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Abstract The issue associated with the practical
finite-time adaptive neural networks control is studied
in this paper for a class of incommensurate fractional-
order nonlinear systems with external disturbances.
With the help of a practical finite-time stability cri-
terion for an integer-order system, the criterion for
a fractional-order system is first established, where
only the first-order derivative is adopted instead of
the fractional-order derivative of the Lyapunov func-
tion. This provides an avenue to address the practical
finite-time adaptive control problem for incommensu-
rate fractional-order systems. By using the property of
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fractional-order calculus, a practical finite-time adap-
tive control scheme is then designed, which is the first
time that a practical finite-time adaptive control prob-
lem for an incommensurate fractional-order nonlinear
system has been considered. In contrast with the con-
trol schemes in the literature, the control signals in this
paper are generated by some filters, with the result that
the fluctuation range of control signals is reduced (espe-
cially around the initial time). In addition, a compen-
sated signal is introduced into the design processes of
the control scheme, which can not only compensate
for the difference caused by the filter of the control
scheme, but also simplify the design processes of the
control scheme and stability analysis of the controlled
system. Finally, numerical simulations and some com-
parisons are presented to illustrate the effectiveness of
the proposed practical finite-time control scheme.

Keywords Finite-time adaptive control · Incommen-
surate fractional-order system · Lyapunov functional
approach · External disturbance

1 Introduction

Fractional-order calculus, as a global concept, is very
suitable to describe thememory and heredity properties
of various processes andmaterials, which is completely
neglected by the traditional integer-order derivative. In
recent years, with the development of fractional-order
calculus theory, an increasing number of practical phe-
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nomena have been modeled by fractional-order sys-
tems to improve modeling accuracy in many research
fields, such as biology, engineering, electroanalytical
chemistry and physics [1–3]. The stability of a sys-
tem is one of the most important dynamic characteris-
tics, which has attracted the attention of many schol-
ars, and there are many excellent research results with
regards to stability, synchronization and so on [4,5].
Many practical systems are usually unstable or chaotic,
and thus, it is necessary to introduce some intervention
measures to aid systems in achieving the actual require-
ment. Thus, numerous control schemes have been pro-
posed in recent years, such as synchronization control
[4] and adaptive control [6–10].

Adaptive control, which is a classical and impor-
tant control method, has been successfully applied
in integer-order systems based on the backstepping
method in the past few years [6,7,10–15]. For exam-
ple, the adaptive control schemes were designed in
[11,12] for strict feedback systems, where the control
direction was assumed to be unknown in [11,12]. Fur-
thermore, adaptive control schemes for nonstrict feed-
back nonlinear systems were designed in [13,16] by
using the property of radial basis function neural net-
works. Since then, many results about nonstrict feed-
back nonlinear systems that consider Markov jumps,
input delays, actuator failures or input dead-zones
[7,14,15,17] have emerged. Recently, with the rapid
development of research on fractional-order calculus,
the adaptive control method has also been extended to
fractional-order systems (FOSs) [8,18–22]. For exam-
ple, the observer-based adaptive control scheme was
designed in [8] by constructing a fractional-order state
observer. Liu et al. [20] designed a composite learning
adaptive control scheme with the help of the dynamic
surface technique. The authors in [22] proposed the
notion of theMittag–Leffler input-to-state practical sta-
ble Lyapunov function and designed an event-triggered
adaptive control scheme for FOSs with unmodeled
dynamics. The systems in the aforementioned litera-
ture are commensurate FOSs, which is a special case
of incommensurate FOSs, i.e., the derivative orders of
each equation in the system are not completely equal.
Therefore, the adaptive control scheme for a commen-
surate FOS cannot be directly extended to that of an
incommensurate FOS, which is mainly because the
equations with unequal derivative order cannot be sub-
stituted into the fractional-order derivative of the Lya-
punov function. For this reason, the authors in [23]

introduced a disturbance-like assumption to solve the
finite-time consensus tracking problem for incommen-
surate FOSs; the issue of practical fixed-time bipar-
tite consensus was studied for incommensurate FOSs
in [24] by introducing a sliding-mode manifold; some
authors [9,25,26] also transformed the adaptive control
problem for incommensurate FOSs into that of integer-
order systems by using a frequency distributed model.
However, as pointed out in [27], whether the same
weighting function μα(ω) = sin απ

πωα can be adopted
for different systems is still not strictly proved. In addi-
tion, the sign function was involved in the virtual and
final controllers in [25,26], which leads to not only the
controllers being discontinuous but also the chatting
phenomenon appearing in the applications. Further-
more, during the i-th step of the backstepping method,
the (i − 1)-th tracking error appeared in the i-th vir-
tual controller, which makes the structure of the con-
troller complex and difficult for practical use. There-
fore, we hope some progress in the controller design
will be made for incommensurate FOSs to overcome
the above-mentioned shortcomings and avoid the use
of the frequency distributed model, which is one of the
motivations of this paper.

On the other hand, the convergence rate is also
an important performance indicator for practical sys-
tems. The control schemes in most of the aforemen-
tioned literature were proposed based on the asymp-
totic stability theory [6,7,11–15]. That is, the pre-
set control objective can be achieved, or the track-
ing error enters a given region with a long conver-
gence time. In fact, regarding the actual requirement,
the control goal is expected to be achieved in finite time,
which promotes the development of finite-time stabil-
ity theory [28,29]. As a more general notion, practi-
cal finite-time stability was proposed by Zhu et al. in
[30], and some significant results about practical finite-
time stability have emerged [31–33]. For example, a
criterion for practical finite-time stability was devel-
oped in [31]; then, the authors designed a finite-time
adaptive control scheme for a class of nonlinear sys-
tems by using a command filter technique. In [33], an
adaptive control scheme for a multi-agent system was
designed based on the proposed fast finite-time stabil-
ity criterion. In recent years, some finite-time control
schemes have also been proposed for FOSs [3,34–36].
The finite-time adaptive sliding mode control schemes
were designed in [3,34] for fractional-order nonlin-
ear systems and fractional-order hydro-turbine gov-
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erning systems. The finite-time synchronization was
studied for fractional memristive neural networks in
[35]. Among the many studies of finite-time control for
FOSs, the formulaDαgι(t) = Γ (1+ι)

Γ (1+ι+α)
gι−α(t)Dαg(t)

(ι ∈ R, α ∈ (0, 1)) plays a crucial role in obtain-
ing the results of finite-time control. Unfortunately, as
pointed out in [4], this crucial formula may be incor-
rect (a counterexample is given in [4]). To the best of
our current knowledge, when ι ∈ (0, 1) and α ∈ (0, 1),
it is very difficult and even impossible to obtain the
relationship Dαgι(t) ≤ c1gc2(t)Dαg(t), because the
fractional-order derivative of the compound function
is an infinite series of some complicated functions (see
[1, Section 2.7.3]), where c1 > 0 and c2 are two con-
stants. Therefore, bypassing this incorrect formula and
solving the finite-time adaptive tracking control prob-
lem of FOSs are a challenging problem. In addition,
even if an alternative criterion is obtained, designing
a practical finite-time control scheme and proving the
stability of the controlled system are also difficult. All
these challenging problems are another motivation of
this paper.

Motivated by the above discussions, in this paper,we
design a practical finite-time adaptive neural networks
control scheme for a class of incommensurate FOSs
based on the backstepping method, where the external
disturbance is considered. The main contributions of
this paper can be summarized as follows:

(i) Motivated by the criterion of finite-time control
for an integer-order system in [31], the criterion
of practical finite-time control for the FOS is
established, where only the first-order derivative is
adopted instead of the fractional-order derivative of
the Lyapunov function. The merits of this criterion
lie in two aspects: it provides a way to deal with the
control problem for incommensurate FOSs, and the
frequency distribution model adopted in [9,25,26]
is avoided, which indicates that the shortcoming of
the frequency distribution model is also overcome.
In addition, it is worth pointing out that practical
finite-time stability can be achieved for the FOS
in this paper by using only the same conditions for
theLyapunov function as those for the integer-order
system in [31].

(ii) A novel practical finite-time adaptive neural net-
works control scheme is proposed in this paper
for incommensurate FOSs. The proposed practi-
cal finite-time control scheme can also be degener-

ated into a non-finite time control scheme for com-
mensurate/incommensurate FOSs, which, com-
pared with the literature [9,18,20–22,36,37], is
also novel and can be used to control both incom-
mensurate and commensurate FOSs in [9,18,20–
22,36,37].

(iii) In contrast with the results in [18,36,37], in this
paper, the virtual and final control signals are gen-
erated by some designed filters during the design
processes of the control scheme, which can reduce
the fluctuation range of control signals, especially
around the initial time (see Remarks 9 and 11).
Additionally, to compensate for the difference
between the original signal (i.e., hi (t)) and the
control signal, a compensated signal is introduced,
which simplifies the processes of control scheme
design and stability analysis.

The rest of this paper is organized as follows: In
Sect. 2, some preliminary results are presented, and
the problems to be studied are also formulated; The
practical finite-time adaptive neural networks control
scheme is designed in Sect. 3; Two numerical examples
are provided in Sect. 4 to illustrate the effectiveness
of proposed adaptive control scheme; A summary is
presented in Sect. 5.

Notations: N = {0, 1, 2, · · · } is the set of natural
numbers,N+ = N \ {0}, andRn is the Euclidean space
with dimension n. Cm([0,+∞),R) consists of func-
tions from [0,+∞) to R that have m ∈ N order con-
tinuous derivatives. ‖ · ‖ denotes the Euclidean norm
of the vector. For vector x = (x1, . . . , xn)T ∈ R

n ,
x̄i

�= (x1, . . . , xi )T.

2 Preliminaries and problem formulation

2.1 Preliminaries

In this subsection, we first present the fractional-order
calculus and some related results.

Definition 1 [1] For function f (t) ∈ Cm([0,+∞),R),
its Caputo-type fractional-order derivative with order
α > 0 is defined as

Dα f (t) = 1

Γ (m − α)

∫ t

0

f (m)(τ )

(t − τ)α+1−m
dτ,

wherem is a positive integer satisfyingm−1 < α ≤ m
and Γ (·) is the Gamma function.
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Lemma 1 [38] For function f (t) ∈ Cm([0,+∞),R)

with m ∈ N+ and α1, α2 > 0, if there exists m̄ ∈ N+
with m̄ ≤ m such that α2, α1 + α2 ∈ [m̄ − 1, m̄], then
the following property holds

Dα1Dα2 f (t) = Dα1+α2 f (t).

Definition 2 [1] TheMittag–Leffler function with one
parameter α > 0 is defined as

Eα(ς) =
∞∑
s=0

ς s

Γ (αs + 1)
,

where ς is a complex number.

Lemma 2 [13] For any positive number ζ andω ∈ R,
the following inequality holds

0 ≤ |ω| − ω tanh
ω

ζ
≤ ζρ,

where ρ ≈ 0.2785 is positive root of the equation ρ =
e−(ρ+1).

Lemma 3 [33] For any x1, x2 ∈ R and r = r1
r2

∈
(0, 1) with positive odd integers r1, r2, the inequality
x1xr2 ≤ −b1x

1+r
1 + b2(x1 + x2)1+r holds, where b1 =

1
1+r (2

r−1 − 2r
2−1) and b2 = 1

1+r

(
1 − 2r−1 + r

1+r +
1

1+r 2
r(1−r2)

)
.

Lemma 4 [31] For xs ∈ R, s = 1, . . . , n and 0 <

r < 1, the following inequality holds(
n∑

s=1

|xs |
)r

≤
n∑

s=1

|xs |r ≤ n1−r

(
n∑

s=1

|xs |
)r

.

Lemma 5 ForFOSDαx(t) = f (x(t)), if there exists a
continuous and positive definite function V (x(t)) such
that V̇ (x(t)) ≤ −q1V (x(t)) − q2V ι(x(t)) + q3 with
constants q1, q2, q3 > 0 and 0 < ι < 1, then the
trajectory of FOSDαx(t) = f (x(t)) is practical finite-
time stable, and there exists a finite-time T satisfying

T = max

{
1

�q1(1 − ι)
ln

�q1V 1−ι(x(0)) + q2
q2

,

1

q1(1 − ι)
ln

q1V 1−ι(x(0)) + �q2
�q2

} (1)

such that for any t ≥ T , the following inequality holds

V (x(t)) ≤ min

{
q3

(1 − �)q1
,
( q3
(1 − �)q2

)1/ι}
,

where 0 < � < 1 is an arbitrary constant.

Proof The results can be proven by using an argument
similar to that in [31], so we omit it here. �	
Remark 1 In this paper, the definition of practical
finite-time stability is adopted; namely, for any initial
value x(0) = x0, there exist ε > 0 and T (ε, x0) < ∞,
such that the solution of system satisfies ‖x(t)‖ ≤ ε

for all t ≥ T . If we let ε = 0, then the above definition
will degenerate to the definition of finite-time stability
that was adopted in [3,28,29]. Besides, there is another
definition of finite-time stability in [39]: for constants
0 < ε1 < ε2 and finite-time T > 0, ‖x0‖ ≤ ε1 implies
‖x(t)‖ ≤ ε2 for ∀t ∈ [0, T ]. Thus, we can see that the
former definition of finite-time stability mainly focuses
on whether the solution of the system converges to
zero at T and is always equal to zero on the interval
(T,+∞), whereas the latter definition of finite-time
stability focuses on the boundedness of solution on the
finite interval [0, T ].

2.2 Problem formulation

Consider the following incommensurate fractional-
order nonlinear system
⎧⎪⎨
⎪⎩
Dαi xi = xi+1 + fi (x) + 
i (t),

Dαn xn = u + fn(x) + 
n(t),

y = x1, i = 1, . . . , n − 1,

(2)

where αs ∈ (0, 1) (s = 1, . . . , n), xs is the state vari-
able, u and y are the input and output of the system,
respectively. fs(x) is an unknown smooth functionwith
1 + ∂ fs(x)/∂xs+1 �= 0 (s = 1, . . . , n − 1), and 
s(t)
is the external disturbance.

Remark 2 System (2) is a classical incommensurate
fractional-order one with the nonstrict feedback form,
which can characterize many practical systems, such
as fractional-order Chua–Hartley’s system, fractional-
order Rössler’s system, fractional-order Chen’s sys-
tem, fractional-order Lorenz’s system, fractional-order
Lotka-Volterra system [1,2]. Meanwhile, (2) also con-
tains numerous systems in the literature as special
cases. For example, if α1 = · · · = αn ∈ (0, 1), sys-
tem (2) becomes the commensurate fractional-order
one with the nonstrict feedback form, which was stud-
ied in [8,19,37], and if further letting fi (x) = fi (x̄i ),
system (2) degenerates into the one with the strict feed-
back form in [18,21]. If α1 = · · · = αn = 1, system
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(2) becomes an integer-order one, which was consid-
ered in [13,14]. Besides, if we use the transformation
method in [17], then the systems in [7,20,22,40] can
transformed into the special cases of the system (2).
Therefore, the design of control scheme for the system
(2) is of great significance from both the practical and
theoretical points of view.

The control objective of this paper is to design a
practical finite-time control scheme such that: (i) all
signals in the closed-loop system are bounded; (ii) the
system output can track the reference signal yd(t) with
a small error and the tracking error can enter a small
region in finite time.

To realize the control objective, the following
assumptions are needed.

Assumption 1 The external disturbance 
i (t) (i =
1, . . . , n) and its derivative are continuous andbounded.

Assumption 2 The reference signal yd and its deriva-
tive are continuous and bounded.

Assumption 3 The orders of fractional derivative in
system (2) satisfy αi + αi+1 ≥ 1 (i = 1, . . . , n − 1).

Remark 3 In some existing literature [19–21], the
external disturbance is assumed to be bounded, which
is standard. During the design process of the prac-
tical finite-time control scheme, it also requires that
D1−αi 
i (t) is bounded, while it is difficult to verify.
Therefore, we assume that 
̇i (t) is bounded, which is
an easily verifiable hypothesis and implies the bound-
edness of D1−αi 
i (t). In fact, since Dα
i (t) is con-
tinuous with respect to α, and D1
i (t) = 
̇i (t)
and D0
i (t) = 
i (t) are bounded, we can conclude
that D1−αi 
i (t) is bounded. Assumption 2 is quite
standard, which is adopted in many previous studies
[7,14,15]. It should be pointed out that Dα yd (α ∈
(0, 1)) is assumed to be bounded in [19,20,22], which
is difficult to verify due to the complexity of fractional-
order calculus, while Assumption 2, as an alternative,
is easy to verify and implies the boundedness of Dα yd
based on the continuity of fractional-order derivative
with respect to orderα.We giveAssumption 3 to ensure
the continuity ofD1−αi xi+1 that will appear during the
designing process of the adaptive control scheme. In
Assumption 3, there are some constraints to the orders
αi (i = 1, . . . , n), while it does not seriously influence
the actual application, since we find that many practical
systems mentioned in [1,2] and references therein can
satisfy Assumption 3.

2.3 Radial basis function neural networks

Since the function fs(x) is unknown and some terms
during the design process of the control scheme are
difficult to deal with, the radial basis function neural
networks are introduced in this subsection to approxi-
mate them.

For continuous function H(Z) : R
n1 → R with

n1 ∈ N+, we construct the neural networks asHNN =
WT�(Z), where Z ∈ � ⊂ R

n1 is the input of neu-
ral networks, W ∈ R

n2 is the weight vector, n2 is
the number of nodes in neural networks, and �(Z) =
(φ1(Z), . . . , φn2(Z)) is the Gaussian-like radial basis
function vector with

φs(Z) = exp

[
− (Z − �s)

T(Z − �s)

δ2s

]
,

s = 1, . . . , n2, �s = (�s1, . . . , �sn1)
T and δs are the

center of receptive domain and the width of Gaussian
function, respectively.

Lemma 6 [41] If the nodes number n2 of neural net-
works is sufficiently large, then the radial basis func-
tion neural networks HNN = WT�(Z) can approxi-
mate the continuous function H(Z) over compact set
� ⊂ R

n1 to arbitrary accuracy ε̃ as

H(Z) = W ∗T�(Z) + ε(Z),

where W ∗ ∈ R
n2 is the ideal weight vector of neural

networks defined as

W ∗ = arg min
W∈Rn2

{
sup
Z∈�

|H(Z) − WT�(Z)|
}

,

and ε(Z) is the approximation error satisfying |ε(Z)| <

ε̃.

Lemma 7 [15] Let Z = (z1, . . . , zn1)
T, �s and

�(Z) are defined as in Lemma 6, Ž = (zi1 , . . . , zih̄ )
T,

�̌s = (�s,i1 , . . . ,�s,ih̄ )
T, and {i1, . . . , ih̄} is a subse-

quence of {1, . . . , n1}. �̌(Ž) = (φ̌1(Ž), . . . , φ̌n2(Ž))

with φ̌s(Ž) = exp

[
− (Ž−�̌s )

T(Ž−�̌s )

δ2s

]
, s = 1, . . . , n2

are radial basis function vectors. Then,

‖�(Z)‖ ≤ ‖�̌(Ž)‖.
For the sake of simplicity, �̌(Ž) is still denoted by�(Ž)

in the following if no confusion arises.
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3 The design of control scheme and stability
analysis

This section is devoted to designing the practical finite-
time adaptive neural networks control scheme for sys-
tem (2) and analyzing the stability of the controlled
system. In order to do this, we first define the follow-
ing coordinate transform{
z1 = x1 − yd ,

zi = xi − χi−1, i = 2, . . . , n,
(3)

where χi , (i = 1, . . . , n − 1) is the virtual control
signal that will be specified later. The control scheme
is designed in the following by using the backstepping
technique.

Step 1:According to (2) and (3), and usingLemma1,
we have

ż1 = D1−α1Dα1x1 − ẏd

= D1−α1(z2 + χ1 + f1(x) + 
1(t)) − ẏd .
(4)

Since the fractional-order derivative of χ1 with order
(1−α1) is appeared in (4), the virtual control signal χ1

is difficult to design. Thus, motivated by the dynamic
surface technique [20], we define the following frac-
tional filter

D1−α1χ1(t) = −κ1(χ1(t) − h1(t)), χ1(0) = 0, (5)

where h1(t) is an intermediate signal that will be
designed later and κ1 > 0 is a designed parameter.
From (5),we can only obtain that the error h̃1 = χ1−h1
is bounded by a constant (see Lemma 8), but it cannot
be guaranteed to converge to a small region of origin.
Therefore, we design a compensated signal χ̃1 as fol-
lows

˙̃χ1(t) = −λ1χ̃1(t) − λ̄1χ̃
r
1 (t) − κ1χ1(t),

χ̃1(0) = z1(0), (6)

where λ1, λ̄1 > 0 are the designed parameters and
r = r1

r2
∈ (0, 1) with positive odd numbers r1, r2. The

compensated tracking error is defined as

z̃1 = z1 − χ̃1. (7)

It then follows from (4) and (7) that

˙̃z1 = ż1 − ˙̃χ1

= D1−α1(z2 + χ1 + f1(x) + 
1(t)) − ẏd − ˙̃χ1.

Based onAssumption 1, there exists a positive constant
d1 such that |D1−α1
1(t)| ≤ d1, which, together with
Lemma 2, implies that

z̃1D1−α1
1(t) ≤ d1|z̃1| ≤ d1 z̃1 tanh

(
d1 z̃1
ζ1

)
+ ζ1ρ,

(8)

where ζ1 > 0 is a designed parameter. Construct the
Lyapunov function as

V1 = 1

2
z̃21 + 1

2η1
θ̃21 ,

where η1 > 0 is a designed parameter, θ̃1 = θ̂1 − θ1 is
the estimation error of θ1 = ‖W ∗

1 ‖2, θ̂1 is the estimate
of θ1, and W ∗

1 will be specified later. By using (8), the
derivative of V1 can be calculated as

V̇1 = z̃1
(D1−α1(z2 + χ1 + f1(x) + 
1(t))

− ẏd − ˙̃χ1
) + 1

η1
θ̃1

˙̂
θ1

≤z̃1H1(Z1) + z̃1D1−α1χ1 − z̃1 ˙̃χ1 + 1

η1
θ̃1

˙̂
θ1

+ ζ1ρ − λ1z1 z̃1 − λ̄1 z̃1χ̃
r
1 ,

whereH1(Z1) = D1−α1(z2+ f1(x))+d1 tanh
(
d1 z̃1
ζ1

)
−

ẏd + λ1z1 + λ̄1χ̃
r
1 with Z1 = (xT, θ̂1, χ̃1, yd , ẏd)T ∈

R
n+4. It should be pointed out thatD1−α1(z2+ f1(x)) is

a continuous function, which thus can be approximated
subsequently by using neural networks. In fact, since
Dα2x2 is continuous (from system (2)) and α2 ≥ 1−α1

(according to Assumption 3), we can conclude that
D1−α1x2 is continuous. Besides, from (5), we obtain
thatD1−α1χ1 is continuous. Thus, equationD1−α1 z2 =
D1−α1(x2 −χ1) implies thatD1−α1 z2 is continuous. In
addition, since f1(x) is smooth, D1−α1 f1(x) is con-
tinuous. Based on Lemma 6, the continuous function
H1(Z1) can be approximated as

H1(Z1) = W ∗T
1 �1(Z1) + ε1(Z1),

where W ∗
1 is the ideal weight vector and ε1(Z1) is the

approximation error with |ε1(Z1)| < ε̃1. It then follows
from Lemma 7 that

z̃1H1(Z1) ≤ |z̃1|(‖W ∗
1 ‖‖�1(Z1)‖ + |ε1(Z1))|

≤ |z̃1|(‖W ∗
1 ‖‖�1(X1)‖ + ε̃1)

≤ z̃21
2a21

θ1�
T
1 (X1)�1(X1)

+ a21
2

+ z̃21
2

+ ε̃21

2
,

(9)

where a1 > 0 is a designed parameter and X1 =
(x1, θ̂1, χ̃1, yd , ẏd)T ∈ R

5. For the sake of simplic-
ity, �1(X1) will be abbreviated as �1 in the following.
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Hence, V̇1 can be rewritten as

V̇1 = 1

2a21
z̃21θ1�

T
1�1 + 1

2
z̃21 + z̃1D1−α1χ1 − z̃1 ˙̃χ1

+ 1

η1
θ̃1

˙̂
θ1 − λ1z1 z̃1 − λ̄1 z̃1χ̃

r
1 + �1,

where�1 = 1
2a

2
1 + 1

2 ε̃
2
1 +ζ1ρ. Design the intermediate

signal h1(t) and the adaptive law of θ̂1 as

h1(t) = −
(

γ1 + 1

2

)
z̃1
κ1

− z̃1θ̂1
2a21κ1

�T
1�1 − γ̄1

κ1
ϑ1(z̃1),

(10)

˙̂
θ1 = η1

2a21
z̃21�

T
1�1 − μ1θ̂1 − ξ1θ̂

r
1 , θ̂1(0) ≥ 0,

(11)

where γ1, γ̄1, μ1, ξ1 > 0 are designed parameters, and

ϑ1(z̃1) =
{
z̃r1, |z̃1| ≥ τ1,

A1 z̃1 − B1 z̃31, |z̃1| < τ1,

with A1 = 1
2 (3 − r)τ r−1

1 , B1 = 1
2τ

r−3
1 (1 − r), and a

small constant τ1 > 0.

Remark 4 Motivated by [32], the term z̃r1 is modified
to A1 z̃1− B1 z̃31 when |z̃1| is less than the small positive
constant τ1. This modification can ensure that: (i) the
singularity phenomenon of Dα1h1(t) can be avoided
when z̃1 = 0; (ii) Dα1h1(t) is continuous function of
(x, θ̂1, yd)T.

It follows from (5)–(7), (10) and (11) that

V̇1 ≤ 1

2a21
z̃21θ1�

T
1�1 + 1

2
z̃21 + κ1 z̃1h1(t)

+ λ1 z̃1χ̃1 + 1

η1
θ̃1

˙̂
θ1 − λ1z1 z̃1 + �1

= − (γ1 + λ1)z̃
2
1 − γ̄1 z̃1ϑ1(z̃1)

− μ1

η1
θ̃1θ̂1 − ξ1

η1
θ̃1θ̂

r
1 + �1.

Step i (2 ≤ i ≤ n − 1): From (2) and (3), and
Lemma 1, one can obtain that

żi = D1−αiDαi xi − χ̇i−1

= D1−αi
(
zi+1 + χi + fi (x) + 
i (t)

) − χ̇i−1.
(12)

Since D1−αi χi appears in the above equation, we
design the following filter to approximate the virtual

control signal χi

D1−αi χi (t) = −κi (χi (t) − hi (t)), χi (0) = 0, (13)

where κi > 0 is a designed parameter and hi (t) is
an intermediate signal that will be designed later. To
compensate for the error between χi and hi , we define
a compensated signal χ̃i that is determined by

˙̃χi (t) = −λi χ̃i (t) − λ̄i χ̃
r
i (t) − κiχi (t), χ̃i (0) = zi (0),

(14)

where λi , λ̄i > 0 are designed parameters. Let z̃i =
zi − χ̃i , from (12), we have

˙̃zi = D1−αi
(
zi+1 + χi + fi (x) + 
i (t)

) − χ̇i−1 − ˙̃χi .
(15)

Construct the following Lyapunov function

Vi = Vi−1 + 1

2
z̃2i + 1

2ηi
θ̃2i ,

where ηi is a designed parameter, θ̃i = θ̂i − θi is the
estimation error of θi = ‖W ∗

i ‖2, θ̂i is the estimate of θi ,
and W ∗

i is the weight vector that will be defined later.
The derivative of Vi can be computed as

V̇i = V̇i−1 + z̃i
(D1−αi (zi+1 + χi + fi (x) + 
i (t))

− χ̇i−1 − ˙̃χi
) + 1

ηi
θ̃i

˙̂
θi .

From Assumption 1, these exists a constant di > 0
such that |D1−αi
i (t)| ≤ di , which, together with
Lemma 2, implies that

z̃iD1−αi 
i (t) ≤ di |z̃i | ≤ di z̃i tanh

(
di z̃i
ζi

)
+ ζiρ.

Therefore, we have

V̇i ≤ V̇i−1 + z̃iHi (Zi ) + z̃iD1−αi χi − z̃i ˙̃χi

+ 1

ηi
θ̃i

˙̂
θi + ζiρ − λi zi z̃i − λ̄i z̃i χ̃

r
i ,

(16)

whereHi (Zi ) = D1−αi (zi+1+ fi (x))+di tanh
(
di z̃i
ζi

)

−χ̇i−1+λi zi+λ̄i χ̃
r
i with Zi = (xT, θ̂1, . . . , θ̂i , χ̃i , yd ,

ẏd)T ∈ R
n+i+3. Similar to the statement in Step 1,

the continuity ofD1−αi (zi+1 + fi (x)) can be obtained.
Besides, according to the fractional-order filter (5) and
(13), D1−αi−1χi−1 must exist, which, together with
Definition 1, implies that χ̇i−1 is continuous. Based on
Lemma 6, continuous functionHi (Zi ) can be approx-
imated as

Hi (Zi ) = W ∗T
i �i (Zi ) + εi (Zi ),
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where W ∗
i denotes the ideal weight and εi (Zi ) is the

approximation error satisfying |εi (Zi )| < ε̃i with pos-
itive constant ε̃i . According to Lemma 7 and using the
same manner as in (9), we have

z̃iHi (Zi ) ≤ 1

2a2i
z̃2i θi�

T
i (Xi )�i (Xi )

+1

2
a2i + 1

2
z̃2i + 1

2
ε̃2i ,

where ai > 0 is a designed parameter and Xi =
(x1, . . . , xi , θ̂1, . . . , θ̂i , χ̃i , yd , ẏd)T ∈ R

2i+3. For con-
venience, argument Xi in�i (Xi )will be omitted in the
following. Thus, (16) can be rewritten as

V̇i ≤ V̇i−1 + 1

2a2i
z̃2i θi�

T
i �i + 1

2
z̃2i + z̃iD1−αi χi − z̃i ˙̃χi

+ 1

ηi
θ̃i

˙̂
θi − λi zi z̃i − λ̄i z̃i χ̃

r
i + 1

2
a2i + 1

2
ε̃2i + ζiρ,

The intermediate signal hi (t) and the adaptive law of
θ̂i are designed as

hi (t) = −
(

γi + 1

2

)
z̃i
κi

− z̃i θ̂i
2a2i κi

�T
i �i − γ̄i

κi
ϑi (z̃i ),

(17)

˙̂
θi = ηi

2a2i
z̃2i �

T
i �i − μi θ̂i − ξi θ̂

r
i , θ̂i (0) ≥ 0, (18)

where γi , γ̄i , μi , ξi > 0 are designed parameters, and

ϑi (z̃i ) =
{
z̃ri , |z̃i | ≥ τi ,

Ai z̃i − Bi z̃3i , |z̃i | < τi ,

with Ai = 1
2 (3 − r)τ r−1

i , Bi = 1
2τ

r−3
i (1 − r), and a

small constant τi > 0. Substituting (13), (14), (17) and
(18) into V̇i , we have

V̇i ≤ V̇i−1 + 1

2a2i
z̃2i θi�

T
i �i + 1

2
z̃2i + κi z̃i hi (t)

+ λi z̃i χ̃i + 1

ηi
θ̃i

˙̂
θi − λi zi z̃i + 1

2
a2i + 1

2
ε̃2i + ζiρ

= V̇i−1 − (γi + λi )z̃
2
i − γ̄i z̃iϑi (z̃i ) − μi

ηi
θ̃i θ̂i

− ξi

ηi
θ̃i θ̂

r
i + 1

2
a2i + 1

2
ε̃2i + ζiρ

≤ −
i∑

s=1

(
(γs + λs)z̃

2
s + γ̄s z̃sϑs(z̃s)

+ μs

ηs
θ̃s θ̂s + ξs

ηs
θ̃s θ̂

r
s

)
+ �i ,

where �i = �i−1 + 1
2a

2
i + 1

2 ε̃
2
i + ζiρ.

Step n: Let the final control signal u(t) be given by
the filter

D1−αn u(t) = −κn(u(t) − hn(t)), u(0) = 0, (19)

where κn > 0 is a designed parameter and hn(t) is
a intermediate signal that will be specified later. As
pointed out in 1-th step, the error between u(t) and
hn(t) cannot be overlooked. Therefore, we design a
compensated signal χ̃n to eliminate this error, which is
given by

˙̃χn(t) = −λn χ̃n(t) − λ̄n χ̃
r
n (t) − κnu(t), χ̃n(0) = zn(0),

(20)

where λn, λ̄n > 0 are designed parameters. Let z̃n =
zn − χ̃n . Then, by using Lemma 1, we have

˙̃zn =D1−αnDαn
n xn − χ̇n−1 − ˙̃χn

=D1−αn
(
u + fn(x) + 
n(t)

) − χ̇n−1 − ˙̃χn .
(21)

Define the Lyapunov function Vn as follows

Vn = Vn−1 + 1

2
z̃2n + 1

2ηn
θ̃2n ,

where ηn > 0 is a designed parameter, θ̃n = θ̂n − θn is
the estimation error of θn = ‖W ∗

n ‖2, θ̂n is the estimate
of θn , andW ∗

n will be defined later. From (21),weobtain

V̇n = V̇n−1 + z̃n
(D1−αn

(
u + fn(x) + 
n(t)

)

− χ̇n−1 − ˙̃χn
) + 1

ηn
θ̃n

˙̂
θn .

Based on Assumption 1, there exists a constant dn > 0
such that |D1−αn
n(t)| ≤ dn . So, by using Lemma 2,
we have

z̃nD1−αn
n(t) ≤ dn|z̃n| ≤ dn z̃n tanh

(
dn z̃n
ζn

)
+ ζnρ.

Therefore, V̇n becomes

V̇n ≤ V̇n−1 + z̃nHn(Zn) + z̃nD1−αn u − z̃n ˙̃χn

+ 1

ηn
θ̃n

˙̂
θn + ζnρ − λnzn z̃n − λ̄n z̃nχ̃

r
n ,

(22)

where Hn(Zn) = D1−αn fn(x) + dn tanh
(
dn z̃n
ζn

)
+

χ̇n−1+λnzn+λ̄nχ̃
r
n with Zn = (xT, θ̂1, . . . , θ̂n, χ̃n, yd ,

ẏd)T ∈ R
2n+3. From Lemma 6, function Hn(Zn) is

approximated as

Hn(Zn) = W ∗T
n �n(Zn) + εn(Zn),
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where W ∗
n is the ideal weight vector and εn(Zn) is the

approximation error satisfying |εn(Zn)| < ε̃n . Accord-
ing to Lemma 7 and using the same manner as in (9),
we have

z̃nHn(Zn) ≤ 1

2a2n
z̃2nθn�

T
n (Xn)�n(Xn)

+ 1

2
a2n + 1

2
z̃2n + 1

2
ε̃2n ,

where an > 0 is a designed parameter and Xn =
(xT, θ̂1, . . . , θ̂n, χ̃n, yd , ẏd)T ∈ R

2n+3. For simplicity,
�n(Xn) will be abbreviated as �n in the following.
Substituting the above inequality into (22), we get

V̇n ≤ V̇n−1 + 1

2a2n
z̃2nθn�

T
n�n + 1

2
z̃2n + z̃nD1−αn u

− z̃n ˙̃χn + 1

ηn
θ̃n

˙̂
θn − λnzn z̃n − λ̄n z̃nχ̃

r
n

+ 1

2
a2n + 1

2
ε̃2n + ζnρ.

The intermediate signal hn(t) and the adaptive laws of
θ̂n are designed as

hn(t) = − (γn + 1

2
)
z̃n
κn

− z̃n θ̂n
2a2nκn

�T
n�n − γ̄n

κn
ϑn(z̃n),

(23)

˙̂
θn = ηn

2a2n
z̃2n�

T
n�n − μn θ̂n − ξn θ̂

r
n , θ̂n(0) ≥ 0,

(24)

where γn, γ̄n, μn, ξn > 0 are designed parameters and

ϑn(z̃n) =
{
z̃rn, |z̃n| ≥ τn,

Anz̃n − Bnz̃3n, |z̃n| < τn,

with An = 1
2 (3 − r)τ r−1

n , Bn = 1
2τ

r−3
n (1 − r), and a

small constant τn > 0. Taking (19), (20), (23) and (24)
into V̇n , one has

V̇n ≤ V̇n−1 + 1

2a2n
z̃2nθn�

T
n�n + 1

2
z̃2n + κn z̃nhn(t)

+ λn z̃nχ̃n + 1

ηn
θ̃n

˙̂
θn − λnzn z̃n

+ 1

2
a2n + 1

2
ε̃2n + ζnρ

≤ −
n∑

s=1

(
(γs + λs)z̃

2
s + γ̄s z̃sϑs(z̃s) + μs

ηs
θ̃s θ̂s

+ ξs

ηs
θ̃s θ̂

r
s

)
+ �n, (25)

where�n = �n−1+ 1
2a

2
n + 1

2 ε̃
2
n +ζnρ = ∑n

s=1(
1
2a

2
s +

1
2 ε̃

2
s + ζsρ).
Before giving the main result of this paper, we give

two useful lemmas.

Lemma 8 For the filters (5), (13) and (19), if the signal
hi (t) (1 ≤ i ≤ n) is bounded, then signals h̃i (t) =
χi (t) − hi (t) (1 ≤ i ≤ n − 1), h̃n(t) = u(t) − hn(t),
χi (t) (1 ≤ i ≤ n − 1) and u(t) are bounded for t ≥ 0.

Proof For the sake of simplicity, u(t) is denoted by
χn(t), so h̃n(t) = χn(t) − hn(t). Since hi (t) (1 ≤ i ≤
n) is bounded, there exists a positive constant h̄i such
that |hi (t)| ≤ h̄i . Considering the Lyapunov function
Vχi (t) = 1

2χ
2
i (t), we have

D1−αi Vχi (t) ≤ χi (t)D1−αiχi (t)

= −κiχ
2
i (t) + κiχi (t)hi (t).

It follows from |hi (t)| ≤ h̄i thatχi (t)hi (t) ≤ 1
2χ

2
i (t)+

1
2h

2
i (t) ≤ 1

2χ
2
i (t) + 1

2 h̄
2
i , which means

D1−αi Vχi (t) ≤ −1

2
κiχ

2
i (t) + 1

2
κi h̄

2
i

= −κi Vχi (t) + 1

2
κi h̄

2
i .

Therefore, from 0 ≤ E1−αi (−κi t1−αi ) < 1 for t ≥ 0
and Lemma 5 in [42], we have

Vχi (t) ≤
(
Vχi (0) − 1

2
h̄2i

)
E1−αi (−κi t

1−αi ) + 1

2
h̄2i

≤ Vχi (0) + 1

2
h̄2i ,

from which we can obtain that χ2
i (t) ≤ χ2

i (0)+ h̄2i for
t ≥ 0. That is, χi (t) (1 ≤ i ≤ n) is bounded. From the
boundedness of χi (t) and hi (t), it is obvious that h̃i (t)
is bounded. This completes the proof. �	
Lemma 9 For the compensated filters (6), (14) and
(20), if signalsχi (1 ≤ i ≤ n−1)andu(t)are bounded,
then signal χ̃ = (χ̃1, . . . , χ̃n)

T converges to a small
region �1 = {

χ̃ |‖χ̃‖2 ≤ 2ω1
}
in finite-time T1, where

T1 = T1(q̄1, q̄2, q̄3) is determined by (1), q̄1, q̄2, q̄3 >

0 will be given in the following, and

ω1 = min

{
q̄3

(1 − �)q̄1
,
( q̄3
(1 − �)q̄2

) 2
1+r

}
.

123



4384 B. Cao et al.

Proof For convenience, u(t) is denoted by χn(t).
Defining the Lyapunov function Vχ̃ (t) = 1

2

∑n
s=1 χ̃2

s ,
and noting (6), (14) and (20), we have

V̇χ̃ (t) =
n∑

s=1

χ̃s ˙̃χs = −
n∑

s=1

(
λs χ̃

2
s + λ̄s χ̃

1+r
s

)

−
n∑

s=1

κs χ̃sχs .

By using the Young’s inequality, we obtain

−χ̃sχs ≤ |χ̃sχs | ≤ λs

2κs
χ̃2
s + κs

2λs
χ2
s .

Because χs is bounded, there is a constant ¯̄�s > 0 such

that κ2s
2λs

χ2
s ≤ ¯̄�s . Thus, −κs χ̃sχs ≤ 1

2λs χ̃
2
s + ¯̄�s . By

using Lemma 4, V̇χ̃ (t) can be rewritten as

V̇χ̃ (t) ≤ −
n∑

s=1

(1
2
λs χ̃

2
s + λ̄s χ̃

1+r
s

) +
n∑

s=1

¯̄�s

≤ − q̄1Vχ̃ (t) − q̄2V
1+r
2

χ̃
(t) + q̄3,

(26)

where q̄1 = min{λs, s = 1, . . . , n}, q̄2 = 2
1+r
2

min{λ̄s, s = 1, . . . , n} and q̄3 = ∑n
s=1

¯̄�s . It then
follows from Lemma 5 that χ̃ = (χ̃1, . . . , χ̃n)

T con-
verges to �1 in finite-time T1. The proof is completed.

�	

Eventually, the practical finite-time adaptive neural
networks control schemes and the parameter adaptive
laws are designed, from which we establish the main
result of this paper.

Theorem 1 For incommensurate fractional-order non-
linear system (2) under Assumptions 1–3, the designed
virtual control signals determined by (5), (13), final
control signal determined by (19), adaptive laws (11),
(18), (24), intermediate signals (10), (17), (23), and
compensated signals determined by (6), (14), (20) can
ensure that:

(i) all signals in the closed-loop system are bounded;
(ii) the signal z̃ = (z̃1, . . . , z̃n)T converges to a small

region�2 = {
z̃|‖z̃‖2 ≤ 2ω2

}
in finite-time T2, and

the signal z = (z1, . . . , zn)T converges to �3 ={
z|‖z‖2 ≤ 4ω3

}
in finite-time T ,

where T = max{T1, T2}, T1 = T1(q̄1, q̄2, q̄3) and T2 =
T2(q1, q2, q3) are determined by (1), q1, q2, q3 will be

specified later, q̄1, q̄2, q̄3 > 0 are given in Lemma 9,
and ω3 = ω1 + ω2,

ω2 = min

{
q3

(1 − �)q1
,
( q3
(1 − �)q2

) 2
1+r

}
.

Proof For convenience, let S = {s|s = 1, . . . , n},
S1 = {s ∈ S||z̃s | < τs} and S2 = {s ∈ S||z̃s | ≥ τs}. By
using Lemma 3 and noting that r = r1

r2
∈ (0, 1) with

positive odd numbers r1, r2, for s ∈ S, we have

− θ̃s θ̂
r
s = θ̃s(−θ̂s)

r ≤ −b1θ̃
1+r
s + b2θ

1+r
s , (27)

where b1, b2 > 0 are given in Lemma 3. Consider the
Lyapunov function

Vn(ϒ(t)) =
∑
s∈S

(
1

2
z̃2s + 1

2ηs
θ̃2s

)
, (28)

where ϒ(t) = (z̃1, . . . , z̃n, θ̃1, . . . , θ̃n)T. Then, from
(25), (27) and the inequality −θ̃s θ̂s = −θ̃2s − θ̃sθs ≤
− 1

2 θ̃
2
s + 1

2θ
2
s , we have

V̇n ≤ −
∑
s∈S

(
(γs + λs)z̃

2
s + γ̄s z̃sϑs(z̃s) + μs

2ηs
θ̃2s

+ b1ξs
ηs

θ̃1+r
s

)
+ �̄1,

(29)

where �̄1 = �n+∑
s∈S

(
μs
2ηs

θ2s + b2ξs
ηs

θ1+r
s

)
. Accord-

ing to the form of ϑs(z̃s), we can obtain that

−
∑
s∈S

γ̄s z̃sϑs(z̃s)

= −
∑
s∈S1

γ̄s As z̃
2
s −

∑
s∈S2

γ̄s z̃
1+r
s +

∑
s∈S1

γ̄s Bs z̃
4
s

≤ −
∑
s∈S1

γ̄s As z̃
2
s −

∑
s∈S

γ̄s z̃
1+r
s + �̄2,

where �̄2 = ∑
s∈S1 γ̄s(Bsτ

4
s + τ 1+r

s ). Therefore, by
using Lemma 4, (29) becomes

V̇n ≤ −
∑
s∈S1

(γ̄s As + γs + λs)z̃
2
s −

∑
s∈S2

(γs + λs)z̃
2
s

−
∑
s∈S

(
γ̄s z̃

1+r
s + μs

2ηs
θ̃2s + b1ξs

ηs
θ̃1+r
s

)
+ �̄1 + �̄2

≤ −q1Vn − q2
∑
s∈S

((1
2
z̃2s

) 1+r
2 +

( 1

2ηs
θ̃2s

) 1+r
2

)
+ q3

≤ −q1Vn − q2

(∑
s∈S

(1
2
z̃2s + 1

2ηs
θ̃2s

)) 1+r
2 + q3

≤ −q1Vn − q2V
1+r
2

n + q3, (30)
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where q1 = min{2mins∈S1{γ̄s As + γs + λs},
2mins∈S2{γs + λs},mins∈S{μs}}, q2 = 2

1+r
2

mins∈S{γ̄s, b1ξsη
1+r
2

s } and q3 = �̄1 + �̄2.

(i) Since Vn is positive definite, from (28) and (30),
we have V̇n ≤ −q1Vn + q3, which means that

Vn = Vn(ϒ(t)) ≤ (Vn(ϒ(0)) − q3
q1

)e−q1t + q3
q1

≤ Vn(ϒ(0)) + q3
q1

.

Thus, z̃i , θ̃i (i = 1, . . . , n) are bounded. Since θi
is a constant, θ̂i = θ̃i + θi is bounded, which
means hi in (10), (17) and (23) is bounded.
Based on the boundedness of hi and Lemma 8,
χi (i = 1, . . . , n − 1) and u are bounded. Further,
the boundedness of χ̃i can be obtained by using
Lemma 9, from which we get that zi = z̃i + χ̃i

is bounded. According to coordinate transform (3)
and Assumption 2, we obtain the boundedness of
xi . Therefore, all signals in the closed-loop system
are bounded.

(ii) It follows from Lemma 5 and (30) that there exists
a finite-time T2 = T2(q1, q2, q3) > 0 such that
z̃ = (z̃1, . . . , z̃n)T enters �2 for t ≥ T2. Noting
that zi = z̃i + χ̃i and using Lemma 9, ‖z‖2 ≤
2‖z̃‖2 + 2‖χ̃‖2 ≤ 4(ω1 + ω2) = 4ω3, i.e., z ∈ �3

for t ≥ T = max{T1, T2}, where T1 is given in
Lemma 9.

This completes the proof. �	
Remark 5 In someprevious literature concerningfinite-
time control of FOS, the formula Dαgι(t) =

Γ (1+ι)
Γ (1+ι+α)

gι−α(t)Dαg(t) (ι ∈ R, α ∈ (0, 1)) plays a
key role in stability analysis. Unfortunately, as pointed
out in [4], this formula may not feasible (a counterex-
ample was given in [4]), with the result that the design
of a (practical) finite-time adaptive control scheme is
quite difficult, because the condition of the fractional-
order version (i.e., DαV ≤ −q1V (x) − q2V ι + q3)
does not imply the practical finite-time stability of FOS.
However, in this paper, with the help of Lemma 1,
the first-order derivative of the Lyapunov function is
calculated instead of its fractional-order derivative,
and thus, the practical finite-time stability of FOS is
obtained based on the integer-order condition V̇ ≤
−q1V (x) − q2V ι + q3 (see Lemma 5). According to
Lemma 5, a novel and practical finite-time adaptive

control scheme is successfully designed for FOS and
the stability analysis is also derived.

Remark 6 In order to highlight the proposed novel
practical finite-time adaptive control scheme, only a
classical incommensurate FOS is considered in this
paper. In fact, it is easy to extend the proposed control
scheme to cases with more general assumptions, such
as systems with unmodeled dynamics, input quanti-
zation, unknown control direction, or actuator faults.
These systems were considered in [8,19,20,22,37],
while the practical finite-time control for these systems
remains open.

Remark 7 It canbe found that the backsteppingmethod
has been successfully applied to the control problem
of FOSs in [9,18,19,21,22,37], while these control
schemes can only achieve the goal of non-finite time
control. In this paper, the practical finite-time control
scheme is proposed for incommensurate FOS, which
can not only be used for practical finite-time control of
commensurate FOS but also be degenerated to the non-
finite time control scheme for incommensurate FOS. In
addition, the reference signal yd in this paper is a time-
varying function. If yd = 0, then the tracking problem
in this paper becomes a stabilization problem.

The following non-finite time control scheme can
be obtained from Theorem 1 for an incommensurate
fractional-order nonlinear system.

Corollary 1 Consider the incommensurate fractional-
order nonlinear system (2) under Assumptions 1–3,
the designed virtual control signals determined by (5),
(13), final control signal determined by (19), adaptive
laws, intermediate signals and compensated signals
determined by (i = 1, . . . , n)

˙̂
θi = ηi

2a2i
z̃2i �

T
i �i − μi θ̂i , (31)

hi (t) = −
(

γi + 1

2

)
z̃i
κi

− 1

2a2i κi
z̃i θ̂i�

T
i �i , (32)

˙̃χi (t) = −λi χ̃i (t) − κiχi (t), χ̃i (0) = zi (0), (33)

χn(t) = u(t), (34)

can ensure that: (i) all signals in the closed-loop system
are bounded; (ii) the signals z̃ = (z̃1, . . . , z̃n)T and
z = (z1, . . . , zn)T converge to a small regions of origin.
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Proof Let parameters γ̄i = λ̄i = ξi = 0, then from (6),
(10), (11), (14), (17), (18), (20), (23) and (24), we can
obtain the forms of adaptive laws, intermediate signals
and compensated signals shown in (31)–(34). In addi-
tion, consider the same Lyapunov functions Vn(ϒ(t))
as in Theorem 1 and Vχ̃ (t) as in Lemma 9, the inequal-
ities (26) and 30 will degenerate into

V̇χ̃ (t) ≤ −q̄1Vχ̃ (t) + q̄3, (35)

V̇n(ϒ(t)) ≤ −q1Vn(ϒ(t)) + q3, (36)

where q̄1, q̄3, q1 and q3 are the same as the ones in
Lemma 9 and Theorem 1. Then, we can obtain the
boundedness of all signals in the closed-loop system
by using a similar argument as in the proof of Theorem
1. It follows from (35) and (36) that

Vχ̃ (t) ≤
(
Vχ̃ (0) − q̄3

q̄1

)
e−q̄1t + q̄3

q̄1
,

Vn(ϒ(t))(t) ≤
(
Vn(ϒ(0)) − q3

q1

)
e−q1t + q3

q1
,

from which we can only get that signals z̃ and z con-
verge to small regions of origin, and cannot derive the
results of finite-time convergence. �	
Remark 8 The practical finite-time control scheme
proposed in Theorem 1 for FOS (2) contains an
adjustable parameter r , which provides a greater degree
of freedom in the choice of parameters. Therefore, com-
pared with the non-finite time control scheme in Corol-
lary 1, Theorem 1 gives us a possible option to achieve
better control performance.

Remark 9 Compared with the literature [9,18,20–22,
36,37], the control scheme in Corollary 1 is also novel
and can be used to control both incommensurate and
commensurate FOSs in [9,18,20–22,36,37]. The mer-
its of the control scheme in Corollary 1 can be sum-
marized as follows: (i) in contrast to the adaptive laws
in [9,20–22], the derivative order of adaptive laws in
Corollary 1 is 1, which is easier to implement in prac-
tice; (ii) it can be seen from the numerical simulations
in some previous studies [18,36,37] that the fluctua-
tion range of control input around the initial time is
very large, while in this paper, the control input is gen-
erated by the designed filter (19) and such fluctuation
of control input can be reduced,which is also illustrated
by the numerical simulations in the next section (see
Remark 11 for details).

In addition, the form of intermediate signal h1(t)
is similar to the virtual controllers in many literature,
but the virtual control signal χ1 in this paper is gen-
erated by fractional filter (5), which is quite different
from the form of the virtual control signal in literature.
Besides, if system (2) degenerates to integer-order one,
then fractional filter (5) becomes χ1(t) = κ1

1+κ1
h1(t),

and thus, there is only a constant coefficient between
χ1(t) and control virtual control signal in the litera-
ture, which indicates that the virtual control signal is
more comprehensive and cover the ones in literature as
special cases.

Remark 10 The formof intermediate signalshi (t) (i =
1, . . . , n) are similar to the virtual controllers in many
literature, but the virtual control signal χi in this paper
is generated by fractional filters (5), (13) and (19),
which are quite different from the form of the vir-
tual control signal in literature. It is worth pointing
out that if αi = 1, then the practical finite-time and
non-finite time control schemes for FOSs presented in
Theorem 1 and Corollary 1 will degenerate to the ones
of integer-order nonlinear systems. More precisely, the
filters (5), (13) and (19) become D0χi (t) = χi (t) =
−κi (χi (t) − hi (t)), i.e., χi (t) = κi

1+κi
hi (t). Then sub-

stituting hi (t) into this equation, we have

χi (t) = − 1

1 + κi

( (
γi + 1

2

)
z̃i

+ 1

2a2i
z̃i θ̂i�

T
i �i + γ̄iϑi (z̃i )

)
.

Further, letting κi = 0 in the above equation, one can
obtain

χi (t) = −
(

γi + 1

2

)
z̃i − 1

2a2i
z̃i θ̂i�

T
i �i − γ̄iϑi (z̃i ),

which coincides with the finite-time control scheme in
[32,33]. This indicates that the control signals proposed
in this paper are more comprehensive and cover the
ones in literature as special cases. If we further let γ̄i =
λ̄i = ξi = 0, then the non-finite time control scheme
for an integer-order system can be obtained, which was
extensively discussed in the existing literature, such as
[7,13,15]. Therefore, the proposed control scheme in
this paper is more general than the above-mentioned
studies.
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Fig. 1 Block diagram of
the closed-loop system
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4 Numerical simulations

In this section, two numerical examples are presented
to illustrate the effectiveness of the control scheme pro-
posed in the previous section. In order to enhance the
readability of this article, a block diagramof the closed-
loop system is presented in Fig. 1.

Example 1 Consider the following incommensurate
fractional-order nonlinear system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dα1x1 = 2x2 + 1 − cos(x1x3) + x3 + 
1(t),

Dα2x2 = x3 + x22 x3e
−x22 + 
2(t),

Dα3x3 = u + x1x2e−x23 + x3 sin(x1x2) + 
3(t),

y = x1,

(37)

where α1 = 0.95, α2 = 0.85, α3 = 0.92, 
1(t) =
0.3 cos(0.7t),
2(t) = −0.1 sin(0.6t),
3(t) = 0.2
cos(0.8t). The reference signal is yd = sin(1.4t) +
0.8 cos(0.7t).

It is obvious that yd ,
1,
2,
3 and their deriva-
tives are continuous and bounded. Thus, Assumptions
1 and 2 are satisfied. The designed parameters are cho-
sen as: r = 5

9 , γ1 = 11.8, γ2 = 6.4, γ3 = 3.2,
γ̄1 = 10.76, γ̄2 = 4.55, γ̄3 = 2.86, λ1 = 4.62, λ2 =
1.96, λ3 = 2.1, λ̄1 = 2.9, λ̄2 = 1.4, λ̄3 = 1.5,
κ1 = 0.9, κ2 = 1.7, κ3 = 1.2, η1 = 0.2, η2 =
0.1, η3 = 0.5, μ1 = 0.003, μ2 = 0.005, μ3 =

0 10 20 30 40

Time(s)

-2

-1

0

1

2

3

Fig. 2 Trajectories of reference signal yd and system output y

0.01, ξ1 = 0.001, ξ2 = 0.004, ξ3 = 0.02, a1 =
a2 = 1, a3 = 1.2, τ1 = τ2 = τ3 = 0.02,
�s = (−4.5,−3,−1.5, 0, 1.5, 3, 4.5)T and δs = 0.8.
The initial values of the system (37) and the adaptive
laws are x(0) = (−0.1,−0.1, 0.9)T, θ̂1(0) = 10−6,
θ̂2(0) = 10−4 and θ̂3(0) = 10−3.

The simulation results are shown in Figs. 2–7. The
system output y = x1 and the tracking error z1 under
the proposed practical finite-time control scheme are
given in Figs. 2 and 3, respectively, from which we
see that y can track the reference signal yd with a small
tracking error. To comparewith the non-finite time con-
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0

0.5

1

Fig. 3 Trajectories of tracking error z1 = yd − y

trol scheme (i.e., the results in Corollary 1), we also
consider the following two cases for Corollary 1: Case
I, all parameters are the same as in case of practical
finite-time control, except γ̄i = λ̄i = ξi = 0; Case II,
γ1 = 19.6, γ2 = 11, γ3 = 11.2, λ1 = 11.62, λ2 =
7.56, λ3 = 7.7, γ̄i = λ̄i = ξi = 0 and other parame-
ters are the same as in case of practical finite-time con-
trol. We present the trajectories of y and z1 under the
non-finite time control scheme in Figs. 2 and 3, respec-
tively. From Fig. 3, compared with the tracking error
under the non-finite time control scheme, the proposed
finite-time control scheme has a smaller tracking error
and has a slighter oscillation. In addition, from the tra-
jectories of system input u under practical finite-time
and non-finite time control schemes shown in Fig. 4,
we see that: (i) the tracking performance is very bad in
Case I from Fig. 3, although the control force is smaller
than that of practical finite-time control; (ii) the fluc-
tuation range of u for practical finite-time control is
smaller than that for non-finite time control in Case II,
which, together with Fig. 3, means that the proposed
practical finite-time control scheme can achieve bet-
ter tracking performance under a smaller control force
compared with the non-finite time control scheme in
Case II. The trajectories of state variables x2 and x3 are
given in Fig. 5. Figure 6 shows the trajectories of adap-
tive parameters θ̂1, θ̂2 and θ̂3. Figure 7 gives the trajec-
tories of virtual control signalsχ1, χ2 and compensated
signals χ̃1, χ̃2, χ̃3. All figures indicate the boundedness
of signals in the proposed practical finite-time control
scheme.
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Fig. 4 Trajectories of system input u
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Fig. 5 Trajectories of state variables x2 and x3
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Fig. 6 Trajectories of estimated parameter θ̂i
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Fig. 7 Trajectories of virtual control signals χ1, χ2 and com-
pensated signals χ̃i

Example 2 We consider the following fractional-order
Chua–Hartley’s system [2]⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dα1x1 = 10x2 + 10
7 (x1 − x31) + 
1(t),

Dα2x2 = x3 + x1 − x2 + 
2(t),

Dα3x3 = u − 100
7 x2 + 
3(t),

y = x1,

(38)

where α1 = α2 = 0.98, α3 = 0.94, 
1(t) =
0.5 sin(0.8t),
2(t) = 0.4 cos(0.8t),
3(t) = −0.5
sin(0.8t). The reference signal is yd = sin(0.8t) +
cos(0.8t).

It follows from the forms of the reference signal
and external disturbances that Assumptions 1 and 2
are satisfied. The designed parameters in the practical
finite-time control scheme are chosen as: r = 5/11,
γ1 = 1.16, γ2 = 13.88, γ3 = 12.84, γ̄1 = 0.66, γ̄2 =
13.7, γ̄3 = 4.36, λ1 = 3.02, λ2 = 5.78, λ3 = 2.42,
λ̄1 = 1.66, λ̄2 = 0.68, λ̄3 = 0.5, κ1 = 0.8, κ2 =
0.6, κ3 = 0.4, η1 = 0.8, η2 = 0.13, η3 = 0.12,
μ1 = 0.22, μ2 = 0.25, μ3 = 0.11, ξ1 = 0.33, ξ2 =
ξ3 = 0.22, a1 = 24, a2 = a3 = 17.6, τ1 =
0.06, τ2 = 0.02, τ3 = 0.04, and the parameters of
radial basis function neural networks are the same as
ones in Example 1. The initial values are chosen as
x(0) = (−0.1, 0.4,−0.6) and θ̂1(0) = 2.2, θ̂2(0) =
θ̂3(0) = 5.6.
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Fig. 8 Trajectories of reference signal yd and output y
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Fig. 9 Trajectory of tracking error z1 = yd − y
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Fig. 10 Trajectories of system input u
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Fig. 11 Trajectories of state variables x2 and x3

The simulation results are presented in Figs. 8, 9,
10, 11, 12 and 13. Figures 8 and 9 give the system out-
put y and the corresponding tracking error z1 (r = 5

11 ),
from which we see that the proposed practical finite-
time control scheme can effectively control system (38)
to achieve the tracking objective. As pointed out in
Remark 8, r is an important parameter in the pro-
posed practical finite-time control scheme. Thus, we
choose the different r (r = 7

11 and
9
11 ) and compare the

tracking error z1 and the system input u. From Figs. 9
and 10, we see that a small r implies a small tracking
error, while the fluctuation range of the control input
u becomes large with the reduction of r , i.e., the large
control force is needed. Thus, in practice, it is necessary
to make a trade-off between the tracking performance
and control force according to the actual engineering
requirements. The state variables x2, x3 and the esti-

mated parameters θ̂1, θ̂2, θ̂3 are presented in Figs. 11
and 12, respectively. Figure 13 gives the virtual control
signals χ1, χ2 and the compensated signals χ̃1, χ̃2, χ̃3.
BasedonFigs. 8, 9, 10, 11, 12 and13,we also know that
all signals in the closed-loop system (38) are bounded,
which indicates the effectiveness of the proposed con-
trol scheme.

Remark 11 In some existing literature, such as [18,36,
37], the input signal u has a large fluctuation around the
initial time, which may be unreasonable and unaccept-
able in practice. Unlike the aforementioned literature,
the control input u in this paper is generated by a fil-
ter and thus the fluctuation range of u can be reduced,
which is also illustrated by two numerical examples.
More precisely, the signal h3 in this paper has a similar
form with the control input in [18,36,37], so we com-
pare the difference between h3 and u, and the results
are shown in Fig. 14 for Examples 1 and 2. From Fig.
14, we see that the fluctuation range of u is significantly
lower than that of h3 for both practical finite-time and
non-finite time control schemes, especially around the
initial time.Therefore, the proposed control schemehas
an apparent effect on reducing the fluctuation range of
the input signal. In addition, the difference between h3
and u is large, and should not be neglected, which indi-
cates that the introduction of compensated signal χ̃i is
needed and reasonable.

Fig. 12 Trajectories of
estimated parameter θ̂i
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Fig. 13 Trajectories of virtual control signals χ1, χ2 and com-
pensated signals χ̃i
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Fig. 14 Trajectories of system input u and intermediate signal
h3 in Examples 1 and 2

5 Conclusion

In this paper, the issue associated with the practi-
cal finite-time adaptive neural networks control has
been considered for a class of incommensurate FOS
with external disturbances. With the help of the estab-
lished practical finite-time stability criterion and the
property of fractional-order calculus, a practical finite-
time adaptive control scheme has been designed for
an incommensurate FOS, where the control signals are
generated by some designed filters. During the design
processes of the control scheme, a compensated sig-
nal has been introduced to compensate for the differ-
ence from the filters of control signals, and thus, the

design processes of the control scheme and stability
analysis have been simplified. The proposed control
scheme provides a new way for the practical finite-
time adaptive control of FOSs, while the constraint
on the derivative-order αi (i.e., Assumption 3) brings
some limitations on the practical applications of the
proposed control scheme, which inspires us to study
how to remove this assumption in the future. In addi-
tion, to highlight the novelty of the proposed practical
finite-time control scheme, only a classical incommen-
surate fractional-order nonlinear system has been con-
sidered in this paper. Thus, we expect to extend the
practical finite-time control scheme to a more general
and practical system in the future.
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