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Abstract In this paper, we consider an extended
form of generalized (2 + 1)-dimensional Hirota bilin-
ear equation which demonstrates nonlinear wave phe-
nomena in shallow water, oceanography and nonlin-
ear optics. We have successfully studied the integra-
bility characteristic of the nonlinear equation in dif-
ferent aspects. We have applied the Painlevè analysis
technique on the equation and found that it is not com-
pletely integrable inPainlevè sense. The concept ofBell
polynomial form is introduced and the Hirota bilin-
ear form, Bäcklund transformations are obtained. By
means of Cole-Hopf transformation, we have derived
the Lax pairs by direct linearization of coupled system
of binary Bell polynomials. We have also derived infi-
nite conservation laws from two field condition of the
generalized (2 + 1)-dimensional Hirota bilinear equa-
tion. We have exploited the expressions of one-soliton,
two-soliton and three-soliton solutions directly from
Hirota bilinear form and demonstrated thempictorially.
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Further, Lie symmetry approach is applied to analyze
the Lie symmetries and vector fields of the considered
problem. The symmetry reductions were then obtained
using similarity variables and some closed-form solu-
tions such as parabolic wave solutions and kink wave
solutions are secured.
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Abbreviations

KdV Korteweg de-vries
KP Kadomtsev–Petviashvili
mKdV Modified Korteweg de-vries
PDE Partial differential equation
ODE Ordinary differential equation
WTC Weiss–Tabor–Carnevale

1 Introduction

In the recent few decades, researchers are paying
more attention to the nonlinear models rather than
linear models due to rapid development of science
and computer technology. In study of nonlinear mod-
els, a lot of integrable systems such as Korteweg de-
Vries (KdV) equation, nonlinear Schrödinger equa-
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tion, Kadomtsev–Petviashvili (KP) equation, mod-
ified Korteweg de-Vries (mKdV) equation, Boiti–
Leon–Manna–Pempinelli equation, Bogoyavlenskii–
Kadomtsev–Petviashvili equation, Camassa–Holm
equation [1–8] serves as pioneer physical phenomenon
which can be found in real-life situation in differ-
ent areas of physics and engineering e.g. nonlinear
optics [9], Bose–Einstein condensation [10], plasma
physics [11], solid state physics [12], string theory
[13], fluid mechanics [14], condensed matters [15],
propagation of waves in shallow water [16], electro
magnetics [17], ferromagnetics [18] and many more.
All the equations possess several significant prop-
erties such as Hirota bilinear form, Painlevè analy-
sis, Darboux transformations, infinitely many conser-
vation laws, Hamiltonian, bi-Hamiltonian structures,
Bäcklund transformations and Lax pair formulation.
Among these strategies, Painlevè test [19] can be con-
sidered as the ideal one in analyzing the integrabil-
ity aspect of a nonlinear equation. Weiss [20] checked
the integrability characteristic of some well-known
nonlinear evolution equations e.g. Burgers equation,
KdV equation, mKdV equation, Boussinesq equation,
higher-order KdV and KP equations, etc., by using
Painlevè test and determined appropriate Lax pairs of
those equations. Gibbon et al. [21] investigated the
integrability aspect of nonlinear Schrödinger equa-
tion and mKdV equation and also shown that Bäck-
lund transformation deduced from Hirota’s method
and Painlevè test are directly related. A. Bekir [22]
explicitly presented the Painlevè test for some (2+ 1)-
dimensional nonlinear equations and obtained the asso-
ciated Bäcklund transformation and Hirota bilinear
form directly using the Painlevè test. Wazwaz and Liu
et al. [23,24] discussed the integrability aspects of
Boiti–Leon–Manna–Pempinelli equation andmodified
Korteweg-de Vries–Calogero–Bogoyavlenskii–Schiff
equation, respectively, through Painlevè analysis and
also obtained the exact solutions of those equations.
On the other hand, the Hirota bilinear method [25]
can be thought least complex and successful method
to examine integrability aspect of a nonlinear equa-
tion. The Hirota bilinear strategy briefly changes over
a nonlinear condition into a bilinear structure through a
reliant variable change and yields quasi periodic wave
solutions, rational solution, multi soliton solutions and
other exact solutions bymeans of the bilinear structure.
Zhang and Liu [26] obtained the multisoliton solution,
quasi periodic solution of reverse space and time non-

local Fokas–Lenells equation from its Hirota bilinear
form.BasedonHirota bilinearmethod, Sheng et al. [27]
obtained two-soliton solution, rational solution, semi-
rational solution andmultiple rational solution ofGard-
ner equation. Li et al. [28] obtained the N-soliton solu-
tion, breather wave solution, periodic solution, rogue
wave solution and lump solution of extended KP equa-
tion via Hirota bilinear form. Ismael et al. [29] derived
the one lump, two lump, three lump solution and their
interaction phenomena with one-soliton, two-soliton
and three-soliton solution of generalized KP equation.
Furthermore, the known connection between Hirota
bilinear form and a class of P-polynomials (which is
a special form of binary Bell polynomials in which
all the factors with odd number derivatives are made
as zero) introduces the Bell polynomial method pro-
posed by Lambert and Gilson [30–32] which ensures
the bilinear form of a nonlinear equation in a simpler
way. Recently, a systematic combination of binary Bell
polynomial and P-polynomial has served as a promi-
nent means of study utilized by number of researchers
to obtain the bilinear Bäcklund transformation and cor-
respondingLaxpairs of nonlinear equations.Wang [33]
checked the integrability characteristic of Hirota bilin-
ear equation by obtaining itsHirota bilinear form, bilin-
ear Bäcklund transformation and Lax pair with the help
of bell polynomial theory. Lump solution and com-
plexiton solution are also derived from Hirota bilinear
form. Xu et al. and Zhao et al. [34,35] implemented
bell polynomial theory to obtain Bäcklund transforma-
tion, Lax pair and N -soliton solutions of the general-
ized Nizhnik–Novikov–Veselov equation and Davey–
Stewartson system, respectively. An another context of
nonlinear integrable system is to enquire the existence
of infinite conservation laws. Finally, thewayof dealing
infinite conservation laws for some nonlinear evolution
equations via the means of Bell-polynomial theory is
developed by E. Fan [36]. Fan et al. [37] also general-
ized the classical bell polynomial theory by defining a
class of super bell polynomials, which help us to obtain
the bilinear Bäcklund transformation, Lax pair, infi-
nite conservation laws systematically of some super-
symmetric equations. Using these bell polynomial con-
cept Wazwaz et al. and Wangan et al. [38–40] obtained
the infinite conservation laws for (4 + 1)-dimensional
Boiti–Leon–Manna–Pempinelli equation, higher-order
Sawada-Kotera-type equation, higher-order Lax-type
equation and (3 + 1)-dimensional generalized break-
ing soliton equation, respectively. Another elegant con-
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cept is the investigation of continuous Lie transforma-
tion groups (pioneered by Norwegian mathematician
Sophus Lie), which leaves partial differential equa-
tions (PDEs) invariant [41–44]. Lie’s method is widely
used to find closed-form similarity solutions to non-
linear PDEs. Using the invariance property, we can
reduce the number of independent variables one by
one. As a result, the nonlinear PDEs is reduced to
an analytically solvable nonlinear ordinary differen-
tial equations (ODEs). S. Kumar et al. [45] investi-
gated the exact invariant solutions and the dynamics
of soliton solutions to the (2+1)-dimensional general-
ized Hirota–Satsuma–Ito equations by Lie symmetry
analysis and derived different kind of closed form ana-
lytical solutions such as parabolic wave solitons, dark-
bright solitons, W-shaped solitons, multi-wave struc-
tures and curved-shaped parabolic solitons. Rui et al.
[46] studied invariant solution and conservation laws of
(2+ 1)-dimensional Boussinesq equation by Lie sym-
metry analysis.

Very recently, Hua et al. [47] proposed a generalized
(2 + 1)-dimensional Hirota bilinear equation

uyt + c1

[
uxxxy + 3(2uxuy + uuxy)

+3uxx

∫ x

−∞
uydx

′
]

+ c2uyy = 0, (1)

whichportraits the studyof a generalizedmodel impart-
ing nonlinear dynamical phenomena in shallow water.
In Ref. [48], Hua et al. investigated the integrabil-
ity characteristics of this equation. They have tested
Painlevè property and proved that the equation fails to
pass the test. After that they obtained the Hirota bilin-
ear form and explored N -soliton solutions. They also
exploited the linear superposition principle and Bell
polynomial approach to generate resonant solutions,
Bäcklund transformation, Lax pair and infinite conser-
vation laws for the equation.

Furthermore, Zhao et al. [49] extended this model
to a more generalized form

uyt + c1

[
uxxxy + 3(2uxuy + uuxy)

+3uxx

∫ x

−∞
uydx

′
]

+ c2uyy + c3uxx = 0, (2)

which ensures enriched physical meaning in nonlinear
waves. The above governing equation can be observed
as a (2 + 1)-dimensional generalized nonlinear wave
equation endowed with three arbitrary constants c1, c2

and c3. The authors have successfully obtained N - soli-
ton solution, M-Lump solution, higher-order breather
solution and hybrid solution of the Eq. Equation (2) in
[49]. We have noticed that the bilinear Bäcklund trans-
formation, Lax pair, infinite conservation laws and Lie
symmetry analysis for Eq. (2) have not yet been stud-
ied in the literature which instigate us to examine these
studies in the present exposition. Our primary focus in
this present exposition is to investigate the integrabil-
ity context of the nonlinear evolution Eq. (2). In this
connection, we derive Hirota bilinear form, Lax pair
formulation, Bäcklund transformation and infinite con-
servation laws through Bell polynomials to ensure the
integrability aspect. We also derive different form of
exact analytic solutions by exploiting Lie symmetry
analysis.

The organization of our article is as follows. In
Sect. 2, we discuss the Painlevè integrability of Eq.
(2). In Sect 3, some fundamental ideas on binary Bell
polynomials are analyzed. Sect. 4 is fully devoted on
the analysis of Hirota bilinear form, Bäcklund transfor-
mation and corresponding Lax pair formulation of Eq.
(2) using Bell Polynomial theory. In Sect. 5, an infi-
nite sequence of conservation laws are demonstrated.
Moreover, Sect. 6 deals with extracting multi-soliton
solutions and illustrating them via corresponding fig-
ures. In Sect. 7, analysis of Lie symmetries and vector
fields for the problem are shown using Lie symmetry
approach. Finally we conclude in Sect. 8.

2 Painlevè analysis

Painlevè analysis [19,20] can be treated as one of the
most complicated but effective tool for checking the
integrability aspect of a partial differential equation. A
PDE which is single valued about the movable singu-
larity manifold can be observed as a PDEwhich is inte-
grable in Painlevè sense. In this section, we discuss the
Painlevè integrability of Eq. (2) by using Weiss, Tabor,
and Carnevale (WTC) method [19]. In the WTC pro-
cedure, we are to determine the leading orders Laurent
series which enables to identify the powers at which
the arbitrary functions can enter into the Laurent series.
These are known as resonances and we need to verify
the existence of sufficient number of arbitrary functions
at the resonance values by not introducing the movable
critical manifold. In WTC method, we choose the gen-
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eral solution of PDE in the following ansatz

v(x, t) = ψ p(x, t)
∞∑

m=1

vm(x, t)ψm(x, t) (3)

where p is negative,ψ(x, t) = 0 is the equation of sin-
gular manifold and vm is to be determined by substitu-
tion of expansion Eq. (3) in the PDE. In this connection,
the PDE takes the form

∞∑
m=0

Em(v0, v1, ...vm, ψ)ψm+q = 0, (4)

where q is some negative constant and the values of
Em depends on ψ only by the derivatives of ψ . Now
we follow the successive steps to discuss the Painlevè
analysis. At first, we obtain possible leading orders p
by balancing two or more terms of the PDE and con-
veying that they dominate all other terms. Next, we
solve equation E0 = 0 for nonzero values of v0 which
may yield several solutions known as branches. After
that, we determine the resonance values which clearly
provides the values ofm for which vm is undetermined
from equation Em = 0. Usually it is in the form

Em = (m + 1)P(m)ψ
j
x ψ

n− j
t um

+Q(v0, v1, ...vm−1, ψ) = 0, ∀ m > 0 , (5)

where n denotes the order of the PDE, 0 ≤ j ≤ n and
P dictates a polynomial of degree n − 1. It is to be
mentioned that the resonance values are identical with
the zeros of P . Finally, we are to examine the com-
patibility condition of the resonances. If at a resonance
value, the direct substitution of the previously obtained
value of vi , i ≤ m − 1, the function Q becomes either
zero or nonzero, then vm can be considered arbitrarily
and the expansion Eq. (3) does not exist for arbitrary
ψ . In that case, the resonance is said to be compatible.
Now, we exploit the above technique on the equation
considered.

We use the following transformation u = vx which
converts Eq. (2) into

vxyt + c1[vxxxxy + 3(2vxxvxy + vxvxxy + vyvxxx )]
+c2vxyy + c3vxxx = 0. (6)

We assume that Eq. (2) possesses a solution in the form
of Laurent series expansion as follows

v(x, y, t) = ψ(x, y, t)μ
∞∑

m=0

vm(x, y, t)ψm(x, y, t),

(7)

where ψ and vm are the analytic functions near the
singularity manifold ψ = 0.

SubstitutingEq. (7) inEq. (6) andbalancing themost
dominant terms, we obtain

μ = −1, v0 = 2ψx . (8)

Furthermore, substitutingEq. (7) intoEq. (6) and equat-
ing the coefficient of ψ j−6, we have

c1(−6 + m)(−5 + m)(−4 + m)(−1 + m)

(1 + m)vmψyψ
4
x = 0, (9)

whichyields the resonancevalues asm = −1, 1, 4, 5, 6.
The resonance m = −1 represents the arbitrariness

of the singularmanifoldψ(x, y, t) = 0.The coefficient
of ψ−5 is zero, which clearly represents the arbitrari-
ness of v1.

With the help of MATHEMATICA, we collect the
coefficients of ψ−4 and ψ−3, respectively, and obtain
the explicit values of v2 and v3 as follows

v2 =1

2
ψxyψxxψy

−1ψx
−2 − 1

6c1
ψtψx

−2

− c2
6c1

ψy
−1 − c3

6c1
ψy

−1

− 1

2
ψx

1ψy
−1ψxxy − 1

6
ψx

−2ψxxx

− 1

2
ψy

−1v1,y − 1

2
ψx

−1v1,x

(10)

and

v3 = − c2
8c1

ψyψx
−4ψxx + 1

8
ψy

−3ψyyψx
−2

(ψxyψxx + ψxψxxy) − c3
24c1

ψy
−3ψyy

− 1

8
ψy

−3ψyyv1,y + 1

2
ψy

−2ψx
−3ψxy

2ψxx

− 1

8
ψy

−2ψx
−2
[
ψxyyψxx + 4ψxyψxxy + ψ2

x{
3c1ψxxyy − 2ψxy(c3 + 3c1v1,y)

}
+3c1ψ

3
x v1,yy

]
+ 1

24c1
ψx

−3(3ψytψ
2
x

+ 3c2ψyyψ
2
x − 3ψtψxψxy

+ c3ψ
2
xψxx + 9c1ψxyψ

2
xx − 9c1ψxψxxψxxy

− 6c1ψxψxyψxxx

+ 6c1ψ
2
xψxxxy + 3c1ψ

2
xψxxv1,y

+ 6c1ψ
3
x vxy) + 1

24c1
ψx

−3ψy[
−3ψxx

{
ψt + c1ψ

3
x + ψx (ψxt − 2c2ψxy

+c1ψxxxx − 6ψxxv1,y + 3ψxv1,xx )
}]

.

(11)
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After simplifying the coefficients of ψ−2 and ψ−1,
we found that both becomes zero, which indicates the
arbitrariness of v4 and v5. By choosing ψ(x, y, t) =
x + φ(y, t) and using Kruskal ansatz [50] for the res-
onance value m = 6, we obtain the compatibility con-
dition as

− 1

6c1
φy

−5φ2
yy(c3 + 3c1v1,y)

2 + 1

24c1
φy

−4

(c3 + 3c1v1,y) [φyyy{c3 + 3c1v1,y + 3φyy

(5c1v1,yy + φyy(φt + 3c1v1,x ))}
+ 54c21φ

2
yyv1,xxy] + 1

24c1
φy

−2 [ −c3φtφyyy

− 3c1φtφyyyv1,y + φytφyy(c3 + 3c1v1,y)

+ 4c2φ
2
yy(c3 + 3c1v1,y) − 9c21v

2
1,yy

− 3c1c3v1,yyy − 9c21v1,yv1,yyy − 3c1c3φyyyv1,x

− 9c21φyyyv1,yv1,x − 18c21φyyyv1,xxy

− 3c1φyy{3φtv1,yy + 7c3v1,xy
+ 3c1(3v1,yyv1,x + 7v1,yv1,xy + 6v1,xxyy)}]
+ 1

8
c2φ

3
yv1,xxx + 1

24c1
φ−1
y

[ −φyyt (c3 + 3c1v1,y) − 2c2φyyy(c3 + 3c1v1,y)

+ 3φt {c1v1,yyy − φyy(φyt + c2φyy − c1v1,xy)}]
+ 1

8
φy

−1{−3c2φ
2
yyv1,x + 3c3v1,xyy + 3c1(v1,yyyv1,x

+ 4v1,yyv1,xy + 3v1,yvxyy

+ 2v1,xxyyy) + φyy(2v1,yt − c2v1,yy − 3φytv1,x

+ 9c1v1,xv1,xy + 2c3v1,xx + 6c1v1,yv1,xx

+ 2c1v1,xxxy)} + 1

8c1
{φ2

yt + φyt (c2φyy

+ 4c1vxy) + φt (φyyt + c2φyyy − c1v1,xyy)

− c1(2v1,yyt + c2v1,yyy − 3φyytv1,x − 3c2φyyyv1,x

− 5c2φyyv1,xy + 12c1v
2
1,xy

+ 9c1v1,xv1,xyy + 6c1v1,yyv1,xx
+ 3c3v1,xxy + 9c1v1,yv1,xxy + 2c1v1,xxxyy)}
+ 1

24c1
φy [ 2φytt + 7c2φyyt + 5c22φyyy

+ 3c1{96c1(v5,y + v4,xy) + 4v1,xyt + 3c2vx,yy

− 4φytv1,xx − 4c2φyyv1,xx − φtv1,xxy

+ c3v1,xxx + c1(12v1,xyv1,xx + 9v1,xv1,xxy

+ 3v1,yv1,xxx − 2v1,xxxxy)}] − 1

8
φ2
y [3c1(32v5,x

+ v21,xx + 32v4,xx ) + 2v1,xxt + 3c2vxxy

− (φt − 3c1v1,x )v1,xxx + 2c1v1,xxxxx ]

(12)

which cannot be made equal to zero in case of non-
trivial c1, c2 and c3. Hence we can draw the conclu-

sion that Eq. (2) does not pass the Painlevè test which
ensures that Eq. (2) is not integrable in Painlevè sense.
It is to be mentioned that Eq. (6) reduces to Eq.(4)
of Ref. [47] when c3 = 0 and all the results related to
Painlevè analysis obtained there can be developed from
our expressions in that case. This asserts the novelty of
the Painlevè analysis method.

3 Bell polynomials

In this section, we briefly demonstrate some funda-
mental concepts and expressions of Bell polynomi-
als [30,31]. Let h be a C∞ function of t , then one-
dimensional Bell polynomial [30] is defined as

Ynt (h) = Yn(h1, h2, .., hnt ) = e−h∂t
neh,

n = 1, 2, 3, ... . (13)

A few one-dimensional Bell polynomials can be
derived from the above expression as follows

Yt = ht , Y2t = h2t + ht
2, Y3t

= h3t + 3hth2t + ht
3, ... . (14)

The expressions Eq. (14) are obtained by the formula
given by

Ynt (h) =
∑ n!

a1!a2!...an !
(
ht
1!
)a1

(
h2t
2!
)a2

...

(
hnt
n!
)an

, (15)

where the sum run over all partitions of n = a1+2a2+
... + nan .

We can extend the dimension of the Bell polynomial
by assuming that h = h(t1, t2, ..., ts) as a C∞ multi-
variable function and then the multi-dimensional Bell
polynomial can be defined as follows

Yn1t1,...,ns ts (h) ≡ Yn1,...,ns (hm1t1,...,msts )

= e−h∂
n1
t1 ...∂

ns
ts eh, (16)

wherehm1t1,...,msts = ∂
m1
t1 ...∂

ms
ts h,mi = 0, 1, ..., ni and

i = 1, 2, ..., s. Here Yn1t1,...,ns ts (h) denotes the multi-
variable Bell polynomial with respect to hm1t1,...,msts .
Specially when h = h(t, z), the associated few lowest
order two-dimensional Bell polynomials can be calcu-
lated as follows

Y2t (h) = h2t + h2t , Y3t (h) = h3t + 3h2t ht + h3t ,
(17)
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Yt,z = ht,z + hthz,

Y2t,z(h) = h2t,z + h2t hz + 2ht,zht + h2t hz, ... (18)

As per the above Bell polynomials Eq. (16), the multi-
dimensional binary Bell polynomials can be character-
ized as follows

Yn1t1,...,ns ts (ν, ω) = Yn1t1,...,ns ts (h), (19)

where

hm1t1,...,msts

=
{

νm1t1,...,msts , m1 + ... + ms is odd,

ωm1t1,...,msts , m1 + ... + ms is even.
(20)

According to the abovedefinition, fewbinaryBell poly-
nomials of lowest order can be calculated as follows

Yt (ν) = νt , Y2t (ν, ω) = ω2t + ν2t ,

Yt,z(ν, ω) = ωt,z + νtνz,

Y2t,z(ν, ω) = ν2t,z + ω2tνz + 2ωt,zνt + ν2t νz,

Y3t = ν3t + 3ω2tνt + ν3t , ... (21)

The binary Bell polynomial and the standard Hirota
bilinear expression Dn1

t1 ...Dns
ts h.g can be linked by the

following identity

(hg)−1Dn1
t1 ...Dns

ts h.g

= Yn1t1,...,ns ts (ν = ln h/g, ω = ln hg), (22)

where the D- operator is introduced by Hirota [25] as

Dn1
t1 ...Dns

ts h.g = (∂t1 − ∂t ′1)
n1 ...(∂ts − ∂t ′s )

ns

h(t1, ..., ts).g(t
′
1, ...t

′
s)|t ′1=t1,...,t ′s=ts .

In case when h = g, the identity Eq. (22) becomes

(h)−2Dn1
t1 ...Dns

ts h.h

= Yn1t1,...,ns ts (ν = 0, ω = 2 ln h)

=
{
0, n1 + ... + ns is odd,

Pn1t1,...,ns ts (p), n1 + ... + ns is even.
(23)

where P-polynomials are the even ordered Y -poly-
nomials and first few of them are given as follows

P2t (p) = p2t , Pt,z = pt,z,

P3t,z(p) = p3t,z + 3pt,z p2t , P4t (p) = p4t + 3p22t .

(24)

The binary Bell polynomial Yn1t1,...,ns ts (ν, ω) can be
written as a linear combination ofP-polynomials and
Bell polynomials Yn1t1,...,ns ts (ν) as

(hg)−1Dn1
t1 ...Dns

ts h.g

= Yn1t1,...,ns ts (ν, ω),

where ν = ln h/g and ω = ln hg

= Yn1t1,...,ns ts (ν, ν + p),

where ν = ln h/g and p = 2 ln g

=
n1∑

m1=0

...

ns∑
ms=0

s∏
i=1

(
ni
mi

)

Pm1t1,...,msts (p) Y(n1−m1)t1,...,(ns−ms )ts (ν). (25)

Under theHopf-Cole transformation ν = lnψ , the Bell
polynomial can be written as

Yn1t1,...,ns ts (ν = lnψ) = ψn1t1,...,ns ts

ψ
, (26)

through which Eq. (25) can be reexpressed as

(hg)−1Dn1
t1 ...Dns

ts h.g

= ψ−1
n1∑

m1=0

...

ns∑
ms=0

s∏
i=1

(
ni
mi

)

Pm1t1,...,msts (p) ψ(n1−m1)t1,...,(ns−ms )ts . (27)

The identity Eq. (27) presents the simplest way to con-
struct the associated Lax pair of corresponding nonlin-
ear evolution equation.

4 Bilinear form, bilinear Bäcklund transformation
and Lax pair

In view of deriving the Hirota bilinear form of Eq. (2)
via binary Bell polynomial, we introduce a potential
field p by setting

u = pxx . (28)

Substituting Eq. (28) into Eq. (2) and integrating with
respect to x , we have

E(p) = py,t + c1(p3x,y + 3p2x px,y)

+c2 p2y + c3 p2x = 0. (29)

By using Eq. (24) and considering c1 = c2 = c3 =
1, Eq. (29) can be rewritten as combination of P-
polynomial expressions as follows

E(p) = Py,t (p) + P3x,y(p)

+P2y(p) + P2x (p) = 0. (30)

The transformation p = 2 ln g along with the help of
Eq. (23), we have the bilinear form of Eq. (2) in the
following form

(DyDt + D3
x Dy + D2

y + D2
x )g.g = 0. (31)
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We assume that p = 2 ln g′ be another solution of Eq.
(2) in view of obtaining bilinear Bäcklund transforma-
tion of (2). Furthermore, introducing two new variables

ν = (p′ − p)

2
= ln

g′

g
, ω = (p′ + p)

2
= ln gg′, (32)

the corresponding two field condition can be written as

C(ν, ω) =E(p′) − E(p) = 2[νy,t + ν3x,y

+ 3ω2xνx,y + 3ν2xωx,y + ν2y + ν2x ] = 0

=2
∂

∂y

[
Yt (ν) + Y3x (ν, ω) + Yy(ν)

]
+ 6W (ν, ω) = 0, (33)

where W (ν, ω)=Wronskian
[
Yx,y(ν, ω)+ 1

3 ,Yx (ν)
]
.

Taking Yx,y(ν, ω) + 1
3 = αYx (ν), where α is an

arbitrary constant, Eq. (33) can be reduced to

C(ν, ω) = 2
∂

∂y

[
Yt(ν) + Yy(ν) + Y3x(ν, ω)

] = 0.

(34)

After decoupling the two field condition, we have the
following two Y -polynomials as follows

Yx,y(ν, ω) + 1

3
− αYx (ν) = 0, (35a)

Yt (ν) + Yy(ν) + Y3x (ν, ω) = β, (35b)

where β is an arbitrary constant.
Using mixing variable expression Eq. (32) and

through the expression Eq. (22), Eq. (35) can bewritten
in the bilinear form as

(g′ · g)−1
[
Dx Dy − αDx + 1

3

]
(g′ · g) = 0 (36a)

(g′ · g)−1[Dt + Dy + D3
x ](g′ · g) = β, (36b)

which is the bilinear Bäcklund transformation of Eq.
(2).

Substitutingω = ν+ p and ν = ln φ into the system
of Eq. (35), we have the compatibility of the system of
Eq. (35) for φ as

φx,y + px,yφ + 1

3
φ − αφx = 0 (37a)

φt + φ3x + 3φx p2x + φy − φβ = 0 . (37b)

Eliminatingφ from the above equations yields the com-
patibility condition as

∂x [py,t + 3p3x,y + 3p2x pxy + p2y + p2x ]
= ∂x [E(p)] = 0. (38)

It follows that Eq. (38) can be considered as the inte-
grability condition for the system of Eq. (37), which is
the Lax pair of Eq. (2).

5 Infinite conservation laws

In order to derive the conservation laws for Eq. (2) we
rewrite the Bell polynomial type Bäcklund transforma-
tion i.e. Equation (35) as follows

ωxy + νxνy + 1

3
− ανx = 0, (39)

νt + ν3x + 3νxω2x + ν3x + ωy = β. (40)

Introducing new potential function

η = p′ − p

2
, (41)

we have the following from Eq. (32)

η = νx , ωx = ∂−1
x u + η, νy = ∂−1

x (ηy). (42)

Substituting Eq. (42) in Eq. (39), we have

∂−1
x uy + ηy + η

(
∂−1
x ηy

)
− αη + 1

3
= 0. (43)

Differentiating Eq. (40) and substituting Eq. (42) in Eq.
(40) yields

ηt + ∂x [ηxx + 3η(u + ηx ) + η3] + ηy = 0. (44)

Substituting the series expansion

η =
∞∑
n=1

In
(
∂−1
x u, u, ux , uy, ...

)
α−n (45)

into Eq. (43) and equating coefficient of powers of α,
we obtain the conserved densities formulas as follows

I1 = ∂−1
x uy + 1

3
, (46)

I2 = I1,y = ∂−1
x uyy, (47)

I3 = I2,y + I1(∂
−1
x I1,y)

= ∂−1
x uyyy +

(
∂−1
x uy + 1

3

)
(∂−2

x uyy), (48)

I4 = I3,y + I1(∂
−1
x I2,y) + I2(∂

−1
x I1,y)
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= ∂−1
x uyyyy + (∂−1

x uyy)(∂
−2
x uyy)

+
(

∂−1
x uy + 1

3

)
(∂−2

x uyyy)

+
(

∂−1
x uy

1

3

)
(∂−2

x uyyy) + (∂−1
x uyy)(∂

−2
x uyy),

..... (49)

In = In−1,y +
n−1∑
i=1

Ii (∂
−1
x In−1−i,y). (50)

Again substituting the series expansion of η from Eq.
(45) into Eq. (44) we have

∞∑
n=1

In,tα
−n + ∂x

[ ∞∑
n=1

In,xxα
−n + 3

( ∞∑
n=1

Inα
−n

)

(
u +

∞∑
n=1

In,xα
−n

)
+
( ∞∑
n=1

Inα
−n

)3
⎤
⎦

+
∞∑
n=1

In,yα
−n = 0, (51)

which successively provides following conservation
laws by comparing the coefficient of the different pow-
ers of α as below

An,t + Bn,x + Cn,y = 0, (52)

where Bn(n = 1, 2, ...) are obtained as follows

B1 = I1,xx + 3uI1, (53)

B2 = I2,xx + 3(I2u + I1 I1,x ), (54)

B3 = I3,xx + 3(I3u + I1 I2,x + I2 I1,x ) + I 31 , (55)

...

Bn = In,xx + 3
∑

i+ j=n

Ii I j,x + 3Inu

+
∑

i+ j+k=n

Ii I j Ik, n = 1, 2, 3, ... (56)

Finally, the remaining fluxes An and Cn are given by
the recursion formulas Eq. (46)-Eq. (50). It is to be

mentioned that the x-derivative of Eq. (52) for n = 1,
i.e. the x-derivative of the first conservation law is Eq.
(2) itself.

6 Soliton solutions

6.1 One-soliton solution

We can retrieve the one-soliton solution of Eq. (2) by
assuming g in the following form

g = 1 + e℘1 , (57)

where

℘1 = k1(x + p1y + w1t) + ℘0
1 (58)

with k1 and ℘0
1 as arbitrary constants. Substituting Eq.

(57) with Eq. (58) in Eq. (31) and equating the coef-
ficients of all exponential function to zero, we have
obtained the dispersion relation as

w1 = −
[
k21 + 1 + p21

p1

]
. (59)

Finally, substituting Eq. (57) in Eq. (31), we retrieve
the one-soliton solution of Eq. (2) as

u = 2[ln(1 + e℘1)]2x , (60)

where ℘1 and w1 are given by Eq. (58) and Eq. (59),
respectively. We choose the parametric values as k1 =
1.2, k2 = 1 and℘0

1 = 0 and obtain the one soliton
solution of Eq. (2) as shown in Fig. 1.

6.2 Two-soliton solution

The two-soliton solution of Eq. (2) can be obtained by
assuming g in the following form

g = 1 + e℘1 + e℘2 + K12e
℘1+℘2 , (61)

where

℘i = ki (x + pi y + wi t) + ℘0
i (i = 1, 2) (62)

with ki (i = 1, 2) and ℘0
i (i = 1, 2) as arbitrary con-

stants. Substituting Eq. (61) with Eq. (62) in Eq. (34)
and equating the coefficients of all exponential func-
tion to zero, we have obtained the dispersion relation
and K12 as follows
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Fig. 1 The figures of the solution of the Eq. (2) given by Eq. (60), when k1 = 1.2, p1 = 1 and℘0
1 = 0, describing one-soliton solution

a 3D plot b density plot and c 2D plot at different time

wi = −
[
k2i + 1 + p2i

pi

]
, (i = 1, 2), (63)

K12 = 3p1 p2k1k2(k1 p1 − k2 p2)(k2 − k1) − (k2 p1 − k1 p2) − (k1 − k2)2 p1 p2
3p1 p2k1k2(k1 p1 + k2 p2)(k1 + k2) − (k2 p1 + k1 p2) + (k1 + k2)2 p1 p2

. (64)

Furthermore, substituting Eq. (61) in Eq. (31), we
obtain the two-soliton solution of the Eq. (2) as

u = 2[ln(1 + e℘1 + e℘2 + K12e
℘1+℘2)]2x , (65)

where ℘i , wi (i = 1, 2) and K12 are given by Eq.
(62), Eq. (63) and Eq. (64), respectively. We consider
the following parametric values as k1 = 1.5, p1 =
1.4, k2 = 2.8, p2 = 1and℘0

i = 0 (i = 1, 2) and
obtain the two-soliton solution of Eq. (2) as shown in
Fig. 2.We also depict the overtaking collisions between
two-soliton solutions in Fig. 3.

6.3 Three-soliton solution

In a similar way, we can find three-soliton solution of
Eq. (2) by assuming g in the following form

g = 1 + e℘1 + e℘2 + e℘3 + K12e
℘1+℘2

+K13e
℘1+℘3 + K23e

℘2+℘3 + K123e
℘1+℘2+℘3 ,

(66)

where

℘i = ki (x + pi y + wi t) + ℘0
i (i = 1, 2, 3) (67)

with ki (i = 1, 2) and ℘0
i (i = 1, 2, 3) as arbitrary

constants. Substituting Eq. (66) with Eq. (67) in Eq. (2)
and equating the coefficients of all exponential function
to zerowe have obtained the dispersion relation and Ki j

as follows

wi = −
[
k2i + 1 + p2i

pi

]
(i = 1, 2, 3), (68)

Ki j = 3pi p j ki k j (ki pi − k j p j )(k j − ki ) − (k j pi − ki p j ) − (ki − k j )2 pi p j

3pi p j ki k j (ki pi + k j p j )(ki + k j ) − (k j pi + ki p j ) + (ki + k j )2 pi p j
(i = 1, 2, 3), (69)

K123 = K12K13K23. (70)

Finally, we substitute Eq. (66) in Eq. (31) and obtain
three-soliton solution of Eq. (2) as

u = 2[ln(1 + e℘1 + e℘2 + e℘3 + K12e
℘1+℘2

+K13e
℘1+℘3 + K23e

℘2+℘3 + K123e
℘1+℘2+℘3)]2x ,

(71)
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Fig. 2 The figures of the solution of the Eq. (2) given by Eq. (65), when k1 = 1.5, p1 = 1.4, k2 = 2.8, p2 = 1 and℘0
i = 0, (i = 1, 2)

describing two-soliton solution a 3D plot, b density plot and c 2D plot at different time
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Fig. 3 Depicting overtaking collisions between two-soliton solutions

where ℘i , wi (i = 1, 2, 3) and Ki j are given by Eq.
(67),Eq. (68) and Eq. (69), respectively. The following
parametric values k1 = 1.5, p1 = .7, k2 = 2.3, p2 =
1, k3 = 2.8, p3 = 2.1 and ℘0

i = 0, (i = 1, 2, 3) are
considered to visualize the two-soliton solution of Eq.
(2) in Fig. 4. Alsowe demonstrate overtaking collisions
between three-soliton solutions in Fig. 5.

6.4 Graphical illustration

Here we illustrate the pictorial representation of the
one, two and three-soliton solutions elaborately using
MATHEMATICA software. Figure1 depicts the 3D
plot, density plot and 2D plot of one-soliton solution
of the governing Eq. (2), where the parametric values
are chosen as k1 = 1.2, p1 = 1, and℘0

i = 0. The
same illustrations are depicted in Fig. 2 and Fig. 4 in
which the 3D plot, contour plot and density plot of

two-soliton solution and three-soliton solution of the
same Eq. (2) are demonstrated by choosing the param-
eter values as k1 = 1.5, p1 = 1.5, k2 = 2.8, p2 =
1 and℘0

i = 0, (i = 1, 2) and k1 = 1.5, p1 = .7, k2 =
2.3, p2 = 1, k3 = 2.8, p3 = 2.1 and℘0

i = 0, (i =
1, 2, 3), respectively. Figure3 and Fig. 5 demonstrates
the motion of two-soliton and three-soliton solutions
of the governing equation along the x-line for the time
t ∈ [−20, 20], respectively. The remarkable features of
the two- and three-soliton solutions can be noted from
theplot. Thebigger solitarywaves appearingbehind the
smaller waves starts propagating towards the smaller
one and make elastic collisions and eventually after the
collision, all the waves restore their shapes and the big-
ger waves continuemoving in front of the smaller ones.
It can be seen clearly that two-soliton solutions and
three-soliton solutions preserve their original shape and
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Fig. 4 The figures of the solution of the Eq. (2) given by Eq. (71), when k1 = 1.5, p1 = .7, k2 = 2.3, p2 = 1, k3 = 2.8, p3 =
2.1 and℘0

i = 0, (i = 1, 2, 3) describing three-soliton solution (a) 3D plot (b) density plot and (c) 2D plot at different time
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Fig. 5 Depicting overtaking collisions between three-soliton solutions

size even after the interaction having a phase change
only.

7 Lie symmetry analysis

The basic methodology for obtaining the infinitesimal
generators of Eq. (6), which is driven from Eq. (1) by
the transformation u = υx , has been presented in this
section. Consider a one-parameter (�) Lie group of
point transformations, which leave Eq. (6) invariant

x∗ = x + � ξ(x, y, t, υ) + O(�2),

y∗ = t + � τ(x, y, t, υ) + O(�2),

t∗ = t + � φ(x, y, t, υ) + O(�2),

υ∗ = υ + � η(x, y, t, υ) + O(�2),

(72)

where ξ, τ, φ and η are known as coefficient functions
of infinitesimal symmetries relying on x, y, t and υ.

The infinitesimal generator V , also known as vector
field, affiliated with the preceding transformation is
shown as

V = ξ
∂

∂x
+ τ

∂

∂y
+ φ

∂

∂t
+ η

∂

∂υ
. (73)

If symmetry of Eq. (6) is generated by infinitesimal
generator V , then it must satisfy the invariance condi-
tion for Eq. (6):

Pr (5)V (�) = 0, (74)

where � ≡ υxyt + c1[υxxxxy +3(2υxxυxy +υxυxxy +
υyυxxx )]+c2υxyy+c3υxxx . Here, Pr (5) represents the
fifth-order prolongation, which can be written as

Pr (5) = V + ηx ∂

∂υx
+ ηy ∂

∂υy
+ ηxx ∂

∂υxx

+ηxy ∂

∂υxy
+ ηxxx ∂

∂υxxx

+ηxxy ∂

∂υxxy
+ ηxyy ∂

∂υxyy
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+ηt xy
∂

∂υt xy
+ ηxxxxy ∂

∂υxxxxy
, (75)

where ηx , ηy, ηxx , ηxy, ηxxx , ηxxy, ηxyy, ηt xy and
ηxxxxy are known as invariant coefficients (for more
details see [41,42]).

By applying the prolongation formula 75 to Eq. (6),
a system of determining equations has been obtained.
The following infinitesimals are obtained after solving
those determining equations:

ξ = F ′
1(t)x

3
+ F3(t), τ = c2F1(t)

+ F2

(
tc2 − y

c2

)
, φ = F1(t),

η = 1

18c1

{
−6c1υF

′
1(t) + x2F ′′

1 (t) + 6xF ′
3(t)

−2c3yF
′
1(t) − 6c3F2

(
tc2 − y

c2

)
+ 18c1F4(t)

}
.

(76)

Taking F1(t) = k1t + k2, F2
(
tc2−y
c2

)
= k3, F3(t) =

k4t + k5 and F4(t) = k6, the infinitesimals transform
to

ξ = k1x

3
+ k4t + k5,

τ =c2(k1t + k2) + k3, φ = k1t + k2,

η = 1

18c1
{−6k1c1υ + 6k4x − 2k1c3y

−6k3c3 + 18k6c1} .

(77)

Thus, Lie algebra of symmetries of Eq. (6) can be
spanned by the following vector fields:

V1 = x

3

∂

∂x
+ c2t

∂

∂y
+ t

∂

∂t

+ 1

18c1
{−6c1υ − 2c3y} ∂

∂υ
,

V2 = c2
∂

∂y
+ ∂

∂t
, V3 = ∂

∂y
− c3

3c1

∂

∂υ
,

V4 = t
∂

∂x
+ x

3c1

∂

∂υ
, V5 = ∂

∂x
, V6 = ∂

∂υ
.

(78)

Using the similarity variables, now we reduce the gov-
erning Eq. (6) into nonlinear ODEs. To do so, we must
solve the corresponding characteristic equation

dx

ξ(x, y, t, υ)
= dy

τ(x, y, t, υ)
= dt

φ(x, y, t, υ)

= du

η(x, y, t, υ)
, (79)

where ξ, τ, φ and η are given by Eq. (76). To solve
Lagrange’s Eq. (79), let us take, following cases of vec-
tor fields:

(i) V1,
(ii) V4 + αV2,
(iii) V2 + βV5 + λV6,

where α, β and λ are arbitrary real numbers.

7.1 The generator V1

Along with the generator V1, Lagrange’s equation
becomes
dx
x
3

= dy

c2t
= dt

t
= dυ

−
[

υ
3 + c3y

9c1

] , (80)

which gives the following similarity variables

X = x

t
1
3

,

Y = y − c2t,

υ(x, y, t) = F(X,Y )

t
1
3

− c3
12c1

(4y − 3c2t).

(81)

On plugging Eq. (81) into Eq. (6), we have

−2FXY + 3c1(FXXXXY + 6FXX FXY + 3FX FXXY

+3FY FXXX ) − XFXXY = 0. (82)

Again, Eq. (82) admits infinitesimals given as

ξX = d2 + d3X,

ξY = d1S1(Y ) + d2S2(Y ) + d3S3(Y ),

ηF = d1 + d2X

9c1
+ d3

(
X2

6c1
− F

)
,

(83)

where di ’s (1 ≤ i ≤ 3) are arbitrary constants and Si ’s
(1 ≤ i ≤ 3) are arbitrary functions of Y .

7.1.1 d1 	= 0, while d2 and d3 are zero.

In this case, we have the following generator

V11 = S1(Y )
∂

∂Y
+ ∂

∂F
,

which reduces Eq. (82) into following ODE

G ′′′ = 0, (84)

where (′) represents the derivative with respect to new
independent variable ϕ, given by

ϕ = X, F(X,Y ) =
∫

1

S1(Y )
dY + G(ϕ). (85)

The solution of Eq. (84) is

G(ϕ) = A0 + A1ϕ + A2ϕ
2, (86)
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where A j ’s (0 ≤ j ≤ 2) are arbitrary constants. Insert-
ing the value of G(ϕ) in Eq. (85) and then the resultant
in Eq. (81), gives the closed-form solution of Eq. (6) as
follow

υ(x, y, t)

= 1

t
1
3

(
A0 + A1

x

t
1
3

+ A2
x2

t
2
3

+
∫

1

S1(Y )
dY

)

− c3
12c1

(4y − 3c2t), (87)

where Y = y − c2t .

7.1.2 d2 	= 0, while d1 and d3 are zero.

In this case, we have generator in the form

V12 = ∂

∂X
+ S2(Y )

∂

∂Y
+ X

9c1

∂

∂F
,

which reduces Eq. (82) into following ODE

G ′′′′′ + 6
(
G ′′)2 + 6G ′G ′′′ = 0,

(88)

where

ϕ = X −
∫

1

S2(Y )
dY, F(X, Y ) = X2

18c1
+ G(ϕ).

(89)

The solution of Eq. (88) is

G(ϕ) = A0 + 2A1

A1ϕ + A2
. (90)

Hence, invariant solution of Eq. (6) becomes

υ(x, y, t)

= 1

t
1
3

(
A0 + x2

18c1t
2
3

+ 2A1

A1

(
x

t
1
3

− ∫ 1

S2(Y )
dY

)
+ A2

⎞
⎟⎟⎠

− c3
12c1

(4y − 3c2t),

(91)

where Y = y − c2t .

7.1.3 d3 	= 0, while d1 and d2 are zero.

This case yields the following generator

V13 = X
∂

∂X
+ S3(Y )

∂

∂Y
+
(
X2

6c1
− F

)
∂

∂F
,

which reduces Eq. (82) into following ODE

G ′′′′′ − 10G ′′′′ + 35G ′′′ − 50G ′′ + 24G ′ − 51G ′G ′′

+21GG ′′ − 36GG ′ + 6G ′G ′′′ − 3GG ′′′

+6
(
G ′′)2 + 57

(
G ′)2 = 0, (92)

where

ϕ = ln(X) −
∫

1

S3(Y )
dY,

F(X,Y ) = X2

18c1
+ G(ϕ)

X
. (93)

The solution of Eq. (92) is

G(ϕ) = 2

3
+ 2A1

A1ϕ + A2
. (94)

Hence, invariant solution of Eq. (6) is

υ(x, y, t) = x2

18c1t

+ 1

x

⎛
⎜⎜⎝2

3
+ 2A1

A1

(
ln(x) − 1

3
ln(t) − ∫ 1

S3(Y )
dY

)
+ A2

⎞
⎟⎟⎠

− c3
12c1

(4y − 3c2t), (95)

where Y = y − c2t .

7.2 The generator V4 + αV2

Along with the generator V4 + αV2, Lagrange’s equa-
tion becomes
dx

t
= dy

αc2
= dt

α
= dυ

x
3c1

, (96)

which gives the following similarity variables

M = 2αx − t2,

N = y − c2t,

υ(x, y, t) = H(M, N ) + 6αxt + t3

18c1α2 .

(97)

Substituting Eq. (97) into Eq. (6), gives

2αc1HMMMMN + 6c1HMMHMN

+3c1HMHMMN + 3c1HN HMMM + c3HMMM = 0.

(98)

Again, Eq. (98) admits the infinitesimals given by

ξM = d1 + d3M,

ξN = d1H1(N ) + d2H2(N ) + d3H3(N ),

ηH = − d1c3H1(N )

3c1
+ d2

(
3c1 − c3H2(N )

3c1

)

+ d3

(
−H − c3(N + H3(N ))

3c1

)
,

(99)
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where di ’s (1 ≤ i ≤ 3) are arbitrary constants and Hi ’s
(1 ≤ i ≤ 3) are arbitrary functions of Y .

7.2.1 d1 	= 0, while d2 and d3 are zero.

In this case, we have the vector

V21 = ∂

∂M
+ H1(N )

∂

∂N
− c3H1(N )

3c1

∂

∂H
,

which reduces Eq. (82) into following ODE

α J ′′′′′ + 3
(
J ′′)2 + 3J ′ J ′′′ = 0, (100)

where (′) denotes the derivative with respect to new
independent variable σ , given by

σ = M −
∫

1

H1(N )
dN ,

H(M, N ) = −c3N

3c1
+ J (σ ). (101)

The solution of Eq. (100) is

J (σ ) = A0 + 4αA1

A1σ + A2
. (102)

Hence, invariant solution of Eq. (6) is

υ(x, y, t)

= A0 + 4αA1

A1

(
2αx − t2 − ∫ 1

H1(N )
dN

)
+ A2

−c3(y − c2t)

3c1
+ 6αxt + t3

18c1α2 , (103)

where N = y − c2t .

7.2.2 d2 	= 0, while d1 and d3 are zero.

In this case, we have the generator as

V22 = H2(N )
∂

∂N
+
(
1 − c3H2(N )

3c1

)
∂

∂H
,

which reduces Eq. (82) into following ODE

J ′′′ = 0, (104)

where

σ = M, H(M, N ) =
∫

3c1 − c3H2(N )

3c1H2(N )
dN + J (σ ).

(105)

The solution of Eq. (104) is

G(σ ) = A0 + A1σ + A2σ
2. (106)

Hence, invariant solution of Eq. (6) becomes

υ(x, y, t) = A0 + A1

(
2αx − t2

)
+ A2

(
2αx − t2

)2

+6αxt + t3

18c1α2 +
∫

3c1 − c3H2(N )

3c1H2(N )
dN ,

(107)

where N = y − c2t .

7.2.3 d3 	= 0, while d1 and d2 are zero.

This case yields the following generator

V23 = M
∂

∂M
+ H3(N )

∂

∂N

−
(
H + c3(N + H3(N ))

3c1

)
∂

∂H
,

which reduces Eq. (82) into following ODE

2ασ J ′′′′′ + 10α J ′′′′ + 6σ
(
J ′′)2

+21J ′ J ′′ + 6σ J ′ J ′′′ + 3J J ′′′ = 0, (108)

where

σ = M

N
, H(M, N ) = −c3N

3c1
+ J (σ )

N
. (109)

The solutions of Eq. (108) are

J (σ ) = A1

σ
and J (σ ) = 4αA1

A1σ + A2
. (110)

Hence, Eq. (6) has the following closed-form solution

υ(x, y, t) = −c3(y − c2t)

3c1
+ A1

2αx − t2

+6αxt + t3

18c1α2 , (111)

and

υ(x, y, t) = −c3(y − c2t)

3c1

+ 4αA1

A1(2αx − t2) + A2(y − c2t)

+6αxt + t3

18c1α2 . (112)

7.3 The generator V2 + βV5 + λV6

Along with the generator V2 + βV5 + λV6, Lagrange’s
equation turn into

dx

β
= dy

c2
= dt

1
= dυ

λ
, (113)
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which gives the following similarity variables

P = x − βt,

Q = y − c2t,

υ(x, y, t) = λt + K (P, Q).

(114)

Substituting Eq. (114) into Eq. (6), gives

c1KPPPPQ + 6c1KPPKPQ + 3c1KPKPPQ

+3c1KQKPPP + c3KPPP − βKPPQ = 0. (115)

Again, Eq. (115) admits infinitesimals given as

ξP = d1 + d3P,

ξQ = d1R1(Q) + d2R2(Q) + d3R3(Q),

ηK = − d1c3R1(Q)

3c1
+ d2

(
3c1 − c3R2(Q)

3c1

)

+ d3

(
−K + 2βP

3c1
− c3(Q + R3(Q))

3c1

)
.

(116)

where di ’s (1 ≤ i ≤ 3) are arbitrary constants and Ri ’s
(1 ≤ i ≤ 3) are arbitrary functions of Q.

7.3.1 d1 	= 0, while d2 and d3 are zero.

In this case, we have the vector

V31 = ∂

∂P
+ R1(Q)

∂

∂Q
− c3R1(Q)

3c1

∂

∂K
,

which reduces Eq. (82) into following ODE

c1L
′′′′′ + 6c1

(
L ′′)2 + 6c1L

′L ′′′ − βL ′′′ = 0, (117)

where (′) represents the derivative with respect to new
independent variable ψ , given by

ψ = P −
∫

1

R1(Q)
dQ,

K (P, Q) = −c3Q

3c1
+ L(ψ). (118)

The solution of Eq. (117) is

L(ψ) = A0 + A1 tanh

(
A1

2
ψ

)
, (119)

under the constraint β = c1A2
1. Hence, invariant solu-

tion of Eq. (6) takes the form

υ(x, y, t) = A0 + A1 tanh

(
A1

2

(
x − c1A

2
1t

−
∫

1

R1(Q)
dQ

))
+ λt − c3(y − c2t)

3c1
,

(120)

where Q = y − c2t .

7.3.2 d2 	= 0, while d1 and d3 are zero.

In this case, we have the generator as

V32 = R2(Q)
∂

∂Q
+
(
1 − c3R2(Q)

3c1

)
∂

∂K
,

which reduces Eq. (82) into following ODE

L ′′′ = 0, (121)

where

ψ = P, K (P, Q) =
∫

3c1 − c3R2(Q)

3c1R2(Q)
dQ + L(ψ).

(122)

The solution of Eq. (121) is

L(ψ) = A0 + A1ψ + A2ψ
2. (123)

Hence, corresponding solution of Eq. (6) becomes

υ(x, y, t) = A0 + A1 (x − βt) + A2 (x − βt)2

+λt +
∫

3c1 − c3R2(Q)

3c1R2(Q)
dQ, (124)

where Q = y − c2t .

7.3.3 d3 	= 0, while d1 and d2 are zero.

This case yields the following generator

V33 = P
∂

∂P
+ R3(Q)

∂

∂Q

+
(

−K + 2βP

3c1
− c3(Q + R3(Q))

3c1

)
∂

∂K
,

which reduces Eq. (82) into following ODE

ψL ′′′′′ + 5L ′′′′ + 6ψ
(
L ′′)2 + 21L ′L ′′

+6ψL ′L ′′′ + 3LL ′′′ = 0, (125)

where

ψ = P

Q
, K (P, Q) = βP − c3Q

3c1
+ L(ψ)

Q
. (126)

We get the solutions of Eq. (125) as

L(ψ) = A1

ψ
and L(ψ) = 2A1

A1ψ + A2
. (127)

Hence, corresponding solutions of Eq. (6) becomes

υ(x, y, t) = λt + β(x − βt) − c3(y − c2t)

3c1

+ A1

(x − βt)
, (128)

and

υ(x, y, t) = λt + β(x − βt) − c3(y − c2t)

3c1

+ 2A1

A1(x − βt) + A2(y − c2t)
. (129)
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7.4 Graphical illustration

In this section, Fig. 6-Fig. 8 depicts the 3D plot, con-
tour plot and 2D plot of closed-form solutions of
Eq. (6). Figure6 describes the parabolic wave pro-
file for Eq. (87), with arbitrary constants and func-
tion which are taken as A0 = 2, A1 = 1.3, A2 =
0.8, c1 = 2.3, c2 = 0.1, c3 = 1.22, t = 1 and
S1(Y ) = 1/Y . Figure7 describes the parabolic wave
profile for Eq. (107), with arbitrary constants and func-
tion which are taken as A0 = 2, A1 = 1.3, A2 =
1.5, c1 = 1.33, c2 = 0.67, c3 = 1, α = 1.5, y = 1
and H2(N ) = 1/ sinh(N ). While, Fig. 8 describes the
kink wave profile for Eq. (120), with arbitrary con-
stants and function which are taken as A0 = 2, A1 =
1.5, c1 = 3, c2 = 1, c3 = 0.5, λ = 0.1, y = 1 and
R1(Q) = 1/Q.

8 Conclusions

In this paper, we have carried out an investigation on
the integrability characteristic for a generalized (2+1)-
dimensional nonlinear equation which can be con-
sidered as an extended form of generalized (2 + 1)-
dimensional Hirota bilinear equation originated from
shallow water wave theory. One aspect of our study
was to apply the Painlevè analysis on the governing
equation and it is found that the equation is not com-
pletely integrable in Painlève sense. On the other hand,
we have presented some basic ideas on the binary
Bell polynomials and derived the Hirota bilinear form
of the governing equation by exploiting the concept
of P-polynomial. We have also obtained the Bäck-
lund transformation by utilizing the concepts of decou-
pling two field condition and linearizing the system of

Fig. 6 The wave profile for Eq. (87), with A0 = 2, A1 = 1.3, A2 = 0.8, c1 = 2.3, c2 = 0.1, c3 = 1.22, t = 1 and S1(Y ) = 1/Y, a
3D plot, b contour plot and c 2D plot

Fig. 7 The representation of Eq. (107), while A0 = 2, A1 = 1.3, A2 = 1.5, c1 = 1.33, c2 = 0.67, c3 = 1, α = 1.5, y = 1 and
H2(N ) = 1/ sinh(N ), a 3D plot, b contour plot and c 2D plot at different time
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Fig. 8 Waveprofile representation ofEq. (120),when A0 = 2, A1 = 1.5, c1 = 3, c2 = 1, c3 = 0.5, λ = 0.1, y = 1 and R1(Q) = 1/Q,

a 3D plot, b contour plot and c 2D plot at different time

equation. In addition, we pursue the Hopf-Cole trans-
formation and obtained the corresponding Lax pair
formulation of the concerned equation. Furthermore,
we use the connection between Riccati-type equation
and a divergence-type equation and retrieved an infi-
nite sequence of conservation laws. Finally, the multi-
soliton solutions of the governing equation have been
derived from the bilinear form and the correspond-
ing soliton solutions were demonstrated pictorially via
interesting figures. In view of the existence of note-
worthy indicators such as Hirota bilinear form, Bäck-
lund transformation, Lax pair formulation and exis-
tence of infinite conservation laws, it can be con-
cluded that this extended form of generalized (2 + 1)-
dimensional Hirota bilinear equation is completely
integrable. Finally, corresponding to Eq. (6), several
exact analytic solutions were established using the Lie
group transformation approach. The obtained results
are more significant and precise in explaining vari-
ous physical phenomena, such as nonlinear wave phe-
nomena in shallow water, oceanography and nonlinear
optics. In future, our aimwould be to apply linear super-
position principle to Hirota bilinear form in complex
field and extract complex exponential wave function
solutions and then complexitons, resonant solitons, etc.
Another direction of study would be using long wave
limit in theHirota bilinear form to construct roguewave
solutions and study their interaction with lump solu-
tions, kink solutions, breather solutions, etc.
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