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Abstract The current work introduces two extended
(3 + 1)- and (2 + 1)-dimensional Painlevé integrable
Kadomtsev–Petviashvili (KP) equations. The integra-
bility feature of both extended equations is carried out
by using the Painlevé test. We use the Hirota’s bilin-
ear strategy to explore multiple-soliton solutions for
both extended models. Moreover, we formally furnish
a class of lump solutions, for each extended KP equa-
tion, by using distinct values of the parameters. Proper
graphs are furnished to highlight the characteristics of
the lump, contour, and density solutions.

Keywords Kadomtsev–Petviashvili equation ·
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1 Introduction

Higher dimensional integrable systems have been dealt
with recently from physical and mathematical points
of view. Because of its significant effects in scientific
areas, immense research has been invested in construct-
ing and studying integrable models. The higher dimen-
sional integrable equations have attracted lot of studies
in various fields, such as solitary waves theory, ion-
acoustic waves in plasmas, and many other scientific
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fields. The Painlevé integrable systems exhibit multi-
ple solitons solutions and infinite conservation laws [1–
16].

In [1], a (3 + 1)-dimensional Kadomtsev–
Petviashvili-type equation was introduced as

auxt − a4 + b4 − 6a2b2

16
uxxxx − 3(b2 − a2)

4
(u2)xx

−3

4
uyy + 3

4
uzz = 0, (1)

which admits a weak dispersion term uxxxx , was intro-
duced in [1]. The Bäcklund transformation was used to
investigate its integrability [1]. However, equation (1)
is not Painlevé integrable in its given form.

Researchers invested a great deal of works to extend
and generalize the integrable systems [11–20] to higher
dimensional models. These works have led to the for-
mation ofmany higher dimensional integrable systems.
The higher-dimensional integrable models allow us to
explore the solution dynamics through using a variety
of powerful techniques [20–34]. Two comprehensive
review papers appeared recently in [33,34] in the area
of nonlinear wave structures in many physical settings,
including nonlinear optics and photonics and matter
waves in Bose–Einstein condensates. Researchers in
[33] examined the two- and three-dimensional soli-
tons and related states, such as quantum droplets, that
can appear in optical systems, atomic Bose–Einstein
condensates, and liquid crystals, among other physical
settings. However, in the overview presented in [34],
new findings concerning light bullets, the creation and
diverse applications of few-cycle (ultra-narrow) optical
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pulses, and the emergence of rogue waves in various
media were formally furnished.

We now propose an extended (3 + 1)-dimensional
Painlevé integrable equation that reads

auxt − a4 − 6a2b2 + b4

16
uxxxx − 3(b2 − a2)

4
(u2)xx

+αuxx + βuxy + γ uxz + λuzz + μuyz

+μ2

4λ
uyy = 0, (2)

that extends (1) by adding more linear terms, where
a, b, α, β, γ, λ, and μ are real numbers, but a, λ �= 0,
and u = u(x, y, z, t) is a sufficiently differentiable
function with respect to the spatial and the temporal
variables.

It is to be noted that for γ = 0, λ = 0, and
μ = 0, equation (2) will be transformed to a (2 + 1)-
dimensional equation as

auxt − a4 − 6a2b2 + b4

16
uxxxx − 3(b2 − a2)

4
(u2)xx

+αuxx + βuxy + ηuyy = 0, (3)

where u = u(x, y, t). Equation (3) will be studied later
in details. However, each equation (2) or (3) involves
one nonlinear term (u2)xx in addition to the remaining
linear terms.

Studies on multiple soliton solutions and lump solu-
tions have been flourishing recently for their important
roles in nonlinear scientific fields. Lumps are character-
ized by locality with high amplitude. Lumps and soli-
tons can be obtained via using the Hirota bilinear form
[1–20]. Physically a lump may be detached (or emit-
ted) from a line soliton, survives for a brief transient
period in time, and then merges with the next adja-
cent soliton. Several powerful schemes, such as the
Hirota method, and Darboux transformation method,
have been formally employed for studying nonlinear
integrable models [30–34].

In this article, we will first confirm THE complete
integrability of the extended (3 + 1)- and (2 + 1)-
dimensional KP equation (2) and (3) via using the
Painlevé test to show each retrieves Painlevé integra-
bility, whereas Eq. (1) is not Painlevé integrable. Con-
sequently, multiple soliton solutions can be derived
for both extended equations. In addition, a class of
lump solutions will be furnished for both extended KP
equations (2) and (3) by using distinct values of the
employed parameters.

2 Extended (3 + 1)-dimensional nonlinear KP
equation

We will first emphasize the Painlevé integrability for
the extended (3 + 1)-dimensional nonlinear KP equa-
tion (2). Next, the Hirota’s method will be used to
formally derive the multiple soliton solutions for this
extended model. A class of lump solutions will be fur-
nished, and we will select two cases of the employed
parameters to derive lump solutions. Other lump solu-
tions will be furnished.

2.1 Painlevé analysis to Eq. (2)

Many powerful tools, such as Lax pair, and Painlevé
Analysis, can be used to test integrability of any non-
linear evolution equation [1–10]. To show that Eq. (2)
retrieves its integrability, although some linear terms
were added, we employ the Painlevé analysis method
[1–20].

We assume that Eq. (2) has a solution, given as
a Laurent expansion about a singular manifold ψ =
ψ(x, y, z, t) as

u(x, y, z, t) =
∞∑

k=0

uk(x, y, z, t) ψk−γ . (4)

This in turn gives a characteristic equation with one
branch for resonances at k = −1, 4, 5, and 6. The res-
onance at k = −1 corresponds to ψ(x, y, z, t) = 0.
Moreover, explicit expressions for u1, u2, and u3 were
furnished. However, we found that u4, u5, u6 turn out
to be arbitrary functions for all real values of the param-
eters α, β, γ, λ, μ, a and b. Moreover, it is necessary
to note that a �= 0, a �= ±b, and λ �= 0. This confirms
the Painlevé integrability of the (3 + 1)-dimensional
Eq. (2).

However, for γ = 0, λ = 0, and μ = 0, the reduced
(2 + 1)-dimensional equation is also Painlevé integrable
via usingPainlevé analysis. Based on this,wewill study
briefly this case related to the multiple soliton solutions
in the next section.

2.2 Multiple soliton solutions

To derive the multiple soliton solutions of Eq. (2), we
substitute
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Painlevé integrability and lump solutions for two extended 3625

u(x, y, z, t) = eki x+ri y+si z−ci t , (5)

into the linear terms of (2) to obtain the dispersion rela-
tions as

ci = −(a4 − 6a2b2 + b4) λk4i + 16λki (βri + γ si ) + 4μri (4λsi + μri ) + 16λ(αk2i + λs2i )

16aλki
, (6)

and hence, the phase variables

θi = ki x + ri y + si z

−−(a4 − 6a2b2 + b4) λk4i + 16λki (βri + γ si ) + 4μri (4λsi + μri ) + 16λ(αk2i + λs2i )

16aλki
t, (7)

follow immediately for i = 1, 2, · · · , N . We next use
the transformation

u(x, y, z, t) = R(ln f (x, y, z, t))xx , (8)

into Eq. (2), where the auxiliary function f (x, y, z, t)
reads

f (x, y, z, t) = 1 + eθ1 = 1 + e
k1x+r1y+s1z− −(a4−6a2b2+b4)λk41+16λk1(βr1+γ s1)+4μr1(4λs1+μr1)+16λ(αk21+λs21 )

16aλk1
t
, (9)

used for deriving the single soliton solution. This gives

R = − (a4 − 6a2b2 + b4)

2(a2 − b2)
. (10)

Based on this, the single soliton solution follows
upon substituting (10) and (9) into (8) as

u(x, y, z, t) = − (a4 − 6a2b2 + b4)e
k1x+r1y+s1z− −λ(a4−6a2b2+b4)k41+16λk1(βr1+γ s1)+4μr1(4λs1+μr1)+16λ(αk21+λs21 )

16aλk1

2(a2 − b2)(1 + e
k1x+r1y+s1z− −λ(a4−6a2b2+b4)k41+16λk1(βr1+γ s1)+4μr1(4λs1+μr1)+16λ(αk21+λs21 )

16aλk1

. (11)

For the two soliton solutions, we use the auxiliary
function as

f (x, y, z, t) = 1 + eθ1 + eθ2 + a12eθ1+θ2 , (12)

where a12 is the phase shift of the interaction of soli-
tons. To determine the phase shift a12, we substitute
(12) into (2), and solving we obtain
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3626 A.-M. Wazwaz

a12 = 3λ(a4 − 6a2b2 + b4)k21k
2
2(k1 − k2)2 + 16λ2(k1s2 − k2s1)2 + 4μ2(k1r2 − k2r1)2 + 16λμ(k1r2 − k2r1)(k1s2 − k2s1)

3λ(a4 − 6a2b2 + b4)k21k
2
2(k1 + k2)2 + 16λ2(k1s2 − k2s1)2 + 4μ2(k1r2 − k2r1)2 + 16λμ(k1r2 − k2r1)(k1s2 − k2s1)

,

(13)

which can be generalized as

ai j = 3λ(a4 − 6a2b2 + b4)k2i k
2
j (ki − k j )2 + 16λ2(ki s j − k j si )2 + 4μ2(kir j − k j ri )2 + 16λμ(kir j − k j ri )(ki s j − k j si )

3λ(a4 − 6a2b2 + b4)k2i k
2
j (ki + k j )2 + 16λ2(ki s j − k j si )2 + 4μ2(kir j − k j ri )2 + 16λμ(kir j − k j ri )(ki s j − k j si )

,

(14)

for 1 ≤ i < j ≤ 3. This result shows that the phase
shifts (14) dependonly ona, b, λ andμ aswell as on the
coefficients of the spatial parameters kn, rn and sn, n =
1, 2, 3. Substituting (13) and (12) into (8) provides the
two soliton solutions.

For the three soliton solutions,we apply the auxiliary
function f (x, y, z, t) as

f (x, y, z, t) = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2

+a13e
θ1+θ3 + a23e

θ2+θ3 + a12a23a13e
θ1+θ2+θ3

(15)

Substituting (15) into (8) provides three soliton solu-
tions.

2.3 The (3 + 1)-dimensional model: lump solutions

Lump solution is a kind of rational function solution
localized in all spatial directions [20–32]. This is unlike
a soliton solution which is exponentially localized in
all directions in spatial and temporal variables [1–12].
Usually,weuse the generalized positive quadratic func-
tion to study the lump solutions. To derive lump solu-
tions, we transform the (3 + 1)-dimensional KP equa-
tion (2) into a bilinear equation in operators as
(
aDx Dt − a4 − 6a2b2 + b4

16
D4
x + αD2

x + βDx Dy

+γ Dx Dz + λD2
z + μDyDz + μ2

4λ
D2

y

)
f · f = 0,

(16)

where Dt , Dx , Dy, and Dz are the Hirota’s bilinear
derivative operators. To ease computational works, we
substitute α = β = γ , and μ = 2λ in (3 + 1)-
dimensional KP equation (2) to obtain

auxt − a4 − 6a2b2 + b4

16
uxxxx

−3(b2 − a2)

4
(u2)xx + α(uxx + uxy + uxz)

+λ(uzz + 2uyz + uyy) = 0. (17)

Consequently, equation (16) is transformed to

a( f fxt − fx ft ) − a4−6a2b2+b4
16

×( f fxxxx − 4 fxxx fx + 3( fxx )2)

+α
(
( f fxx − fx fx ) + ( f fxy − fx fy)

+( f fxz − fx fz))

+λ
(
( f fzz − fz fz) + 2( f fyz − fy fz)

+( f fyy − fy fy)
) = 0,

(18)

obtained upon using

u(x, y, z, t) = −a4 − 6a2b2 + b4

2(a2 − b2)
(ln f (x, y, z, t))xx .

(19)

To obtain the quadratic soliton solutions for (17), we
set

g = a1x + a2y + a3z + a4t + a5,
h = a6x + a7y + a8z + a9t + a10,
f = g2 + h2 + a11,

(20)

where a j , 1 ≤ j ≤ 11 are real parameters that we will
be derived. Substituting (20) in (18), we get a polyno-
mial of the variables x, y, z, and t . To determine the
parameters a j , 1 ≤ j ≤ 11, we build up a system
of equations of the coefficients of the variables and
the constant terms. In what follows, we highlight some
cases of a variety of parameters.
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Painlevé integrability and lump solutions for two extended 3627

Case 1.
We first select

a1 = a1, a2 = a2, a3 = a3, a4 = a4, a10 = a10,

a5 = a1a10 (α(a1 + a2 + a3) + aa4)√
λa1 (α(a1 + a2 + a3) + aa4) (a2 + a3)

, a2 �= −a3,

a6 =
√

λa1 (α(a1 + a2 + a3) + aa4) (a2 + a3)

α(a1 + a2 + a3) + aa4
,

a7 = − a1a2 (α(a1 + a2 + a3) + aa4)√
λa1 (α(a1 + a2 + a3) + aa4) (a2 + a3)

, a2 �= −a3,

a8 = − a1a3 (α(a1 + a2 + a3) + aa4)√
λa1 (α(a1 + a2 + a3) + aa4) (a2 + a3)

, a2 �= −a3,

a9 = α2(a21 + a1a2 + a1a3) + αλ(a2 + a3)2 + λaa4(a2 + a3) + αaa1a4
a
√

λa1 (α(a1 + a2 + a3) + aa4)
,

a11 = 3
(
a4 − 6a2b2 + b4

) (
α(a21 + a1a2 + a1a3) + λ(a2 + a3)2 + aa1a4

)
a21

16 (α(a1 + a2a3) + aa4)2
, (21)

which needs to satisfy

α(a1 + a2a3) + aa4 �= 0, and

λa1(α(a1 + a2a3) + aa4) > 0, (22)

to obtain a well-defined function f (x, y, z, t) and its
positiveness. We can furnish a class of lump solutions
to Eq. (17) by using u(x, y, z, t)) as follows

u(x, y, z, t) = − (b4 − 6a2b2 + b4)

2(a2 − b2)
×(ln( f (x, y, z, t))xx ,

= − (b4 − 6a2b2 + b4)

2(a2 − b2)

×2(a21 + a26) f − 4(a1g + a6h)2

f 2
, (23)

where f, g, and h are given earlier in (20). Note that
the obtained lump solutions u(x, y, z, t) → 0 if and
only if g2 + h2 → ∞.

For example, selecting

a1 = 1, a2 = 2, a3 = 1, a4 = 2, a10 = 2, a = 6,

b = 2, λ = 4, α = 1, (24)

gives

a5 = 4

3
, a6 = 3

2
, a7 = −4

3
, a8 = −2

3
,

a9 = 49

12
, a11 = 273

16
. (25)

The lump solution follows as

u = 111384t2 + (90720x + 16128y + 8064z + 120960) t + 18144x2 − 32256y2 − 32256yz − 8064z2 + 48384x − 63000
(
229t2 + 180t x − 32t y − 16t z + 36x2 + 64y2 + 64yz + 16z2 + 240t + 96x + 253

)2 . (26)
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3628 A.-M. Wazwaz

Using the parameters as given earlier, and substitut-
ing z = 1, t = 2 leads to (Figs. 1, 2, 3)

u(x, y, z, t) = 504(36x2 − 64y2 + 456x + 1255)

(36x2 + 64y2 + 456x + 163)2
.

(27)

Fig. 1 Profile of the lump solution for (27), −20 ≤ x, y ≤ 20

Fig. 2 Profile of the contour plot for (27), −40 ≤ x, y ≤ 40

Case 2.
We next select

a1 = a1, a2 = a2, a3 = a3, a5 = a5, a6 = a6, a7 = a7, a8 = a8, a10 = a10,

a4 = −α(a1+a2+a3)(a21+a26 )+λa1(a2+a3)2−λa1(a7+a8)2+2λa6(a2+a3)(a7+a8)
a(a12+a62)

,

a9 = −α(a6+a7+a8)(a21+a26 )+2λa1(a2+a3)(a7+a8)−λa6(a2+a3)2+λa6(a7+a8)2

a(a12+a62)
,

a11 = 3(a4−6a2b2+b4)(a21+a26 )
3

16λ(a1a7+a1a8−a2a6−a3a6)2
,

(28)

where a �= 0, λ �= 0, to derive a well-defined function
f (x, y, z, t) as furnished earlier. A class of lump solu-
tions to the Eq. (17) is furnished by using u(x, y, z, t))
as follows

u(x, y, z, t) = − a4−6a2b2+b4

2(a2−b2)
(ln( f (x, y, z, t))xx ,

= − a4−6a2b2+b4

2(a2−b2)

(
2(a21+a26 ) f −4(a1g+a6h)2

f 2

)
,

(29)

where f, g, and h are given earlier in (20). Note that
the obtained lump solutions u(x, y, z, t) → 0 if and
only if g2 + h2 → ∞.

Fig. 3 Profile of the density plot for (27), −50 ≤ x, y ≤ 50
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Painlevé integrability and lump solutions for two extended 3629

3 Extended (2 + 1)-dimensional nonlinear KP
equation

Setting γ = 0, λ = 0 and μ = 0 in (2), the (3 + 1)-
dimensional Painlevé integrable (2) reduces to the (2 +
1)-dimensional equation

auxt − a4 − 6a2b2 + b4

16
uxxxx − 3(b2 − a2)

4
(u2)xx

+αuxx + βuxy + ηuyy = 0, (30)

where a, b, α, β and η, are real parameters, a �= 0, and
u = u(x, y, t) is a sufficiently differentiable function
with respect to the spatial and the temporal variables
x, y, and t .

3.1 Painlevé analysis

Following the Painlevé analysis that we employed ear-
lier for the (3 + 1)-dimensional structure (2) shows that
the (2 + 1)-dimensional equation (30) is completely
Painlevé integrable. Moreover, the resonance points
were derived as −1, 4, 5, 6, the same as obtained for
the (3 + 1)-dimensional model (2).

3.2 Multiple soliton solutions

Substituting

u(x, y, t) = eki x+ri y−ci t , (31)

into the linear terms of (30) gives the dispersion relation
as

ci = −(a4 − 6a2b2 + b4)k4i + 16(αk2i + βkiri + ηr2i )

16aki
,

i = 1, 2, . . . , N , (32)

that gives the phase variable as

θi = ki x + ri y

−−(a4 − 6a2b2 + b4)k4i + 16(αk2i + βkiri + ηr2i )

16aki
t, i = 1, 2, . . . , N , (33)

follows immediately. We next use the transformation

u(x, y, t) = −a4 − 6a2b2 + b4

2(a2 − b2)
(ln f (x, y, t))xx ,

(34)

into Eq. (30), where the auxiliary function f (x, y, t) is

f (x, y, t) = 1 + eθ1

= 1 + e
k1x+r1y− −(a4−6a2b2+b4)k41+16(αk21+βk1r1+ηr21 )

16ak1
t,
,(35)

and hence, the single soliton solution reads

u(x, y, t) = − (a4 − 6a2b2 + b4)k21e
k1x+r1y− −(a4−6a2b2+b4)k41+16(αk21+βk1r1+ηr21 )

16ak1
t

2(a2 − b2)

(
1 + e

k1x+r1y− −(a4−6a2b2+b4)k41+16(αk21+βk1r1+ηr21 )

16ak1
t

)2 . (36)

For the two soliton solutions, the auxiliary function
reads

f (x, y, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 , (37)

that will lead to the following phase shifts

a12 = 3(a4 − 6a2b2 − b4)k21k
2
2(k1 − k2)2 + 16η(k1r2 − k2r1)2

3(a4 − 6a2b2 − b4)k21k
2
2(k1 + k2)2 + 16η(k1r2 − k2r1)2

, (38)

which can be generalized as

ai j = 3(a4 − 6a2b2 − b4)k2i k
2
2(ki − k j )2 + 16η(kir j − k jri )2

3(a4 − 6a2b2 − b4)k2i k
2
j (ki + k j )2 + 16η(kir j − k jri )2

, 1 ≤ i < j ≤ 3, (39)
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3630 A.-M. Wazwaz

where the phase shifts (39) depend only on the param-
eters a, b, and η, and on the spatial coefficients kn, and
rn, n = 1, 2, 3. Substituting (38) and (37) into (34)
gives the two soliton solutions. In addition, the three
soliton solutions can be obtained as employed earlier.

3.3 The (2 + 1)-dimensional model: lump solutions

The bilinear equation of the KP equation (30) can be
set as

(
aDx Dt − a4 − 6a2b2 + b4

16
D4
x + αD2

x + βDx Dy + ηD2
y

)

f · f = 0, (40)

where Dt , Dx , and Dy are the Hirota’s bilinear deriva-
tive operators. To ease computational works, we sub-
stitute α = β, in (2 + 1)-dimensional KP equation (30)
to obtain

auxt − a4 − 6a2b2 + b4

16
uxxxx − 3(b2 − a2)

4
(u2)xx

+α(uxx + uxy) + ηuyy = 0. (41)

Consequently, Eq. (40) is transformed to

a( f fxt − fx ft )

− a4−6a2b2+b4
16 ( f fxxxx − 4 fxxx fx + 3( fxx )2)

+α
(
( f fxx − fx fx ) + ( f fxy − fx fy)

)

+η( f fyy − fy fy) = 0,

(42)

where we applied

u(x, y, t) = −b4 − 6a2b2 + b4

2(a2 − b2)
(ln f (x, y, t))xx .

(43)

The quadratic soliton solutions for Eq. (41) can be
obtained by using the assumptions

g = a1x + a2y + a3t + a4,
h = a5x + a6y + a7t + a8,
f = g2 + h2 + a9,

(44)

where a j , 1 ≤ j ≤ 9 are real parameters that we will
be derived. Substituting (44) in (42), we get a polyno-
mial of the variables x, y, and t , where the parameters
a j , 1 ≤ j ≤ 9, can be obtained as furnished earlier:

Case 1.
In this case, we select

a1 = a6
√

αη

α
,

a2 = −aa3
α

,

a4 = a6a8α

aa3
,

a5 = aa3
√

αη

α2 ,

a7 = −a6α

a
,

a9 = 2η
(
α2a26(a

4 − 6a2b2 + b4)(α2a26 + a2a23)
)

16α4 ,

(45)

where

a, a3, α �= 0, (46)

to obtain a well-defined function f (x, y, t), and to
strengthen the localization of u(x, y, t) in all directions
in the space. Hence, lump solutions to the KP equation
(41) read

u(x, y, t) = − b4−6a2b2+b4

2(a2−b2)
(ln( f (x, y, z, t))xx ,

= − b4−6a2b2+b4

2(a2−b2)
2(a21+a25 ) f −4(a1g+a5h)2

f 2
,

(47)

where f, g, and h are given earlier in (44).
For example, selecting

a3 = 1, a6 = 2, a8 = 2, a = 6, b = 2, η = 2,

α = 1, t = 2, (48)

gives the lump solution as

u(x, y, t)

= 1008 × 24
√
2x−t2+12 t y+72 x2−36 y2−6044(

24
√
2x+t2−12 t y+72 x2+36 y2+6052

)2 .

(49)

Case 2.
We next choose

a1 = a1, a2 = a2, a4 = a4, a5 = a5, a6 = a6, a8 = a8,

123



Painlevé integrability and lump solutions for two extended 3631

a3 = α(a1 + a2)(a21 + a25) + η(a1a22 − a1a26 + 2a2a5a6)

a(a21 + a25)
,

a �= 0,

a7 = −α(a5 + a6)(a21 + a25) + η(2a1a2a6 − a5a22 + a5a26)

a(a21 + a25)
,

a �= 0,

a9 = 3(a4 − 6a2b2 + b4)(a21 + a25)
3)

16η(a1a6 − a2a5)2
, (50)

where a �= 0, η �= 0, and the determinant condition

	 = (a1a6 − a2a5) =
∣∣∣∣
a1 a2
a5 a6

∣∣∣∣ �= 0, (51)

to secure a well-defined function f (x, y, t), and local-
ization of u(x, y, t) in all spatial sides, respectively.
This gives lump solutions to the (3 + 1)-dimensional
KP equation (41) as

u(x, y, t) = − b4−6a2b2+b4

2(a2−b2)
(ln( f (x, y, t))xx ,

= − b4−6a2b2+b4
× 2(a2 − b2)

2(a21+a25 ) f −4(a1g+a5h)2

f 2
,

(52)

where f, g, and h are given earlier in (44).
For example, selecting the same values of the param-

eters as in the previous case the lump solution as

u(x, y, t)

= 35000 x2+(56000 y−8400)x+16800 y2−2240 y−9187892

(50 x2+80 xy+40 y2−12 x−16 y+13127)
2 .

(53)

4 Conclusions

We gave two extended (3 + 1)- and (2 + 1)-dimensional
Kadomtsev–Petviashvili (KP) equations in shallow
water waves. Shallow water waves play an important
role in the study of fluid dynamics, which involves
the development of ground water resources, sea water
intrusion, marine engineering, and many other fields.
The two extended KP equations were proposed to
explore newmultiple solitons solutions and more lump
solutions aswell.Weused the Painlevé analysismethod
to ensure the integrability of each extended equation
and to confirm that the newly added linear terms did
not end the integrability feature. The Hirota’s method
was employed to exhibit multiple soliton solutions for

each examined equation. Two sets of lump solutions
were derived for proposed model. The results are help-
ful to understand the dynamic properties of extended
KP equations in fluid mechanics.
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