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Abstract This paper studies the event-based decen-
tralized adaptive finite-time tracking control problem
of the interconnected nonlinear time-varying systems.
A novel tracking control strategy associating event-
triggered techniques, dynamic surface control, and
finite-time control is presented. Correspondingly, the
newly designed controller not only ensures finite-time
convergence but also decreases the communication bur-
den between the controller and the actuator. Moreover,
the complexity explosion problem caused by the back-
stepping design procedure can be excluded. In addi-
tion, the difficulty caused by the system uncertainty is
solved by utilizing bound estimation methods and con-
structing a suitable smooth function. Simulation results
verify the effectiveness of our proposed control strat-
egy.
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1 Introduction

During the several decades, the research of intercon-
nected nonlinear systems (INSs) has attracted intensive
attention due to the potential applications in model-
ing some practical systems, such as complex robotic
manipulator systems, aerospace systems, and power
supply systems [1–4]. The INSs are made up of a string
of nonlinear interconnected subsystems. Due to the
complexity of the interactions between subsystems, the
controller design is much more difficult than that of the
single-input single-output (SISO) or the multi-output
multiple-output (MIMO) nonlinear systems. By using
the backstepping approach, a large number of results
were devoted to solving control problems of intercon-
nected nonlinear systems, where the interconnection
term was described as a function of all subsystem out-
puts [5–8] or a function of all subsystem states [9–11].
Nevertheless, the backstepping approach has the dis-
advantage that the issue of “explosion of complexity”
due to the iterative differentiation of the virtual con-
trol during the design procedure, which increases the
computational burden.Therefore, to alleviate this issue,
the dynamic surface control (DSC) method was pro-
posed [12,13], by adopting a first-order filter at recur-
sive steps.

Moreover, the aforementioned control strategies
mainly focused on the problem of infinite time track-
ing control, that is, the control objectiveswere achieved
only when the time tends to infinite. Nevertheless, it is
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well known that the controlled system usually needs to
quickly reach steady response from transient response
in engineering practice. Tomeet actual needs, the prob-
lem of finite-time control (FTC) has also received
widely attention due to its realization of fast transient
performance. So far, many useful and valuable achieve-
ments have been obtained in [14–24]. For instance,
the finite time adaptive fuzzy decentralized control
strategy was presented in [25] for uncertain nonlinear
large-scale systems. The adaptive finite-time decentral-
ized control scheme was developed in [26] for INSs
with unknown multiplicative and additive faults. The
authors in [27] proposed a novel adaptive decentralized
finite-time tracking control scheme for INSs with input
quantization and strongly interconnected terms. More-
over, the authors proposed a robust finite-time sliding
mode controlmethod in [28] for nonlinear bilateral tele-
operators with variable time delays and disturbances.
However, it should be noted that the parameters con-
sidered in the above-mentioned controlled plants were
all limited to be constants. Thus, these FTC methods
cannot be easily extended to INSs with unknown time-
varying parameters.

On the other hand, the event-triggered control (ETC)
has been brought into focus, owing to its ability to
limit communication resources in practical applica-
tions. Compared with the conventional time-triggered
control in which the feedback signals are transmitted
periodically, ETC transmits signals through the com-
munication channel only if a predefined trigger mech-
anism is satisfied. In ETC-based systems, the update
and transmission of control signals is aperiodic and
it is determined by a predefined event-trigger mech-
anism. A sum of excellent results were presented for
various types of nonlinear systems [29–38]. To men-
tion a few, the adaptive fuzzy ETC issue was addressed
in [33] for nonlinear output feedback systems. A novel
event-triggered adaptive control approach was devel-
oped in [34] for uncertain nonlinear systems. For inter-
connected stochastic time delay nonlinear systemswith
unmodeled dynamics, [35] presented a decentralized
ETC strategy by adopting neural network estimation
and backstepping technique. Furthermore, the ETC
methods of the interconnected nonlinear systems were
investigated in [36–38]. Nevertheless, as far as we
know, the ETC issue for interconnected nonlinear time-
varying systems is rarely investigated. Therefore, it
is still challenging to construct an event-based decen-
tralized adaptive finite-time dynamic surface controller

that is suitable for such interconnected nonlinear time-
varying systems.

Based on these motivations, the event-based decen-
tralized adaptivefinite-timeDSC issue is considered for
interconnected nonlinear time-varying systems. The
major contributions of the designed control strategy
are listed in the following.

(1) Compared with the algorithm in [5–11], the con-
trol signals need to be periodically sampled and
updated, which causes a great waste of communi-
cation resources. To tackle this problem, the event-
triggeredmechanism is introduced in stepni of the
backstepping technology, which makes the con-
trol signal sample and update onlywhen the preset
conditions are met and reducing the communica-
tion burden.

(2) Different from the previous works [14–28], the
finite-time control problems of interconnected
nonlinear time-varying systems have not been
fully considered until now. Hence, the study on
thefinite-time control of such systemshave impor-
tant theoretical and engineering significance. Fur-
thermore, by applying the dynamic surface con-
trol technology, the “explosion of complexity”
problem caused by the repeated differentiations
of virtual control inputs in the backstepping-based
approach is circumvented.

(3) Unlike the finite time methods [25–27] or event
triggered results [35–37]where the systemsparam-
eters are assumed to be constants, the system
parameters allowed to be unknown and time-
varying. Due to the existence of unknown time-
varying parameters, the aforementioned control
methods cannot be directly applied. With the aid
of the bound estimation approach, the effect of
the unknown time-varying parameters are suc-
cessfully counteracted and global stability of the
overall closed-loop system is obtained.

The paper is organised as follows: some preliminar-
ies is presented in Sect. 2. Section 3 shows the design
process of the controller and the stability analysis. To
verify the effectiveness of the proposed control scheme,
a simulation example is given in Sect. 4. Section 5 is
the conclusions of this paper.

Notations R and Rn are denoted as the set of real num-
bers and the n-dimensional Euclidean space, respec-
tively. Z+ is the set of nonnegative real numbers. The
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transpose and the Euclidean norm of vectors or matri-
ces are represented by (·)T and ‖ · ‖, respectively.

2 Problem statement

2.1 Model description

Consider the interconnected nonlinear time-varying
systems as follows

ẋi,k = gi,k(t)xi,k+1 + θT
i (t) fi,k(x̄i,k)

+ ψi,k(y1, . . . , yN , t)

ẋi,ni = gi,ni (t)ui + θT
i (t) fi,ni (x̄i,ni )

+ ψi,ni (y1, . . . , yN , t)

yi = xi,1 (1)

where i = 1, . . . , N , k = 1, . . . , ni − 1; x̄i,k =
[xi,1, . . . , xi,k]; and xi = [xi,1, . . . , xi,ni ]T ∈ Rni , ui ∈
R, yi ∈ R represent the states, input and output of the
i th subsystem, respectively. In addition, gi,k(t) ∈ R,
θi (t) ∈ Rνi are unknown, bounded and piecewise con-
tinuous parameters; fi,k ∈ Rνi are known smooth func-
tions; and ψi,k ∈ R are unknown interactions among
subsystems.

The control goal of this article is to design an event-
based decentralized adaptive finite-time tracking con-
trolmethod so that the tracking error can converge to the
origin neighborhood in finite time, and all signals in the
closed-loop are bounded. For the subsequent develop-
ment, the following lemmas and assumptions are pro-
vided.

Lemma 1 [39] For any variable z ∈ R and any scalar
ε > 0, it holds that

0 ≤| z | − z2√
z2 + ε2

< ε (2)

Lemma 2 [34] For ∀ε > 0 and ∀s ∈ R, it follows that

0 ≤| s | −s tanh
( s

ε

)
≤ 0.2785ε (3)

Assumption 1 The target signal ydi (t) and its first
time derivative ẏdi (t) are known and bounded. More-
over, y(ni )

di (t) are piecewise continuous.

Assumption 2 The signs of gi,k(t) are known, and
gi,k(t) are bounded such that g

i,k
≤| gi,k |≤ ḡi,k ,

k = 1, . . . , ni with g
i,k

> 0 being positive constants.
Without loss of generality, we suppose that gi,k > 0.

Assumption 3 For k = 1, . . . , ni , ψi,k(y1, . . . , yN , t)
satisfies

ψ2
i,k(y1, . . . , yN , t) ≤

N∑
j=1

�i,k, jφi,k, j (y j ) (4)

where �i,k, j ≥ 0 and φi,k, j (y j ) > 0 are unknown
constants and known smooth functions, respectively.

Remark 1 Assumption 1 is a necessary condition
to guarantee the limitation of states. From [1,5,8],
Assumption 2 is a basic requirement to ensure the
controllability of the system. Assumption 3 is adapted
from [39] with the relaxation that �i,k, j are no longer
required to be known.

2.2 Finite-time stability

The following definition and lemmas are useful in the
FTC design.

Definition 1 [25] The χi = 0 is the equilibrium value
of the i th subsystem system χ̇i = fi (χi , ui ). The large-
scale systems are semiglobal practical finite-time stable
(SGPFS) if for all χi (t0) = χ0, there exists ε > 0 and
a settling time T (ε, χ0) < ∞ to make ‖ χi (t) ‖< ε,
for all t > t0 + T .

Lemma 3 [25]For z j ∈ R, j = 1, . . . , m, 0 < p ≤ 1,
then
(

m∑
i=1

|z j |
)p

≤
m∑

i=1

|z j |p≤ m1−p

(
m∑

i=1

|z j |
)p

(5)

Lemma 4 [14] For real variables Ξ and Δ, it holds
that

|Ξ |ζ1 |Δ|ζ2 ≤ ζ1

ζ1 + ζ2
ζ3|Ξ |ζ1+ζ2

+ ζ2

ζ1 + ζ2
ζ

− ζ1
ζ2

3 |Δ|ζ1+ζ2 (6)

where ζ1, ζ2 and ζ3 are positive constants.
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Fig. 1 The schematic diagram of two inverted pendulums on
carts

Lemma 5 [25] If there exist design parameters C > 0,
0 < β < 1 and σ̄ > 0 such that

V̇ (χ) =
N∑

i=1

V̇i (χi ) ≤ −CV β(χ) + σ̄ , (7)

then the systems χ̇i = fi (χ, ui ) are SGPFS for ∀t ≥
T ∗, where T ∗ = 1

(1−β)ηC [V 1−β(0) − σ̄
(1−η)C

1−β
β ] and

0 < η ≤ 1.

Remark 2 Some results regarding the FTC scheme
have been proposed in [25–27], where the system
parameters are restricted to be constant. Since the time-
varying parameters exist in all the differential equa-
tions, the considered systems (1) is more general and
complex than that in [25–27]. Furthermore, to the best
of our knowledge, the problem of decentralized adap-
tive finite-time tracking control of systems (1) with
event-triggered input and dynamic surface techniques
has not been addressed.

2.3 Structure of event-based decentralized adaptive
control systems

In practice, the subsystems of the interconnected sys-
tems can receive data packets discontinuously over dig-
ital networks. To further reduce the computational load,
a nonperiodic decentralised ETCwill be formulated by
adaptive backstepping techniques and event-sampled
states. The structure of event-based decentralized adap-
tive control for interconnected time-varying systems is
shown in Fig. 1.

For each subsystems, the control input is transferred
to the actuator only if the trigger mechanism is satis-
fied, and the control input is calculated continuously.
Obviously, the signal updated from the controller to the

actuator channel is reduced. Subsequently, a zero-order
hold (ZOH) is introduced to maintain the event sam-
pling state until the next trigger moment. Finally, the
resulting event-sampling closed-loop system is mod-
elled as a nonlinear impulsive dynamical system, and
boundedness of the system state and tracking error is
proved using the Lyapunov method. It is also proved
that a lower bound exists for inter-execution intervals,
that is, Zeno behavior is avoided.

3 Controller design and stability analysis

In this section, based on adaptive backstepping DSC
technique, an event-based decentralized adaptivefinite-
time tracking control strategy will be presented. In
addition, the system stability analysis will be presented
later in the framework of the finite-time Lyapunov sta-
bility theory.

3.1 Decentralized adaptive controller design

For the objective of control design, the n-step recur-
sive design procedure is developed. Subsequently, the
coordinate transformation is constructed as

zi,1 = yi − ydi (8)

zi,k = xi,k − βi,k (9)

φi,k = βi,k − αi,k−1, k = 2, . . . , ni (10)

where ydi is the reference signal, and zi,1 denotes the
tracking error, zi,k denotes the intermediate tracking
error. βi,k are a newly introduced intermediate variable.
αi,k−1 is an intermediate control function. φi,k is the
filter error.

Remark 3 Different from the coordinate transforma-
tion design of backstepping method, βi,k is introduced
to avert the differentiation operation of αi,k−1. The dif-
ferential operation in backstepping technique is trans-
formed into simple algebraic operation by adding a
first-order filter at each step of backstepping tech-
nique. Thus, the differential explosion problem can be
avoided. The details will be reflected in the following
control design process.

To simplify the controller design, we define

νi = sup
t≥0

‖ Θi (t) ‖ (11)
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�i,k = 1

g
i,k

(12)

ρi = max
1≤ j≤N ,1≤i≤ni

� j,k,i (13)

where Θi (t) = [θT
i (t), gi,1(t), . . . , gi,ni −1(t)]T ∈

Rνi +ni −1. Let ν̂i , �̂i,k and ρ̂i be the estimations of νi ,
�i,k and ρi , respectively. Correspondingly, the estima-
tion errors are denoted as ν̃i = ν̂i −νi , �̃i,k = �̂i,k −�i,k

and ρ̃i = ρ̂i − ρi . Besides, we take γνi , γ�i,k , γρi , σνi ,
σ�i,k and σρi (i = 1, . . . , N , k = 1, . . . , ni ) as positive
parameters to be designed in subsequent design steps
without restating.

Step i, 1: According to (8), we have

żi,1 = gi,1(t)zi,2 + gi,1(t)φi,2 + gi,1(t)αi,1

+ ΘT
i (t)ξi,1 + ψi,1 − ẏdi (14)

where ξi,1 = [ f T
i,1, . . . , 0]T ∈ Rνi +ni −1.

The Lyapunov function candidate is defined as

Vi,1 = 1

2
z2i,1 + 1

2γνi

ν̃2i + 1

2γρi

ρ̃2
i +

g
i,1

2γ�i,1

�̃2i,1 + 1

2
φ2

i,2

(15)

where �̂i,1(0) > 0, and differentiating (15) yields

V̇i,1 = zi,1(gi,1(t)zi,2 + gi,1(t)φi,2 + gi,1(t)αi,1

+ ΘT
i (t)ξi,1(xi,1) + ψi,1 − ẏdi ) + 1

γνi

ν̃i
˙̂νi

+ 1

γρi

ρ̃i
˙̂ρi +

g
i,1

γ�i,1

�̃i,1
˙̂
�i,1 + φi,2φ̇i,2 (16)

According to (11) and Lemma 1, one has

zi,1Θ
T
i (t)ξi,1 ≤| zi,1 | νi ‖ ξi,1 ‖≤ νi zi,1ηi,1 + νiεi,1

(17)

where ηi,1 = zi,1ξ
T
i,1ξi,1√

z2i,1ξ
T
i,1ξi,1+ε2i,1

.

From Assumption 3 and utilizing Young’s inequal-
ity, it follows that

zi,1gi,1φi,2 ≤ 1

2
ḡ2

i,1z2i,1 + 1

2
φ2

i,2 (18)

zi,1ψi,1 ≤ 1

4
z2i,1 +

N∑
j=1

�i,1, jφi,1, j (y j ) (19)

Construct the following smooth function to compen-
sate for the influence of the interactions as:

ϕi = 2zi,1

z2i,1 + λi

N∑
j=1

n j∑
k=1

φ j,k,i (yi ) (20)

where λi is a positive constant.
Combining (17)–(20), we can get

V̇i,1 ≤ zi,1

(
gi,1(t)zi,2 + gi,1(t)αi,1 + νiηi,1

+ 1

2
ḡ2

i,1zi,1 + 1

4
zi,1 + ρiϕi − ẏdi

)
+ νiεi,1

+
N∑

j=1

�i,1, jφi,1, j (y j ) − ρi zi,1ϕi + 1

γνi

ν̃i
˙̂νi

+ 1

γρi

ρ̃i
˙̂ρi +

g
i,1

γ�i,1

�̃i,1
˙̂
�i,1 + φi,2φ̇i,2 + 1

2
φ2

i,2

≤ −ci,1z2βi,1 + zi,1gi,1(t)zi,2 + zi,1gi,1(t)αi,1

+ zi,1ᾱi,1 + νiεi,1

+
N∑

j=1

�i,1, jφi,1, j (y j ) − ρi zi,1ϕi

+ 1

γνi

ν̃i ( ˙̂νi − γνi zi,1ηi,1)

+ 1

γρi

ρ̃i ( ˙̂ρi − γρi zi,1ϕi )

+
g

i,1

γ�i,1

�̃i,1
˙̂
�i,1 + φi,2φ̇i,2 + 1

2
φ2

i,2 (21)

where

ᾱi,1 = ci,1z2β−1
i,1 + ν̂iηi,1 + 1

2
ḡ2

i,1zi,1

+ 1

4
zi,1 + ρ̂iϕi − ẏdi (22)

with β = 2Z−1
2Z+1 , and ci,1 > 0 are design parameters.

From (21), the first tuning function for ν̂i is defined as

τi,1 = γνi zi,1ηi,1 − γνi σνi ν̂i (23)

and let

˙̂ρi = γρi zi,1ϕi − γρi σρi ρ̂i (24)

˙̂
�i,1 = γ�i,1 zi,1ᾱi,1 − γ�i,1σ�i,1 �̂i,1 (25)

123



3484 S. shi et al.

Then, we have

V̇i,1 ≤ −ci,1z2βi,1 + zi,1gi,1(t)zi,2 + zi,1gi,1(t)αi,1

+ zi,1ᾱi,1 + νiεi,1 +
N∑

j=1

�i,1, jφi,1, j (y j )

− ρi zi,1ϕi + 1

γνi

ν̃i ( ˙̂νi − τi,1)

− σνi ν̃i ν̂i − σρi ρ̃i ρ̂i + g
i,1

�̃i,1zi,1ᾱi,1

− g
i,1

σ�i,1 �̃i,1�̂i,1 + φi,2φ̇i,2 + 1

2
φ2

i,2 (26)

where

αi,1 = − zi,1�̂
2
i,1ᾱ

2
i,1√

z2i,1�̂
2
i,1ᾱ

2
i,1 + ε2i,1

(27)

Therefore, we have (for the detailed derivation pro-
cess, see Appendix A.)

V̇i,1 ≤ −ci,1z2βi,1 + zi,1gi,1(t)zi,2 + εi,1(gi,1
+ νi )

+
N∑

j=1

�i,1, jφi,1, j (y j ) − ρi zi,1ϕi

+ 1

γνi

ν̃i ( ˙̂νi − τi,1) − σνi ν̃i ν̂i − σρi ρ̃i ρ̂i

− g
i,1

σ�i,1 �̃i,1�̂i,1 + φi,2φ̇i,2 + 1

2
φ2

i,2 (28)

The first-order filter is defined as follows

λi,2β̇i,2 + βi,2 = αi,1, βi,2(0) = αi,1(0) (29)

where λi,2 > 0, βi,2 and αi,1 represent the output and
input of the first-order filter, respectively. According to
(29) and (10), it yields that β̇i,2 = − 1

λi,2
φi,2 and

φ̇i,2 = β̇i,2 − α̇i,1 = − 1

λi,2
φi,2 + Bi,1(·) (30)

where Bi,1(·) is a continuous function, and its expres-
sion is

Bi,1(·) = −∂αi,1

∂xi,1
ẋi,1 − ∂αi,1

∂�̂i,1

˙̂
�i,1 − ∂αi,1

∂ν̂i

˙̂νi

− ∂αi,1

∂ρ̂i

˙̂ρi − ∂αi,1

∂ydi
ẏdi − ∂αi,1

∂ ẏdi
ÿdi . (31)

Therefore, it can be further obtained

φi,2φ̇i,2 ≤ − 1

λi,2
φ2

i,2 + 1

2
B2

i,1 + 1

2
φ2

i,2 (32)

Substituting (32) into (28) produces

V̇i,1 ≤ −ci,1z2βi,1 + zi,1gi,1(t)zi,2 + εi,1(gi,1
+ νi )

+
N∑

j=1

�i,1, jφi,1, j (y j ) − ρi zi,1ϕi

+ 1

γνi

ν̃i ( ˙̂νi − τi,1) − σνi ν̃i ν̂i − σρi ρ̃i ρ̂i

− g
i,1

σ�i,1 �̃i,1�̂i,1 −
(

1

λi,2
− 1

)
φ2

i,2 + 1

2
B2

i,1

(33)

Step i, k :(2 ≤ k ≤ ni − 1)

żi,k = ẋi,k − β̇i,k

= gi,k(t)zi,k+1 + gi,k(t)φi,k+1 + gi,k(t)αi,k

+ θT
i (t) fi,k + ψi,k − β̇i,k (34)

Choose the following Lyapunov function

Vi,k = Vi,k−1 + 1

2
z2i,k +

g
i,k

2γ�i,k

�̃2i,k + 1

2
φ2

i,k+1 (35)

where �̂i,k(0) > 0.
Differentiating (35) generates

V̇i,k ≤ −
k−1∑
q=1

ci,q z2βi,q +
k−1∑
q=1

εi,q(μi,q + νi )

+
k−1∑
q=1

N∑
j=1

�i,q, jφi,q, j (y j ) − ρi zi,1ϕi

+ 1

γνi

ν̃i ( ˙̂νi − τi,k−1) − σνi ν̃i ν̂i − σρi ρ̃i ρ̂i

−
k−1∑
q=1

g
i,q

σ�i,q �̃i,q �̂i,q −
k∑

q=2

(
1

λi,q
− 1

)
φ2

i,q

+
k−1∑
q=1

1

2
B2

i,q + zi,k(gi,k(t)zi,k+1 + gi,kφi,k+1

+ gi,k(t)αi,k + ΘT
i (t)ξi,k + ψi,k − β̇i,k)
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+
g

i,k

γ�i,k

�̃i,k
˙̂
�i,k + φi,k+1φ̇i,k+1 (36)

where ξi,k = [ f T
i,k, 0, . . . , 0, zi,k−1, 0, . . . , 0]T ∈

Rνi +ni −1.
Similar to Step i, 1, we have

zi,k gi,k(t)φi,k+1 ≤ 1

2
ḡ2

i,k z2i,k + 1

2
φ2

i,k+1 (37)

zi,kΘ
T
i (t)ξi,k ≤ νi zi,kηi,k + νiεi,k (38)

zi,kψi,k ≤ 1

4
z2i,k +

N∑
j=1

�i,k, jφi,k, j (y j ) (39)

where ηi,k = zi,kξ
T
i,kξi,k√

z2i,kξ
T
i,kξi,k+ε2i,k

.

Substituting (37)–(39) into (36) yields

V̇i,k ≤ −
k∑

q=1

ci,q z2βi,q +
k−1∑
q=1

εi,q(g
i,q

+ νi ) + νiεi,k

+
k∑

q=1

N∑
j=1

�i,q, jφi,q, j (y j ) − ρi zi,1ϕi

+ 1

γνi

ν̃i ( ˙̂νi − τi,k) − σνi ν̃i ν̂i − σρi ρ̃i ρ̂i

−
k−1∑
q=1

g
i,q

σ�i,q �̃i,q �̂i,q −
k∑

q=2

(
1

λi,q
− 1

)
φ2

i,q

+
k−1∑
q=1

1

2
B2

i,q + zi,k gi,k(t)zi,k+1 + zi,k gi,k(t)αi,k

+ zi,k ᾱi,k +
g

i,k

γ�i,k

�̃i,k
˙̂
�i,k + φi,k+1φ̇i,k+1 (40)

with

ᾱi,k = ci,k z2β−1
i,k + ν̂iηi,k + 1

2
ḡ2

i,k + 1

4
zi,k + β̇i,k

(41)

τi,k = τi,k−1 + γνi zi,kηi,k (42)

The stabilizing function is selected as

αi,k = − zi,k �̂
2
i,k ᾱ

2
i,k√

z2i,k �̂
2
i,k ᾱ

2
i,k + ε2i,k

(43)

where �̂i,k is updated according to

˙̂
�i,k = γ�i,k zi,k ᾱi,k − γ�i,k σ�i,k �̂i,k (44)

Similar to (28), it can be deduced that

V̇i,k ≤ −
k∑

q=1

ci,q z2βi,q +
k∑

q=1

εi,q(g
i,q

+ νi )

+
k∑

q=1

N∑
j=1

�i,q, jφi,q, j (y j ) − ρi zi,1ϕi

+ 1

γνi

ν̃i ( ˙̂νi − τi,k) − σνi ν̃i ν̂i − σρi ρ̃i ρ̂i

−
k∑

q=1

g
i,q

σ�i,q �̃i,q �̂i,q −
k+1∑
q=2

(
1

λi,q
− 1

)
φ2

i,q

+
k∑

q=1

1

2
B2

i,q + zi,k gi,k(t)zi,k+1 + φi,k+1φ̇i,k+1

(45)

Define the following first-order filter

λi,k+1β̇i,k+1 + βi,k+1 = αi,k, βi,k+1(0) = αi,k(0)
(46)

where λi,k+1 > 0, βi,k+1 and αi,k are the output and
input of the first-order filter, respectively. From (46)
and (10), it follows that β̇i,k+1 = − 1

λi,k+1
φi,k+1 and

φ̇i,k+1 = β̇i,k+1 − α̇i,k = − 1

λi,k+1
φi,k+1 + Bi,k(·)

(47)

where Bi,k(·) is a continuous function, and its expres-
sion is

Bi,k(·) = −
k∑

q=1

∂αi,q

∂xi,q
ẋi,q − ∂αi,k

∂�̂i,k

˙̂
�i,k − ∂αi,k

∂ν̂i

˙̂νi

− ∂αi,k

∂ρ̂i

˙̂ρi − ∂αi,k

∂φi,k
φ̇i,k − ∂αi,k

∂ydi
ẏdi

− ∂αi,k

∂ ẏdi
ÿdi . (48)
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Hence, we have

φi,k+1φ̇i,k+1 ≤ − 1

λi,k+1
φ2

i,k+1 + 1

2
B2

i,k + 1

2
φ2

i,k+1

(49)

Therefore, we have

V̇i,k ≤ −
k∑

q=1

ci,q z2βi,q +
k∑

q=1

εi,q(g
i,q

+ νi )

+
k∑

q=1

N∑
j=1

�i,q, jφi,q, j (y j ) − ρi zi,1ϕi

+ 1

γνi

ν̃i ( ˙̂νi − τi,k) − σνi ν̃i ν̂i − σρi ρ̃i ρ̂i

−
k∑

q=1

g
i,q

σ�i,q �̃i,q �̂i,q −
k+1∑
q=2

(
1

λi,q
− 1

)
φ2

i,q

+
k∑

q=1

1

2
B2

i,q + zi,k gi,k(t)zi,k+1 (50)

Step i, ni : From (9), one has

żi,ni = ẋi,ni − β̇i,ni

= gi,ni (t)ui + θT
i (t) fi,ni + ψi,ni − β̇i,ni (51)

The following Lyapunov function is defined as

Vi,ni = Vi,ni −1 + 1

2
z2i,ni

+
g

i,ni

2γ�i,ni

�̃2i,ni
(52)

where �̂i,ni (0) > 0. Then, we have

V̇i,ni ≤ −
ni −1∑
q=1

ci,q z2βi,q +
ni −1∑
q=1

εi,q(g
i,q

+ νi )

+
ni −1∑
q=1

N∑
j=1

�i,q, jφi,q, j (y j ) − ρi zi,1ϕi

+ 1

γνi

ν̃i ( ˙̂νi − τi,ni −1) − σνi ν̃i ν̂i − σρi ρ̃i ρ̂i

−
ni∑

q=2

(
1

λi,q
− 1

)
φ2

i,q +
ni −1∑
q=1

1

2
B2

i,q

−
ni −1∑
q=1

g
i,q

σ�i,q �̃i,q �̂i,q +
g

i,ni

γ�i,ni

�̃i,ni
˙̂
�i,ni

+ zi,ni (gi,ni (t)ui + ΘT
i (t)ξi,ni + ψi,ni − β̇i,ni )

(53)

where ξi,ni = [ f T
i,ni

, 0, . . . , 0, zi,ni −1]T ∈ Rνi +ni −1.
Similar to Step i, k, we have

zi,ni Θ
T
i (t)ξi,ni ≤ νi zi,ni ηi,ni + νiεi,ni (54)

zi,kψi,k ≤ 1

4
z2i,ni

+
N∑

j=1

�i,ni , jφi,ni , j (y j ) (55)

where ηi,ni = zi,ni ξ
T
i,ni

ξi,ni√
zi,ni ξ

T
i,ni

ξi,ni +ε2i,ni

.

Substituting (54) and (55) into (53) shows

V̇i,ni ≤ −
ni∑

q=1

ci,q z2βi,q +
ni −1∑
q=1

εi,q(g
i,q

+ νi ) + νiεi,ni

+
ni∑

q=1

N∑
j=1

�i,q, jφi,q, j (y j ) − ρi zi,1ϕi

+ 1

γνi

ν̃i ( ˙̂νi − τi,ni ) − σνi ν̃i ν̂i − σρi ρ̃i ρ̂i

−
ni −1∑
q=1

g
i,q

σ�i,q �̃i,q �̂i,q −
ni∑

q=2

(
1

λi,q
− 1

)
φ2

i,q

+
ni −1∑
q=1

1

2
B2

i,q + zi,ni gi,ni (t)ui

+ zi,ni ᾱi,ni +
g

i,ni

γ�i,ni

�̃i,ni
˙̂
�i,ni (56)

where ᾱi,ni = ci,ni z
2β−1
i,ni

+ ν̂iηi,ni + 1
4 zi,ni + β̇i,ni ,

τi,ni = τi,ni −1 + γνi zi,ni ηi,ni .
The adaptive laws are constructed as follows

˙̂νi = τi,ni (57)

˙̂
�i,ni = γ�i,ni

zi,ni ᾱi,ni − γ�i,ni
σ�i,ni

�̂i,ni (58)

By substituting (57) and (58) into (56), we obtain
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V̇i,ni ≤ −
ni∑

q=1

ci,q z2βi,q +
ni −1∑
q=1

εi,q(g
i,q

+ νi ) + νiεi,ni

+
ni∑

q=1

N∑
j=1

�i,q, jφi,q, j (y j ) − ρi zi,1ϕi

− σνi ν̃i ν̂i − σρi ρ̃i ρ̂i −
ni∑

q=1

g
i,q

σ�i,q �̃i,q �̂i,q

−
ni∑

q=2

(
1

λi,q
− 1

)
φ2

i,q +
ni −1∑
q=1

1

2
B2

i,q

+ zi,ni gi,ni (t)ui + g
i,ni

�̃i,ni zi,ni ᾱi,ni + zi,ni ᾱi,ni

(59)

In the following, the event-triggered controller and
the event triggered mechanism are set as

ui (t) = ωi (ti,l), ∀t ∈ [ti,l , ti,l+1) (60)

ti,l+1 = inf{t > ti,l | |ei (t)|≥ δi |ui (t)|+mi } (61)

where mi > 0 and 0 < δi < 1 denote the design
parameters. ui (t) = ωi (ti,l) is the actual applied con-
trol signal and ωi (t) is designed as

ωi (t) = −(1 + δi )

(
αi,ni tanh

(
zi,niαi,ni

εi

)

+ m̄i tanh

(
zi,ni m̄i

εi

))
(62)

where ei (t) = ωi (t) − ui (t) is the measurement error,
and m̄i >

mi
1−δi

. In addition, ti,l , l ∈ Z+ denotes the
controller update time with ti,1 = 0, and ui (t) will
be held as ωi (ti,l) in the time interval t ∈ [ti,l , ti,l+1).
Once the triggering condition (61) is satisfied, ui (t)
will update as ωi (ti,l+1) and it is kept as ωi (ti,l+1) in
[ti+1, ti+2).

According to (61), it is not difficult to prove that
there have ωi (t) = (1 + oi1(t)δi )ui (t) + oi2(t)mi in
the time interval with t ∈ [ti,l , ti,l+1)with | oi1(t) |≤ 1
and | oi2(t) |≤ 1. Hence, one has

ui (t) = ωi (t)

1 + oi1(t)δi
− oi2(t)mi

1 + oi1(t)δi
(63)

and

zi,niωi (t)

1 + oi1(t)δi
≤ zi,niωi (t)

1 + δi
(64)

| oi2(t)mi

1 + oi1(t)δi
| ≤ mi

1 − δi
(65)

Furthermore, based on Lemmas 1 and 2, it follows
that

zi,ni gi,ni (t)ui (t) ≤ −gi,ni (t)zi,ni αi,ni tanh
zi,ni αi,ni

εi

− gi,ni (t)zi,ni m̄i tanh
zi,ni m̄i

εi

+ gi,ni (t)

∣∣∣∣
zi,ni mi

1 − δi

∣∣∣∣
≤ −gi,ni (t) | zi,ni αi,ni | +0.557ḡi,ni εi

− gi,ni (t) | zi,ni m̄i |
+ gi,ni (t)

∣∣∣∣
zi,ni mi

1 − δi

∣∣∣∣ (66)

Let

αi,ni = − zi,ni �̂
2
i,ni

ᾱ2
i,ni√

z2i,ni
�̂2i,ni

ᾱ2
i,ni

+ ε2i,ni

(67)

then, one has

zi,ni gi,ni (t)ui (t) ≤ g
i,ni

(εi,ni − �̂i,ni zi,ni ᾱi,ni )

+ 0.557ḡi,ni εi (68)

By substituting (68) into (59), it can be deduced that

V̇i,ni ≤ −
ni∑

q=1

ci,q z2βi,q +
ni∑

q=1

εi,q(g
i,q

+ νi )

+
ni∑

q=1

N∑
j=1

�i,q, jφi,q, j (y j ) − ρi zi,1ϕi

− σνi ν̃i ν̂i − σρi ρ̃i ρ̂i −
ni∑

q=1

g
i,q

σ�i,q �̃i,q �̂i,q

−
ni∑

q=2

(
1

λi,q
− 1)φ2

i,q +
ni −1∑
q=1

1

2
B2

i,q

+ 0.557ḡi,ni εi (69)

Using perfect square formula produces

−ν̃i ν̂i ≤ −1

2
ν̃2i + 1

2
ν2i (70)

−ρ̃i ρ̂i ≤ −1

2
ρ̃2

i + 1

2
ρ2

i (71)
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−�̃i,q �̂i,q ≤ −1

2
�̃2i,q + 1

2
�2i,q (72)

The Lyapunov function of the overall closed-loop
system is constructed as

V =
N∑

i=1

Vi,ni (73)

In view of (73), one can obtain

V̇ =
N∑

i=1

V̇i,ni (74)

It is proved in Appendix B that

V̇ ≤
N∑

i=1

[−ci V β
i,ni

+ σi ] (75)

where σi = ∑ni
q=1 εi,q(g

i,q
+ νi ) + σνi ν

2
i

2 + σρi ρ
2
i

2 +
∑ni

q=1 σ�i,q g
i,q

�2i,q
2 +∑ni −1

q=1
1
2 M2

i,q+1+4(1−β)β
β

1−β +
0.557ḡi,ni εi + Hi .

Combining with Lemma 3, we can deduce that

V̇ ≤ −CV β + σ̄ (76)

where C = min{ci , i = 1, . . . , N }, σ̄ = ∑N
i=1 σi .

Subsequently, we introduce the following theorem
to summarize our main results.

3.2 Stability analysis

This subsection will be divided into two parts consist-
ing of finite time stability analysis and the exclusion of
Zeno behavior.

Theorem 1 Consider interconnected nonlinear time-
varying systems (1), under Assumptions 1–3, the
parameters adaptive laws (24), (25), (44), (57), (58),
and the controller (60)with event-triggered mechanism
(61). Given any K0 > 0, p > 0, if y2di + ẏ2di + ÿ2di ≤ K0,
V (0) ≤ p, then the following results hold.

(1) The closed-loop system is SGPFS.
(2) The tracking error converges to the origin neigh-

borhood in finite time.

(3) All signals of the closed-loop system are bounded.

Proof Let T ∗ = 1
(1−β)ηC [V 1−β(0) − σ̄

(1−η)C

1−β
β ], 0 <

η ≤ 1, with zi (0) = [zi,1(0), . . . , zi,ni (0)]T , ρi (0) =
[0, . . . , ρi (0)]T ,νi (0) = [νi,1(0), . . . , νi,ni (0)]T ,φi (0)
= [0, φi,2(0), . . . , φi,ni (0)]T , �i (0) = [�i,1(0), . . . ,
�i,ni (0)]T , i = 1, . . . , N . Then, according to Lemma 5,
for ∀t ≥ T ∗, V β(zi , ρi , νi , �i , φi ) ≤ σ̄

(1−η)C , namely,
the closed-loop system is SGPFS.

In addition, for ∀t ≥ T ∗, by combining with the
definition of V , we have

N∑
i=1

ni∑
k=1

1

2
z2i,k ≤ V ≤

(
σ̄

(1 − η)C

) 1
β

(77)

which means zi,k are bounded, and zi,k can converge
into the following set

Ωzi,k =
{

zi,k | |zi,k |≤
√
2

(
σ̄

(1 − η)C

) 1
2β

,∀t ≥ T ∗
}

(78)

The above set when k = 1 means the system outputs
can track the desired target signals in finite time T ∗.

Based on (73) and (76), the following inequalities
can be obtained

N∑
i=1

1

2γνi

ν̃2i ≤ V ≤
(

σ̄

(1 − η)C

) 1
β

N∑
i=1

1

2γρi

ρ̃2
i ≤ V ≤

(
σ̄

(1 − η)C

) 1
β

N∑
i=1

ni∑
k=1

1

2γ�i,k

�̃2i,k ≤ V ≤
(

σ̄

(1 − η)C

) 1
β

N∑
i=1

ni∑
q=2

1

2
φ2

i,q ≤ V ≤
(

σ̄

(1 − η)C

) 1
β

(79)

Further, it can be inferred that

Ων̃i
=

{
ν̃i | |ν̃i |≤

√
2γνi

(
σ̄

(1 − η)C

) 1
2β

, ∀t ≥ T ∗
}

Ωρ̃i
=

{
ρ̃i | |ρ̃i |≤

√
2γρi

(
σ̄

(1 − η)C

) 1
2β

, ∀t ≥ T ∗
}
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Ω
�̃i,k

=
{

�̃i,k | |�̃i,k |≤
√
2γ�i,k

(
σ̄

(1 − η)C

) 1
2β

, ∀t ≥ T ∗
}

Ωφi,q =
{

φi,q | |φi,q |≤ √
2

(
σ̄

(1 − η)C

) 1
2β

, ∀t ≥ T ∗
}

(80)

On the basis of the convergence sets of zi,k (78),
ν̃i , ρ̃i , �̃i,k , φi,q (80), i = 1, . . . , N , q = 2, . . . , ni ,
we obtain that the errors zi,k , ν̃i , ρ̃i , �̃i,k , φi,q are able
to converge to a small residual set in finite time T ∗.
Clearly, all signals within the closed-loop are bounded.


�
Theorem 2 For this considered system (1) under
event-triggered mechanism (62), there exists a time
t∗ > 0 such that the inter-execution intervals tl+1 − tl
are lower bounded by t∗.

Proof By recalling ei (t) = ωi (t)−ui (t), together with
the fact of the control input signal holds as a constant
ui (t) = ωi (ti,l), ∀t ∈ [ti,l , ti,l+1), there has

ėi (t) = ω̇ ≤ |ω̇| (81)

The boundedness of all signals can be inferred
according to Theorem 1, and thus we can ensure |ω̇| <

ω0 with ω0 > 0. Based on (60), it is the fact that
ei (ti,l) = 0 and limt−→tl+1 ei (ti,l+1) = δi |ui (t)| + ωi .
Thus, one has
∫ ti,l+1

ti,l
ėi (t)dt ≤

∫ ti,l+1

ti,l
ω0dt

Hence, it can be inferred that

ti,l+1 − ti,l ≥ δi |ui (t)| + ωi

ω0
(82)

which yields the lower bound of inter-execution time
interval t∗ > 0. Therefore, the Zeno-behavior cannot
occur.

The proof is completed. 
�
From the above control design process and discus-

sion, the guidelines for parameter selection in the pro-
posed control scheme are given below.

(1) The design parameters can be selected such that
γνi > 0, γρi > 0, γ�i,1 > 0, σνi > 0, σρi > 0,
σ�i,1 > 0, λi > 0, 0 < β < 1, ci,1 > 0, εi,1 > 0,
λi,2 > 0 (i = 1, . . . , N ).And then, the tuning func-
tion τi,1 (23), the parameter adaptive laws ˙̂ρi (24),

˙̂
�i,1 (25), the intermediate control functionαi,1 (27),
and the first-order filter (29) can be determined.

(2) The design parameters can be chosen such that
ci,k > 0, εi,k > 0, λi,k+1 > 0, γ�i,k > 0, σ�i,k > 0
(i = 1, . . . , N , k = 2, . . . , ni − 1). Thus, the tun-
ing function τi,k (42), the parameter adaptive law
˙̂
�i,k (44), the intermediate control functionαi,k (43),
and the first-order filter (46) can be determined.

(3) The design parameters can be picked such that
ci,ni > 0, εi,ni > 0,mi > 0, 0 < δi < 1, γ�i,ni

> 0,
σ�i,ni

> 0, εi > 0 (i = 1, . . . , N ). Hence, the

parameter adaptive laws ˙̂νi (57),
˙̂
�i,ni (58), the con-

troller ui (60), and the event triggered mechanism
(61) can be determined.

Remark 4 From (76) or zi,1 ≤ √
2

(
σ̄

(1−η)C

) 1
2β
, we

see that the convergence rate of the tracking errors zi,1

depends on design parametersC and σ̄ , that is,γνi ,γ�i,k ,
γρi , σνi , σ�i,k , σρi , λi , ci,k , εi,k , and λi,k+1. Reducing
the radius of neighborhood and accelerating the con-
vergence rate of the variables in the systems (1) can
be achieved through increasing ci,k , γ�i,k , γνi , γρi , λi

and reducing εi,k , σνi , σρi , σ�i,k , β, εi , λi,k+1. Mean-
while, decreasing mi and m̄i can reduce the number of
triggering events. Nevertheless, from (24), (25), (44),
(57), (58) and (61), increasing ci,k , γ�i,k , γνi , γρi and
λi or decreasing εi,k , σνi , σρi , σ�i,k , β, εi , λi,k , mi and
m̄i may increase the amplitude of control signals. As a
result, from a practical point of view, a tradeoff should
bemade between the tracking performance and the con-
trol effort.

Remark 5 It follows from Lemmas 1–5 that, a novel
event-based decentralized adaptive finite-time DSC
sch-eme for interconnected nonlinear time-varying
systems with uncertain interactions can be obtained
based on the above analysis. Correspondingly, the
designed decentralized adaptive controller with param-
eter updated law not only guarantees that the closed-
loop system is SGPFS, and the system tracking errors
reach to the origin neighborhood in finite time, but also
the computation burden of the communication proce-
dure is substantially alleviated.

4 Simulation results

As an engineering practical example, two inverted pen-
dulums mounted on two carts [39], as displayed in Fig.
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Fig. 2 The schematic diagram of two inverted pendulums on
carts

2, are employed to illustrate the effectiveness and feasi-
bility of the given control strategy physical implemen-
tation. Consider the following dynamic equations for
the pendulums:

ÿ1 = 1

v(t)m1l20
u1 + ḡ

v(t)l0
y1 − m1

m2(t)
ẏ21 sin(y1)

+ k[δ(t) − v(t)l0]
v(t)m1l20

[δ(t)y2 − δ(t)y1 + l2(t)]

− l1(t)] + Δ1(t)

ÿ2 = 1

v(t)m1l20
u2 + ḡ

v(t)l0
y2 − m1

m2(t)
ẏ22 sin(y2)

+ k[δ(t) − v(t)l0]
v(t)m1l20

[δ(t)y1 − δ(t)y2 + l1(t)]

− l2(t)] + Δ2(t) (83)

where yi , ui , and Δi (i = 1, 2) denote the pendu-
lum angles, control torques and bounded disturbances,
respectively.

Define that xi,1 = yi , xi,2 = ẏi , i = 1, 2,
ζ1(t) = ḡ

v(t)l0
− k[δ(t)−v(t)l0]δ(t)

v(t)m1l20
, ζ2(t) = m1

m2(t)
,

ζ3,i (t) = (−1)i k[δ(t)−v(t)l0][l1(t)−l2(t)]
v(t)m1l20

+ Δi (t) and

ζ4(t) = k[δ(t)−v(t)l0]δ(t)
v(t)m1l20

, and then (83) can be expressed
as:

ẋi,1 = xi,2

ẋi,2 = gi,2(t)ui + θT
i (t) fi,2(xi ) + ψi,2

yi = xi,1, i = 1, 2 (84)
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0

2

z11 under event-triggered control
z11 under time-triggered control

Fig. 3 Trajectories of subsystem1under event-triggered scheme
and time-triggered scheme

where gi,2(t) = 1
v(t)m1l20

, θi (t) = [ζ1(t), ζ2(t), ζ3,i
(t)]T , fi,2(xi ) = [yi ,−ẏi sin(yi ), 1]T , and the non-
linear interconnection term areψ1,2 = ζ4(t)y2,ψ2,2 =
ζ4(t)y1. In addition, the target signals are set as ydi =
0.5 sin(t).

To check Assumption 3, which needs to be sat-
isfied: �1,2,1 = �2,2,2 = 0, �1,2,2 = �2,2,1 =
supt≥0 ζ 2

4 (t)φ1,2,1(y1) = φ2,2,2(y2) = 0, φ1,2,2(y2) =
y22 , φ2,2,1(y1) = y21 . The design parameters are
selected as c11 = c12 = c21 = c22 = 2, λ1 =
λ2 = 2, σν1 = σν2 = 0.02, σρ1 = σρ2 = 0.035,
σ�12 = σ�22 = 0.055, ε11 = ε12 = ε21 = ε22 =
0.005, γν1 = γν2 = 5, γρ1 = γρ2 = 10, γ�12 =
γ�22 = 3, β = 13

15 , λ12 = λ22 = 0.1, δ1 = δ2 =
0.01, m1 = m2 = 4. Besides, the initial values
are set as [x11, x12, x21, x22] = [0.5, 0.4, 0.5, 0.4]T ,
[ν̂1(0), ν̂2(0)] = [1, 1]T , [ρ̂1(0), ρ̂2(0)] = [9, 9]T ,
[�̂12(0), �̂22(0)] = [12, 12]T , [β12(0), β22(0)] =
[0.01, 0.01]T .

The simulation results are displayed in Figs. 3, 4, 5, 6
and 7. More specifically, Figs. 3 and 4 give the out-
put response curves and the tracking error trajectories
of subsystems 1 and 2 under event-triggered control
and time-triggered control. From Figs. 3 and 4, it can
be seen that compared with traditional time-triggered
control, the proposed event-based decentralized adap-
tive finite-time controller has satisfactory tracking per-
formance even in the presence of time-varying uncer-
tainties. Figure 5 presents the trajectory of the con-
trol signal. The trajectories of the adaptive laws are
displayed in Fig. 6, which illustrates that the adaptive
parameters of each subsystem are bounded. The num-
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Fig. 4 Trajectories of subsystem2under event-triggered scheme
and time-triggered scheme
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Fig. 5 Trajectories of ui and ωi , i = 1, 2
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Fig. 6 Trajectories of adaptive parameters ν̂i , ρ̂i and �̂i,2, i =
1, 2

ber of the triggering events is exhibited in Fig. 7. Table 1
depicts the number of triggering instants with both the
presented ETC and the corresponding time-triggered

0 5 10 15
T(sec)

0

0.1

0.2

0.3

Inter-event interval of subsystem 1

0 5 10 15
T(sec)

0

0.2

0.4

Inter-event interval of subsystem 2

Fig. 7 Inter-event intervals

control methods. It is found that out of 15,000 sam-
pling instants, that only 394 and 327 instants are trig-
gered for subsystem 1 and subsystem 2, respectively.
Therefore, compared with the time-triggered control,
the event-triggered strategy can significantly reduce the
amount of data sampling and/or transmission over the
network while maintaining satisfactory system perfor-
mance. Furthermore, Fig. 8 is added to illustrate the
effect of filter parameter λi,2 on the system tracking
performance. It is clearly shown that decreasing λi,2

diminishes the differences of zi,1, which rigorously val-
idates the theoretical result in Remark 4.

Additionally, to demonstrate the effectiveness of
considering finite-time convergence in the controller
design, a comparison with a nonfinite-time controller
developed in [13] is carried out. The compared track-
ing error trajectories are plotted in Fig. 9. It can be seen
that compared to the nonfinite-time controller, our pro-
posed finite time controller under reaches the steady
state in a shorter time, which in turn reflects the bet-
ter tracking performance and robustness of our devel-
oped control scheme. The simulation figures show that
the proposed event-based decentralized adaptive finite-
time tracking control strategy guarantees the stability

Table 1 Comparison of trigger times under different control
methods

Methods Trigger times in the subsystem

Subsystems 1 Subsystems 2

This paper 394 327

Time-triggered control 15,000 15,000
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Fig. 8 Trajectories of the tracking error zi,1 under various values
of λi,2, i = 1, 2
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Fig. 9 Trajectories of the tracking error zi,1, i = 1, 2

of the closed-loop system in finite time.What’s more, it
achieves satisfactory performance while reducing sam-
pling instances, thereby greatly reducing resource con-
sumption.

5 Conclusion

A decentralized adaptive finite-time tracking control
strategy based on event-triggered has been developed
for interconnected nonlinear time-varying systems.
By incorporating smooth functions into the controller
design and applying bounded estimation method, the
effect of the system uncertainty can be successfully
eliminated. Then, by adding a first-order filter in each
stage of backstepping technique, thus the complex-
ity explosion problem can be addressed. Furthermore,
combining event-trigger mechanism and dynamic sur-

face technique, a new event-based decentralized adap-
tive finite-time tracking controller is constructed for the
considered system under the framework of finite-time
stability theory. Finally, simulation examples confirm
the feasibility of our proposed controller.
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A Appendix: Derivation of inequality (28)

Proof Based on Assumption 2 and Lemma 1, one can
obtain

zi,1gi,1(t)αi,1 = −gi,1(t)
z2i,1�̂

2
i,1ᾱ

2
i,1√

z2i,1�̂
2
i,1ᾱ

2
i,1 + ε2i,1

≤ −g
i,1

z2i,1�̂
2
i,1ᾱ

2
i,1√

z2i,1�̂
2
i,1ᾱ

2
i,1 + ε2i,1

= g
i,1

⎡
⎣− z2i,1�̂

2
i,1ᾱ

2
i,1√

z2i,1�̂
2
i,1ᾱ

2
i,1 + ε2i,1

⎤
⎦

≤ g
i,1

(εi,1 − �̂i,1|zi,1ᾱi,1|)
≤ g

i,1
(εi,1 − �̂i,1zi,1ᾱi,1) (A.1)

Then, from (26), one has

V̇i,1 ≤ −ci,1z2βi,1 + zi,1gi,1(t)zi,2 + εi,1(gi,1
+ νi )

+ (g
i,1

�̃i,1 − g
i,1

�̂i,1)zi,1ᾱi,1 + zi,1ᾱi,1

+
N∑

j=1

�i,1, jφi,1, j (y j ) − ρi zi,1ϕi
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+ 1

γνi

ν̃i ( ˙̂νi − τi,1) − σνi ν̃i ν̂i − σρi ρ̃i ρ̂i

− σ�i,1 �̃i,1�̂i,1 + φi,2φ̇i,2 + 1

2
φ2

i,2 (A.2)

Noting g
i,1

�̃i,1 − g
i,1

�̂i,1 = −g
i,1

�i,1 = −1, which
yields (28). This ends the proof of (28). 
�

B Appendix: Derivation of inequality (75)

Proof Define the compact set as follows Πi0 :=
{(ydi , ẏdi , ÿdi ) : y2di + ẏ2di + ÿ2di ≤ K0}, Πi,k :=
{Vi (t) ≤ pi } where K0, pi > 0, i = 1, . . . , N ,
k = 1, . . . , ni −1. Clearly, for every i and k,Πi0×Πi,k

is also a compact set. Therefore, the continuous func-
tion Bi,k has a maximum, say, Mi,k , on Πi0 × Πi,k .
Hence, one has |Bi,k | ≤ Mi,k .

Thus, according to Lemma 3, and substituting (70)–
(72) into (69), we get

V̇ ≤
N∑

i=1

⎡
⎢⎣−ci

⎛
⎝

ni∑
q=1

1

2
z2i,q

⎞
⎠

β

− ci

⎛
⎝

ni∑
q=2

1

2
φ2

i,q

⎞
⎠

β

+ ci

⎛
⎝

ni∑
q=2

1

2
φ2

i,q

⎞
⎠

β

− ci

ni −1∑
q=1

1

2
φ2

i,q+1

− ci

(
1

2γνi

ν̃2i

)β

+ ci

(
1

2γνi

ν̃2i

)β

− ci

(
1

2γνi

ν̃2i

)
− ci

(
1

2γρi

ρ̃2
i

)β

+ ci

(
1

2γρi

ρ̃2
i

)β

− ci

(
1

2γρi

ρ̃2
i

)

− ci

⎛
⎝

ni∑
q=1

g
i,q

2γ�i,q

�̃2i,q

⎞
⎠

β

+ ci

⎛
⎝

ni∑
q=1

g
i,q

2γ�i,q

�̃2i,q

⎞
⎠

β

− ci

⎛
⎝

ni∑
q=1

g
i,q

2γ�i,q

�̃2i,q

⎞
⎠

+
ni∑

q=1

εi,q(g
i,q

+ νi ) + σνi ν
2
i

2
+ σρi ρ

2
i

2

+
ni∑

q=1

σ�i,q g
i,q

�2i,q

2
+

ni −1∑
q=1

1

2
M2

i,q+1

+ 0.557ḡi,ni εi + hi

]
(B.1)

with ci = min1≤i≤N ,1≤q≤ni {2β−1ki , 2
(

1
λi,q

− 1
)

, σνi

γνi , σρi γρi , σ�i,q γ�i,q }, ki = min1≤q≤ni {ki,q} and hi =∑N
j=1

∑n j
q=1 � j,q,iφ j,q,i (yi ) − ρi zi,1ϕi are the uncer-

tain terms generated by interactions.
Due to φ j,q,i ≥ 0 and the definitions of ρi and ϕi ,

we have

hi ≤ ρi

N∑
j=1

n j∑
q=1

φ j,q,i (yi ) − ρi zi,1ϕi

= ρi
λi − z2i,1
z2i,1 + λi

N∑
j=1

n j∑
q=1

φ j,q,i (yi ) (B.2)

By (B.2), it can be deduced that, for each i =
1, . . . , N , on the one hand, if | zi,1 |> √

λi , hi < 0.
And on the other hand, if | zi,1 |≤ √

λi , yi is bounded
from (8). In summary then, hi has an upper bound
Hi ≥ 0.

Then, applying Lemma 4, let Ξ1 = ∑ni
q=2

1
2φ

2
i,q ,

Ξ2 = 1
2γρi

ρ̃2
i , Ξ3 = 1

2γνi
ν̃2i , Ξ4 = ∑ni

q=1

g
i,q

2γ�i,q
�̃2i,q ,

Δ = 1, ζ1 = β, ζ2 = 1 − β, ζ3 = β−1, it follows that

⎛
⎝

ni∑
q=2

1

2
φ2

i,q

⎞
⎠

β

≤
ni∑

q=2

1

2
φ2

i,q + (1 − β)β
β

1−β

(
1

2γρi

ρ̃2
i

)β

≤ 1

2γρi

ρ̃2
i + (1 − β)β

β
1−β

(
1

2γνi

ν̃2i

)β

≤ 1

2γνi

ν̃2i + (1 − β)β
β

1−β

⎛
⎝

ni∑
q=1

g
i,q

2γ�i,q

�̃2i,q

⎞
⎠

β

≤
ni∑

q=1

g
i,q

2γ�i,q

�̃2i,q + (1 − β)β
β

1−β

(B.3)

Then, substituting (B.2) and (B.3) into (B.1), we
have

V̇ ≤
N∑

i=1

⎡
⎢⎣−ci

⎛
⎝

ni∑
q=1

1

2
z2i,q

⎞
⎠

β

− ci

⎛
⎝

ni∑
q=2

1

2
φ2

i,q

⎞
⎠

β

− ci

(
1

2γνi

ν̃2i

)β

− ci

(
1

2γρi

ρ̃2
i

)β
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− ci

⎛
⎝

ni∑
q=1

g
i,q

2γ�i,q

�̃2i,q

⎞
⎠

β

+
ni∑

q=1

εi,q(g
i,q

+ νi ) + σνi ν
2
i

2
+ σρi ρ

2
i

2

+
ni∑

q=1

σ�i,q g
i,q

�2i,q

2
+

ni −1∑
q=1

1

2
M2

i,q + 4(1 − β)β
β

1−β

+ 0.557ḡi,ni εi + Hi

]
(B.4)

Inequality (75) is then obtained. 
�
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