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Abstract This work entails an analysis of secondary
resonances in the parametrically damped van der Pol
equation,with andwithout external excitation.Apoten-
tial application of this system is a vertical-axis wind-
turbine blade, which can have cyclic damping, aeroe-
lastic self-excitation, and direct excitation. We ana-
lyze the system using the method of multiple scales
and numerical solutions. For the case without external
excitation, the analysis reveals nonresonant phase drift
(quasiperiodic responses) and subharmonic resonance
with possible phase drift or phase locking (periodic
responses). The case of external excitation consists of
a constant load and a harmonic load with the same
frequency as the parametric term. Hard excitation is
treated for nonresonant conditions and secondary res-
onances. Subharmonic and superharmonic resonances
show possible phase drift and phase locking. Primary
resonance is observed but not analyzed here.
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1 Introduction

In this paper, we study the responses of an oscilla-
tor with van der Pol terms, parametric damping and
direct excitation. A potential application of this system
is a vertical-axis wind-turbine blade, which can endure
direct excitation and parametric damping [1,2], as well
as aeroelastic self-excitation, the effects of which can
be loosely modeled with van der Pol nonlinearity [3,4].
Here, the general behavior of this system is studied,
rather than the specific responses of a specific model
of an application system. As both parametric excitation
and van der Pol nonlinearity can induce instabilities and
oscillations, we seek to understand the combined effect
of such terms in this system.

The nonlinear damping in the van der Pol equation
was originally introduced to model electrical oscilla-
tions [5]. This nonlinearity is well known to induce
limit-cycle oscillations. Holmes and Rand [6] studied
the bifurcation of the variational equation of the forced
van der Pol oscillator. Barbosa et al. [7] studied the
modified version of the classical van der Pol oscil-
lator containing derivatives of fractional order. They
applied approximations to fractional-order operators
to show the dynamics of the model through numeri-
cal simulations. Náprstek and Fischer [8] assessed the
original sub- and supersynchronization effects and their
dynamic stability in a generalized vander Pol oscillator.
Barron and Sen [9] investigated the synchronization of
four coupled van der Pol oscillators representing the
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synchronization of the self-excited vibrations in turbo-
machine blades due to elastic coupling.

Parametric excitation also induces significant behav-
ior in dynamical systems and therefore has been of keen
interest, in particular through the Mathieu equation
[3,4,10] in the context of parametric stiffness. Para-
metric damping has been shown to generate instabil-
ities [2,11] similar to those of the Mathieu equation
[3,4]with period-1 or period-2 oscillation, and to decay
with quasiperiodic dynamics when stable [2], the lat-
ter shown by combining the Floquet solution with a
harmonic balance [12,13].

There have been vast studies on related systems
that consider parametric excitation and/or direct exci-
tation with and without nonlinearity. Examples include
Mathieu oscillators without forcing [14–17], with forc-
ing [18–24], and a Mathieu–van der Pol system [25].
Pandey et al. [26] inquired into frequency locking in
a forced Mathieu–van der Pol–Duffing system near
the principal resonances with the application of opti-
cally actuated MEMS resonators. Belhaq and Fahsi
[27] examined the effect of a fast harmonic parametric
excitation on frequency-locking in 2:1 and 1:1 reso-
nances in a similar system.

Szabelski and Warminski [28] analyzed systems
with three sources of vibration: parametric, self-excited
and external. Warminski [29] studied the nonlin-
ear dynamics of a self-, parametric, and externally
excited oscillator with time delay by applying the
method of multiple scales. Similar to the current paper,
Chakraborty and Sarkar [30] studied the parametrically
excited van der Pol oscillator with a modified non-
linear damping term. They presented resonance and
anti-resonance effects using an approach for bookkeep-
ing slowly varying amplitudes and small terms. They
also illustrated that coupling between two van der Pol
oscillators can be applied as a binary switch.

Parametric excitation has also been studied in the
context of wind turbine blades [21,22,31,32]. Luongo
and Zulli [33] studied a self-excited tower under turbu-
lent wind flow. The tower was assumed to be a nonlin-
ear system where the mean wind led to self excitation
and the turbulent part caused parametric and external
excitation.

In this study, we combine parametric damping with
self-excitation of a van der Pol equation. With a partic-

ular choice of scaling and excitation frequencies, the
equation becomes

ẍ + ε(c0 + c1 cosωt + αx2)ẋ

+ωn
2x = f0 + f1 sin(ωt), (1)

where ε � 1. The variables c0 and c1 are the scaled
mean damping and amplitude of the parametric damp-
ing, respectively, and f0 and f1 are mean and cyclic
direct excitation constants. The excitation frequency is
ω and the linearized natural frequency is ωn . We will
refer to this as the parametrically damped van der Pol
(PDVDP) equation with external excitation. We apply
the first-order method ofmultiple scales [3,34] to study
the unforced and externally forced cases with paramet-
ric damping at frequency ω.

In Sect. 2, we set up the analysis using the method
of multiple scales. In Sect. 3, we analyze the case with-
out external excitation, where we consider the nonres-
onant case and subharmonic resonance of order 1/2.
In Sect. 4, we study the system with both parametric
and external excitation, where in addition to previous
resonance cases, we also analyze the superharmonic
resonance of order 2. We provide a brief comment on
the strength of nonlinearity in Sect. 5 and concluding
remarks in Sect. 6.

2 Perturbation analysis: method of multiple-scales

The core of this study is the approximation of the
solution to Eq. (1) based on the method of multiple
scale (MMS) [3,4]. We expand the displacement as
x(T0, T1, . . .) = x0(T0, T1, . . .) + εx1(T0, T1, . . .) +
ε2x2(T0, T1, . . .)+· · · , where the time scales are Ti =
εi t , and ε � 1. By using the chain rule, we obtain
the derivatives for n ∈ N as dn

dtn (·) = (D0 + εD1 +
ε2D2 + · · · )n(·) , where Di = ∂

∂Ti
. Here, we carry out

the analysis up to the first order by considering the two
time scales T0 = t and T1 = εt and therefore expand
the displacement as

x(T0, T1) ≈ x0(T0, T1) + εx1(T0, T1). (2)

By substituting the expansion (2) in Eq. (1) and using
the derivatives, coefficients of similar powers of ε

equate as
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Resonances of a forced van der Pol equation 5271

ε0 : D0
2x0 + ωn

2x0 = f0 + f1 sin(ωT0), (3)

ε1 : D0
2x1 + ωn

2x1

= −2D0D1x0 − (c0 + c1 cosωT0 + αx0
2)(D0x0).

(4)

The relationship between the excitation and the natural
frequencies specifies different cases of resonance.

1. Nonresonant: no specific relationship between ω

and ωn

2. Primary resonance: ω ≈ ωn

3. Superharmonic resonance: ω ≈ ωn/2
4. Subharmonic resonance: ω ≈ 2ωn

In the next sections, we elaborate on this perturba-
tion analysis for specific cases without and with exter-
nal excitation and apply other tools to examine the
dynamics with emphasis on secondary resonances.

3 Parametric excitation without external excitation

We start with the case where there is no external forc-
ing, i.e., f0 = f1 = 0. As a survey of the possible
dynamics, Fig. 1 shows a frequency sweep from ω = 0
to beyond ω = 2ωn , when ωn = 1, ε = 0.1, c0 = −1,
and c1 = 1 (these parameters are dimensionless). The
sweep, as a bifurcation diagram, represents samples of
the x variable of the nonwandering set in a Poincaré
section [35] for various values of the frequency param-
eter. A Runge–Kutta method (Matlab ode45) is used
to obtain numerical solutions at each frequency over
manyperiods to approach steady state.As the responses
are typically quasiperiodic, the plots are generated by
recording 50 values of x at the downward ẋ = 0 cross-
ing in the phase space for each excitation frequency.
Thus the points in the plot represent local maxima in
x(t).

Theplot shows that significant quasiperiodic dynam-
ics occur for a large range of excitation frequencies,
with a periodic window around ω ≈ 2ωn . The largest
responses occur near this subharmonic range and also
the low frequencies. Superharmonic and primary res-
onances are not apparent beyond a possible frequency
interval of periodic or nearly periodic dynamics. Figure
2 shows examples of quasiperiodic responses for three
different excitation frequencies.

We appeal to perturbation analysis to explain these
responses. The solution to the zeroth order Eq. (3) with

f0 = 0 and f1 = 0 is

x0(T0, T1) = A(T1)e
iωnT0 + c.c., (5)

where c.c. stands for the corresponding complex conju-
gate terms.We obtain the solvability conditions by sub-
stituting Eq. (5) into the right-hand side of Eq. (4) and
eliminating the secular terms, which are the terms that
make the solution to x1 grow without bound in time,
and thus should be eliminated. By plugging Eq. (5)
into (4), we obtain

D0
2x1 + ωn

2x1 = (−2iωn A
′ − ic0ωn A

−αiωn A
2 Ā)eiωnT0

+c1
2

(
iωn Āe

i(ω−ωn)T0
)

+ c.c. + N.S.T., (6)

where N.S.T. stands for non-secular terms, and A′ =
D1A. The homogeneous solution of Eq. (6) is of the
form eiωnT0 . Therefore any right-hand side term that is
of the same frequency will become secular and cause
x1 to grow without bound.

We seek the resonance cases that lead to additional
secular terms. The right-hand side of Eq. (6) merely
shows a subharmonic resonance case. However, as
shown in Fig. 1 as well as Eq. (6), the system has sig-
nificant oscillatory behavior at the nonresonant case,
that is when there is no specific relationship between
the excitation frequency ω and the natural frequency
ωn . The solvability conditions for these two cases are
as follows.

• Nonresonant:

2A′ + c0A + αA2 Ā = 0 (7)

• Subharmonic resonance of order 1/2 (ω = 2ωn +
εσ ):

2A′ + c0A + αA2 Ā − c1
2
ĀeiσT1 = 0 (8)

where σ is a detuning parameter.

3.1 Nonresonant case

We first consider the nonresonant case, where the solv-
ability condition takes the form2A′+c0A+αA2 Ā = 0.
We recall that A is a complex function of T1. Writing
it as A(T1) = 1

2a(T1)eiβ(T1), the solvability condition
becomes

a′ + iaβ ′ + 1

2
c0a + 1

8
αa3 = 0. (9)
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Fig. 1 PDVDPwith parametric excitation only. The numerically
solved response amplitude versus the excitation frequency when
f0 = f1 = 0, ωn = 1, ε = 0.1, c0 = −1, c1 = 1, and α = 1

. The embedded subplot zooms in on the strong subharmonic
resonance window. The circles are amplitudes predicted by the
perturbation analysis

By separating the real and imaginary parts, we obtain
the following governing equations of amplitude a and
phase β as

a′ + 1

2
c0a + 1

8
αa3 = 0, aβ ′ = 0. (10)

The response amplitudehas steady-state values, obtained
by setting a′ = 0, that depend on the parameter c0.
When c0 < 0, there is a stable steady-state amplitude

of a = 2
√

−c0
α
. This amplitude and the solvability con-

dition that leads to it are the same as in the regular van
der Pol equation when c0 = −1. By eliminating the
solvability condition, we keep the remaining terms in
Eq. (6) and find the particular solution to be

x1 = Q1e
3iωnT0 + Q2e

i(ω+ωn)T0 + Q3e
i(ωn−ω)T0 ,

(11)

where

Q1 = αi A3

8ωn
, Q2 = c1iωn A

2ω(ω + 2ωn)
,

Q3 = c1iωn A

2ω(ω − 2ωn)
, (12)

in which A = 1

2
aeiβ . We note that Eq. (11) is valid if

ω �= 2ωn . Then the leading-order nonresonant solution
is

x = x0 + εx1 = a cos(ωnT0 + β)

+ ε(2Q1 cos(3ωnT0) + 2Q2 cos(ω + ωn)T0

+ 2Q3 cos(ω − ωn)T0). (13)

This result for the nonresonant case demonstrates a uni-
formly present oscillation term at the amplitude a that
comes from the van der Pol element, plus small oscilla-
toryparametric termswith frequency-dependent ampli-
tudes, and with two independent frequencies, such that
in typical cases the result is quasiperiodic.

The numerical solutions in Fig. 2 have features
described by the nonresonant case. When ω = 0.12,
the response looks like classic beating that can arise
with the sum of two incommensurate simple harmon-
ics. This is consistent with the approximate solution
in Eq. (13). The cases of ω = 1.93 and ω = 2.055
provide bookends around the subharmonic resonance
formulated in the next section. While the two latter
cases seem to have features of the nonresonant solu-
tion, we will see that the subharmonic resonance anal-
ysis describes them more accurately.

3.2 Subharmonic resonance of order 1/2

Here, we focus on the subharmonic resonance case,
where the excitation frequency is tuned to be close to
twice the natural frequency, i.e., ω = 2ωn + εσ . In
this setting, the solvability condition is comprised of an
additional term and is given as 2A′ + c0A + αA2 Ā −
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Resonances of a forced van der Pol equation 5273

Fig. 2 PDVDP with parametric excitation only. The numerically solved time response (top row) and phase portrait (bottom row) at
different excitation frequencies where f0 = f1 = 0, ωn = 1, ε = 0.1, c0 = −1, c1 = 1, and α = 1

c1
2 ĀeiσT1 = 0. By letting A(T1) = 1

2a(T1)eiβ(T1), we
obtain

a′ + iaβ ′ + 1

2
c0a + 1

8
αa3 − 1

4
c1ae

i(σT1−2β) = 0.

(14)

We separate the real and imaginary parts and obtain the
following governing equations

a′ + 1

2
c0a + 1

8
αa3 − 1

4
c1a cos(σT1 − 2β) = 0,

aβ ′ − 1

4
c1a sin(σT1 − 2β) = 0. (15)

To investigate the dynamics of Eq. (15), we first make
the system autonomous via the change of variables γ =
σT1 − 2β to obtain

a′ + 1

2
c0a + 1

8
αa3 − 1

4
c1a cos γ = 0,

aγ ′ + 1

2
c1a sin γ − σa = 0. (16)

The response amplitudehas steady-state values, obtained
by setting a′ = γ ′ = 0, that depend on the parameters
c0 and c1. By using the trigonometric identities, we

remove γ and finally obtain the response amplitude as

a = 0, or (17)

αa2 = −4c0 ± 4

√
c21
4

− σ 2. (18)

The nonzero solutions in Eq. (18) form an ellipse in

(a2, σ ) space. If
c21
4 − σ 2 > 0, and the right-hand side

of Eq. (18) is positive, then there are both zero and
non-zero real-valued response amplitudes. Otherwise,
the only steady-state amplitude is zero.

Figure 3 shows the steady-state amplitude versus the
excitation frequencyω = 2ωn+εσ for different values
of c0 and c1 where ε = 0.1, ωn = 1, and α = 1. As the
frequency increases, fixed points in a (periodic system
responses) emerge at a critical value of ω that depends
on c1 (ω ≈ 1.95 for c1 = 1), and stable solutions fol-
low the upper branch (stability is addressed below). The
amplitude a is maximum atω = 2 and the solution dis-
appears at another critical ω (ω ≈ 2.05 for c1 = 1). In
the left panel in Fig. 3, when c0 = −1, a larger ampli-
tude of parametric damping c1 leads to a larger response
amplitude. The inner and outer ovals are associated
with c1 = 0.2 and c1 = 1, respectively. An increase in
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the mean value of damping c0, however, decreases the
response amplitude by pushing down the oval-shaped
curve. In the right panel, at c0 = 0.5, the oval disap-
pears at the frequency of ω = 2. When c0 ≥ 0.5, a2

has only negative values and therefore no real nonzero
solution exists.

Examples of analytical solution amplitudes from
Eq. (18) are plotted as circles in the subharmonic insert
in Fig. 1 for comparison with the numerical solutions.
The pattern of the responses described here and shown
in this insert are somewhat similar to those seen in [26]
with parametric stiffness at subharmonic resonance,
although that case has the influence of a direct excita-
tion of half the frequency, and a cubic stiffness as well.
The system of [30] also exhibits subharmonic periodic
solutions surrounded by quasiperiodic behavior, but the
structure of the slow flow nearω = 2 is rather different.

3.2.1 Stability analysis

Stability of the steady-state solutions in Eq. (18) is
determined from the Jacobian of Eqs. (16), given by
[− 1

4αa
2 − 1

2aσ

0 −(c0 + 1
4αa

2)

]
(19)

which has trace T = −c0 −α a2
2 and determinant D =

1
4αa

2(c0 + αa2
4 ). Here, a represents the equilibrium

amplitude. A fixed point (steady-state amplitude a) is
stable if D > 0, i.e., αa2 + 4c0 > 0 (α is a positive
number), and T < 0, i.e., αa2 + 2c0 > 0. Thus, based

on Eq. (18), if
c21
4 − σ 2 > 0, then the nonzero fixed

point exists and the D > 0 criterion implies that the
positive (upper) branch is stable,while the lower branch
is unstable. The a = 0 solution is neutrally stable if

c0 > 0. If
c21
4 − σ 2 > 0, then fixed point defined by

αa2 = −4c0 + 4
√

c21
4 − σ 2 is stable.

3.2.2 Dynamics of the amplitude and phase

Figure 4 shows the stable and unstable branches
(schematic) of the steady-state response amplitude (top
panel), and the amplitude-phase trajectories (bottom
panel) at the set of frequenciesω = {1.93, 1.98, 2, 2.04,
2.05, 2.055}. The parameters are set to be ε = 0.1,
ωn = 1, c0 = −1, c1 = 1, and α = 1. The upper
panel shows that between frequencies of ω = 1.95
and ω = 2.05, there exist two steady-state response

amplitudes a, one on each branch of the oval-shaped
curve. For ω < 1.95 and ω > 2.05, there are no
nonzero fixed points. However, note that Eqs. (16) exist
on a cylindrical state space, and for these frequency
ranges they admit a “whirling” solution, whose mean
is approximated in the top panel. Examples of whirling
are depicted in the the lower panels for ω = 1.93 for
which the whirling solution travels from right to left,
and for ω = 2.055, for which the whirling solution
travels from left to right. As such, the amplitude a of
the leading order solution has a periodic fluctuation,
and the oscillator is quasiperiodic, as labeled in the top
panel of Fig. 4.

Asω increases, two fixed points in (a, γ ) are created
in a saddle-node bifurcation at ω = 1.95. Likewise,
when the frequency reaches ω = 2.05, the two fixed
points in (a, γ ) collide and disappear in another saddle-
node bifurcation. Panel 2 shows the two fixed points
after the first saddle-node bifurcation. With increasing
frequency, the saddle moves to the left, while the sta-
ble node moves to the right. In panel 3, at ω = 2.0, the
stable node has γ = 0 while the saddle has γ = ±π/2
and is visible at both sides of the slice of the cylin-
drical phase space. In panel 4, the saddle and node
have continued their trek to the left and right, respec-
tively, and they are now approaching each other. In
panel 5, at ω = 2.05, the second saddle-node bifurca-
tion has been reached, and the two fixed points coa-
lesce. Panel 6 then shows whirling trajectories after the
second saddle-node bifurcation.

Some information about the whirling orbits can be
gleaned from Eqs. (16) when α = 1. These equations
have a rectangular “trapping region” [35] bounded by
a2min = −4c0 − 2c1 and a2max = −4c0 + 2c1. These
bounds are shown as the gray shaded area in the top
panel. When ω = 1.93 and ω = 2.055 (before and
after the saddle-node bifurcations), there are no fixed
points in the trapping region, and therefore the trapping
region contains a whirling orbit bounded by amin and
amax. This is consistent with Figs. 2 and 4, where the
response amplitudes are trapped in the range [√2,

√
6].

Let us examine the temporal characteristics of the
whirling orbit. The second of Eqs. (16) is a differential
equation for γ which is independent of a. Depending
on c1 and σ , there can be a range of γ for which its
phase flow is fast, and a range that is slow. In the lower
part of Fig. 4, in panel 1 (negative σ ) the slow interval
is −π < γ < 0, while in panel 6 (positive σ ) the slow
interval is 0 < γ < π . In both cases, the γ flow is fast
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Resonances of a forced van der Pol equation 5275

Fig. 3 PDVDPwith parametric excitation only: nonzero steady-
state response amplitude versus the excitation frequency in the
case of subharmonic resonance where ωn = 1, ε = 0.1, and α =

1, from Eq. (17). Left: c0 = −1 and c1 = {0.2, 0.4, 0.6, 0.8, 1}.
Right: c1 = 1 and c0 = {−1,−0.7,−0.4,−0.1, 0.2}. Solid and
dotted curves are stable and unstable branches, respectively

Fig. 4 PDVDP with parametric excitation only. Top panel:
steady-state response amplitude versus excitation frequency
close to the subharmonic resonance. Bottom panel: amplitude-
phase trajectories at different corresponding frequencies ω =

{1.93, 1.98, 2, 2.04, 2.05, 2.055}. The simulation parameters are
ε = 0.1, ωn = 1, c0 = −1, c1 = 1, and α = 1. The range of the
vertical axes is 0 to 4, and the range of the horizontal axes is −π

to π

to amax and slow to amin, somewhat like a relaxation
oscillation. This effect can be seen in Fig. 2, for the
cases of ω = 1.93 and ω = 2.055, where the response
amplitudes decrease slowly to a = √

2, and increase
quickly to the maximum amplitude near a = √

6.

The second of Eq. (16) is independent of a and is
separable. It can be integrated to obtain T1 as a function
of γ . For example, when σ > 0, a cycle is completed
from γ = −π to γ = π . These conditions can be used
to determine the integration constants. As a result, and
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accounting for T1 = εt , the period of whirling is

Test = 2πε

σ
√
1 − (c1/2σ)2

, (20)

which is an estimate, since the slowflowofEq. (16)was
obtained through an asymptotic perturbation expan-
sion. Using this expression, the period of beating of
the solutions depicted in Fig. 2 is Test = 128 (nondi-
mensional) compared to the observed T = 135 for the
case of ω = 1.93, and Test = 225 compared to the
observed T = 274 for the case of ω = 2.055.

Since 2β = σT1 − γ , the leading-order solution is

x0 = a(T1) cos(ωnT0 + β(T1))

= a(T1) cos

(
1

2
(ωT0 − γ (T1)

)
. (21)

Thus, at subharmonic resonance, the response has a
reference frequency at half the forcing frequency, with
amplitude and phase fluctuations. When 1.95 < ω <

2.05 and there is a stable fixed point in (a, γ ), the
steady-state solution has a fixed amplitude and phase
and is phase locked. Otherwise the oscillator is in
phase drift: when ω < 1.95 the decreasing phase whirl
increases the mean frequency, and when ω > 2.05 the
increasing phase whirl decreases the mean frequency,
by an estimated amount 2π/Test, while the amplitude
fluctuates.

3.3 Comments

In the perturbation analysis of the systemwith no exter-
nal forcing, we have only detected a subharmonic res-
onance. The first-order perturbation analysis does not
reveal a primary or superharmonic resonance. Simi-
larly, the frequency sweep (Fig. 1) does not indicate
such resonant activity for the simulated parameters.

4 Parametric and external excitation

In this case, the external forcing terms f0 and f1 are
nonzero. Similar to the previous case, as a survey of the
possible dynamics, Fig. 5 shows a frequency sweep
from ω = 0 to beyond ω = 3ωn , with parameters
ωn = 1, c0 = −1, c1 = 1, f0 = 0.2, and f1 = 1 when
α = 1. The sweep is based on numerical simulations
and the steady-state response amplitudes are plotted.
The plot shows that significant quasiperiodic dynam-
ics occur for a large range of excitation frequencies

with periodic windows around ω ≈ ωn , ω ≈ 2ωn , and
ω ≈ 3ωn . The largest responses occur near the primary
resonance range. The expanded windows show details
of responses within subharmonic and superharmonic
resonances.

In this case, the particular solution to the leading
order Eq. (3) is

x0(T0, T1) = 
 + i� eiωT0

+ A(T1)e
iωnT0 − i� e−iωT0 + Ā(T1)e

−iωnT0 , (22)

where 
 = f0
ω2
n
and � = f1

2(ω2−ω2
n)
. By plugging

Eq. (22) into (4), we obtain

D0
2x1 + ωn

2x1 = (−2iωn A
′ − ic0ωn A − iαωn


2A

− iαωn A
2 Ā − 2αiωn�

2A)eiωnT0

+ (c0ω� + ωα
2� + ωα�3 + 2αωAĀ�)eiωT0

+
(c1
2

ω� + 2iαω
�2
)
e2iωT0

−αω�3 e3iωT0 + (i
c1
2

ωn Ā − 2ωnα�
 Ā

+ 2ωα�
 Ā)ei(ω−ωn)T0

+ iα(2ω − ωn)�
2 Āei(2ω−ωn)T0

+α(ω − 2ωn)� Ā2ei(ω−2ωn)T0 + c.c. + N.S.T.(23)

The right-hand side of Eq. (23) shows different cases
of resonance; each produces different secular terms.
Among all of the resonances in Eq. (23), we obtain the
following solvability conditions.

1. Nonresonant:

−2iωn A
′ − ic0ωn A − iαωn


2A − iαωn A
2 Ā

−2αiωn�
2A = 0 (24)

2. Primary resonance (ω = ωn + εσ ):

−2iωn A
′ − ic0ωn A − iαωn


2A

−iαωn A
2 Ā − 2αiωn�

2A

+(c0ω� + ωα
2� + ωα�3

+2αωAĀ� + i(2ω

−ωn)α�2 Ā)eiσT1 = 0 (25)

3. Subharmonic resonance of order 1/2 (ω = 2ωn +
εσ ):

−2iωn A
′ − ic0ωn A − iαωn


2A − iαωn A
2 Ā

−2αiωn�
2A + (i

c1
2

ωn Ā

+2(ω − ωn)α�
 Ā)eiσT1 = 0 (26)
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Resonances of a forced van der Pol equation 5277

Fig. 5 PDVDP with parametric and external excitation. The
numerically solved response amplitude versus the excitation fre-
quency ω where f0 = 0.2, f1 = 1, ωn = 1, ε = 0.1, c0 = −1,

c1 = 1, and α = 1. Small circles in the insert are predictions
from the perturbation analysis

4. Subharmonic resonance of order 1/3 (ω = 3ωn +
εσ ):

−2iωn A
′ − ic0ωn A − iαωn


2A − iαωn A
2 Ā

−2αiωn�
2A + (ω − 2ωn)α� Ā2eiσT1 = 0 (27)

5. Superharmonic resonance of order 2 (2ω = ωn +
εσ ):

−2iωn A
′ − ic0ωn A − iαωn


2A − iαωn A
2 Ā

−2αiωn�
2A + (

c1
2

ω� + 2iωα
�2)eiσT1 = 0

(28)

6. superharmonic Resonance of Order 3 (3ω = ωn +
εσ ):

−2iωn A
′ − ic0ωn A − iαωn


2A − iαωn A
2 Ā

−2αiωn�
2A − ωα�3eiσT1 = 0 (29)

Here we study cases 1, 3 and 5. Case 4 does not
involve the parametric term, and case 6 is of mini-
mal significance. However, the subharmonic of order
1/2 and the superharmonic of order 2 involve both van
der Pol and parametric damping terms together. (Note
that for the nonresonant case we include x1, which is
affected by c1, discussed below.)

Although Fig. 5 indicates the primary resonance as
a prominent case when ω ≈ ωn , the coefficient �

becomes singular and would contradict the multiple-
scales bookkeeping strategy. The analysis of primary
resonance case requires weak excitation, as well as a
second-order perturbation analysis to capture the para-
metric term, as in [24]. This will be analyzed in a sep-
arate study.

4.1 Nonresonant case

The solvability condition in Eq. (24) is not affected
by the parametric damping term and hence the behav-
ior is similar to the forced van der Pol equation [3,4].
In this case, the phase equation becomes β ′ = 0, and
hence the phase β is constant and does not influence
the oscillation frequency. Equation (24) yields the fol-
lowing steady-state solutions

a = 0, a = 2√
α

√
−c0 − α
2 − 2α�2, (30)

where the zero solution is unstable and the nonzero
solution exists and is stable when α
2+2α�2 < −c0.
Since α
2 + 2α�2 > 0, a negative value of c0 is nec-
essary (but not sufficient) for nonzero a. If the above
condition is not satisfied, then the trivial solution a = 0
is stable.
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Since the leading-order solution has the form

x0 = 
 − 2� sinωT0 + a cos(ωnT0 + β) (31)

when the condition α
2 + 2α�2 < −c0 is satisfied,
a �= 0 and the response becomes quasiperiodic. Other-
wise, with sufficient increase in the excitation (� and

), a is suppressed and the response becomes periodic,
known as quenching [3,4].

The parametric terms affect the first-order cor-
rection, x1, in the approximate solution x(t) =
x0(t0, T1) + εx1(T0, T1), similar to what was seen in
the unforced case. In eliminating the secular terms,
there are several contributions of different frequency
components, including 2ω,ω − ωn, ω + ωn, from
parametric excitation and van der Pol terms, and
2ωn, 3ωn, 3ω, 2ω − ωn, 2ω + ωn, ω − 2ωn, and ω +
2ωn , from the van der Pol terms. Thus the first-
order correction, x1, can contribute additional two-
frequency quasiperiodic effects which depend on para-
metric damping c1, and the content of the total response
has linear combinations of two independent frequen-
cies.

The numerical solutions in Fig. 6 demonstrate that
when ω = 0.12, the response is quasiperiodic. This is
consistent with the leading-order solution presented in
Eq. (31). Also shown in the figure are solutions near
subharmonic resonance, which is discussed in the next
section.

4.2 Subharmonic resonance of order 1/2

In this case, the excitation and natural frequencies are
related as ω = 2ωn + εσ . We see from the solvability
condition in Eq. (26) that in addition to the nonresonant
secular terms in Eq. (24), the parametric damping and
forcing appear. We substitute A(T1) = 1

2a(T1)eiβ(T1)

into the equation and let γ = σT1 − 2β. Then, the
autonomous coupled system of governing equations of
the amplitude a and phase γ becomes

a′ + 1

8
αa3 +

(c0
2

+ α
2

2

+α�2 − c1
4
cos γ + α
�(1 − ω

ωn
) sin γ

)
a = 0,

aγ ′ − aσ + c1
2
a sin γ +2aα
�(1− ω

ωn
) cos γ =0.

(32)

The fixed points of Eqs. (32) are obtained in the steady-
state case when a′ = γ ′ = 0, which admits a = 0 and

a nontrivial solution. The equations for the nontrivial
solution take the form

A1 sin γ + B1 cos γ = C1, A2 sin γ + B2 cos γ = C2,

where the coefficients A1, A2, B1, B2, C1, and C2

are functions of the parameters and the amplitude a
(increasing α reduces the steady-state amplitudes, a).
By solving for sin γ and cos γ , and using the trigono-
metric identities, we can first obtain the phase, and then
we remove the variable γ and form an algebraic equa-
tion to obtain the steady-state amplitude a as,

α2a4 + 8a2(αc0 + 2α2�2 + α2
2)

+4
(
4c0

2 + 16αc0�
2 − c1

2 + 16α2�4 + 4σ 2)

+16
2
(
2αc0 − 4α2�2 ω

ωn
(

ω

ωn
− 2) + α2
2

)
= 0.

(33)

Solving for a2 yields

a2 = −4
(c0

α
+ 
2 + 2�2

)

±2
�

√
(c12 − 4σ 2)

α2
2�2 + 16(ω − ωn)2

ωn
2

)
, (34)

which is valid if the square root in the solution is real,
and if a2 ≥ 0. The first criterion reduces to 4σ 2 <

c21 + 16α2
2�2, when using ω − ωn ≈ ωn . Thus the
frequency range of fixed amplitude solutions increases
with c1, f0, and f1.

Based onEq. (31) and the definition of γ , the leading
order solution takes the form

x0 = 
 − 2� sin(ωT0) + a cos
(ω

2
T0 − γ

2

)
. (35)

For the case when a and γ are fixed and stable, there
is a periodic (phase locked) response of fundamental
frequencyω/2.When a steady-state solution a does not
exist, the response is in phase drift and is quasiperiodic.

Figure 7 shows the steady-state response amplitude
versus the excitation frequency for small values of
detuning parameter, when ε = 0.1 and−σ0 < σ < σ0,
whereσ0 = 0.5.Note that these figures show the ampli-
tude a of one term in Eq. (35). The phase γ would affect
peak-to-peak amplitudes. The mean damping and peri-
odic forcings are set to be constant, c0 = −1 and f1 =
1, while different values of c1 = {0.2, 0.5, 1} produce
different closed curves. The larger values of c1 are asso-
ciated with the larger ovals. We see that as the constant
forcing term f0 is increasing between {0.2, 0.4, 0.6},
the ovals are expanding and the limit cycle amplitude
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Fig. 6 PDVDP with parametric and direct excitation: numerically solved time response (top row) and phase portrait (bottom row) at
different excitation frequencies where f0 = 0.2 and f1 = 1, ωn = 1, ε = 0.1, c0 = −1, c1 = 1, and α = 1

Fig. 7 PDVDP with parametric and external excitation in the
case of subharmonic resonance where ωn = 1, α = 1, ε = 0.1,
c0 = −1, and f1 = 1. The three plotted curves correspond to

c1 = {0.2, 0.5, 1}, and the panels are for f0 = {0.2, 0.4, 0.6}.
Upper and lower curves are stable and unstable branches, respec-
tively. The larger values of c1 produce the larger ovals

decreases, both very slightly. The upper curves repre-
sent the stable responses and the lower curves are the
unstable responses. The stable upper curves represent
responses with constant a and γ , and considering the
leading order solution of Eq. (35), responses are phase
locked. Outside the interval of the closed curve, a and
γ are not fixed, and we have phase drift.

Figure 6 shows two numerical phase-drift solutions
near subharmonic resonance. Like the unforced case,
ω = 1.93 and ω = 2.055 are outside the interval of

the subharmonic phase locking, as seen in the insert
of Fig. 5. The analytical estimates of amplitude, and
phase aswell, for the phase-locked case, can be inserted
into Eq. (35) to estimate the total response amplitude.
Samples within 1.95 < ω < 2.05 are plotted as circles
in the insert of Fig. 5.

Figure 8 shows the dynamics of the amplitude
and phase for the forced excitation, represented by
Eqs. (32). The behavior is similar to the unforced case.
For σ < σ0, a whirling solution travels from right
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Fig. 8 PDVDP with parametric and direct excitation.
Amplitude-phase trajectories at different corresponding frequen-
cies ω = {1.93, 1.98, 2, 2.04, 2.05, 2.055}. The simulation

parameters are ε = 0.1, ωn = 1, c0 = −1, c1 = 1, and α = 1.
The range of the vertical axes is 0 to 4, and the range of the
horizontal axes is −π to π

to left, and for σ > σ0 the whirling solution travels
from left to right. Therefore, in the leading order solu-
tion the amplitude a has a periodic fluctuation, and the
oscillator is quasiperiodic. If 4σ 2 < c21 + 16α2
2�2

there exists a nonzero response amplitude. For all σ

there is a trapping region [amin, amax], obtained from
the first of Eqs. (32) as amin = 1.27 and amax = 2.38
for the given parameters. These values are consistent
with Figs. 8 and 6. The second of Eqs. (32) is used
to find the time characteristics of the whirling orbit of
the system with the external excitation. For a complete
cycle, from γ = −π to γ = π , Test is calculated. Con-
sidering T1 = εt , the estimated period of whirling for
the case of panel 6 in Fig. 8 is Test = 286.1 compared
to the observed T = 241 in Fig. 6.

By considering Eqs. (32), we can argue that if there
are no fixed points in (a, γ ), we can expect whirling,
where the leading order solution (Eq. 35) includes a
time varying amplitude a, limited by [amin, amax] of the
trapping region, and phase γ , and as such the response
will be quasiperiodic. In contrast, when there is a sta-
ble fixed point in (a, γ ), the response becomes phase
locked and periodic. The subharmonic behavior of the

parametric plus direct excitation is thus similar to that
of the parametric excitation only, although the solu-
tions for the steady amplitudes are more complicated
and distorted by the direct excitation terms f0 and f1.

4.3 Superharmonic resonance of order 2

In this case, the excitation and natural frequency are
related as 2ω = ωn + εσ . Similar to the subharmonic
resonance, we see from the solvability condition in
Eq. (28) that in addition to the nonresonant secular
terms in Eq. (24), the parametric damping and forcing
terms are present. A(T1) = 1

2a(T1)eiβ(T1) is substituted
into the equation. Letting γ = σT1 − β, the coupled
system of governing equations of the amplitude a and
phase γ becomes

a′ + 1

8
αa3 +

(c0
2

+ 1

2
α
2 + α�2

)
a

−2α
�2 ω

ωn
cos γ − 1

2
c1�

ω

ωn
sin γ = 0,

aγ ′ − aσ + 2α
�2 ω

ωn
sin γ
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Fig. 9 PDVDP with parametric and external excitation. Steady-
state response amplitude versus the excitation frequency in the
case of superharmonic resonance whereωn = 1, α = 1, ε = 0.1,

c0 = −1, and f1 = 1. The three plotted curves correspond to
c1 = {0.2, 0.5, 1}, and the panels are for f0 = {0, 0.4, 0.8}

−1

2
c1�

ω

ωn
cos γ = 0. (36)

For the superharmonic case, the fixed points are found
by setting a′ = γ ′ = 0 in Eqs. (36). By taking a
similar approach as in the subharmonic case, an alge-
braic expression relating the steady-state amplitude a
to parameters can be obtained as

a2ωn
2
((
4c0 + α(a2 + 4
2 + 8�2)

)2 + 64σ 2
)

16�2ω2
(
16α2
2�2 + c12

) = 1.

(37)

Figure 9 demonstrates the steady-state response
amplitude for varying values of excitation frequen-
cies where ωn = 1, α = 1, ε = 0.1, c0 = −1,
c1 = {0.2, 0.5, 1}, and f0 = {0, 0.4, 0.8}. Marching
from the upper curves to the lower curves the value of
c1 is descending. Increasing f0 increases the amplitude
of the response such that the curves with lower values
of c1 are expanded more.

As seen in Fig. 5, the superharmonic window is
slender and yields to dominant primary resonance
curve. We looked at numerical solutions in a magnified
superharmonic sweep window (not shown here) and
observed that the superharmonic phase locking occur-
ring at ω ≈ 0.5 has very weak (slow) stability, reduc-
ing its observation in the full system. Slightly below
the superharmonic condition, it is likely that the per-
turbation of the slow flow overcomes its weak asymp-
totic solution, and apparently quasiperiodic behavior is
observed. The mechanism for how the primary reso-
nance curve dominates above the superharmonic will
be examined when primary resonance is studied later.

5 Brief examination of strong nonlinearity

The response of the system in Eq. (1) varies sig-
nificantly when the nonlinearity becomes stronger,
i.e., when ε increases. If ε is large enough, the perturba-
tion analysis is no longer valid. We resort to numerical
simulations by using the method explained in Sect. 3.
Figure 10 shows a frequency sweep with ω ∈ [0, 3.5]
for different values of ε ∈ [0.01, 3], where c0 = −1,
c1 = 1, and α = 1. At each frequency, the simulation
begins at the same initial conditions. While it is pos-
sible that multiple steady-state solutions coexist, only
one solution is obtained at each frequency. Significant
changes in the response can be observed at different fre-
quencies as ε takes larger values. This figure suggests
the possibility of chaotic behavior in the presence of
strongnonlinearity. In particular, Fig. 11 illustrates time
responses and phase portraits of the system with large
nonlinearity and suggests intermittency when ε = 2
and ω = 3.2.

6 Summary and conclusion

In this paper, we studied the responses of a forced
and unforced van der Pol equation with parametric
damping. The first-order method of multiple scales
and numerical solutions were used. Applications can
include vertical-axis wind turbine blade vibration,
which can have parametric damping and van-der-Pol
type terms in simplified models.

The parametric damping with no external excita-
tion was analyzed in nonresonant and subharmonic
resonance cases. The system shows an oscillatory
quasiperiodic behavior in the former case. In the latter
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Fig. 10 PDVDP with
parametric and direct
excitation: amplitude versus
excitation frequency for
different values of ε, where
f0 = 0.2 and
f1 = 1, ωn = 1, c0 = −1,
c1 = 1, and α = 1
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Fig. 11 PDVDP with parametric and direct excitation: time response (top row) and phase portrait (bottom row) at different excitation
frequencies where f0 = 0.2 and f1 = 1, ωn = 1, ε = 2, α = 1, c0 = −1 and c1 = 1

resonance case, we found the steady-state amplitude
versus the excitation frequency for different damping
parameters. When c0 = −1 (negative linear damp-
ing as with the van der Pol oscillator), the reso-
nant response amplitude increases with the parametric
damping c1. An increase in the mean value of damp-
ing c0 (i.e., making c0 less negative) decreases the
response amplitude. The dynamics of the amplitude
and phase showed saddle-node bifurcations coinciding
with the onset of phase locking, in which periodically
whirling amplitude and phase (quasiperiodic oscilla-
tions)were replacedwith a fixed steady-state amplitude
andphase (periodic oscillations). In the phase drift case,
the period of amplitude fluctuations could be estimated.

We then studied the parametrically damped van der
Pol equation with direct excitation. In the nonresonant
case, the parametric damping term does not contribute
in the solvability condition and therefore it showed
similar behavior as the forced van der Pol oscilla-
tor. The nonresonant system can exhibit the quenching
phenomenon when the excitation through the mean or
cyclic direct forcing is sufficiently large.

The subharmonic resonance behavior was similar to
that of the parametric excitation without direct excita-

tion, except that the direct excitation terms complicate
and distort the steady solutions. Saddle-node bifurca-
tions in the slow flow corresponded to transitions to
phase locking. The phase-drift amplitude-fluctuation
period was estimated. Increasing the parametric damp-
ing parameter, c1, increases the steady-state amplitude,
and the direct forcing, f0 and f1 perturbed the ampli-
tude curve.

In addition to the nonresonant and subharmonic res-
onance, the parametrically damped van der Pol oscilla-
tor with direct excitation experienced superharmonic
resonance. It was shown that the amplitude of the
response increases with c1, f0, and f1.

Our numerical studies showed the primary reso-
nance as a dominant forced response case. The anal-
ysis of this case requires further investigation that will
be done as a subsequent study with weak excitation.
Based on previous studies on the cases with forcing
and cyclic stiffness [24,36], we expect that a second-
order multiple-scales analysis should be considered to
correctly pull out the contribution of the parametric
damping to the different resonance cases.

123



5284 F. Afzali et al.

Numerical studies with strong nonlinearity sug-
gested responses with many harmonics and chaos are
possible.
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