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Abstract The dynamic response of a cantilevered

pipe conveying fluid is investigated when several

input parameters of the system are introduced to

uncertainty. After the nonlinear equations of motions

are derived, five input parameters are subject to a

� 5% uncertainty with a uniform distribution. First, a

parametric study is performed by varying each

parameter individually. Then, the Pearson correlation

coefficients are calculated and discussed before a full

Monte Carlo simulation is performed, and the his-

tograms of results are investigated. It is evident that

the outer diameter of the pipe has the largest effect on

the maximum displacement of the pipe in the post-

flutter regime. Chaotic behavior is exhibited when

motion-limiting constraints are present in the system,

so the system is tested with motion-limiting con-

straints as well. Monte Carlo simulation is performed,

and bivariate diagrams are plotted to investigate how

uncertainty affects the maximum displacement and

periodicity of the oscillations together. Again, the

outer diameter of the pipe is seen to be the most

sensitive parameter to uncertainty when motion-lim-

iting constraints are present. However, the parameters

besides the outer diameter exhibit more sensitivity at

high flow speeds. The results indicate that it is

necessary to control the uncertainty introduced in the

outer diameter to achieve expected dynamical

responses at low flow speeds, but the uncertainty in

all parameters must be controlled at higher flow speeds

when motion-limiting constraints are present to

achieve the expected behavior and chaotic responses.

Keywords Uncertainty quantification � Sensitivity
analysis � Cantilevered pipeline conveying fluid �
Chaotic responses � Monte Carlo simulation � Pearson
correlation coefficient

1 Introduction

Complete understanding of the dynamic response is

imperative to the design and lifetime of every

engineered system. If the dynamic response is not

properly characterized, the resulting behavior of the

system may behave unexpectedly and damage the

system. This is particularly true when the dynamics of

the system exhibit nonlinear behavior. Therefore,

nonlinear dynamics have been studied for decades and

is still heavily researched today [1–11]. The research

of nonlinear dynamics is true for all applications

including cylindrical structures with internal flow.

Ashley and Haviland [12] were the first to spark

interest in pipeline conveying fluid systems in 1950.

They studied the effects of external forcing from
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crosswinds on aboveground simply supported pipeli-

nes and found that the internal fluid flow caused

damping of the system which led to a constant pipe

frequency over time. Niordson and Housner [13, 14]

were able to derive the equations of motion of the

simply supported pipeline and found that buckling

could occur at sufficiently high internal flow speeds.

Although Long [15] did not test the cantilevered

pipeline system at sufficient flow speeds to prove the

loss of stability, it was proven that the internal fluid

flow induced damping in the system that reduced the

frequency of the pipe over time, unlike the simply

supported systems.

The most influential researchers on the subject are

Paidoussis and his collaborators [2–4, 16–33]. Gre-

gory and Paidoussis [16] were the first to analytically

and experimentally prove that cantilevered pipeline

conveying fluid systems lose stability via Hopf

bifurcation at critical flow speeds. Interestingly,

chaotic oscillations were found in several experiments

and calculations when motion-limiting devices were

implemented to the system [2, 4, 19, 34–36]. A

trilinear spring was used to model the motion-limiting

constraints in a study performed by Paidoussis and

Semler [4]. Several bifurcations were observed in

these experiments including chaotic oscillations.

Installation error or wear from extended use could

cause the constraints to be asymmetrical. Therefore,

Wang et al. [35] used the same trilinear spring model

as Paidoussis and Semler [4], but the motion-limiting

constraints were not placed symmetrically around the

pipe. They found that the constraint gap size, stiffness,

and symmetric offset have great effects on the

behavior of the system. For example, chaos and other

nonlinear responses may disappear at very small

constraint stiffnesses and gaps.

Like Wang et al. [35] noted that systems in real-

world applications are slightly different from their

design. This can be due to wear and tear from extended

use, fabrication or installation error, or even slight

changes in material properties. Therefore, the use of

uncertainty quantification methods is necessary in the

design process. There have been numerous mathe-

matical models developed to quantify the uncertainty

in a system’s performance. Ceballes and Abdelkefi

[37] discussed many of the uncertainty quantification

methods used in this work and applied them to the

uncertainty quantification of carbon nanotubes. Gen-

erally, uncertainty quantification analysis is performed

by changing the nominal value of several input or

environment parameters and comparing the output of

the system to the nominal output. It comes as no

surprise that a specific output of the system is needed

to be calculated. The chosen output of the system is

commonly referred to as the quantity of interest (QOI).

There can be multiple QOIs for a single uncertainty

quantification analysis and can be the displacement of

the system, stress induced in the system, or temper-

ature for example.

In the large number of studies performed regarding

pipeline conveying fluid systems, there is a distinct

few uncertainty quantification studies on the system.

Guo et al. [38] used an artificial neural network to

investigate the uncertainty of the natural frequencies

of a pipe conveying fluid system with a functionally

graded material when the diameter of the functionally

graded material pipe is varied. An uncertainty quan-

tification analysis was performed by Ritto et al. [39] on

the simply supported pipeline conveying fluid system

proposed by Paidoussis and Issid [17]. Ritto et al. [39]

tested how the uncertainties of the assumptions made

in the system could affect the flutter for different flow

speeds. The study showed that the system exhibited

random responses to different levels of uncertainty

and investigated the reliability of the system for

different flow speeds. To the authors’ best knowledge,

there have not been many uncertainty quantification

and sensitivity analysis studies regarding the can-

tilevered pipe conveying fluid systems.

A recent study from Alvis et al. [40] performed

uncertainty quantification analyses on the cantilevered

pipeline conveying fluid system. The QOI of this study

was the flow speed at which stability is lost—also

referred to as the flow speed at the onset of instability.

It was found that the flow speed at the onset of

instability was most affected by uncertainty intro-

duced into the outer diameter of the pipe. The density

of the pipe showed sensitivity to uncertainty, but the

effect on the onset of bifurcation was negligible when

the value of the outer diameter was away from the

nominal value. This study expands on the previous

work and focuses on the dynamical responses under

input uncertainty. A cantilevered pipeline conveying

fluid system is investigated both with and without

motion-limiting constraints. Therefore, the QOI in this

study is the maximum displacement of the system

when motion-limiting constraints are not present.

There are two QOIs for the second part of the study
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when motion-limiting constraints are present, namely

the maximum displacement of the system and the

presence of chaos in the system.

The full nonlinear equations of motion and the

parameters of the nominal system are defined in

Sect. 2. Then, Sect. 3 establishes the uncertainty

quantification and sensitivity analysis methods used

in this study and describes procedure of each method

in detail. The maximum displacement of the can-

tilevered pipeline conveying fluid without the addition

of motion-limiting constraints is investigated and

discussed in Sect. 4. First, the parametric study is

performed over the entire flow speed range to show the

entire behavior of the pipeline conveying fluid system.

Then, five flow speeds are selected and studied more in

depth by performing the parametric study with more

points of uncertainty calculated. The Monte Carlo

simulation [41] is then carried out after ensuring that

the number of iterations is high enough to reach an

accurate solution. The Pearson correlation coefficients

[42] are calculated, and the histograms of the simu-

lation are investigated. Section 5 discusses the dis-

placement and stability of the pipeline under

uncertainty when the motion-limiting constraints are

included in the system. Many of the same uncertainty

quantification methods are employed including the

parametric study of the entire flow speed. The results

from Monte Carlo simulation are presented in bivari-

ate diagrams so that the effects of the uncertainty on

the displacement and stability of the system can be

investigated together. The motion-limiting constraints

are then introduced into uncertainty compared to the

results from the pipe parameters in Sect. 6. Finally,

summary and conclusions are presented in Sect. 7.

2 Modeling and problem formulation

of the pipeline conveying fluid

2.1 Equation of motion derivation

and discretization

The system under investigation is a cantilevered

pipeline hanging vertically with length L, outer

diameter do, and inner diameter di. The system will

lose stability and begin to oscillate once the velocity of

the fluid conveyed inside the pipe,U, reaches a critical

flow speed. To prevent these oscillations from reach-

ing a large amplitude, motion-limiting constraints are

implemented into the system, as indicated in the

schematic of the pipeline system shown in Fig. 1. In

this schematic, S depicts the coordinate along the

centerline of the pipe, Sc represents the location of the

motion-limiting constraints down the X-axis. The

constraints are set a symmetric distance away from the

pipe, Yc; and the pipe oscillates solely in the Y-

direction.

The modeling of this system has been extensively

investigated and compared to experimental results [2].

Due to this, the modeling in this investigation will only

be briefly explained. Following the work of Semler

et al. [34], the equation of motion is derived as seen in

equation (1) where Y 0 represents the derivative with

respect to the position of the beam’s centerline X and _Y

represents the derivative with respect to time, t. Also,

EI is the structural rigidity of the pipe, M represents

the mass per unit length of the fluid, g denotes the

Kelvin–Voigt damping coefficient, and g is the

gravitational constant.

EI Y iv þ g _Y iv
� �

þ mþMð ÞgY 0 þ 2MU _Y 0 þMU2Y 00 � mþMð Þg L� Sð ÞY 00

þ mþMð Þ €Y þ 2MU _Y 0Y 02 þ Y 00Y 02 MU2 � 3

2
mþMð Þg L � Sð Þ

� �
þ 1

2
g mþMð ÞY 03

þ EI Y ivY 02 þ 4Y 000Y 00Y 0 þ Y 003� �
� Y 00

Z L

s

2MUY 0 _Y 0 þMU2Y 0Y 00 þ
Z s

0

mþMð Þ _Y 02 þ Y 0 €Y 0� �
dS dS

� �

þ Y 0
Z s

0

mþMð Þ _Y 02 þ Y 0 €Y 0� �
dSþ F Sð Þ S� Scð Þ ¼ 0

ð1Þ

In Eq. (1), F represents the force imparted on the

system from the motion-limiting constraints. The

representation of the forcing chosen by Paidoussis

Fig. 1 Schematic of the pipeline conveying fluid under

consideration
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and Semler [4] followed a modified trilinear spring

model and can be expressed as:

F Yð Þ ¼ k3 Y � 0:5 Y þ Ycj j � Y � Ycj jð Þf g3 ð2Þ

Semler and his collaborators nondimensionalized

the equation of motion after deriving the nonlinear

equations of motion [34]. This allows for more

straightforward calculations of the complex equations

of motion, but because this study investigates the

uncertainty of the input parameters, it is best to keep

the equation of motion in its dimensional form. If the

results are analyzed while nondimensionalized, the

results would be skewed by the nondimensionalization

of the system and need to be converted back to the

dimensional values.

To solve the system, the equation of motion is

discretized using the Galerkin method by assuming

Y S; tð Þ is equal to the infinite sum of the cantilevered

beam eigenfunction /i Sð Þ multiplied by the general

coordinate qi tð Þ, as shown in Eq. (3) where N

represents the number of modes of the cantilever

beam eigenfunction.

Y S; tð Þ ¼
XN

i¼1

/i Sð Þqi tð Þ ð3Þ

Equation (3) is substituted into Eq. (1) and multi-

plied by /i Sð Þ and integrated from 0 to L. Following

the work of Taylor et al. [36], the nonlinear reduced-

order model is expressed so that each constant can be

related to a physical meaning as seen in Eq. (4) where

all coefficients are defined in the Appendix.

€qj þ Cij þ U Cuð Þij
h i

_qj þ Kij þ U2 Kuð Þij
h i

qj þ Mijkl

� �
_qj _qkql

þ U Nð Þijkl
h i

_qjqkql þ Pijkl þ U2 Puð Þijkl
h i

qjqkql

þ F
XN

z¼1

/z Scð Þqz tð Þ
 !

/i Scð Þ ¼ 0

ð4Þ

2.2 Nominal system parameter definitions

and modeling verification

After determining the governing equation of motion of

the system, the nominal system’s parameters can be

defined. Uncertainty is introduced into the following

five pipe parameters, namely the length of the pipe L,

the outer diameter do, inner diameter di, modulus of

elasticity E, and density q. The nominal configuration

follows the experimental system of Paidoussis and

Moon and has been validated many times [2]. The

pipeline itself is made of a casted elastomer that allows

the system to lose stability at a lower flow speed. The

pipeline parameters are listed in Table 1.

To solve the nonlinear reduced-order model, it is

first necessary to find the number of necessary modes

of the cantilevered beam eigenfunction used in the

Galerkin discretization. Using a linear eigenvalue

analysis, Paidoussis et al. [20] found four modes in the

Galerkin discretization to be necessary to yield an

accurate result. Therefore, four modes are used in the

estimation of the displacement of the pipeline’s

dynamics. Like the previous uncertainty quantification

study performed by Alvis et al. [40], the mass of the

internal fluid is assumed to be constant. As the internal

diameter is varied, the volume of the fluid per unit

length would change as well which could potentially

change the physics of the system. However, it is

assumed that this small variation would not have

profound effects on the output of the system. This is

especially possible if there are any uncertainty intro-

duced into the density of the fluid. This uncertainty in

the density of the fluid could offset any change in the

system output from the variance of the mass of the

fluid by changing the internal diameter of the pipe, so

for simplicity, the mass of the internal fluid is held

constant and only structural parameters are affected in

this study. The location, gap size, and stiffness of the

constraints are again chosen from the work of

Paidoussis and Semler [4] and are listed in Table 2.

When the system is analyzed with the defined

parameters, the peaks from the time histories at each

flow speed can be plotted into a bifurcation diagram

which shows the behavior and motion of the system.

Bifurcation diagrams plot the peak-to-peak values of

the time histories at each flow speed. Therefore, if only

one point is plotted, the system is stable at its

equilibrium, and if multiple points are plotted the

Table 1 Nominal pipeline

parameters
Parameter Initial input

do 15:88mm

di 7:94mm

L 441mm

q 735:14 kg=m3

E 2:49MPa
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pipe is oscillating. Two points plotted signify a

1-period oscillation, and many points signify an

aperiodic movement.

The bifurcation diagram for the nominal design

with and without motion-limiting constraints is plotted

in Fig. 2. The pipeline system loses stability and

begins to oscillate at 7:43m=s. In the case without

constraints, in Fig. 2a, the pipeline system oscillates

periodically for all flow speeds. However, in Fig. 2b,

when motion-limiting constraints are present, the

displacement of the pipe is limited, and multiple

aperiodic responses can be observed. Eventually, the

pipe sticks in the constraint and no longer oscillates at

a certain flow speed. The behavior of this system is

characterized at the point of contact where Paidoussis

and Semler characterized the system at the tip of the

pipe [4]. However, Taylor et al. [36] suggested that

characterizing the system at the point of contact yields

more accurate observations. This model has been

validated with results from several research studies

[35, 36]. As mentioned, the purpose of this work is to

investigate the dynamic response of the system when

uncertainty is introduced into the system. Therefore,

the maximum pipe displacement is investigated in the

system without constraints, and the maximum pipe

displacement and the presence of aperiodic behaviors

are studied in the system with constraints present.

3 Uncertainty quantification and sensitivity

analysis methods

This study employs the parametric study, Monte Carlo

simulations, and Pearson correlation coefficients. The

parametric study is useful for researchers to identify

which parameter in a given system is the most

influential to uncertainty. In this method, each param-

eter in the system is varied over the selected uncer-

tainty range individually which allows for a smaller

number of iterations when compared to the stochastic

model where all parameters are varied at the same

time. However, because the parametric study investi-

gates the parameters individually, the effects of the

parameters interacting with each other cannot be

investigated. In the parametric study, the output of the

system will be plotted against the change of each

parameter due to uncertainty. A slope of zero indicates

that a parameter is insensitive to the added uncertainty,

whereas a more sensitive parameter will have a higher

slope. It can be assumed that the parameters that show

very low sensitivity to uncertainty will have a

negligible effect on the system when all parameters

are varied together. By neglecting insensitive

Table 2 Constraint parameters

Yc 19:4mm

Sc 286:7mm

k3 2:44� 106 N=m3

(a) (b)

Fig. 2 Bifurcation diagrams when system: a does not include motion-limiting constraints and b does include motion-limiting

constraints
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parameters, a great deal of time can be saved in the full

stochastic simulation.

The Monte Carlo simulation is employed by

randomly selecting a value for each parameter in a

given uncertainty range within a selected uncertainty

distribution. Then, the dynamic response of the system

is calculated, and the entire process is iterated several

times. This study focuses on a uniform distribution,

but many distributions can be implemented as shown

in the study performed in [37]. The shape of the

distribution can have significant impacts on the

performance of the system. A Gaussian or normal

distribution centered around the nominal case should

obviously yield the most results centered around the

nominal case, but distributions that have a broader

input uncertainty range like the uniform distribution,

or distributions that are not centered around the

nominal case like the beta distribution may not yield

results centered around the nominal case. The uniform

distribution is chosen in this case because it shows

how a broad uncertainty range affects the output of the

system.

The number of iterations selected in stochastic

models like the Monte Carlo simulation is very

important to the solution’s accuracy. The law of large

numbers first proved by Bernoulli and further

explained by Poisson states that if an experiment is

performed a large number of times, the average of all

results will amount to the expected result [43]. If too

few samples are selected, the behavior of the system

may be mischaracterized. However, using too many

iterations will yield an accurate result, but will have an

immense computational cost and will only be a

fraction, if any, more accurate than a solution yielded

with fewer points. In this manner, a convergence

analysis is needed to find the most accurate output

while yielding a reasonable computational effort.

After the ideal number of iterations has been

determined and the Monte Carlo simulation is per-

formed, more analysis of the system can begin. One

such analysis is the Pearson correlation coefficient

which helps to determine the parameter sensitivity.

The Pearson correlation coefficient is calculated by

dividing the covariance of a pair of variables by the

product of that pair’s standard deviation, as seen in

Eq. (5), where rxy is the Pearson correlation coefficient

between any independent and dependent variables x

and y, respectively [42]. The number of variables in

the data set (which in this case is equal to the number

of iterations chosen from the convergence analysis) is

defined as n, and finally, x and y refer to the mean value

of each data set.

rxy ¼
Pn

i¼1 xi � xð Þ yi � yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 xi � xð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � yð Þ2
qr ð5Þ

The value of r ranges between þ 1 and � 1 which

indicates a complete correlation between the indepen-

dent and dependent variables. The positive or negative

sign of the Pearson correlation coefficient signifies the

trend of the parameter under uncertainty. To clarify, a

positive Pearson correlation coefficient indicates that

as the value of a given parameter increases due to

added uncertainty, the output of the system will also

increase, whereas a negative slope indicates that as the

value of a given parameter increases the output will

decrease. There is no correlation between an input

parameter and the output if the Pearson correlation

coefficient is equal to 0.

It is important to note that if the relationship

between input and output is nonmonotonic, or does not

strictly increase or decrease, cancellation effects can

be present and decrease the value of r. Therefore, data

that show nonlinear trends can falsely cause a

parameter to appear insensitive according to the

Pearson correlation coefficient. A way to visually

check the correlation of an input parameter is to plot a

scatter plot of the input parameter against the output of

the system when all parameters are being varied. A

more sensitive parameter will have the output results

closely gathered, usually following the trends from the

parametric study where the parameters are varied

individually. An insensitive parameter will not follow

the trends of the parametric study and will have a wide

range of seemingly randomly placed points on the

scatter plot [37].

Another important aspect of characterizing the

results of the Monte Carlo study involves plotting a

histogram of the QOI. The preferred distribution of the

output histogram is where the majority of the results

are closely gathered around the nominal output. This

ensures that the system will behave as expected when

uncertainties are introduced into the system. If the

histogram shows the most likely outcome is away

from the nominal designed case, the engineers

designing the system can investigate how to decrease

123

3986 T. Alvis, A. Abdelkefi



the input uncertainty to ensure that the system behaves

as expected. In this study, an uncertainty range of

� 5% is used with a uniform distribution. This broad

uncertainty range and distribution allows for a more

complete understanding of how the system will

behave when introduced to input uncertainty.

4 Dynamic response of pipeline conveying fluid

without motion-limiting constraints

under uncertainty

Understanding the dynamics of the system without

external forcing/constraint will help to better under-

stand the impacts the motion-limiting constraints

impart on the system. Therefore, the system without

motion-limiting constraints is analyzed first. The

parameters are individually analyzed first. This gives

insight into how sensitive the parameters are to input

uncertainty regarding the onset of bifurcation as well

as the dynamic response in the post-flutter regime.

Then, all parameters are influenced by uncertainty

simultaneously in a Monte Carlo simulation. The

parameters’ correlation is investigated using scatter

plots and Pearson correlation coefficients, and the

output of the system is analyzed using histograms.

Therefore, the dynamic response of the system under

input uncertainty is investigated when the change in

parameters interacts with each other, and the most

sensitive parameter is identified.

4.1 Uncertainty analysis of individual parameters

First, the system is analyzed over the entire flow speed

range when each parameter is varied individually, and

the bifurcation diagrams are plotted. This way an

understanding of how the input parameter affects the

entire system’s response can be investigated. It would

be impossible to perform an analysis over the entire

flow speed range for the full Monte Carlo simulation

due to the incredible computational time and memory

needed for the high number of iterations needed. In the

previous study performed by Alvis et al. [40], a range

of flow speeds where the pipeline system loses

stability is found from 6:76 to 7:81m=s. The bifurca-

tion diagrams from the parametric study are shown in

Fig. 3 where the bifurcation diagrams plotted in color

represent the dynamics of the system when a param-

eter is introduced to uncertainty, and the bifurcation

diagrams plotted in black represent the dynamics of

the system at the maximum and minimum bifurcation

points found in the previous study when all parameters

are varied together [40].

Interesting dynamical behaviors are immediately

evident in Fig. 3. Two aspects of the bifurcation

diagrams that bring insight into how uncertainty is

affecting the system are the flow speed at which the

system loses stability and the behavior of the dis-

placement of the system in the post-flutter regime.

Focusing on the flow speed at the onset of instability, it

is clear that do is the most sensitive parameter,

followed by q, di, and finally L and E, which shows

very little sensitivity to uncertainty. This can be seen

from the range of the flow speeds at the onset of

instability where a wider range indicates a more

sensitive parameter, and a small range indicates an

insensitive parameter. The onset of instability occurs

in all plots of Fig. 3 between the maximum and

minimum cases from the previous study [40]. This

indicates that there must be an interaction between the

parameters because the flow speed range at the onset

of instability increases when all parameters are varied

together. It is interesting that the do and L parameters

in Fig. 3a, c, respectively, are exhibiting nonmono-

tonic parameters. As the uncertainty introduced into

the parameter is increased from � 5 to 5%, the di, E,

and q parameters show the flow speed at the onset of

instability is either strictly increasing, in the case of di
and E in Fig. 3b, d, respectively, or strictly decreasing

in the case of q in Fig. 3e. This is not the case

regarding do and L. When the value of do expands

away from the nominal value, the flow speed at the

onset of instability decreases compared to the nominal

case. As the uncertainty increases in L from � 5 to

1:67%, the flow speed at the onset of instability

increases. However, as the uncertainty increases

further to 3:33% the flow speed at the onset of

instability begins to decrease. When the input uncer-

tainty is increased toþ 5%, the flow speed at the onset

of instability is below that of the nominal case.

It is also interesting that a given parameter’s

sensitivity to uncertainty for the onset of instability

does not necessarily correlate with a sensitivity with

the dynamic response of the system. For example, the

onset of instability changes by a large margin when

uncertainty is introduced into q, but the dynamical

response hardly changes at higher flow speeds. This

can be seen in Fig. 3e where the onset of instability
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ranges from 7:2 to 7:8m=s, but the displacements of

the pipe quickly converge together as the flow speed

increases. The dynamic response is also not affected

much by the inclusion of uncertainty in di in Fig. 3d

where again the displacements converge at higher flow

velocities. This is in stark contrast to do in Fig. 3a

(a) (b)

(c) (d)

(e)

Fig. 3 Bifurcation diagrams from the parametric study when varying: a do, b di, c L, d E, and e q
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where the flow speed at the onset of instability ranges

from 7:11 to 7:44m=s, but the behavior of the

displacement changes drastically from the different

amount of uncertainty introduced into the system. The

displacement for the higher input uncertainty of 3:33%

and 5% extends past the displacement of the minimum

case when all parameters are being varied together and

eventually curves back down. The onset of bifurcation

is almost equal for the input uncertainty of � 1:67%

and 0%, but the dynamic response is very different.

For�1:67% input uncertainty, the displacement of the

pipe increases very sharply once the system becomes

unstable, whereas the displacement increases at a

slower rate for the nominal case. This indicates that the

response of the system can vary greatly depending on

the system’s parameters even if the onset of instability

occurs at the same flow speed.

The displacement of the pipeline system in Fig. 3c

when uncertainty is introduced into L also does not

converge at higher flow speeds. At the final plotted

flow speed of 9m=s, the largest displacement is the

case when L is at � 5% of the nominal critical flow

speed. As the input uncertainty increases to þ 5%, the

displacement at a flow speed of 9m=s steadily

decreases where the lowest displacement is for the

case when L is at 5% of the nominal critical flow

speed. This would make logical sense if the onset of

instability was monotonic. The case that loses stability

first would have the highest amplitude, and the case

that loses stability last would have the lowest ampli-

tude. However, this is clearly not the case in this

instance. From this preliminary study, it can be

assumed that the dynamical response of the system

is most sensitive to change in the do. The next sensitive

parameter is L, but the change in displacement is not

very large. The displacements of these two parameters

in Fig. 3a, c change the most throughout the uncer-

tainty range, whereas the other parameters seem to

converge as the flow speed increases.

As previously mentioned, it is not possible to

complete the Monte Carlo simulation over the entire

flow speed range due to the high number of samples to

reach an accurate result and the large computational

memory and time needed to solve the response at each

flow speed. Therefore, five flow speeds over a wide

range have been selected to be investigated and can be

seen in Table 3. For clarity, the selected flow speeds

will be referred to as the percent difference from the

onset of bifurcation at the nominal case. The flow

speeds have been chosen over a wide range to give a

good representation of how the system is behaving

throughout the flow speed range. In the case of � 5%

of the nominal critical flow speed when the parameters

are varying individually, the system has not reached

the onset of instability when uncertainty is present

which can be seen in Fig. 3. In the case of� 3% of the

nominal critical flow speed, the only parameter that

has reached the onset of instability is do. These flow

speeds will be important to investigate when all

parameters vary together because it will show how

parameter interaction will further decrease the onset of

instability. At 3%, 5%, and 10% of the nominal critical

flow speed, all parameters have resulted in an unsta-

ble system. By investigating these flow speeds, an

understanding of how uncertainty affects the system at

higher flow speeds can be achieved.

The parametric studies at the selected flow speeds

are plotted in Fig. 4. It is clear that the system is

stable for all parameters under the entire uncertainty

range at a flow speed of� 5%, as presented in Fig. 4a.

The change in displacement is negligible and is

essentially zero. When increasing to a flow speed of

� 3%, the only parameter that causes the system to

become unstable is do, and the level of uncertainty

must be quite high to cause this instability. This

indicates that do is the most sensitive parameter to the

onset of instability. The parametric studies for the flow

speeds of 3%, 5%, and 10% in Fig. 4c–e are very

similar in shape. In each graph, the maximum

displacement of the system is most sensitive to

uncertainty in do. This can be seen clearly because

the displacement changes the most from the nominal

case and has the steepest slope in do. It is difficult to

judge which parameter is the most sensitive to

uncertainty after do. q appears to have the biggest

slope of the remaining parameters, but it is close to that

of di and E. More investigations will be needed to find

which parameters are more sensitive, particularly

when the parameters are varying together.

It is interesting to note that many of the parameters

are not exhibiting linear behavior. This indicates that

each parameter’s sensitivity to uncertainty is changing

over time, and the effects of uncertainty on the

pipeline conveying fluid are very complicated. The

nonlinear curves in the parametric study make it

difficult for engineers to estimate how the system will

behave at higher uncertainties. The behavior is similar

in the three cases above the nominal critical flow
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speed. Continuing to investigate Fig. 4c–e, the dis-

placement of the pipe increases as uncertainty in do
and L increases. It is clear that the displacement when

do is influenced by uncertainty is much higher than

that of L, but this nonlinear behavior is present in both

parameters and could lead to interesting interacting

effects. This could make the average output of the

system under uncertainty be much higher than that of

the nominal case, which is unwanted in design. It is

interesting to note, however, that the nonlinear

behavior lessens as the flow speed increases. The

nonlinear effects are clearly present at a flow speed of

3% of the nominal critical flow speed in Fig. 4c, but

the change in slope is less at the flow speed of 5% of

the nominal critical flow speed in Fig. 4d. This trend

continues and most of the slopes are constant at a flow

speed of 10% except that do has a large change of

direction at around 0:5% uncertainty, but the slope at

higher uncertainty levels is much more constant than

at the previous flow speeds.

The sensitivity in each parameter is also decreasing

as the flow speed increases. This can be seen in the

relative change in displacement. At the flow speed of

3% in Fig. 4c, the nominal displacement is 0:022m,

and the maximum displacement for do is 0:042m for a

difference of 0:02m. At the flow speed of 10% in

Fig. 4e, the nominal displacement is 0:037m, and the

maximum displacement is 0:051m for a difference of

0:014m. When investigating q specifically, the min-

imum displacement at a flow speed of 3% is 0:012m

and the maximum displacement is 0:029m for a

difference of 0:017m. At the flow speed of 10%, the

minimum andmaximum displacement values for q are
0:035m and 0:38m. This is only a difference of

0:003m. This indicates that as the flow speed increases

after becoming unstable the displacement of the

system begins to converge, and the introduction of

uncertainty into the system will not affect the dynamic

response as much as earlier in the system.

After understanding how input uncertainty affects

the parameters on their own, analysis of the system

where each parameter varies at the same time can be

investigated. As mentioned earlier, the range of input

uncertainty will be � 5% with a uniform distribution.

The value for each parameter will be randomly picked

within this range with a uniform probability distribu-

tion. It is necessary to analyze the system with as many

randomly selected values as needed to reach an

accurate result. To find this necessary number of

iterations, the simulation is run multiple times where

each subsequent run has more iterations than the last.

The number of iterations needed is assumed to be

accurate once the average result converges to a single

value. Figure 5 shows the results of the convergence

analysis where Fig. 5a shows all analyses together and

Fig. 5b shows just the convergence analysis of 3% for

clarification. Inspecting this figure, it is clear that

convergence is reached relatively quickly for all cases.

However, by inspecting the zoomed-in analysis for

3%, it is clear that 10,012 iterations are necessary to

reach an accurate result at a reasonable computation

time.

4.2 Correlation of parameters uncertainty

response to total output

Once the analysis is performed with 10,012 randomly

selected at each flow speed, the output of the system

can be plotted against the value of an individual

parameter in a scatter plot. These scatter plots can help

determine which parameters are most sensitive, and

the Pearson correlation coefficients can be calculated.

To reiterate, a scatter plot that has most of the points

closely plotted together signifies a parameter that is

sensitive to the uncertainty introduced into the system.

On the other hand, a scatter plot with a wide range of

randomly plotted points indicates a parameter that is

not sensitive, and uncertainty introduced into these

parameters does not influence the output of the system.

Table 3 Investigated flow

speeds and the

corresponding percent

difference from the nominal

onset of instability

Selected flow speed (m/s) Percent difference from the nominal onset of instability (%)

7.06 - 5

7.21 - 3

7.66 3

7.81 5

8.18 10
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(a) -5% (b) -3%

(c) 3% (d) 5%

(e) 10%

Fig. 4 Parametric study at the flow speeds of: a � 5%, b � 3%, c 3 %, d 5%, and e 10 % of the nominal critical flow speed
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Because each parameter is varied individually in the

parametric study, the effects of the parameters inter-

acting with each other cannot be known, but the effects

of the parameters interacting with each other can

better be seen in the scatter plots when the parametric

study results are plotted over the results of the Monte

Carlo study. A parameter is highly sensitive to

uncertainty if the scatter plots follow the same trend

as the parametric study and are centered around the

parametric study results. However, if the results do not

follow the trend of the parametric study or are not

centered around the parametric study results, the

parameter could be either not sensitive to uncertainty

or overpowered by the effects of other parameters. The

scatter plots of pipe displacement against parameter

input uncertainty are shown in Fig. 6 where the black

lines represent the results from the parametric study.

Each subfigure represents the results of a single

parameter, and the different colors represent the

results at different flow speeds.

The majority of the results for the first flow speed at

� 5% of the nominal critical flow speed across all

parameters are at a displacement of zero. This

indicates that at the lesser flow speeds, most of the

cases have not yet reached an internal flow speed that

would cause the system to lose stability which is

expected. When the uncertainty in do is very low, as

depicted in Fig. 6a, all cases are stable, and some cases

begin to become unstable as the value of do diverges

farther away from the nominal value. The output

distribution of do has a very similar shape to the

parametric study at � 3% of the nominal flow speed.

This indicates that interaction between the parameters

is causing the system to become unstable earlier than

when the parameters are being varied on their own.

As the flow speed increases to � 3%, more of the

results are unstable, but many of the results are still at a

displacement of zero. The trend in do continues at this

flow speed where there are less unstable cases around

the nominal parameter value and more unstable cases

when there is more uncertainty introduced into the

system. The other parameters have a mostly uniform

distribution throughout the entire parameter range

which indicates that do is the most sensitive parameter

out of all other parameters. This is further proven by

investigating do at a flow speed of 3% the nominal

critical flow speed. At this flow speed, it is clear that

the trend of data is following the results from the

parametric study as shown in the black line in Figs. 6a

and 4c. The results are closely gathered together at

negative uncertainty values which indicate high

uncertainty and should indicate a high Pearson corre-

lation coefficient. However, because the trend of the

displacement is not monotonic, the result of the

Pearson correlation coefficient cannot be fully trusted

for do. It is interesting to note that the sensitivity of do
decreases as the input uncertainty becomes positive

and grows to 5%. This is shown by the results closely

gathered together at an uncertainty value of � 5% but

is more spread out as the uncertainty grows to 5%.

(a) (b)

Fig. 5 Convergence analysis for the system without constraints where a shows all convergence analysis studies and b shows a close up

of 3% nominal flow speed

123

3992 T. Alvis, A. Abdelkefi



This is especially evident at the flow speed of 10% the

nominal critical value in Fig. 6a.

Another indication that do is the most sensitive

parameter is that the results of the scatter plot in

Fig. 6 Pipe displacement against the percent of input uncertainty where the black line represents the results from the parametric study

for a do, b di, c L, d E, and e q
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Fig. 6a are centered around the results from the

parametric study, and the results from all the other

parameters are not centered around the results from the

parametric study. It is clear in Fig. 6b–e that the

displacement from the parametric study is much less

than the average displacement of the Monte Carlo

study. This indicates that do is so sensitive to

uncertainty change that the change in the system from

input uncertainty overpowers the change from the

other parameters. As discussed earlier, the displace-

ment increases as the value of do diverges farther away

from the nominal value, so the increase in average

displacement of the other parameters makes sense. It is

difficult to determine which parameter is the second

most sensitive without first calculating the Pearson

correlation coefficients, but L appears to be the next

most sensitive, especially at a flow speed of 10% of the

nominal critical value in Fig. 6c. The results are

closely gathered around 5% parameter uncertainty,

although much less so than that of do at � 5%

parameter uncertainty.

The Pearson correlation coefficients follow the

trends that are laid out from the parametric study and

are presented in Table 4. As shown in Fig. 4, the

sensitivity of each parameter decreases as the flow

speed increases. This trend is present in the Pearson

correlation coefficients for all parameters except for do
and L which can be explained due to the cancellation

effects from the nonlinear behavior in these parame-

ters. Excluding do and L, E is the most sensitive

parameter followed by di and then q. This does not

fully agree with the results from the parametric study.

In the parametric study, q appears to be the second

most influential parameter, but it is the least influential

parameter according to the Pearson correlation coef-

ficient. This indicates that the interaction occurring

between q and the other parameters is causing q to be

less influential to the system output.

4.3 Analysis of Monte Carlo simulations using

histograms of output

Another valuable method of characterizing the results

is to investigate histograms of the system output. The

distribution of the histograms can clearly indicate

whether the average system output is occurring around

the nominal output or not. It is preferable to have most

of the outputs around the nominal case because this is

the expected behavior. If the majority of the outputs

are away from the nominal output, the designed

system will not behave as expected, and could

potentially be operating in a way that could harm the

system. Also, the system can be analyzed while

keeping certain parameters held constant. The change

in, or lack thereof, can help indicate which parameters

are most sensitive, and which parameters should be

held as close to the nominal value as possible to have

the preferred outcome occur more often. An example

of this is shown in Fig. 7 where the histograms are

plotted when all system’s parameters are varying

together and when do is held at its nominal value while

the other parameters are varied. The black dashed line

in Fig. 7 represents the displacement of the system at

its nominal configuration. It is immediately evident

that at all flow speeds that when do is held constant that

the distribution shifts more toward the nominal value.

This confirms that do is very sensitive to uncertainty

and that the best results will occur when the amount of

uncertainty introduced into do is limited.

It would be beneficial to investigate the histograms

when the other parameters are held constant, but the

figures would become illegible if each histogram was

overlaid on the same plot. To avoid this, the

histograms are plotted in 3D space where the Z-axis

represents the percent of occurrences, and the graphs

are viewed looking down onto the XY-plane. The

percent of occurrences is represented from a color bar

where little occurrences appear navy blue, and many

occurrences appear as a dark red. A color of pure white

is used when no data are present in the specified

displacement range. Figure 8a depicts the output

histograms at a flow speed of - 5% of the nominal

critical flow speed. At this point, 94:54% of the cases

have not reached instability, and when do is held

constant the number of stable cases rises to 99:89%.

Table 4 Pearson correlation coefficients for the pipe dis-

placement for each parameter at the selected flow speeds

- 5% - 3% 3% 5% 10%

do - 0.2067 0.0258 0.3098 0.3688 0.3872

di - 0.0100 - 0.0220 - 0.2017 - 0.1903 - 0.1550

L 0.2034 0.0382 - 0.0437 - 0.1632 - 0.3588

E 0.0679 0.1141 0.3751 0.3367 0.2491

q - 0.1993 - 0.1351 - 0.1848 - 0.1299 - 0.0382
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(a) -5% (b) -3%

(c) 3% (d) 5%

(e) 10%

Fig. 7 Output histogram of system’s displacement where all parameters are varying together and when do is held at its nominal value

for flow speeds of: a � 5%, b � 3%, c 3%, d 5%, and e 10% the nominal critical flow speed
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Fig. 8 Histograms for pipe displacement where certain parameters are held at their nominal values at a flow speed of: a� 5%, b� 3%,

c 3%, d 5%, e 10% the nominal critical value
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The next most sensitive parameter is L which is

evident by the histogram shifting to the left toward the

nominal displacement, and q is the least sensitive

parameter at that flow speed. Increasing to � 3% the

nominal critical flow speed in Fig. 8b, it is again clear

that do is the most sensitive parameter. The percent of

occurrences at a displacement of zero for do is close to

90% of all occurrences for do, but the other parameters

have the percent of occurrences around 70%. At these

low flow speeds, the majority of the cases are stable,

and the uncertainty introduced into the system has

little effect on the overall system performance.

Uncertainty plays a bigger role at higher flow

speeds like at 3% the nominal flow speed, as depicted

in Fig. 8c. At lower flow speeds, the maximum percent

of occurrences is between 88.36 and 99.89% in a

single displacement range. The percent of occurrences

in a single displacement range is drastically decreased

at 3% the nominal critical flow speed to 7.82%. The

maximum number and percent of occurrences for each

investigated flow speed are presented in Table 5. This

indicates that the results are much more spread out,

and the odds of having the result behave like the

designed case decrease. The average result under

uncertainty is 0:0303m, whereas the nominal dis-

placement is at 0:0221m. When do is held constant at

its nominal value, the average displacement is

0:0239m, and the range of displacements has gone

down. It is interesting to note, however, that more

cases are still stable when do is held constant than

when all of the parameters vary together. Similar to the

� 3% nominal critical flow speed case, there is not

much change in the system when the other parameters

are held constant. This again indicates that the

sensitivity of do is so high that the uncertainty in

other parameters does not have a large impact on the

system when doitself is under uncertainty.

This trend continues at a flow speed of 5% of the

nominal critical flow speed. Again, the results that

most closely match the nominal case is when do is held

constant. In this case, the nominal displacement is

0:0281m, and the average displacement when do is

held at its nominal value is 0:0295m, whereas the

average displacement when all parameters are varying

together is 0:0347m. The average displacement in the

other parameters does not change which is again

caused by the overpowering of do, but at this flow

speed, the range in q is reduced particularly at the

lower displacements. The average displacements for

all parameters at each flow speed are listed in Table 6.

This indicates that the majority of the lower displace-

ments are caused by q, which makes sense when

compared to Fig. 3e. The parametric study shows that

the system loses stability at the highest flow speed

when q is much less than its nominal value. This late

loss of stability causes the displacement to be very low

which does not occur if q is not affected by

uncertainty. Although the average number of results

is close to the nominal output when do is held constant,

it is still not centered around the nominal output as

preferred. This means that the uncertainty in the other

parameters is still affecting the system greatly.

This is not the case at the highest flow speed of 10%

the nominal critical flow speed. When do is held at its

nominal value at this flow speed, the average result is

clearly centered around the nominal displacement.

The nominal displacement at this flow speed is

0:0366m, and the average displacement when do is

excluded is 0:0369m. This is in stark contrast to the

average displacement of 0:0404m when all parame-

ters are varied at the same time. The average

displacement again is not greatly affected when the

other parameters are held constant, but do is centered

around the nominal output. This shows that the

sensitivity in the parameters is decreasing as the flow

speed increases. At this point, do is still very influential

to the output of the system, but the other parameters

are converging to the same displacement as the flow

speed increases regardless of uncertainty in the

system. Therefore, the uncertainty introduced into

Table 5 Maximum number

of occurrences for each

analyzed flow speed

Percent difference of flow speed Max number of occurrences Percent of total occurrences

� 5 10,001 99.89

� 3 8846 88.3 5

3 783 7.82

5 1051 10.50

10 1624 16.22
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the system has a much more profound effect at lower

flow speeds than it does at higher flow speeds, and do is

by far the most sensitive parameter.

5 Dynamic response of pipeline conveying fluid

with motion-limiting constraints

under uncertainty

After determining how the pipeline conveying fluid

system behaves under uncertainty without constraints,

the system can be analyzed while implementing the

motion-limiting constraints. The uncertainty analysis

process is almost identical to when the system did not

have constraints except there is a presence of aperiodic

responses and chaos for certain flow speeds. There-

fore, there are two QOI’s for this uncertainty analysis,

namely displacement and whether the system is

aperiodic/chaotic or not. As mentioned earlier, the

bifurcation diagram plots the peak-to-peak values of

the time history which represents where the pipe

changes direction. Only two points would be plotted if

the pipe was oscillating periodically, and many points

would be plotted if it were oscillating chaotically.

Counting the number of points in the bifurcation

diagram is an easy way to determine whether the

system is oscillating periodically or aperiodically/

chaotically.

The process of finding the maximum displacement

for the aperiodic system is outlined and plotted in

Fig. 9. When deciding how to characterize the

dynamic response of the system, it is decided to

compare the maximum displacement to the minimum

displacement of the same constraint. To this end, the

maximum and minimum points with a positive

displacement are collected, and the negative displace-

ments are neglected as the system is mostly symmet-

rical. The segments of the bifurcation diagram that are

not symmetrical will not greatly affect the output of

the uncertainty quantification analysis because of the

system’s high dependency on initial conditions.

Depending on the initial conditions, the behavior of

the system can change drastically, and certain seg-

ments of the bifurcation diagram can be flipped from

positive to negative. By performing the analysis over

many different iterations, the unsymmetrical segments

will average out so that the system will be correctly

characterized.

If the difference of the maximum and minimum

displacements is greater than zero, the system is

oscillating aperiodically/chaotically, and a difference

equal to zero would indicate that the system is stable or

oscillating periodically. This falls apart, however,

when the system regains its periodicity as shown in

Fig. 9 at 8:1m=s. Because the system is oscillating

periodically with multiple peaks, taking the difference

of maximum and minimum displacements, in this

case, would be greater than zero and would lead to the

mischaracterization of chaotic behavior. Also, inves-

tigating the maximum displacement gives a better

understanding of the dynamical response than inves-

tigating the difference between the maximum and

minimum displacements. Therefore, only the maxi-

mum positive displacements are used, and the number

Table 6 Nominal and average displacements of when all parameters are varied and when certain parameters are held constant for

each investigated flow speed

Displacement at

- 5% nominal flow

speed (m)

Displacement at

- 3% nominal flow

speed (m)

Displacement at 3%

nominal flow speed

(m)

Displacement at 5%

nominal flow speed

(m)

Displacement at

10% nominal flow

speed (m)

Nominal

displacement

0 0 0.0221 0.0281 0.0366

All varied 0.008 0.0053 0.0303 0.0347 0.0404

do nominal 0 0:0013 0.0239 0.0295 0.0369

di nominal 0:0006 0:0053 0.0304 0.0347 0.0403

L nominal 0:0004 0:0054 0.0305 0.0347 0.0403

E nominal 0:0005 0:0054 0.0304 0.0347 0.0404

q nominal 0:0006 0:0046 0.306 0.0348 0.0404
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of peak-to-peak points is used to characterize chaotic

behavior. One problem with the proposed method,

however, is when the pipe sticks in the constraint on

the negative side. When this happens, there are no

displacements on the positive side during sticking, so

the maximum displacement at these points is set to

0m.

5.1 Uncertainty analysis of individual parameters

with motion-limiting constraints

The parametric study is first performed over the entire

flow speed range by varying the same five parameters

individually. The results from the parametric study are

shown in Fig. 10, and it is immediately apparent that

do is again a very sensitive parameter. Unlike the case

without motion-limiting constraints, L also has a

profound effect on the chaotic response of the system.

On the other hand, the effects of uncertainty are

negligible in q. This is particularly interesting because
q is very sensitive to the onset of instability, but even

though the critical flow speed has a wide range, the

chaotic response is occurring at effectively the same

flow speed range and amplitudes regardless of the

amount of uncertainty introduced into the parameter.

This is in contrast with E which is not affected by

(a) (b)

(c) (d)

Fig. 9 Process of finding maximum and minimum displace-

ments for Monte Carlo study where: a represents the whole

bifurcation diagram, b represents the positive displacements

used to calculate the maximum and minimum displacements,

c the maximum and minimum displacements, and d the

maximum and minimum displacements overlaid the positive

displacements of the bifurcation diagram
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uncertainty at the onset of instability but shows a

larger sensitivity in the dynamical response, as shown

in Fig. 10d. The first case to exhibit chaotic behavior is

when E is at � 5% of its nominal value, which makes

sense because that same case is the first to lose

stability. As the value of E increases, the flow speed at

the onset of instability increases and so does the flow

speed at which chaotic behavior begins. The shape of

Fig. 10 Parametric study with motion-limiting constraints for a do, b di, c L, d E, and e q
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the chaotic regions does not change as the uncertainty

increases but is shifted to the right as the uncertainty

increases. The shape of the chaos regions does not

change much either when di is varied individually, as

shown in Fig. 10b. The onset of instability varies

much more than the onset of instability when E varies

individually, but the changes in the chaos region are

much less than that of E. Additionally, it is interesting

to note that the first case to become chaotic is when di
is at 5% its nominal value which is also the case that

loses stability last. As di decreases, the chaos region

begins at a slightly later flow speed. This indicates that

the chaotic response does not strictly depend on when

the system loses stability.

Unlike the system without motion-limiting con-

straints, the dynamic response of the system is very

dependent on L, as shown in Fig. 10c. When L is low,

the system takes a long time to start oscillating

chaotically, and the region of double centering is small

where the pipe does not oscillate fully around each

constraint. As the uncertainty in L increases, the onset

of chaos occurs at lower flow speeds, and the pipe

begins to oscillate more fully around the constraints.

Also, as the uncertainty increases, the range of chaos

that is occurring around the entire center is widening.

This is exemplified when L is 5% of its nominal value

where the full chaos region has grown to cover a large

range of flow speeds. This massive range of chaos

could cause fatal failure to the system, especially

because a chaos region that large would not be

expected to occur under normal operating conditions.

It should be mentioned that the location of the

constraints is kept constant which implies the strong

relationship between the length of the pipe, the

constraint’s location, and the presence of the chaotic

responses.

Figure 10a represents the parametric study of do,

where the chaotic response varies wildly depending on

the level of uncertainty introduced into the parameter.

When do is set to � 5% of its nominal value, the onset

of stability is very low, and the pitchfork bifurcation

and first-period doubling occur almost immediately

after contacting the motion-limiting constraints and

shortly after begins to oscillate chaotically. As the

value of do increases, so does the onset of chaotic

double centering. The chaotic double centering first

appears when input uncertainty is �1:67%, and this

region grows larger as the uncertainty increases until

the value of do is 5% the nominal value where the

chaotic double centering region covers a large flow

speed range. The sticking phenomenon occurs at the

earliest and latest flow speed when dois changed due to

uncertainty compared to any other parameter. This

high range of chaotic responses makes the expected

response of the system hard to predict when uncer-

tainty is allowed to be introduced in this parameter.

When di, E, and q parameters are changed due to

uncertainty, the range of chaotic responses is not

changed much. Therefore, if uncertainty is allowed to

be introduced into these parameters, the regions of

chaos will not be vastly different than it was expected

to be, but uncertainty introduced into do and L will

cause the system to behave very differently than what

it was designed to. These are the most sensitive

parameters when being varied on their own, but it is

possible that the interaction of the parameters will

cause the system to behave differently. To this end, the

full Monte Carlo simulation is needed to be calculated

to gain a full understanding of the system.

5.2 Convergences analysis and investigation

of Monte Carlo simulation output using

bivariate diagrams

To avoid memory and computation issues like previ-

ously, several flow speeds of interest are selected to be

analyzed. When motion-limiting constraints were not

implemented, the flow speeds were selected to gain an

understanding of how the system would behave across

a wide flow speed range. In this instance, the selected

flow speeds are selected to understand how the specific

chaotic regions present in the nominal system change

under uncertainty. The selected flow speeds to inves-

tigate are shown in Fig. 11. Although six flow speeds

are investigated, only three flow speeds are shown in

this work due to brevity. The selected flow speeds are

given in Table 7.

Again, before the full Monte Carlo simulation can

be performed, it is first necessary to find the number of

iterations needed to reach an accurate solution. To this

effect, a convergence analysis is carried out and

plotted in Fig. 12. Similar to the case without motion-

limiting constraints, convergence is reached relatively

early and 10,012 iterations are chosen to reach an

accurate solution at a reasonable computational time.

The convergence analysis for the average maximum

displacement is shown Fig. 12a and appears to have

not reached convergence. This is not necessarily the
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(a) (b)

Fig. 11 Bifurcation diagram of the nominal system with selected flow speeds for uncertainty quantification analysis for: a the entire

response and b the displacements taken in study

Table 7 Selected flow speeds for investigation

Selected flow speeds (m/s) Nominal max displacement (m) Nominal number of points Investigated in study

7:86 0.022 4 No

7:96 0.024 203 Yes

8:02 0.025 291 No

8:13 0.027 292 Yes

8:35 0.0074 210 Yes

8:40 0.030 23 No

(a) (b)

Fig. 12 Convergence analysis for the system with motion-limiting constraints for: a the average maximum displacement and b the

average number of peak-to-peak values from time histories
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case, however. The difference between the displace-

ments is very small, and the average displacement for

each flow speed is close to each other, so the

differences between each iteration appear to be much

larger. For example, for the case at 7:96m=s, the

average displacement is 0:0215m at 10,012 iterations

and the displacement at 20,000 iterations is

0:02145m. This is only a percent difference of

0:23%. The maximum percent difference between

10,012 iterations and any case after it is 0:33%. This

small percent difference does not have a large impact

on the system, so 10,012 iterations will be used for the

following Monte Carlo simulation.

After determining the needed iterations for the

convergence, the full Monte Carlos simulation can

begin. The histograms for both maximum displace-

ment and number of points are shown in Fig. 13 when

the flow speed is considered 7.96 m/s and where the

black dashed lines represent the nominal value for the

respective graph. The effects of uncertainty are clearly

seen by investigating the trends. Figure 13a represents

the maximum displacement of the pipe and shows a

large cluster of points around the nominal value. This

is preferred, but there is also almost 7% of the total

cases that are either stable or sticking at the negative

constraint. The number of peak-to-peak points is

shown in Fig. 13b, but the majority of results are

around zero. This indicates that the pipeline is stable or

oscillating periodically. The problem with viewing the

histograms of the maximum displacement and number

of points separately is that the correlation between the

two is impossible to comprehend.

To gain an understanding of the coupling between

the two QOI’s, bivariate diagrams are plotted. A

bivariate diagram is plotted by counting the number of

occurrences at the maximum displacement at a

specific peak-to-peak value. Much like the 3D his-

tograms plotted in Fig. 8, a bivariate diagram is

viewed at the XY-plane where the Z-axis represents the

number of occurrences. This is shown by a color bar

where pure white again indicates that there are no

results occurring at the given maximum displacement

and number of points ranges. The X-axis again

represents the maximum displacement, but the Y-axis

represents the number of points. The XY-plane is cut

into a grid where each slice of boxes represents the

histogram at the selected number of points or maxi-

mum displacement. For example, to view the his-

togram of the maximum displacements at 400 peak-to-

peak points, find 400 points on the Y-axis and trace

across the X-axis. Alternatively, to investigate how the

number of points changes at a specific flow speed, find

the flow speed of interest on the X-axis and trace

upward along the Y-axis. This gives a better under-

standing of how the system behaves.

The bivariate diagrams for the selected flow speeds

are shown in Fig. 14 where the yellow dashed lines

represent the nominal number of peak-to-peak points

and maximum displacement depending on the direc-

tion of each line. The intersection of the nominal lines

(a) (b)

Fig. 13 Histograms where the black dashed lines represent the nominal value at 7:96m=s for: a the maximum pipe displacement and

b the number of peak-to-peak time history values
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shows the nominal output of the system. When all

parameters are influenced by uncertainty, the overall

shape of the results is very similar, but the peak

occurrence locations change slightly. At a flow speed

of 7:96m=s, Fig. 14a shows that the majority of results

are not around the nominal values. All peak locations

occur when there are very little number of peak-to-

peak points. The grid point at 0; 0ð Þ indicates that the
system is stable, or the sticking phenomena have

occurred at a negative displacement. When there are

results that have around zero number of points but

have a maximum amplitude higher than zero, the

system is oscillating periodically, or sticking has

occurred at a positive displacement. There is no way to

distinguish between sticking and periodic motion in

this method. The maximum number of occurrences at

a flow speed of 7:96m=s is around 17% at a

displacement of around 0:022m. There is a small

grouping of results near the nominal output at around

300 points and 0:025m. Each grid in this grouping has

only around 2% of the total occurrences. The uncer-

tainty introduced into the system is causing the

majority of the results to be pulled away from the

nominal result, and the majority of cases can occur

around the nominal result by limiting the uncertainty

in certain parameters.

Similar results are seen at the flow speed of

8:13m=s in Fig. 14b. Again, the majority of cases

are when the system is periodic or stable, but this time

much more of the cases are at the 0; 0ð Þ grid location.

The percentage of occurrences at this grid location is

around 12% which is compared to 7% at the first flow

speed. The majority of maximum amplitudes has also

increased to around 0:026m at around 12% of the total

Fig. 14 Results from Monte Carlo simulation plotted in bivariate diagrams for a flow speed of a 7:96m=s, b 8:13m=s, and c 8:35m=s
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occurrences. The grouping around 300 peak-to-peak

points and 0:025m has increased its total occurrences

at 5%. This grouping has not changed location when

the flow speed was at 7:96m=s, but at this flow speed,

it is much closer to the nominal value. This indicates

that the behavior of the system is shifting due to

uncertainty, and many of the same results are

happening at multiple flow speeds.

The same trends persist when the flow speed is

increased to 8:35m=s. The three highest locations of

results are in the same spot: the grid location at 0; 0ð Þ,
the stable or periodic response at 0:026m, and the

grouping of results around 300 peak-to-peak points

and a displacement of 0:025m. The shape of output is

very similar to the previous flow speeds, but the

maximum total percent of occurrences has increased

to 23%. This peak of occurrences occurs at a

maximum displacement of 0:026m, and the percent

of occurrences around 0; 0ð Þ has increased to 19%.

The grouping of results around 300 peak-to-peak

points is at the same location and has increased to

almost 6% of the total number of occurrences. This

increase in occurrences is indicating that higher flow

speeds are less affected by the uncertainty introduced

into the system. Also, none of the areas that show a

high value of occurrences are around the nominal

output, but there is a grouping of results that show a

very low percentage of occurrences around the

nominal value. At all flow speeds, most of the results

are occurring away from the nominal value. It is

necessary to find which parameters are most sensitive

and limit the uncertainty in these parameters to have

the majority of outputs occur around the nominal

result.

The Monte Carlo study is repeated while holding

certain parameters at their nominal values, and the

results are shown in Figs. 15, 16, and 17 for 7:96m=s,

8:13m=s, and 8:35m=s, respectively. Figure 15b, d, e

shows the results while di, E, and q are held constant,

respectively. When these parameters are held con-

stant, there is very little difference from the case when

all parameters vary together which indicates that the

parameters are insensitive to uncertainty. When L is

held at its nominal value, the occurrences at high

values of peak-to-peak points and maximum displace-

ments decrease toward the nominal value, but the

shape is still similar to the original Monte Carlo study.

Therefore, L is slightly sensitive to uncertainty, but the

uncertainty in the other parameters still causes the

system to behave away from the nominal values. The

most sensitive parameter by far is again do, as depicted

in Fig. 15a. The range of displacements and count of

peak-to-peak points have greatly reduced to values

around the nominal case. This is very close to the

desired result, but the peak of the total occurrences of

24% is exhibiting periodic or stable behavior. In an

attempt to bring the majority of results closer to the

nominal value, the two most sensitive parameters, do
and L, are held constant at their nominal value, as

shown in Fig. 15f. When these two parameters are

held constant, it is immediately evident that the range

of results has again reduced around the nominal

output. The largest peak of results is still stable or

periodic with 23% of total occurrences around

0:022m, but the grouping of results at 300 peak-to-

peak points and 0:025m has increased to around 11%

of the total occurrences. This value is not exactly equal

to the nominal result, but it is very close and there are

not any results far away from the nominal output. With

these parameters held constant at this flow speed, the

system should behave close to as it is expected to.

When the flow speed is increased to 8:13m=s, many

of the trends are repeated from the flow speed of

7:96m=s, as shown in Fig. 16. The system output is

hardly affected when di, E, and q are held at their

nominal values which is evident from comparing

Fig. 14 to Fig. 16b, d, e for di, E, and q, respectively.
Again, it is evident that do is very sensitive to the

introduction of uncertainty as the range of results has

decreased around the nominal value, although remark-

ably less so than the previous flow speed which is

shown in Fig. 16a. Figure 16c shows that L is just

about as sensitive as do at this flow speed because the

bivariate diagrams when do and L are very similar to

each other. The major differences between the two

diagrams are that many cases are stable with no

displacement when L is constant. About 16% of the

total occurrences are present at this flow speed, while

there are no stable or periodic cases at that displace-

ment when do is held constant. Instead, the periodic

cases are occurring more at varied displacements, and

the number of results at the grouping at 300 peak-to-

peak points and 0:025m has increased to 7% of the

total occurrences. Additionally, the Monte Carlo study

is run again where do and L are held at their nominal

values, and the desired output of the system is close to

being achieved, as shown in Fig. 16f. The range of the

results has decreased by a sufficient amount to be
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around the nominal output. The highest number of

total occurrences is around 11% which is located at a

periodic displacement of 0:027m. This peak is around

the nominal displacement, but the nominal number of

peak-to-peak points is around 300. Also, there is a

group of results around the nominal value with a peak

Fig. 15 Bivariate diagrams at 7:96m=s where the parameters held constant are: a do, b di, c L, d E, e q, and f do and L

123

4006 T. Alvis, A. Abdelkefi



of occurrences around 11%. This is a reasonable result

which again shows the importance of minimizing the

uncertainty introduced into the do and L parameters.

Investigating the bivariate histograms at a flow

speed of 8:35m=s in Fig. 17 shows no good distribu-

tions are found where the majority of results are

Fig. 16 Bivariate diagrams at 8:13m=s where the parameters held constant are: a do, b di, c L, d E, e q, and f do and L
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around the nominal output. The distribution of the

results is broadly spread out when do is held constant,

as shown in Fig. 17a. There are groupings of results

around 0:03m and 400 peak-to-peak points which

Fig. 17 Bivariate diagrams at 8:35m=s where the parameters held constant are: a do, b di, c L, d E, e q, and f do and L
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have not been seen yet. When the other parameters are

held constant, the maximum percent of total occur-

rences at a single grid location is around 23%, but

when do is held constant, the maximum percent of

total occurrences is just under 10%. This indicates

uncertainty is affecting the other parameters at higher

flow speeds more than they had at lower flow speeds,

but do is so sensitive that any uncertainty introduced

into the parameter will overpower the other parame-

ters and be the main influence on the behavior of the

system. Figure 17c depicts the results when L is held

constant at its nominal value and clearly shows that L

is less sensitive to uncertainty than it was at other flow

speeds. The number of peak-to-peak points has

decreased toward the nominal value besides the results

around the displacement of 0:03m which is affected

less than the other displacements. However, the high-

density regions are about the same as when all

parameters are varying at the same time. Therefore,

keeping L constant does not greatly affect the output at

this flow speed.

The results are unchanged again when di, E, and q
are held at their nominal values, as observed in

Fig. 17b, d, e, respectively. The important difference

between these parameters at this flow speed compared

to lower flow speeds is the broad range of results when

do is held constant compared to the earlier flow speeds

where there is a much smaller range of results.

Therefore, di. E, and q are showing more sensitivity at

higher flow speeds but are being overpowered by do
when it is introduced to uncertainty. If the desired

internal flow speed of the system is around 8:35m=s or

more, then the uncertainty is needed to be greatly

controlled in all parameters, but if the desired flow

speed is lower, then controlling the uncertainty

introduced into the do and L may be proficient enough

to each good results. Again, the Monte Carlo study is

run where both do and L are held at their nominal

values, and the results can be seen in Fig. 17f. There

are more results closer to the nominal output, but there

are still many high-density peaks that are far from the

nominal result which again indicates that the other

parameters are being more influenced by the system.

6 Uncertainty in parameters of motion-limiting

constraints

This study has so far focused on the introduction of

uncertainty into the parameters of the pipeline itself.

However, the configuration of the motion-limiting

constraints could have large impacts on the dynamic

response of the system. Therefore, an uncertainty

quantification analysis is performed on the motion-

limiting constraints. The constraint parameters intro-

duced to a � 5% input uncertainty are the location of

the constraints along the length of the pipe, Sc; the gap

size, Yc; and the stiffness of the constraints, k3.

First, a parametric study is conducted over the

entire flow speed for the three constraint parameters.

The bifurcation diagrams for each parameter are

shown in Fig. 18 where the different colors illustrate

how the parameter is varied by the input uncertainty. It

should be first noted that the focus of this analysis is

the dynamic response of the system after the loss of

stability. Because only the constraint parameters are

being varied in this analysis, the flow speed at the

onset of instability does not change with uncertainty.

Figure 18a shows the bifurcation diagrams for Sc
which is highly sensitive to uncertainty.

As Sc decreases along the length of the pipe, the

flow speed at which sticking occurs increases. At an

uncertainty of� 5%, the pipeline oscillates chaotically

or aperiodically for a wide flow speed range. This wide

aperiodic region is similar to the case when the length

is at 5% uncertainty in Fig. 10c. Additionally, the flow

speed at which this aperiodic region begins is at a

greater flow speed than any other uncertainty levels for

this parameter. As Sc increases, the flow speed where

the aperiodic region oscillates around both constraints

decreases, and the range of flow speeds that this region

covers decreases as well to the point where this

aperiodic region at an uncertainty of 5% covers a very

small flow speed range. The opposite trend appears for

the first aperiodic response.When the uncertainty of Sc
is at 5%, two chaotic/aperiodic regions can be seen

around the constraints at a flow speed of 8m=s where

the pipeline is oscillating around the center. As the

location of Sc decreases along the length of the pipe,

the displacement range that this aperiodic region

covers around each constraint decreases to the point

that the pipeline does not seem to be oscillating

aperiodically or chaotically.
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The other constraint parameters do not show much

sensitivity to the input uncertainty range analyzed.

There is essentially no variation in the bifurcation

diagrams for k3 in Fig. 18c. There is a small variation

with regards to Yc, however. The flow speed at which

all critical behavior changes occur, including sticking,

increase as Yc increases. Additionally, the maximum

displacement of the pipe increases at larger Yc values.

This finding is consistent with the work of Wang et. al.

[35]. However, Wang et al. [35] studied a much larger

variation in gap sizes and found a larger disparity in

the behavior of the pipeline. At the relatively small

variance of � 5%, the behavior of the pipe remains

comparable.

The Monte Carlo Simulation is again employed to

investigate the effects of uncertainty on the motion-

limiting constraint parameters. Bivariate diagrams are

used to visualize the response and can be seen in

Fig. 19, where the yellow dashed lines represent the

output from the nominal configuration. The flow speed

of 7:96m=s is plotted in Fig. 19a, and the majority of

the results are occurring around the nominal displace-

ment. The maximum percent of occurrences can be

seen where the pipeline is stable around a displace-

ment of 0:0237m which is close to the nominal value

of 0:0243m. Another grouping of responses is above

the nominal number of points at around 285. This is

similar to the pipeline parameter results when do and L

are held constant in Fig. 15f. However, one important

distinction is the difference between the total amount

of occurrences. The maximum percentage of occur-

rences in one flow speed and number of peak-to-peak

range when do and L are held constant is 23%.

However, the maximum percentage of occurrences for

the constraint parameters is 19%. This indicates that

the constraint parameters are more sensitive to the

(a) (b)

(c)

Fig. 18 Parametric study with motion-limiting constraints for a Sc, b Yc, and c k3
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effects of input uncertainty than di,E, and q:However,
the majority of results are closer to the displacement of

the nominal system at this flow speed than when do
and L are affected by input uncertainty. This agrees

with the results from the parametric study in Fig. 18

where the behavior of the pipe at lower flow speeds is

very similar to the nominal case.

The bivariate diagram for the flow speed of 8:13m

is plotted in Fig. 19b. The results are again similar to

the pipeline parameter analysis where do and L are

held constant in Fig. 16f. The maximum percent of

occurrences for the constraint parameters is almost

14% at a stable or periodic oscillations and a

displacement of 0:026m. This peak of occurrences is

around the same location as the pipe parameter case,

but the maximum percent of occurrences in this case is

19%. Also, there are two regions of high occurrences

in the constraint parameter case, whereas there is only

one region in the pipe parameter case. Indeed, the

results of this analysis are spread out more throughout

the bivariate diagram compared to the pipe parameter

case which can be easily seen when comparing the

results along the results around 0 peak-to-peak time

history values. This again shows that the constraint

parameters are more sensitive to uncertainty than di,

E, and q. Finally, the flow speed of 8:35m=s is

analyzed when uncertainty is introduced into all

constraint parameters simultaneously. The bivariate

diagram is shown in Fig. 19c, and the output has a thin

grouping of results around a displacement of 0:03m=s

from the number of peak-to-peak time history values

ranging from 0 to about 450. This is similar to the pipe

parameter case seen in Fig. 17f when do and L are held

constant. For the pipe parameter case, however, there

Fig. 19 Bivariate diagrams of motion-limiting constraint parameters for a flow speed of a 7:96m=s, b 8:13m=s, and c 8:35m=s
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is a large grouping of results in the displacement range

of 0:0025 and 0:025m=s and between 0 and 350 peak-

to-peak time history values. This contrasts with the

constraint parameter case where there are very few

results in this same range other than the cases that are

periodic or stable.

It is interesting to note that at this flow speed the

constraint parameters are less sensitive to uncertainty

than the pipe parameters when do and L are held

constant. This is proven from the maximum percent

occurrences at around 17% for the constraint case, and

the maximum percent of occurrences for the pipe

parameter case is only 12: 5%. Investigating the

parameter study of the constraint parameters gives

insight into why this is taking place. Figure 18a shows

a periodic response at 8:35m=s when Sc decreases, and

the pipeline is sticking when Sc is moved 3:33% and

5% from its nominal location. Each of these responses

produces a number of peak-to-peak time history

values in the bivariate diagram. Additionally, the

response of the pipe is periodic at 8:35m=s as k3
increases, as shown in Fig. 18b. Therefore, many of

the responses of the pipeline system at this flow speed

are either periodic or stable even when the parameters

interact with each other.

To investigate how the most sensitive constraint

parameter interacts with the most sensitive pipe

parameter, parametric studies are performed on Sc
when do is introduced to � 5% and 5% uncertainty

individually as shown in Fig. 20. It can be seen that the

behavior of these parameters does not cancel each

other out but instead compound with each other.

Figure 20a shows the parametric study of Sc when do
is set to � 5%, and the trends of Sc continue from the

previous parametric study. When the input uncertainty

of Sc is � 5%, a large region of chaotic/aperiodic is

present, and as Sc increases, the flow speed at which

behavior changes occur decreases. At 5% input

uncertainty, the flow speed of sticking is lower than

when only do is affected by uncertainty.

This trend is again seen when the input uncertainty

of do is 5% in Fig. 20b. The behavior of the pipe when

do at this uncertainty is drastically different than the

nominal configuration. When the uncertainty of Sc is

5%, sticking and other behavior changes occur at

lower flow speeds than when only do is affected by

uncertainty. Additionally, the behavior of the pipe

changes as Sc increases. The sticking behavior is

visible when the uncertainty of Sc is �1:66%, but the

sticking behavior is no longer seen at uncertainty of

�3:33%. Instead, period-4 oscillations exist after the

aperiodic/chaotic region that covers the entire dis-

placement range around 9.7 m/s. Then, additional

bifurcations can be seen around 9.9 m/s. The behavior

changes again when the uncertainty of Sc is � 5%

where the large chaotic/aperiodic region is no longer

present. Alternatively, a bifurcation can be seen after

the periodic oscillations of the pipe, and the pipeline

then exhibits period-4 oscillations. This behavior is

drastically different than the nominal configuration of

the pipeline and would likely perform outside of the

designed specifications. Uncertainty would have to be

limited in these parameters to ensure the system would

behave as expected.

(a) (b)

Fig. 20 Parametric study of Sc when a do ¼ � 5% and b do ¼ 5%
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7 Conclusions

The goal of this study was to analyze the dynamical

response of the pipeline conveying fluid in the post-

flutter regime when input uncertainty is introduced

into the system. This input uncertainty can be from

many diverse sources including tolerances in manu-

facturing, material sourcing, environmental condi-

tions, and fatigue. The modeling of the system was

discussed, and two pipeline configurations were

defined. The first configuration was the pipeline

system without any motion-limiting constraints which

gave a good understanding of how the system behaves

naturally under uncertainty. The QOI for this config-

uration is the maximum displacement of the pipe. The

five parameters that were introduced to a uniform 5%

uncertainty were do, di, L, E, and q, and the three

uncertainty methods performed were extended para-

metric study, Monte Carlo simulation, and Pearson

correlation coefficients. It was determined from all

analyses that do was by far the most sensitive

parameter. The other parameters were affected by

uncertainty at flow speeds around the nominal onset of

instability, but the majority of results were close to the

nominal output when do is held at its nominal value. It

is important to reduce uncertainty in all parameters,

but it is necessary that do is as close to its designed

dimension as possible to have a chance at behaving as

expected. Also, the parameters become less sensitive

to uncertainty as the flow speed increases.

The second configuration was the pipeline system

with motion-limiting constraints which induce chaotic

behavior. Two QOIs were used to characterize the

behavior of the chaotic responses, namely the maxi-

mum displacement of the pipe and the number of peak-

to-peak points from the time history at the specific

flow speed. The parametric study and the Monte Carlo

simulation methods were examined to understand the

response of the system. Again, do was determined to

be the most sensitive parameter except L is also quite

sensitive. At low flow speeds, the system exhibited

behaviors similar to the nominal system when do is

held at its nominal value. When the flow speed is

increased slightly, however, the uncertainty is needed

to be controlled in both do and L to achieve nominal

results. Although do is the most sensitive parameter at

high flow speeds, the other parameters are more

sensitive to uncertainty. Therefore, the uncertainty

needs to be minimized in all parameters if the system

is designed to operate at higher flow speeds.

Finally, the parameters pertaining to the motion-

limiting constraints were analyzed. The parameter that

was most sensitive to input uncertainty was Sc, and Yc

and k3 showed little sensitivity to uncertainty. A

Monte Carlo analysis found that the three constraint

parameters produced results similar to when di, E, and

q were influenced by a � 5% uncertainty. However,

drastic behavior changes were observed when Sc and

do were both influenced by input uncertainty simul-

taneously. Indeed, even small amounts of uncertainty

introduced into these parameters concurrently could

cause the designed system to behave radically differ-

ent than the nominal case. Uncertainty is needed to be

limited in Sc when motion-limiting constraints are

present to ensure precise behavior of the designed

system.
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