive direction of the y-axis. Compared
with Figs. 1a,b,c, it is found that the velocity along the
y-axis is significantly faster than that along the x-axis.

Case 1.2 If α1(t) = −β1(t) − γ1(t), γ2(t) =
−α2(t) − β2(t),m1(t) = −n1(t) − p1(t), n2(t) =
−m2(t) − p2(t) are selected in the constraint condi-
tions (31), and N = M = η1 = η2 = 2, ρ1 = ρ2 =
1,�1 = �2 = cosh are inserted into the test functions
(30), we get

f A2 = α0(t) + k1(t)[β1(t)(y − x)

+γ1(t)(z − x) + ω1(t)]2
+k2(t)[α2(t)(x − z)
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Fig. 1 (Color online) Periodic double lump waves solution
by choosing parameters as u0(t) = 0.5, α0(t) = k1(t) =
k2(t) = 1, α1(t) = 1.2, α2(t) = −0.6, γ1(t) = −0.5, β2(t) =

0.4, ω1(t) = ω2(t) = sin(t) + cos(t). (a) y = −4, z = 12,
(b) y = 2, z = 6, (c) y = 8, z = 0, (d) x = −4, z = 12, (e)
x = 2, z = 6, and (f) x = 8, z = 0

+β2(t)(y − z) + ω2(t)]2
+r1(t) cosh[n1(t)(y − x)

+p1(t)(z − x) + q1(t)]
+r2(t) cosh[m2(t)(x − y)

+p2(t)(z − y) + q2(t)]. (33)

Inserting the test function (33) into transformation
(28), the hybrid solution among the lumpwave and two
periodic waves uA2 is described by three-dimensional
surfaces, x-curve and t-curve plots in Figs. 2 a,b,c.
By choosing different parameters, the hybrid solution
among the lump wave and two kink waves uA2 is
described by three-dimensional surfaces, x-curve and
y-curve plots in Figs. 2 d,e,f. Figure 2 depicts the inter-
action between the lump wave, two periodic waves and
two kink waves. It can be seen from Fig. 2a that the

lump wave is between two periodic waves, close to the
periodic wave with higher amplitude. As the param-
eters change, the lump wave and two periodic waves
move along the positive direction of the x-axis. It is
observed from Fig. 2b that the speed of two periodic
waves are faster than the lumpwave, and the lumpwave
is close to the periodic wave with low-amplitude. Then
it can be seen from Fig. 2c that due to different veloc-
ities, the lump wave collides with the low-amplitude
periodic wave and the amplitude decreases. It can be
seen from Figs. 2 d,e,f that the lump wave and two kink
waves move at a certain angle along the x-axis and y-
axis, and the amplitude and shape do not change. This
is because the t function is taken as a constant coeffi-
cient, the interaction phenomenon of this solution has
been widely studied.
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Fig. 2 (Color online) Hybrid solution among the lump wave
and two periodic waves by choosing parameters as u0(t) =
r2(t) = n1(t) = 0.5, α0(t) = r1(t) = 1, k1(t) = k2(t) =
2, β1(t) = m2(t) = −2, γ1(t) = −0.5, α2(t) = −1.6, p1(t) =
−0.7, β2(t) = 1.5, p2(t) = −0.1, ω1(t) = ω2(t) = 2t, q1(t) =
q2(t) = sin(t) + cos(t). (a) y = 2, z = 6, (b) y = z = 4, and

(c) y = 6, z = 2. Hybrid solution among the lump wave and two
kink waves by choosing parameters as u0(t) = −0.1, α0(t) =
k2(t) = q1(t) = q2(t) = 1, k1(t) = 1.5, r1(t) = 0.5, r2(t) =
0.7, α2(t) = −1.8, β2(t) = −1.4, n1(t) = −1,m2(t) =
γ1(t) = −0.7, p1(t) = 3, p2(t) = 0.8, β1(t) = ω1(t) =
ω2(t) = 2. (d) z = 2, (e) z = 4, and (f) z = 6

3.2 Mixed solutions between the lump waves and
periodic waves

Now, we consider the mixed solutions between the
lump waves and periodic waves, which are the product
form of the combination of polynomial functions and
arbitrary elementary functions.

fB =
{
a0(t) +

N∑
i=1

ki (t)[ai (t)x

+ bi (t)y + ci (t)z + di (t)]ηi

+
M∑
j=1

s j (t)�
ρ j
j [α j (t)x

+β j (t)y + γ j (t)z + ω j (t)]
}

×
{

E∑
e=1

re(t)[me(t)x

+ ne(t)y + pe(t)z + qe(t)]θe

+m0(t) +
L∑

l=1

νl(t)�
δl
l

[σl(t)x + �l(t)y + τl(t)z + χl(t)]
}

, (34)

with a0(t), ki (t), ai (t), bi (t), ci (t), di (t), s j (t), α j (t),
β j (t), γ j (t), ω j (t), re(t),me(t), ne(t), pe(t), qe(t),
m0(t), νl(t), σl(t),�l(t), τl(t) and χl(t) are undeter-
mined functions about t , N , M, E and L are positive
integers, where ηi , ρ j , θe and δl are integers, � j and
�l are arbitrary elementary functions.
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Proposition 2 When these test functions (34) meet the
following constraints, then these test functions (34) are
the solutions of the bilinear equation (29).

ai (t) + bi (t) + ci (t) = 0, α j (t) + β j (t)+γ j (t) = 0,

me(t)+ne(t)+ pe(t) = 0, σl(t)+�l(t) + τl(t) = 0.

(35)

Mixed solutions between the lump waves and peri-
odic waves are simulated by some parameters and spe-
cial functions, which can provide some wave colli-
sions and dynamic characteristics. Because a variety
of elementary functions can be selected, the compound
solutions of different functions in Reference [67] are
included. This new type of solution selection has vari-
ous forms, and it is possible to find some new interac-
tion phenomena of solutions. Three new solutions are
selected to study new physical phenomena.

Case 2.1 In the case of a1(t) = −b1(t) −
c1(t), b2(t) = −a2(t) − c2(t), n1(t) = −m1(t) −
p1(t), p2(t) = −m2(t)−n2(t) are selected in the con-
straint conditions (35) and inserting N = E = η1 =
η2 = θ1 = θ2 = 2 into the test functions (34), we attain

fB1 =
{
a0(t) + k1(t)[b1(t)(y − x) + c1(t)(z − x)

+d1(t)]2 + k2(t)[a2(t)(x − y)

+c2(t)(z − y) + d2(t)]2
}

×
{
r1(t)[m1(t)(x−y)+ p1(t)(z − y)+q1(t)]2

+m0(t) + r2(t)[m2(t)(x − z)

+n2(t)(y − z) + q2(t)]2
}

. (36)

Substituting the test function (36) into transforma-
tion (28), two lump waves solution uB1 is described
by three-dimensional surfaces, x-curve and t-curve
plots in Figs. 3a,b,c. By choosing different param-
eters, one lump wave solution uB1 is described by
three-dimensional surfaces, x-curve and z-curve plots
in Figs. 3d,e,f. Figures 3a,b,c show the fusion and fis-
sion of two lump waves. From Fig. 3a, it can be seen
that the two lumpwaves have two peaks and two valleys
on both sides of the horizontal plane. When the param-
eters are changed, the two lump waves move along the
x-axis and t-axis at a certain angle, and the direction
of motion is opposite. In Fig. 3b, it is observed that
two lump waves collide with each other and directly
fuse into one lump wave, and the amplitude is twice
the original. In Fig. 3c, it can be found that two lump
waves should move along the original direction, so one

lump wave is divided into two lump waves and the
amplitude is restored. It can be seen from Figs. 3d,e,f
that the lump wave moves at a certain angle along the
x-axis and z-axis, and the amplitude and shape do not
change.

Case 2.2 In the case of b1(t) = −a1(t) −
c1(t), c2(t) = −a2(t) − b2(t), β1(t) = −α1(t) −
γ1(t), p1(t) = −m1(t) − n1(t), n2(t) = −m2(t) −
p2(t), τ1(t) = −σ1(t)−�1(t) are selected in the con-
straint conditions (35) and inserting N = E = η1 =
η2 = θ1 = θ2 = 2, M = L = ρ1 = δ1 = 1,�1 =
�1 = cosh into the test functions (34), we attain

fB2 = {a0(t) + k1(t)[a1(t)(x − y)

+c1(t)(z − y) + d1(t)]2
+k2(t)[a2(t)(x − z) + d2(t)

+b2(t)(y − z)]2 + s1(t) cosh[α1(t)(x − y)

+γ1(t)(z − y) + ω1(t)]}
× {

m0(t) + r1(t)[m1(t)(x − z) + n1(t)(y − z) + q1(t)]2
+r2(t)[m2(t)(x − y) + p2(t)(z − y)

+q2(t)]2 + ν1(t) cosh[σ1(t)(x − z)

+�1(t)(y − z) + χ1(t)]} . (37)

Substituting the test function (37) into transfor-
mation (28), the mixed solution between two lump
periodic waves uB2 is described by three-dimensional
surfaces, x-curve and t-curve plots in Figs. 4a,b,c.
By choosing different parameters, the mixed solution
between one lump wave and four kink waves uB2 is
described by three-dimensional surfaces, y-curve and
z-curve plots in Figs. 4 d,e,f. Figures 4a,b,c analyzes
the mutual collision between two lump periodic waves,
each lump periodic wave consists of two intersecting
periodic waves and one lump wave. Figure 4 a shows
that the distribution of two lump periodic waves is per-
pendicular to the x-axis and t-axis, and each lumpwave
is at the intersection of two periodic waves. With the
change of parameters, it is observed in Fig. 4b that two
lump periodic waves move in the opposite direction of
the x-axis respectively and merge into one lump peri-
odic wave. In Fig. 4c, the two lump periodic waves
continue to move in opposite directions, and the ampli-
tude remains unchanged during the whole process. It
can be observed in Figs. 4d,e,f that the lump wave is
distributed at the intersection of two kink waves with
lower amplitude, and moves along the positive direc-
tion of y-axis and z-axis under the action of two kink
waves with higher amplitude.
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Fig. 3 (Color online) Two lump waves solution by choosing
parameters as u0(t) = c1(t) = 0.3, a0(t) = m0(t) = k1(t) =
r1(t) = b1(t) = 1, k2(t) = r2(t) = a2(t) = p1(t) = m2(t) =
1.5, c2(t) = 1.6,m1(t) = −1, n2(t) = 1.8, d1(t) = d2(t) =
q1(t) = q2(t) = t . (a) y = 2, z = 6, (b) y = z = 4, and (c)

y = 6, z = 2.One lumpwave solution by choosingparameters as
u0(t) = 0, a0(t) = m0(t) = d1(t) = d2(t) = q1(t) = q2(t) =
k1(t) = r1(t) = 1, k2(t) = r2(t) = 1.5, b1(t) = c1(t) =
2, a2(t) = c2(t) = −2,m1(t) = 1.8, p1(t) = −2.2,m2(t) =
−1.3, n2(t) = 2.5. (d) y = 2, (e) y = 4, and (f) y = 6

Case 2.3 In the case of β1(t) = −α1(t) −
γ1(t), γ2(t) = −α2(t) − β2(t), τ1(t) = −σ1(t) −
�1(t),�2(t) = −σ2(t)−τ2(t) are selected in the con-
straint conditions (35) and inserting M = L = 2, ρ1 =
ρ2 = δ1 = δ2 = 1, a0(t) = m0(t) = 0,�1 = �2 =
�1 = �2 = cosh into the test functions (34), we attain

fB3 = {s1(t) cosh[α1(t)(x − y)

+γ1(t)(z − y) + ω1(t)]
+s2(t) cosh[α2(t)(x − z)

+β2(t)(y − z) + ω2(t)]}
× {ν1(t) cosh[σ1(t)(x − z)

+�1(t)(y − z) + χ1(t)]
+ν2(t) cosh[σ2(t)(x − y)

+τ2(t)(z − y) + χ2(t)]} . (38)

Substituting the test function (38) into transforma-
tion (28), the interactions between four periodic waves
uB3 is described by three-dimensional surfaces, x-
curve and t-curve plots in Figs. 5a,b,c, z-curve and
t-curve plots in Figs. 5d,e,f. Figure 5 displays the col-
lision between four periodic waves, and studies the
fusion and fission between multiple periodic waves.
Four periodic waves are found in Fig. 5a, one of which
has a smaller wavewidth comparedwith the other three
periodic waves. One periodic wave and the other two
periodic waves are distributed on both sides of the peri-
odic wave with smaller wave width, it can be seen that
the velocity of two periodic waves is obviously higher
than that of one periodic wave. In Fig. 5b, it is observed
that the periodicwavewith smallerwavewidth does not
move, and other periodic waves have different veloc-
ities and move in the opposite direction, so four peri-
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Fig. 4 (Color online)Mixed solution between two lumpperiodic
waves by choosing parameters as u0(t) = ν1(t) = 0.5, a0(t) =
m0(t) = 1, k1(t) = k2(t) = r1(t) = r2(t) = 3, s1(t) =
p2(t) = 0.6, a1(t) = 0.1, c1(t) = 0.8, a2(t) = −0.6, b2(t) =
1.2, α1(t) = −1, γ1(t) = −2.3,m1(t) = 0.4, n1(t) =
1.3,m2(t) = −0.4,�1(t) = −3, σ1(t) = −1.2, d1(t) =
d2(t) = q1(t) = q2(t) = t, ω1(t) = χ1(t) = cos(t). (a)
y = 2, z = 6, (b) y = z = 4, and (c) y = 6, z = 2. Mixed solu-

tion between one lump wave and four kink waves by choosing
parameters as u0(t) = −0.1, a0(t) = m0(t) = d1(t) = d2(t) =
q1(t) = q2(t) = m2(t) = 1, a1(t) = −3, ω1(t) = χ1(t) =
2, k1(t) = k2(t) = r1(t) = r2(t) = 3, s1(t) = ν1(t) = c1(t) =
0.5, a2(t) = m1(t) = 1.2, b2(t) = 1.6, α1(t) = −2, γ1(t) =
0.6, n1(t) = −1.4, p2(t) = −1.2,�1(t) = 0.4, σ1(t) = −1.8.
(d) x = −2, (e) x = 2, and (f) x = 6

odic waves are fused into one periodic wave. In Fig. 5c,
according to the motion properties of periodic waves,
they gradually split into four periodicwaves andmoved
in the opposite direction, with no change in ampli-
tude. A new nonlinear phenomenon appears in Figs. 5
d,e,f, where multiple periodic waves collide to produce
breather solution. In Fig. 5d, two periodic waves with
longer wave widths are distributed on both sides of two
adjacent periodic waves with smaller wave widths. It
can be seen from Fig. 5 e that two long-wave-width
periodic waves move in opposite directions, respec-
tively, and collidewith two periodicwaveswith smaller
wavewidths to produce the breather solution. In Fig. 5f,
it is observed that the amplitude of these four periodic

waves changes, and the direction is opposite to the orig-
inal.

3.3 Mixed solutions between periodic waves

It is assumed that the mixed solutions between periodic
waves have the following form

fC =
{

α0(t) +
N∑
i=1

ki (t)[αi (t)x

+βi (t)y + γi (t)z + ωi (t)]ηi +
M∑
j=1

s j (t)�
ρ j
j

[m j (t)x + n j (t)y + p j (t)z + q j (t)]
}
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Fig. 5 (Color online) Interactions between four periodic waves
by choosing parameters as u0(t) = 0, s1(t) = s2(t) = τ2(t) =
1.5, ν1(t) = 1.3, ν2(t) = 2, α1(t) = 0.8, γ1(t) = 0.5, α2(t) =
−2.2, β2(t) = 0.2,�1(t) = −2.8, σ1(t) = 0.1, σ2(t) =

−1.2, ω1(t) = χ1(t) = cos(t), ω2(t) = χ2(t) = sin(t). (a)
y = 2, z = 6, (b) y = z = 4, (c) y = 6, z = 2, (d) x = 0, y = 8,
(e) x = y = 4, and (f) x = 8, y = 0

÷
{
a0(t) +

E∑
e=1

re(t)[ae(t)x + be(t)y + ce(t)z

+de(t)]θe +
L∑

l=1

νl(t)�
δl
l

[σl(t)x + �l(t)y + τl(t)z + χl(t)]
}

, (39)

with α0(t), ki (t), αi (t), βi (t), γi (t), ωi (t), s j (t),m j

(t), n j (t), p j (t), q j (t), a0(t), re(t), ae(t), be(t), ce(t),
de(t), νl(t), σl(t),�l(t), τl(t) and χl(t) are undeter-
mined functions about t , N , M, E and L are positive
integers, where ηi , ρ j , θe and δl are integers, � j and
�l are arbitrary elementary functions.

Proposition 3 When these test functions (39) meet the
following constraints, then these test functions (39) are
the solutions of the bilinear Eq. (29).

αi (t) + βi (t) + γi (t) = 0,m j (t) + n j (t) + p j (t) = 0,

ae(t) + be(t) + ce(t) = 0, σl(t) + �l(t) + τl(t) = 0.

(40)

Mixed solutions between periodic waves are con-
structed according to fractional properties, and their
numerator and denominator are composed of polyno-
mial functions and any elementary functions. Because
a variety of elementary functions can be selected, the
hybrid solutions of fraction type in Reference [68] are
included. Studying the mixed solutions between peri-
odic waves can better analyze nonlinear phenomena
in different fields. Many new forms of solutions have
not been given in other documents, and more kinds of
analytical solutions can be obtained.
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Fig. 6 (Color online)Mixed solution among periodic lump-kink
wave and periodic wave by choosing parameters as u0(t) =
0, α0(t) = a0(t) = k1(t) = k2(t) = r1(t) = r2(t) = γ1(t) =
1, a1(t) = a2(t) = −0.8, c1(t) = 3, b2(t) = −1.6, β1(t) =

−0.2, α2(t) = −0.1, γ2(t) = 0.5, d1(t) = d2(t) = ω1(t) =
ω2(t) = cos(t). (a) y = 2, z = 6, (b) y = z = 4, and (c)
y = 6, z = 2

Case 3.1Bypluggingα1(t) = −β1(t)−γ1(t), β2(t)
= −α2(t) − γ2(t), b1(t) = −a1(t) − c1(t), c2(t) =
−a2(t) − b2(t) into the constraint conditions (40) and
inserting N = E = η1 = η2 = θ1 = θ2 = 2 into the
test functions (39), we attain

fC1 = {
α0(t) + k1(t)[β1(t)(y − x) + γ1(t)(z − x)

+ω1(t)]2 + k2(t)[α2(t)(x − y)

+γ2(t)(z − y) + ω2(t)]2
} ÷

{
r1(t)[a1(t)(x − y) + c1(t)(z − y) + d1(t)]2

+a0(t) + r2(t)[a2(t)(x − z)

+b2(t)(y − z) + d2(t)]2
}
. (41)

Substituting the test function (41) into transforma-
tion (28), we obtain the mixed solution among peri-
odic lump-kink wave and periodic wave uC1. Figure 6
analyzes the dynamic behavior of the mixed solution
among periodic lump-kink wave and periodic wave,
in which periodic lump-kink wave is composed of
breather and periodic wave. It can be seen from Fig. 6a
that both periodic lump-kink wave and periodic wave
move along the negative x-axis. Because the periodic
wave speed is faster than the periodic lump-kink wave
speed, it collides and merges into the double periodic
waves. It can be observed from Fig. 6b that the dou-
ble periodic waves are composed of a periodic wave
with upward direction and a periodic waveswith down-
ward direction. Then, with the different speeds of peri-
odic lump-kink wave and periodic wave, the fission of
double periodic waves causes the direction of periodic
lump-kink wave and periodic wave to be different from
the original, and the amplitude changes.

Case 3.2Bypluggingβ1(t) = −α1(t)−γ1(t), γ2(t)
= −α2(t) − β2(t),m1(t) = −n1(t) − p1(t), a1(t) =
−b1(t) − c1(t), b2(t) = −a2(t) − c2(t), τ1(t) =
−σ1(t)−�1(t) into the constraint conditions (40) and
inserting N = E = η1 = η2 = θ1 = θ2 = 2, M =
L = ρ1 = δ1 = 1,�1 = �1 = cosh into the test
functions (39), we attain

fC3 = {
α0(t) + k1(t)[α1(t)(x − y) + γ1(t)(z − y)

+ω1(t)]2 + k2(t)[α2(t)(x − z) + ω2(t)

+β2(t)(y − z)]2 + s1(t) cosh[n1(t)(y − x)

+p1(t)(z − x) + q1(t)]
}

÷{
a0(t) + r1(t)[b1(t)(y − x) + c1(t)(z − x) + d1(t)]2

+r2(t)[a2(t)(x − y) + c2(t)(z − y)

+d2(t)]2 + ν1(t) cosh[σ1(t)(x − z)

+�1(t)(y − z) + χ1(t)]
}
. (42)

By plugging the test function (42) into transforma-
tion (28), we get the two periodic lumpwaves uC2. Fig-
ure 7 depicts the collision between two periodic lump
waves, periodic lump waves are composed of periodic
upward peaks and downward valleys on both sides of
the horizontal plane, and their arrangement and distri-
bution are linear. In Fig. 7a, it is found that the dis-
tribution of two periodic lump waves is perpendicular
to the x-axes and t-axes, and the wave widths of the
two periodic lump waves are different. It is observed
from Fig. 7b that the periodic lump wave with large
wave width moves along the positive direction of the
x-axis and collides with the periodic lump wave with
small wave width, resulting in changes in the ampli-
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Fig. 7 (Color online) Two periodic lump waves by choos-
ing parameters as u0(t) = 0, α0(t) = a0(t) = k1(t) =
k2(t) = r1(t) = r2(t) = s1(t) = ν1(t) = 1, b1(t) =
c2(t) = 1.5, c1(t) = p1(t) = −0.5, a2(t) = −1.2, α1(t) =

0.8, γ1(t) = −3, α2(t) = 2, β2(t) = 0.7, n1(t) = 2.1,�1(t) =
−1.5, σ1(t) = 1.3, d1(t) = d2(t) = ω1(t) = ω2(t) = q1(t) =
χ1(t) = cos(t). (a) y = 2, z = 6, (b) y = z = 4, and (c)
y = 6, z = 2

tude and shape of the periodic lump wave. Then it is
found in Fig. 7c that the periodic lump wave with large
wave width continues to move, its shape recovers but
its direction changes.

4 Conclusion

In this paper, bilinear representation, Lax pair, Bäck-
lund transformation and infinite conservation laws
are derived for the (3+1)-dimensional generalized
Kadomtsev-Petviashvili-Bogoyavlensky-Konopelchenko
equation based on the binary Bell polynomial method.
With the help of Hirota bilinear method and some
propositions, we find that the analytic solutions con-
structed satisfy Eq. (1). To gain a better understanding
of complex wave patterns, we have drawn the three-
dimensional contours simulation inFigs. 1, 2, 3, 4, 5, 6, 7
and given the detailed information of multiple mixed
wave collisions. Figure 1 displays the splitting and
convergence of the periodic double lump waves. Fig-
ure 2 depicts the interaction between the lump wave,
two periodic waves and two kink waves. The fusion
and fission of two lump waves are presented in Fig. 3.
By choosing appropriate parameter values, the colli-
sion and splitting phenomenon of the two lump peri-
odic waves, the interaction of one lump wave and four
kink waves as shown in Fig. 4. The fusion and fis-
sion of multiple periodic waves are found in Fig. 5.
In Fig. 6, we analyze the collision between periodic
lump-kink wave and periodic wave. Figure 7 shows

the collision between two periodic lump waves. Ana-
lyzing the dynamic behavior of these mixed solutions
helps us better understand the physical phenomena in
the nonlinear model.

Therefore, the model proposed in this paper can
effectively analyze the water wave collisions and new
interaction phenomena. New mixed solutions con-
structed are very novel and have never been recorded
in the studies before. New mixed solutions con-
structed in this paper are all reported for the first time
for the (3+1)-dimensional generalized Kadomtsev-
Petviashvili-Bogoyavlensky-Konopelchenkoequation.
The results show the importance and practicability of
the Hirota bilinear method, the dynamic analysis of
these newmixed solutions and new nonlinear phenom-
ena can help us understand the evolution of waves in
many nonlinear physical systems.
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