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Abstract This paper is concerned with the global
dynamics of a continuous planar piecewise linear dif-
ferential system with three zones, where the dynamic
of the one of the exterior linear zones is saddle and the
remaining one is anti-saddle. We give all global phase
portraits in the Poincaré disc and the complete bifur-
cation diagram including boundary equilibrium bifur-
cation curves, degenerate boundary equilibrium bifur-
cation curves, homoclinic bifurcation curves and dou-
ble limit cycle bifurcation curves. Its application in a
second-order memristor oscillator is shown. Finally,
some numerical phase portraits are demonstrated to
illustrate our theoretical results.
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1 Introduction

In recent years, there has been tremendous interest in
developing piecewise linear differential systems, see
[1,3–6,21,23,26,28,30,35,39] and references therein.
In applied science and engineering, piecewise lin-
ear differential systems can model a large number of
nonlinear problems. Particularly, the global dynam-
ics of some nonlinear models can be approximated
by piecewise linear differential systems, such as some
memristor oscillators (see [7–10,18,24,31,32,36]) and
FitzHugh–Nagumo system (see [33,34,37]). Although
piecewise linear differential systems seem simple, they
have rich and complex dynamics even with the low-
dimensional spaces. Moreover, piecewise linear differ-
ential systems have not only all the dynamics of gen-
eral smooth nonlinear systems (such as limit cycles,
homoclinic loops, heteroclinic loops, strangle attrac-
tors and so on), but also special dynamical behaviors
(such as jump bifurcation, grazing bifurcation, sliding
bifurcation, singular continuous systems and so on),
see [18,19] and references therein.

This paper focuses on planar piecewise linear dif-
ferential systems. There are two types of these sys-
tems: “continuous” and “discontinuous”. For continu-
ous planar piecewise linear (CPWL) differential sys-
tems with two linear zones separated by a straight line,
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the study of their dynamics has been well considered.
For such system the existence of at most one limit
cycle was given in [20]. A necessary and sufficient
condition of the existence of limit cycles was proven
in [31]. Global phase portraits in the Poincaré disc
with single equilibrium point were shown in [25]. A
lot of effort has been devoted to characterize the global
dynamics of CPWL differential systems with three lin-
ear zones separated by two parallel straight lines, see
[8–14,19,21,27,29,31,32,35] and references therein.
However, there are still many cases that have not been
studied.

In this paper, we consider a CPWL differential sys-
tem with three linear zones in Liénard form as follows

dx

dt
= F(x) − y,

dy

dt
= g(x) − α, (1)

where

F(x) =
⎧
⎨

⎩

tr (x − 1) + tc, if x > 1,
tcx, if − 1 ≤ x ≤ 1,
tl(x + 1) − tc, if x < −1,

and

g(x) =
⎧
⎨

⎩

dr (x − 1) + dc, if x > 1,
dcx, if − 1 ≤ x ≤ 1,
dl(x + 1) − dc, if x < −1.

The plane R
2 is divided into three open linear zones

Sl := {(x, y) ∈ R
2|x < −1},

Sc := {(x, y) ∈ R
2| − 1 < x < 1},

Sr := {(x, y) ∈ R
2|x > 1}

by two parallel straight lines �l := {(x, y) ∈ R
2|x =

−1} and �r := {(x, y) ∈ R
2|x = 1}. Note that system

(1) is analytic inR
2\{�l∪�r } andLipschitz continuous

inR
2. Thus the classical theoremson existence, unique-

ness and continuity of solutions all hold for system (1)
with respect to initial conditions and parameters, see
[31].

In particular, when system (1) is symmetric with
respect to the origin (tr = tl , dr = dl and α = 0),
the global dynamics of system (1) have been stud-
ied in [8,9,21,27,29] and references therein. When
the determinant for the Jacobian matrix of its central
zone vanishes (dc = 0), we call system (1) with three
zones degenerate planar piecewise linear differential
systems. The study of the global dynamics of such sys-
tems has been completely investigated when tr tl < 0,
dr > 0 and dl > 0, see [11,14,19]. The conditions of

dr > 0 and dl > 0 mean that the dynamics of left and
right linear zones of system (1) are anti-saddles. For
the case dr > 0, dc �= 0 and dl > 0, there are many
results about global dynamics for system (1), such as
the N -shaped curve (tr tl > 0) (see [12,31,35]) and
the U -shaped curve (tr tl < 0) (see [10,31,32]). How-
ever, there is a gap that no research concerns the global
dynamics of system (1) with three linear zones assum-
ing drdl < 0. The condition drdl < 0 implies that the
dynamic of one of the left and right linear zones of sys-
tem (1) is saddle, and the remaining one is anti-saddle.
System (1)with drdl < 0 has not only the same dynam-
ics of system (1) with dr > 0, dl > 0 (for example, the
existence of exactly two limit cycles), but also special
dynamical behaviors (for example, the coexistence of
limit cycle and homoclinic loop). This shows that the
dynamics of system (1)with conditiondrdl < 0 ismore
complex than the case dr > 0, dl > 0, even assuming
the other conditions are the same. The main purpose
of this paper is to study system (1) whose parameters
belong to the following region:

G := {(tr , tl , dr , dc, dl) ∈ R
5| tr tl > 0, drdl < 0}.

For simplicity, G can be divided into the following four
parameter regions:

G1 := {(tr , tl , dr , dc, dl) ∈ R
5| tr > 0,

tl > 0, dr > 0, dl < 0},
G2 := {(tr , tl , dr , dc, dl) ∈ R

5| tr > 0,

tl > 0, dr < 0, dl > 0},
G3 := {(tr , tl , dr , dc, dl) ∈ R

5| tr < 0,

tl < 0, dr > 0, dl < 0},
G4 := {(tr , tl , dr , dc, dl) ∈ R

5| tr < 0,

tl < 0, dr < 0, dl > 0}.

Using transformation

(x, y, t, tr , tc, tl , dr , dc, dl , α)

→ (−x,−y, t, tl , tc, tr , dl , dc, dr ,−α)

(resp.(x, y, t, tr , tc, tl , dr , dc, dl , α)

→ (x,−y,−t,−tr ,−tc,−tl , dr , dc, dl , α);
(x, y, t, tr , tc, tl , dr , dc, dl , α)

→ (−x, y,−t,−tl ,−tc,−tr , dl , dc, dr ,−α))

the vector field (F(x) − y, g(x) − α) of system (1)
is invariant and the parameter region G2 (resp. G3; G4)
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can be changed into the parameter region G1. Thus, it
suffices to discuss system (1) in the parameter region
G1. Since the value of the determinant for the Jacobian
matrix of central zone of system (1) is dc, the condi-
tion dc < 0 (resp. dc > 0) means that the dynamic of
its central zone is saddle (resp. anti-saddle). And the
condition dc = 0 implies that system (1) has a singu-
lar continuum. Therefore, system (1) will be studied
in three cases dc < 0, dc = 0 and dc > 0. Although
the qualitative property of equilibrium point at infin-
ity is the same for system (1) in the cases dc > 0 and
dc ≤ 0, the results for the finite equilibrium point are
utterly different. Naturally, the global phase portraits
and bifurcations of system (1) with dc > 0 are com-
pletely different from those of system (1) with dc ≤ 0.
Owing to the length of this article, we consider two
cases dc = 0 and dc < 0 in G1. For the case dc > 0 in
G1, we will study the global dynamics of system (1) in
a future paper.

An outline of this paper is as follows. We devote
Sect. 2 to a show of the main results, i.e., the bifur-
cation diagram in the αtc-plane and global phase por-
traits in the Poincaré disc of system (1) as parameters
belong to the region G1 for dc ≤ 0. Its application in a
second-order memristor oscillator is shown in Sect. 3.
We give the local dynamics of system (1) in Sect. 4. The
study of limit cycles and homoclinic loops of system
(1) is presented in Sect. 5. Proofs of the main results
are given in Sect. 6. Numerical phase portraits are then
presented in Sect. 7, illustrating the analytical results.
Finally, some concluding remarks of this paper are pre-
sented in Sect. 8.

2 Main results

In this paper, we consider the cases dc = 0 and dc < 0
for system (1) in G1. The condition t2r − 4dr < 0 (resp.
= 0; > 0) implies that the dynamic of right linear zone
of system (1) is a focus (resp. improper node; bidirec-
tional node) (see Lemma 4.1 for more descriptions).
Moreover, system (1) has the different qualitative prop-
erties of equilibrium point at infinity for the different
conditions t2r −4dr < 0 or t2r −4dr = 0 or t2r −4dr > 0
(see Lemma 4.2 for more descriptions). It follows from
classified discussion that we show the main results of
this paper in the following six regions:

G11 := {(tr , tl , dr , dc, dl) ∈ R
5| tr > 0, tl > 0,

dr > 0, dc = 0, dl < 0, t2r − 4dr < 0} ⊂ G1,
G12 := {(tr , tl , dr , dc, dl) ∈ R

5| tr > 0, tl > 0,

dr > 0, dc = 0, dl < 0, t2r − 4dr = 0} ⊂ G1,
G13 := {(tr , tl , dr , dc, dl) ∈ R

5| tr > 0, tl > 0,

dr > 0, dc = 0, dl < 0, t2r − 4dr > 0} ⊂ G1,
G14 := {(tr , tl , dr , dc, dl) ∈ R

5| tr > 0, tl > 0,

dr > 0, dc < 0, dl < 0, t2r − 4dr < 0} ⊂ G1,
G15 := {(tr , tl , dr , dc, dl) ∈ R

5| tr > 0, tl > 0,

dr > 0, dc < 0, dl < 0, t2r − 4dr = 0} ⊂ G1,
G16 := {(tr , tl , dr , dc, dl) ∈ R

5| tr > 0, tl > 0,

dr > 0, dc < 0, dl < 0, t2r − 4dr > 0} ⊂ G1.

In Theorem 2.1, we give the main results of system
(1) as (tr , tl , dr , dc, dl) ∈ G11, i.e., saddle-zero-focus.
Theorem 2.1 For arbitrarily fixed (tr , tl , dr , dc, dl) ∈
G11, the bifurcation diagram of system (1) in the αtc-
plane consists of the following bifurcation curves:

(a) degenerate boundary equilibriumbifurcation curves

DB1 = {(α, tc) ∈ R
2| α = 0, tc > 0},

DB2 = {(α, tc) ∈ R
2| α = 0, tc < 0};

(b) homoclinic bifurcation curve

HL = {(α, tc) ∈ R
2| α > 0, tc = ϕ(α)};

(c) double limit cycle bifurcation curve

DL = {(α, tc) ∈ R
2| α > 0, tc = φ(α)},

where the function tc = ϕ(α) is continuous and
monotonous, the function tc = φ(α) is continuous,
ϕ(α) < φ(α) < −tr (α + √

4αdr + α2)/(2dr ) forα >

0. Moreover, the bifurcation diagram and global phase
portraits in the Poincaré disc of system (1) in G11 can
be shown completely in Fig. 1, where

I = {(α, tc) ∈ R
2| α > 0, tc > φ(α)},

II = {(α, tc) ∈ R
2| α < 0},

III = {(α, tc) ∈ R
2| α > 0, tc < ϕ(α)},

IV = {(α, tc) ∈ R
2| α > 0, ϕ(α) < tc < φ(α)},

O = {(α, tc) ∈ R
2| α = tc = 0}.
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(a)

(b) (c) (d) (e)

(f) (g)

(j)

(h) (i)

Fig. 1 The bifurcation diagram and global phase portraits in the Poincaré disc of system (1) as (tr , tl , dr , dc, dl ) ∈ G11
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Remark 1 In Theorem 2.1, it should be noticed that the
stable limit cycle is highlighted by red color, the unsta-
ble limit cycle is highlighted by blue color, the semi-
stable limit cycle is highlighted by yellow color, and
the homoclinic loop is highlighted by green color. So
is Theorem 2.4. Moreover, in Theorem 2.1, the stable
limit cycle involves two or three linear zones, the unsta-
ble limit cycle involves three linear zones, the semi-
stable limit cycle involves three linear zones, the unsta-
ble homoclinic loop involves three linear zones (see
Lemmas 5.2 and 5.3 for more descriptions). Besides,
the global phase portrait in the Poincaré disc of the
region I shown in Fig. 1b means that system (1) has
two finite equilibrium points El and Er , where El is a
saddle and Er is an unstable focus. The stable mani-
fold of El in the upper half plane connects the unstable
focus Er and the unstable manifold of El in the upper
half plane connects the stable manifold of I−

F . The sta-
ble manifold of El in the lower half plane connects the
unstable manifold of I−

E and the unstable manifold of
El in the lower half plane connects the stable manifold
of I−

F . The global phase portrait in the Poincaré disc of
the region II displayed in Fig. 1c implies that system
(1) has neither finite equilibrium points and nor limit
cycles. The global phase portrait in the Poincaré disc of
the region III illustrated in Fig. 1d means that system
(1) has two finite equilibrium points El and Er and a
unique limit cycle that is stable,where El is a saddle and
Er is an unstable focus. The stablemanifold of El in the
upper half plane connects the unstable manifold of I−

E
and the unstable manifold of El in the upper half plane
connects the stable manifold of I−

F . The stable mani-
fold of El in the lower half plane connects the unstable
manifold of I−

E and the unstable manifold of El in the
lower half plane approaches the stable limit cycle. And
the unstable focus Er also approaches the stable limit
cycle. Due to similarity, we omit the introductions of
the remainingglobal phase portraits in thePoincaré disc
of Theorem 2.1 and so are Theorems 2.2, 2.3, 2.4, 2.5
and 2.6.

Wegive themain results of system (1) as (tr , tl , dr , dc,
dl) ∈ G12 in the following theorem, i.e., saddle-zero-
improper node.

Theorem 2.2 For arbitrarily fixed (tr , tl , dr , dc, dl) ∈
G12, the bifurcation diagram of system (1) in the
αtc-plane consists of degenerate boundary equilib-
rium bifurcation curves DB1 and DB2. Moreover, the
bifurcation diagram and global phase portraits in the

Poincaré disc of system (1) in G12 can be shown com-
pletely in Fig. 2, where

V = {(α, tc) ∈ R
2| α > 0},

VI = {(α, tc) ∈ R
2| α < 0},

O = {(α, tc) ∈ R
2| α = tc = 0}.

In Theorem 2.3, we give the main results of sys-
tem (1) as (tr , tl , dr , dc, dl) ∈ G13, i.e., saddle-zero-
bidirectional node.

Theorem 2.3 For arbitrarily fixed (tr , tl , dr , dc, dl) ∈
G13, the bifurcation diagram of system (1) in the
αtc-plane consists of degenerate boundary equilib-
rium bifurcation curves DB1 and DB2. Moreover, the
bifurcation diagram and global phase portraits in the
Poincaré disc of system (1) in G13 can be shown com-
pletely in Fig. 3, where

VII = {(α, tc) ∈ R
2| α > 0},

VIII = {(α, tc) ∈ R
2| α < 0},

O = {(α, tc) ∈ R
2| α = tc = 0}.

Wegive themain results of system (1) as (tr , tl , dr , dc,
dl) ∈ G14 in the following theorem, i.e., saddle–saddle-
focus.

Theorem 2.4 For arbitrarily fixed (tr , tl , dr , dc, dl) ∈
G14, the bifurcation diagram of system (1) in the αtc-
plane consists of the following bifurcation curves:

(a) boundary equilibrium bifurcation curves

BE1 = {(α, tc) ∈ R
2| α = −dc},

BE2 = {(α, tc) ∈ R
2| α = dc};

(b) homoclinic bifurcation curves

HL2 = {(α, tc) ∈ R
2| dc < α < −dc, tc = h(α)},

HL3 = {(α, tc) ∈ R
2| α > −dc, tc = ϕ(α)};

(c) double limit cycle bifurcation curve

DL2 = {(α, tc) ∈ R
2| α > −dc, tc = φ(α)},

where the function tc = h(α) is continuous satisfy-
ing h(α) < 0, the function tc = ϕ(α) is continuous
and monotonous and the function tc = φ(α) is con-
tinuous satisfying ϕ(α) < φ(α) < −tr (α − dc +√
4αdr + (α − dc)2)/(2dr ) for α > −dc. Moreover,

the bifurcation diagram and global phase portraits in
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(a)

(b) (c) (d) (e)

(f)

Fig. 2 The bifurcation diagram and global phase portraits in the Poincaré disc of system (1) as (tr , tl , dr , dc, dl ) ∈ G12
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(a)

(b) (c) (d) (e)

(f)

Fig. 3 The bifurcation diagram and global phase portraits in the Poincaré disc of system (1) as (tr , tl , dr , dc, dl ) ∈ G13
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the Poincaré disc of system (1) in G14 can be shown
completely in Fig. 4, where

R1 = {(α, tc) ∈ R
2| α > −dc, tc > φ(α)},

R2 = {(α, tc) ∈ R
2| dc < α < −dc, tc > h(α)},

R3 = {(α, tc) ∈ R
2| α < dc},

R4 = {(α, tc) ∈ R
2| dc < α < −dc, tc < h(α)},

R5 = {(α, tc) ∈ R
2| α > −dc, tc < ϕ(α)},

R6 = {(α, tc) ∈ R
2| α > −dc, ϕ(α) < tc < φ(α)},

BE11 = {(α, tc) ∈ R
2| α = −dc, tc > h(α)},

BE12 = {(α, tc) ∈ R
2| α = −dc, tc = h(α)},

BE13 = {(α, tc) ∈ R
2| α = −dc, tc < h(α)}.

Remark 2 In Theorem 2.4, the stable limit cycle
involves two or three linear zones when α > −dc
and involves two linear zones when dc < α ≤ −dc,
the unstable limit cycle involves three linear zones, the
semi-stable limit cycle involves three linear zones, and
the homoclinic loop involves three linear zones (see
Lemmas 5.2, 5.3 and 5.6 for more descriptions). More-
over, the homoclinic loop is unstable when α > −dc
and is stable when dc < α ≤ −dc. Notice that global
phase portraits in the Poincaré disc of HL3, DL2, R1,
R3, R5 and R6 of Theorem 2.4 are the same with global
phase portraits in the Poincaré disc of HL , DL , I , II,
III and IV of Theorem 2.1, respectively.

In Theorem 2.5, we give the main results of sys-
tem (1) as (tr , tl , dr , dc, dl) ∈ G15, i.e., saddle–saddle-
improper node.

Theorem 2.5 For arbitrarily fixed (tr , tl , dr , dc, dl) ∈
G15, the bifurcation diagram of system (1) in the αtc-
plane consists of boundary equilibrium bifurcation
curves BE1 and BE2. Moreover, the bifurcation dia-
gram and global phase portraits in the Poincaré disc
of system (1) in G15 can be shown completely in Fig. 5,
where

R7 = {(α, tc) ∈ R
2| α > −dc},

R8 = {(α, tc) ∈ R
2| dc < α < −dc},

R9 = {(α, tc) ∈ R
2| α < dc}.

Remark 3 Note that global phase portraits in the
Poincaré disc of R7 and R9 of Theorem 2.5 are the

same with global phase portraits in the Poincaré disc
of V and VI of Theorem 2.2, respectively.

Wegive themain results of system (1) as (tr , tl , dr , dc,
dl) ∈ G16 in the following theorem, i.e., saddle–saddle-
bidirectional node.

Theorem 2.6 For arbitrarily fixed (tr , tl , dr , dc, dl) ∈
G16, the bifurcation diagram of system (1) in the αtc-
plane consists of boundary equilibrium bifurcation
curves BE1 and BE2. Moreover, the bifurcation dia-
gram and global phase portraits in the Poincaré disc
of system (1) in G16 can be shown completely in Fig. 6,
where

R10 = {(α, tc) ∈ R
2| α > −dc},

R11 = {(α, tc) ∈ R
2| dc < α < −dc},

R12 = {(α, tc) ∈ R
2| α < dc}.

Remark 4 Notice that global phase portraits in the
Poincaré disc of R10 and R12 of Theorem 2.6 are the
same with global phase portraits in the Poincaré disc
of VII and VIII of Theorem 2.3, respectively.

3 Application to a second-order memristor
oscillator

Memristor is a two-terminal circuit element, for which
a nonlinear relationship links charge andflux, presented
by Chua [16]. For the realization of memristor, see
[2,38,40] and references therein. In 2011, Corinto et al.
gave amathematical model for a second-order memris-
tor oscillator in [17]. Here, we use our main results in
Sect. 2 to analyze a second-order memristor oscillator
with a flux-controlled memristor, see Fig. 7 or [17].

Firstly, we recall the mathematical model of a
second-ordermemristor oscillatorwith aflux-controlled
memristor. In this circuit, the values of L and C
for the impedance and capacitance are positive con-
stants, while the resistor R has a negative value. Two
Kirchhoff’s Current Law linearly independent equa-
tions and two Kirchhoff’s Voltage Law linearly inde-
pendent equations for this circuit are as follows

iR(t) − iL(t) = 0,

iL(t) − iC (t) − iM (t) = 0,

vR(t) + vL(t) + vC (t) = 0,

vC (t) − vM (t) = 0, (2)

123



Global studies on a continuous planar piecewise linear differential system 3547

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

(n)

Fig. 4 The bifurcation diagram and global phase portraits in the Poincaré disc of system (1) as (tr , tl , dr , dc, dl ) ∈ G14
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(a)

(b) (c) (d) (e)

(f)

Fig. 5 The bifurcation diagram and global phase portraits in the Poincaré disc of system (1) as (tr , tl , dr , dc, dl ) ∈ G15
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(a)

(b) (c) (d) (e)

(f)

Fig. 6 The bifurcation diagram and global phase portraits in the Poincaré disc of system (1) as (tr , tl , dr , dc, dl ) ∈ G16
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where i and v denote current and voltage of the corre-
sponding element of this circuit, respectively. Integrat-
ing both sides of each equation in (2) from time instant
t0 to time instant t , we obtain

qR(t) − qL(t) = Q1,

qL(t) − qC (t) − qM (t) = Q2,

ϕR(t) + ϕL(t) + ϕC (t) = �1,

ϕC (t) − ϕM (t) = �2, (3)

where q and ϕ represent charge and flux of the corre-
sponding element of this circuit, respectively, and let
Q1 = Q2 = �1 = �2 = 0 as explained in Section
II of [17]. Besides, the constitutive equations of the
involved bipoles for this circuit are as follows

qM (t) = qm(ϕM (t)),

qC (t) = C
d

dt
ϕC (t),

ϕR(t) = RqR(t),

ϕL(t) = L
d

dt
qL(t), (4)

where qm stand for the flux-charge characteristic of the
memristor. It follows from (3) and (4) that we get

d

dt
ϕC (t) = qC (t)

C
= 1

C
[qL(t) − qM (t)]

= 1

C
[qL(t) − qm(ϕC (t))],

d

dt
qL(t) = ϕL(t)

L
= 1

L
[−ϕR(t) − ϕC (t)]

= 1

L
[−RqL(t) − ϕC (t)].

Denote x := ϕC (t) and y := qL(t). Then, we have

dx

dt
= 1

C
[−qm(x) + y], dy

dt
= 1

L
[−x − Ry], (5)

where qm(x) may be described by the following Lur’e
model (see [17])

L(D)x(t) = −qm(x(t)),

and

L(D) = D2 + R
L D + 1

CL
1
C

(
D + R

L

) = CLD2 + CRD + 1

LD + R
.

Instead of the symmetric piecewise linear function

qm(x) =
⎧
⎨

⎩

b(x − 1) + a, if x > 1,
ax, if − 1 ≤ x ≤ 1,
b(x + 1) − a, if x < −1

Fig. 7 A second-order memristor oscillator with a flux-
controlled memristor

considered in [17,24], we adopt here a more general
model for the nonlinear flux-charge characteristic of
the memristor, namely

qm(x) =
⎧
⎨

⎩

a1(x − v) + a2v, if x > v,

a2x, if − u ≤ x ≤ v,

a3(x + u) − a2u, if x < −u,

(6)

where v and u are positive constants.
Secondly, we change system (5) with (6) into system

(1). We first use the time scaling transformation t →
Cτ to change system (5) into

dx

dτ
= −qm(x) + y,

dy

dτ
= −C

L
[x + Ry]. (7)

Second, under the linear transformation x̃ → x , ỹ →
−y − RCx/L , system (7) can be written as

dx̃

dτ
= −qm (̃x) − RC

L
x̃ − ỹ := Fm (̃x) − ỹ,

d ỹ

dτ
= RC

L
qm (̃x) + C

L
x̃ := g(̃x), (8)

where

Fm (̃x) =
⎧
⎨

⎩

b1(̃x − v) + b2v, if x̃ > v,

b2 x̃, if − u ≤ x̃ ≤ v,

b3(̃x + u) − b2u, if x̃ < −u,

gm (̃x) =
⎧
⎨

⎩

b4(̃x − v) + b5v, if x̃ > v,

b5 x̃, if − u ≤ x̃ ≤ v,

b6(̃x + u) − b5u, if x̃ < −u,

and

b1 = −a1 − RC

L
,

b2 = −a2 − RC

L
,

b3 = −a3 − RC

L
,
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b4 = RC

L
a1 + C

L
,

b5 = RC

L
a2 + C

L
,

b6 = RC

L
a3 + C

L
.

Third, with the translation transformation x̃ → x +
(−u + v)/2, ỹ → y + b2(−u + v)/2, system (8)
becomes

dx

dτ
= Fm(x) − y,

dy

dτ
= gm(x), (9)

where

Fm(x) =
⎧
⎨

⎩

b1(x − u+v
2 ) + b2(u+v)

2 , if x > u+v
2 ,

b2x, if − u+v
2 ≤ x ≤ u+v

2 ,

b3(x + u+v
2 ) − b2(u+v)

2 , if x < − u+v
2 ,

gm(x) =
⎧
⎨

⎩

b4(x − u+v
2 ) + b5v, if x > u+v

2 ,

b5x + b5(−u+v)
2 , if − u+v

2 ≤ x ≤ u+v
2 ,

b6(x + u+v
2 ) − b5u, if x < − u+v

2 .

Finally, by the scaling transformation x → (u + v)x/2,
y → (u + v)y/2, τ → t , system (9) can be written as
system (1) with

tr = b1, tc = b2, tl = b3,

and

dr = b4, dc = b5, dl = b6, α = b5
u − v

u + v
.

We are now able to apply our main results in Sect. 2
in a convenient way, and we do not attempt to address
all statements, but only the most important cases. Con-
sider the case of a non-symmetric second-order mem-
ristor oscillator with three linear zones in the situation
corresponding to tr > 0, tl > 0, dr > 0, dl < 0, which
is not considered in [17,24]. The conditions tr > 0,
tl > 0, dr > 0, dl < 0 mean that a1 ∈ (−∞,−1/R),
a3 ∈ (−1/R,−RC/L) when R2C > L holds. If
a2 = −1/R in system (5), we have dc = α = 0 in
system (1). A direct application of Theorem 2.1 gives
the following result.

Proposition 3.1 Consider a second-order memristor
oscillator with a flux-controlled memristor, as mod-
eled by system (5) with (6). Under the design con-
dition R2C > L, if the additional hypotheses a1 ∈
(−∞,−1/R), a2 = −1/R, a3 ∈ (−1/R,−RC/L)

are fulfilled, then the circuit exhibits no limit cycles.

If a2 > −1/R of system (5), we have dc < 0 and
−dc < α < dc in system (1). A direct application of
Theorem 2.4 gives the following result.

Proposition 3.2 Consider a second-order memristor
oscillator with a flux-controlled memristor, as mod-
eled by system (5) with (6). Under the design con-
dition R2C > L, if the additional hypotheses a1 ∈
(−∞,−1/R), a2 ∈ (−1/R,+∞), a3 ∈ (−1/R,

−RC/L) are fulfilled, then the circuit exhibits a stable
limit cycle if and only if a2 ∈ (−RC/L − h(α),+∞),
where α := (RCa2/L + C/L)(u − v)/(u + v) and
h(α) < 0 is a continuous function on tc := −a2 −
RC/L.

4 Local dynamics of system (1)

4.1 Finite equilibrium point

Lemma 4.1 When dc ≤ 0 in G1, system (1) exhibits
no equilibrium point if α < dc; one continuum of
non-isolated equilibrium points CE (resp. one iso-
lated equilibrium point Ecr ) if α = dc = 0 (resp.
α = dc < 0); two isolated equilibrium points Ec and
Er if dc < α < −dc and dc < 0; two isolated equi-
librium points Ecl and Er if α = −dc > 0; and two
isolated equilibrium points El and Er if α > −dc.
The qualitative properties of these equilibrium points
are shown in Table 1, where Ecl : (−1,−tc) lies on
the left switching line �l ; Ecr : (1, tc) lies on the
right switching line �r ; El : ((α + dc)/dl − 1, tl(α +
dc)/dl − tc) lies in Sl ; Ec : (α/dc, tcα/dc) lies in Sc;
Er : ((α − dc)/dr + 1, tr (α − dc)/dr + tc) lies in Sr ;
and CE : {(x, y) ∈ R

2| y = tcx, − 1 ≤ x ≤ 1} lies
in �l ∪ Sc ∪ �r .

Proof Solving ẋ = ẏ = 0 for system (1), the number
of equilibrium points of system (1) is determined by
the relationship between α and dc, as shown in Table 1.
Notice that the Jacobianmatrices at El , Ec and Er have,
respectively, the following forms

JEl :=
[
tl −1
dl 0

]

, JEc :=
[
tc −1
dc 0

]

,

JEr :=
[
tr −1
dr 0

]

.

Then, we have trJEl = tl , trJEc = tc, trJEr = tr ,
detJEl = dl , detJEc = dc and detJEr = dr . Hence, we
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Table 1 The qualitative properties of finite equilibrium point of system (1) with dc ≤ 0 in G1

Possibilities tr , tc, dr , dc, α Number, stability and type

α < 0 0

dc = 0 α = 0 tc < 0 tr 2 − 4dr < 0 1, CE generalized cusp (see Fig. 9a)

tr 2 − 4dr = 0 1, CE generalized saddle-noddle (see Fig. 9b)

tr 2 − 4dr > 0 1, CE generalized saddle-noddle (see Fig. 9c)

tc = 0 tr 2 − 4dr < 0 1, CE generalized cusp (see Fig. 9d)

tr 2 − 4dr = 0 1, CE generalized saddle-noddle (see Fig. 9e)

tr 2 − 4dr > 0 1, CE generalized saddle-noddle (see Fig. 9f)

tc > 0 tr 2 − 4dr < 0 1, CE generalized cusp (see Fig. 9g)

tr 2 − 4dr = 0 1, CE generalized saddle-noddle (see Fig. 9h)

tr 2 − 4dr > 0 1, CE generalized saddle-noddle (see Fig. 9i)

α > 0 tr 2 − 4dr < 0 2, El saddle, Er unstable focus

tr 2 − 4dr ≥ 0 2, El saddle, Er unstable node

α < dc 0

dc < 0 α = dc tr 2 − 4dr < 0 1, Ecr cusp (see Fig. 8a)

tr 2 − 4dr = 0 1, Ecr saddle-node (see Fig. 8b)

tr 2 − 4dr > 0 1, Ecr saddle-node (see Fig. 8c)

dc < α < −dc tr 2 − 4dr < 0 2, Ec saddle, Er unstable focus

tr 2 − 4dr ≥ 0 2, Ec saddle, Er unstable node

α = −dc tr 2 − 4dr < 0 2, Ecl saddle, Er unstable focus

tr 2 − 4dr ≥ 0 2, Ecl saddle, Er unstable node

α > −dc tr 2 − 4dr < 0 2, El saddle, Er unstable focus

tr 2 − 4dr ≥ 0 2, El saddle, Er unstable node

can easily obtain the topological type and stability of
El , Ec and Er , as indicated in Table 1.

We secondly study the equilibrium points of system
(1) that lie on the switching line x = 1 or x = −1when
dc < 0. The equilibrium point Ecr , as seen from Sc is
a saddle, but when seen from Sr is a focus (resp. node)
for tr 2−4dr < 0 (resp.≥ 0). According to the fact that
solutions of system (1) satisfy the existence, uniqueness
and continuity with respect to initial conditions and
parameters, it follows that the qualitative property of
Ecr is a cusp (resp. saddle-node) for tr 2 − 4dr < 0
(resp. ≥ 0), as displayed in Fig. 8a (resp. b–c). The
equilibrium point Ecl as seen from both Sl and Sc is a
saddle, it follows that Ecl is a saddle.

We finally investigate the continuum of non-isolated
equilibrium points CE . Note that the left endpoint of
segmentCE inSl is a half of a saddle and the right end-
point of segment CE in Sr is a half of a focus (resp.
improper node; bidirectional node) for tr 2 − 4dr < 0
(resp. = 0; > 0). All orbits and the singular contin-

uum y = 0 are parallel to each other in the region
{(x, y) ∈ R

2| − 1 ≤ x ≤ 1} when tc = 0. It fol-
lows that the qualitative property of CE is illustrated
in Fig. 9d–f when tc = 0. When tc �= 0, all orbits
which lie above y = tcx with |x | ≤ 1 are the neg-
ative horizontal direction and those orbits which lie
under y = tcx with |x | ≤ 1 are the positive horizontal
direction. Therefore, the qualitative property of CE is
displayed in Fig. 9a–c, g–i when tc < 0 and tc > 0,
respectively. The proof of Lemma 4.1 is complete. 
�

4.2 Equilibrium point at infinity

We investigate the qualitative property of equilibrium
point at infinity, which reflects the tendencies of x or y
in a large domain. Despite system (1) is not a polyno-
mial dynamical system, we can still study the equilib-
rium point at infinity with the Poincaré transformation
(for the validity of the Poincaré transformation, one can

123



Global studies on a continuous planar piecewise linear differential system 3553

Fig. 8 The qualitative
property of Ecr of system
(1) with α = dc < 0 in G1

(a) (b) (c)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 The qualitative property of CE of system (1) with α = dc = 0 in G1
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Fig. 10 The equilibrium
points at infinity in the
Poincaré disc of system (1)
in G1

(a) (b) (c)

refer to the Poincaré compactification in Chapter 2.9 of
[29]).

Lemma 4.2 The equilibrium points at infinity in the
Poincaré disc of system (1) are shown in Fig. 10 when
parameters belong to the region G1, where �1 := t2r −
4dr .

Proof With a Poincaré transformation x = 1/z, y =
u/z, system (1) is changed into

du

dt
= dr + dl

2
− tr + tl

2
u +

(
dl − dr

2
− α

)

z

− tl − tr
2

uz + u2 − tc − tl
2

u|1 + z|sgnz

− tr − tc
2

u|1 − z|sgnz + dc − dl
2

|1 + z|sgnz

+ dr − dc
2

|1 − z|sgnz,
dz

dt
= − tr + tl

2
z − tl − tr

2
z2

+ uz − tc − tl
2

|1 + z||z| − tr − tc
2

|1 − z||z|.
(10)

Since we only need to investigate the qualitative prop-
erty of equilibrium point of system (10) that lies on the
u-axis, we write system (10) as

du

dt
= dr + dl

2
+ dr − dl

2
sgnz

− tr + tl
2

u + tl − tr
2

usgnz

+
(
dl − dr

2
− α

)

z + 2dc − dr − dl
2

|z|

− tl − tr
2

uz + u2 +
(
tr + tl − 2tc

2

)

u|z|,
dz

dt
= − tr + tl

2
z − tl − tr

2
z2 + uz

+ tl − tr
2

|z| + tr + tl − 2tc
2

z|z|, (11)

by |1+ z| = 1+ z and |1− z| = 1− z as z → 0. When
z → 0+ and z → 0−, system (11) becomes

du

dt
= dr − tr u + u2 + (−dr + dc − α)z + (tr − tc)uz,

dz

dt
= −tr z + uz + (tr − tc)z

2, (12)

and

du

dt
= dl − tlu + u2 + (dl − dc − α)z + (−tl + tc)uz,

dz

dt
= −tl z + uz + (−tl + tc)z

2, (13)

respectively. According to the fact that solutions of sys-
tem (1) satisfy the existence, uniqueness and continu-
ity with respect to initial conditions and parameters,
we turn to investigate the qualitative property of equi-
librium point of systems (12) and (13) that lies on the
u-axis to obtain the qualitative property of equilibrium
point of system (11) that lies on the u-axis.

Consider system (12). Notice that the number of
equilibrium point of system (12) depends on the roots
of the equation

u2 − tr u + dr = 0.

Therefore, system (12) has no equilibrium point when
�1 < 0, a unique equilibrium point A : (tr/2, 0) when
�1 = 0, two equilibrium points B : ((tr +√

�1)/2, 0)
and C : ((tr − √

�1)/2, 0) when �1 > 0. Clearly, A,
B and C all lie on the positive u-axis. Let I+

A , I
+
B and

I+
C be the corresponding equilibrium point at infinity
of A, B and C in the xy-plane, respectively. Then, I+

A ,
I+
B and I+

C in the first quadrant in the Poincaré disc
because of z → 0+.

123



Global studies on a continuous planar piecewise linear differential system 3555

(a) (b) (c)

Fig. 11 The qualitative property of A, B,C, E and F

Consider system (13). We define

�2 := (−tl)
2 − 4dl .

It is obvious that �2 > 0. It follows from the equation

u2 − tlu + dl = 0

that system (13) has two equilibrium points E : ((tl +√
�2)/2, 0) and F : ((tl − √

�2)/2, 0). Evidently, E
and F lie on the positive and negative u-axis, respec-
tively. Set I−

E and I−
F be the corresponding equilibrium

point at infinity of E and F in the xy-plane, respec-
tively. Due to z → 0−, I−

E and I−
F lie in the third

quadrant and the second quadrant in the Poincaré disc,
respectively.

We now study the qualitative property of A, B, C ,
E and F in turn. First, consider A. For simplicity, we
change system (12) into

du

dt
= (dc + dr − α − tr tc/2)z + (tr − tc)uz + u2,

dz

dt
= −tr z/2 + uz + (tr − tc)z

2, (14)

by the translation transformation u → u+tr/2, z → z.
It means that A is moved to the origin of system (14).
Note that the Jacobian matrix at the origin of system
(14) has a non-zero eigenvalue and a zero eigenvalue.
Solving (dc +dr −α− tr tc/2)z+ (tr − tc)uz+u2 = 0,
we obtain

z = 2

tr tc + 2(α − dr − dc)
u2 + O(u3) (15)

by the implicit function theorem. Substituting (15) into
the second equation of system (14), we get
dz

dt
= − tr

tr tc + 2(α − dr − dc)
u2 + O(u3).

According to Theorem7.1 of [41, Chapter 2], the origin
of system (14) is a saddle-node and so is A, as shown
in Fig. 11a.

Second, consider B. By the translation transforma-
tion u → u + (tr + √

�1)/2, z → z, system (12)
becomes

du

dt
= √

�1u + [−dr + dc − α

+ (tr − tc)(tr + √
�1)/2]z + (tr − tc)uz + u2,

dz

dt
= (−tr + √

�1)z/2 + uz + (tr − tc)z
2, (16)

which implies that B is moved to the origin of system
(16). The Jacobian matrix at the origin of system (16)
has the following form

J1 :=
[ √

�1 −dr + dc − α + (tr − tc)(tr + √
�1)/2

0 (−tr + √
�1)/2

]

.

Due to detJ1 = √
�1(−tr + √

�1)/2 < 0, the origin
of system (16) is a saddle. So is B, as shown in Fig. 11b.

Third, consider C . In order to move C to the origin,
we can rewrite system (12) as

du

dt
= −√

�1u + [−dr + dc − α

+ (tr − tc)(tr − √
�1)/2]z + (tr − tc)uz + u2,

dz

dt
= (−tr − √

�1)z/2 + uz + (tr − tc)z
2, (17)
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by the translation transformation u → u + (tr −√
�1)/2, z → z. It is simple to obtain the Jacobian

matrix at the origin of system (17) as follows

J2 :=
[ −√

�1 −dr + dc − α + (tr − tc)(tr − √
�1)/2

0 (−tr − √
�1)/2

]

.

Evidently, trJ2 = −√
�1 + (−tr − √

�1)/2 < 0,
detJ2 = −√

�1(−tr − √
�1)/2 > 0, (trJ2)2 −

4detJ2 > 0. Thus, the origin of system (17) is a stable
node. So is C , as shown in Fig. 11b.

Then, consider E . With the translation transforma-
tion u → u + (tl + √

�2)/2, z → z, system (13) can
be changed into

du

dt
= √

�2u + [dl − dc − α

+ (−tl + tc)(tl + √
�2)/2]z + (−tl + tc)uz + u2,

dz

dt
= (−tl + √

�2)z/2 + uz + (−tl + tc)z
2. (18)

It means that E is moved to the origin of system (18).
We easily have the Jacobian matrix at the origin of
system (18) as follows

J3 :=
[√

�2 dl − dc − α + (−tl + tc)(tl + √
�2)/2

0 (−tl + √
�2)/2

]

.

It follows from trJ3 = √
�2 + (−tl + √

�2)/2 > 0,
detJ3 = √

�2(−tl + √
�2)/2 > 0 and (trJ3)2 −

4detJ3 > 0 that the origin of system (18) is an unstable
node. So is E , as shown in Fig. 11c.

Finally, consider F . We can change system (13) into

du

dt
= −√

�2u + [dl − dc − α

+ (−tl + tc)(tl − √
�2)/2]z + (−tl + tc)uz + u2,

dz

dt
= (−tl − √

�2)z/2 + uz + (−tl + tc)z
2, (19)

by the translation transformation u → u + (tl −√
�2)/2, z → z. It implies that F is moved to the

origin of system (19). Obviously, the Jacobian matrix
at the origin of system (19) has the following form

J4 :=
[ −√

�2 dl − dc − α + (−tl + tc)(tl − √
�2)/2

0 (−tl − √
�2)/2

]

.

Since trJ4 = −√
�2 + (−tl − √

�2)/2 < 0, detJ4 =
−√

�2(−tl − √
�2)/2 > 0 and (trJ4)2 − 4detJ4 > 0,

the origin of system (19) is a stable node. So is F , as
shown in Fig. 11c.

In order to analyze equilibrium point at infinity on
the y-axis, we use another Poincaré transformation x =
v/z, y = 1/z to change system (1) into the form

dv

dt
= −1 + tr + tl

2
v + tl − tr

2
z

+
(

α − dl − dr
2

)

vz − dr + dl
2

v2

+ tc − tl
2

|v + z|sgnz

+ tr − tc
2

|v − z|sgnz − dc − dl
2

|v + z|vsgnz

− dr − dc
2

|v − z|vsgnz,
dz

dt
=

(

α − dl − dr
2

)

z2 − dr + dl
2

vz

− dc − dl
2

|v + z||z| − dr − dc
2

|v − z||z|. (20)

It is obvious that (0, 0) is not an equilibrium point of
system (20). It means that the corresponding points at
infinity of system (1) on the y-axis are not equilibrium
point at infinity. By the aforementioned analysis, we
obtain the equilibrium point at infinity of system (1) in
the Poincaré disc, as shown in Fig. 10. This completes
the proof. 
�

5 Nonlocal dynamics of system (1)

In this section, we study limit cycles and homoclinic
loops of system (1) in the case dc ≤ 0 when parameters
belong to the regionG1. FromLemma4.1,we know that
system (1) has no equilibrium point for α < dc ≤ 0,
a unique continuum of non-isolated equilibrium point
CE for α = dc = 0, a unique equilibrium point Ecr

for α = dc < 0, two equilibrium points for α > dc
and dc ≤ 0. It follows from Lemma 4.1 that CE lies
in �l ∪ Sc ∪ �r and is a half of a saddle in Sl , which
means that system (1) has two invariant lines in Sl .
Then it implies that there is no limit cycle surrounding
CE . By Lemma 4.1 again, we obtain that Ecr lies on
the right switching line �r and is a half of a node in Sr
for tr 2 − 4dr ≥ 0, which implies that system (1) has at
least one invariant line inSr . Then it means that there is
no limit cycle surrounding Ecr as tr 2 −4dr ≥ 0. When
tr 2 − 4dr < 0, assume that there exists limit cycle
surrounding Ecr . Then, any limit cycles must intersect
with y = yEcr , where yEcr represents the ordinate of
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Ecr . However, we have ẏ|y=yEcr > 0. This is a contra-
diction implying that there is no limit cycle surrounding
Ecr as tr 2 − 4dr < 0.

By the aforementioned discussion, we only need to
study limit cycles and homoclinic loops of system (1)
with dc ≤ 0 and α > dc in G1.

In what follows, consider dc ≤ 0 and α > dc in G1.
Denote

e := α − dc
dr

.

Evidently, e > 0 because of α > dc and dr > 0. Then,
the coordinate of Er of system (1) can represent as
(e + 1, tr e + tc). Using the translation transformation

x → x + e + 1, y → y + tr e + tc,

system (1) is changed into

dx

dt
= F̂(x) − y,

dy

dt
= ĝ(x), (21)

where

F̂(x) =
⎧
⎨

⎩

tr x, if x > −e,
tcx + (tc − tr )e, if − e − 2 ≤ x ≤ −e,
tl(x + e + 2) − tr e − 2tc, if x < −e − 2,

and

ĝ(x) =
⎧
⎨

⎩

dr x, if x > −e,
dcx + (dc − dr )e, if − e − 2 ≤ x ≤ −e,
dl(x + e + 2) − dr e − 2dc, if x < −e − 2,

which means that Er of system (1) is moved to O :
(0, 0) of system (21), while Ec of system (1) is moved
to Nc : ((dr/dc − 1)e, (tcdr/dc − tr )e) of system (21)
if dc < α < −dc and dc < 0; Ecl of system (1) is
moved to Ncl : (−e − 2,−tr e − 2tc) of system (21)
if α = −dc and dc < 0; El of system (1) is moved to
Nl : ((dr/dl −1)e+2dc/dl −2, (tldr/dl − tr )e−2tc +
2tldc/dl) of system (21) if α > −dc and dc ≤ 0.

The plane R
2 can be divided into three open linear

zones

Ŝl = {(x, y) ∈ R
2|x < −e − 2},

Sĉ = {(x, y) ∈ R
2| − e − 2 < x < −e},

Sr̂ = {(x, y) ∈ R
2|x > −e}

by two straight lines �̂l = {(x, y) ∈ R
2|x = −e − 2}

and �r̂ = {(x, y) ∈ R
2|x = −e}. For notations sim-

plicity, for system (21) we still use F and g to represent
F̂ and ĝ, respectively.

Since system (21) is topologically equivalent to sys-
tem (1), it suffices to study limit cycles and homoclinic
loops of system (21) to obtain the corresponding results

of system (1) by a translation transformation. System
(21) exhibits two equilibrium points O and Nl when
dc ≤ 0 and α > −dc or O and Ncl (resp. Nc) when
dc < 0 and α = −dc (resp.dc < α < −dc). Applying
Lemma 4.1, we obtain that Nl , Ncl and Nc are saddles;
O is an unstable node for tr 2 − 4dr ≥ 0 or an unstable
focus for tr 2 − 4dr < 0. By [41, Chapter 4], we know
that the index of a saddle is −1, the index of a node is
1, the index of a focus is 1, and the sum of the indices
of all equilibrium points surrounded by a limit cycle
is 1. Therefore, limit cycles of system (21) must only
surround O if it exists. According to the location of sad-
dle point of system (21), we divide our study into two
subcases dc ≤ 0, α > −dc and dc < 0, dc < α ≤ −dc.

5.1 Limit cycles and homoclinic loops of system (1)
with dc ≤ 0 and α > −dc in G1

Wefirst give the nonexistence of limit cycles and homo-
clinic loops of system (1) in the following lemma,when
dc ≤ 0 and α > −dc in G1.
Lemma 5.1 When dc ≤ 0, α > −dc in G1, system (1)
exhibits neither limit cycles nor homoclinic loops, if
one of the following statements holds:

(a) tr 2 − 4dr ≥ 0;
(b) tr 2 − 4dr < 0 and tc ≥ t∗c , where t∗c :=

− tr (α−dc+
√

4αdr+(α−dc)2)
2dr

.

Proof Consider tr 2 − 4dr ≥ 0. Then, Nl of system
(21) is a saddle and O of system (21) is an unstable
node. System (21) has at least one invariant line in Sr̂
implying that any orbit passing the switching line �r̂

has no intersections with the switching line �r̂ again.
Hence, system (21) exhibits neither limit cycles nor
homoclinic loops. So is system (1).

Consider tr 2 − 4dr < 0. Then, Nl of system (21)
is a saddle and O of system (21) is an unstable focus.
In order to prove the nonexistence of limit cycles and
homoclinic loops of system (21), we set a generalized
Filippov transformation

z(x) :=
∫ x

0
g(s)ds,

and x1(z) and x2(z) be the branches of the inverse of
z(x) for x ≥ 0 and xNl < x < 0, respectively, where
xNl := (dr/dl − 1)e+ 2dc/dl − 2. By system (21), we
can calculate that
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z(x) =

⎧
⎪⎨

⎪⎩

dr x2

2 , if x > −e,
dc
2 (x + e)2 − dr ex − dr

2 e
2, if − e − 2 ≤ x ≤ −e,

dl
2 (x + e + 2)2 − (dr e + 2dc)x − dr

2 e
2 − 2dc − 2dce, if xNl < x < −e − 2.

(22)

Then

z(x) ∈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[0,+∞), if x ≥ 0,(
0, dr e2

2

)
, if − e < x < 0,

[
dr e2

2 , 2dc + 2dr e + dr e2

2

]
, if − e − 2 ≤ x ≤ −e,

(2dc + 2dr e + dr e2

2 , zNl ), if xNl < x < −e − 2,

where zNl := 2dc+2dr e+dr e2/2−(dr e + 2dc)2/(2dl).
It follows from (22) that

x1(z) =
√
2z

dr
, if x ≥ 0, (23)

and

x2(z) =

⎧
⎪⎪⎨

⎪⎪⎩

−
√

2z
dr

, if − e < x < 0,

(dr−dc)e−
√

d2r e
2−dr dce2+2dcz

dc
, if − e − 2

≤ x ≤ −e.

(24)

Define F1(z) := F(x1(z)) and F2(z) := F(x2(z)).
Our purpose is to prove F1(z) > F2(z) for z ∈ (0, zNl )

implying that there are no limit cycles and homoclinic
loops, see [32, Section 6]. Based on (23) and (24), we
derive

F1(z) = tr

√
2z

dr
, if z > 0, (25)

and

F2(z) =
⎧
⎨

⎩

−tr
√

2z
dr

, if 0 < z < dr e2

2 ,

tc
dr e−

√
d2r e

2−dr dce2+2dcz
dc

− tr e, if dr e2

2 ≤ z ≤ 2dc + 2dr e + dr e2

2 .
(26)

Further, by (25) and (26), we have

F1(z) − F2(z) =
⎧
⎨

⎩

2tr
√

2z
dr

, if 0 < z < dr e2

2 ,

tr
√

2z
dr

− tc
dr e−

√
d2r e

2−dr dce2+2dcz
dc

+ tr e, if dr e2

2 ≤ z ≤ 2dc + 2dr e + dr e2

2 .

Evidently, F1(z) − F2(z) > 0 when z ∈ (0, dr e2/2).
For z ∈ [dr e2/2, 2dc + 2dr e+ dr e2/2], a routine com-
putation gives rise to

F ′
1(z) − F ′

2(z)

= tr
√
d2r e

2 − drdce2 + 2dcz + tc
√
2dr z

√
d2r e

2 − drdce2 + 2dcz · √
2dr z

> 0

when tc > 0 and

F ′
1(z) − F ′

2(z) = tr
√
d2r e

2−drdce2 + 2dcz+tc
√
2dr z

√
d2r e

2−drdce2+2dcz · √
2dr z

> 0(resp. = 0;< 0),

if z < z0(resp.z = z0; z > z0),

when tc < 0, where z0 := t2r (drdce2 − d2r e
2)/

(2(t2r dc − t2c dr )). For z ∈ (2dc + 2dr e + dr e2/2, zNl ),
by the monotonicity of F1(z) and F2(z), we have

F1(z) > F1(2dc + 2dr e + dr e
2/2),

F2(2dc + 2dr e + dr e
2/2) > F2(z).

By the aforementioned discussion, when z ∈ (0, zNl ),
it is clear that F1(z) − F2(z) > 0 is equivalent to

(F1(z) − F2(z))|z=2dc+2dr e+ dr e2
2

= tr

√

4dc + 4dr e + dr e2

dr

+ 2tc + tr e > 0. (27)

Solving (27), we have tc > t∗c . According to [32,
Section 6], it follows that system (21) exhibits neither
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limit cycles nor homoclinic loops when tc ≥ t∗c . So is
system (1). This completes the proof of Lemma 5.1. 
�

Based on Lemma 5.1, we only need to consider the
existence of limit cycles of system (1) when dc ≤ 0,
α > −dc, tr 2 − 4dr < 0 and tc < t∗c in G1.
Lemma 5.2 Considering dc ≤ 0, α > −dc, tr 2 −
4dr < 0 and tc < t∗c in G1, system (1) exhibits at most
two limit cycles.

Proof When dc ≤ 0, α > −dc, tr 2 − 4dr < 0 and
tc < t∗c in G1, system (21) has two equilibrium points
O and Nl , where O is a unstable focus and Nl is a
saddle. Since limit cycles of system (21) only surround
O by the index theory of [41, Chapter 4] and O lies
in Sr̂ , it follows that limit cycles of system (21) can
be small limit cycle involving two linear zones (Sĉ and
Sr̂ ) or large limit cycle involving three linear zones if
it exists. The existence and uniqueness of small limit
cycles of system (21) have proved in [31, Theorem 2]
or [12, Theorem 2.2]. Therefore, we can arrive at the
conclusion that system (1) has at most one small limit
cycle when dc ≤ 0, α > −dc, tr 2 − 4dr < 0 and
tc < t∗c in G1. Moreover, the small limit cycle is stable
if it exists.

It remains to study the number, stability and hyper-
bolicity of large limit cycles of system (21). Take any
two large limit cycles of system (21) denoted as �1 and
�2, where �1 and �2 are adjacent to each other, �1 is
the inner most one, Ai , Bi ,Ci , Di , Ei , Fi ,Gi and Hi

are points on �i , the abscissa of Di and Hi is −e and
the abscissa of Ei and Gi is −e − 2 for i = 1, 2, as
shown in Fig. 12a. Our purpose is to prove
∮

�2

F ′(x)dt >

∮

�1

F ′(x)dt. (28)

Let y1(x) and y2(x) represent the orbit segments Ĉ1E1

and Ĉ2E2, respectively. Therefore,

∫

̂C1E1

F ′(x)dt

=
∫ −e−2

0

F ′(x)
F(x) − y1(x)

dx

=
∫ −e−2

0

(
F ′(x) − y′

1(x)
) + y′

1(x)

F(x) − y1(x)
dx

=
∫ −e−2

0

1

F(x) − y1(x)
d (F(x) − y1(x))

+
∫ −e−2

0

y′
1(x)

F(x) − y1(x)
dx

= ln

∣
∣
∣
∣
F(−e − 2) − y1(−e − 2)

F(0) − y1(0)

∣
∣
∣
∣

+
∫ −e−2

0

y′
1(x)

F(x) − y1(x)
dx

= ln

∣
∣
∣
∣
F(−e − 2) − y1(−e − 2)

F(−e − 2) − y1(0)

∣
∣
∣
∣

+ ln

∣
∣
∣
∣
F(−e − 2) − y1(0)

F(0) − y1(0)

∣
∣
∣
∣

+
∫ −e−2

0

y′
1(x)

F(x) − y1(x)
dx

=
∫ −e−2

0

−y′
1(x)

F(−e − 2) − y1(x)
dx

+ ln

∣
∣
∣
∣
y1(0) − F(−e − 2)

y1(0)

∣
∣
∣
∣

+
∫ −e−2

0

y′
1(x)

F(x) − y1(x)
dx

=
∫ −e−2

0

y′
1(x) (F(−e − 2) − F(x))

(F(−e − 2) − y1(x)) (F(x) − y1(x))
dx

+ ln

∣
∣
∣
∣
y1(0) − F(−e − 2)

y1(0)

∣
∣
∣
∣

=
∫ −e−2

0

g(x) (F(−e − 2) − F(x))

(F(−e − 2) − y1(x)) (F(x) − y1(x))2
dx

+ ln

∣
∣
∣
∣
y1(0) − F(−e − 2)

y1(0)

∣
∣
∣
∣ .

Further,

∫

̂C2E2

F ′(x)dt −
∫

̂C1E1

F ′(x)dt

= ln

∣
∣
∣
∣
y2(0) − F(−e − 2)

y2(0)

∣
∣
∣
∣

− ln

∣
∣
∣
∣
y1(0) − F(−e − 2)

y1(0)

∣
∣
∣
∣

+
∫ −e−2

0
g(x) (F(−e − 2) − F(x))

(
1

(F(−e − 2) − y2(x)) (F(x) − y2(x))2

− 1

(F(−e − 2) − y1(x)) (F(x) − y1(x))2

)

dx

> 0 (29)

because of 0 > F(x) − y1(x) > F(x) − y2(x) and
F(−e − 2) − F(x) > 0 for x ∈ (−e − 2, 0) which
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implies that

y2(0) − F(−e − 2)

y2(0)
>

y1(0) − F(−e − 2)

y1(0)
> 0

and

0 >
1

(F(−e − 2) − y2(x)) (F(x) − y2(x))2

>
1

(F(−e − 2) − y1(x)) (F(x) − y1(x))2
.

Similarly, we have
∫

̂G2A2

F ′(x)dt −
∫

̂G1A1

F ′(x)dt > 0. (30)

Using p = F(x) to rewrite system (21) in the region
{(x, y) ∈ R

2|x > 0} is as the following form

dy

dp
= dr p

t2r (p − y)
, p ∈ (0,+∞). (31)

Further,with a coordinate transformation p → μp, y →
μy with μ = yB1/yB2 , Â2B2C2 be an orbit segment

which crosses through B1 of system (31), i.e., Â1B1C1.
Therefore, we have
∫

̂A2B2C2

F ′(x)dt −
∫

̂A1B1C1

F ′(x)dt = 0. (32)

Consider the following system without switching lines

dx

dt
= tl(x + e + 2) − tr e − 2tc − y := F(x) − y,

dy

dt
= dl(x + e + 2) − dr e − 2dc := g(x), (33)

where {(x, y) ∈ R
2|x < 0}. Evidently, system (21)

and system (33) are the same in the region {(x, y) ∈
R
2|(dr/dl − 1)e + 2dc/dl − 2 < x < −e − 2}.

For simplicity, we turn to study two orbit segments
Ê2F2G2 and Ê1F1G1 in system (33), as shown in
Fig. 12b, where Pi and Qi represent the first inter-
section point of the orbit segment Êi FiGi and y-axis
for i = 1, 2 as t decreases and increases, respec-
tively. On the one hand, proceeding as in the proof
of

∫
̂A2B2C2

F ′(x)dt = ∫
̂A1B1C1

F ′(x)dt in system (21),
we can also obtain that
∫

̂P2F2Q2

F ′(x)dt =
∫

̂P1F1Q1

F ′(x)dt (34)

in system (33). On the other hand, we have

∫

̂P2E2

F
′
(x)dt −

∫

̂P1E1

F
′
(x)dt

=
∫ −e−2

0

F
′
(x)

F(x) − y2(x)
dx

−
∫ −e−2

0

F
′
(x)

F(x) − y1(x)
dx

=
∫ −e−2

0

F
′
(x) (y2(x) − y1(x))

(
F(x) − y1(x)

) (
F(x) − y2(x)

)dx < 0,

(35)

where y1(x) and y2(x) represent the orbit segments
P̂1E1 and P̂2E2 which lie above y = F(x), respec-
tively. Denote z1(x) and z2(x) as the orbit segments
Ĝ1Q1 and Ĝ2Q2 which lie below y = F(x), respec-
tively. We can similarly obtain
∫

̂G2Q2

F ′(x)dt −
∫

̂G1Q1

F ′(x)dt < 0. (36)

It follows from (34), (35) and (36) that
∫

̂E2F2G2

F ′(x)dt −
∫

̂E1F1G1

F ′(x)dt > 0. (37)

In conclusion, we proved (28) by (29), (30), (32) and
(37). The next thing to do in the proof is to discuss the
existence of large limit cycles of system (21) by the
following two cases.

Case (a) system (21) exhibits a unique small limit
cycle, which is stable.
Case (b) system (21) exhibits no small limit cycles.

Consider Case (a). Note that system (21) exhibits a
unique small limit cycle. Denote as γ1. Since γ1 is sta-
ble, we have

∮

γ1
F ′(x)dt < 0. Combining the stability

of γ1 and (28), we can directly obtain that system (21)
exhibits at most two large limit cycles. Assume that
system (21) exhibits two large limit cycles γ2 and γ3,
where γ2 lies in the interior of γ3. Moreover, we have
∮

γ2

F ′(x)dt = 0,
∮

γ3

F ′(x)dt > 0.

In other words, γ2 is semi-stable and γ3 is unstable. We
claim that the assumption is invalid. For a1 < a2, we
can calculate

∣
∣
∣
∣
F(x)|tc=a1 − y g(x)
F(x)|tc=a2 − y g(x)

∣
∣
∣
∣

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= 0, for x > −e,
(x + e)g(x)(a1 − a2) < 0, for

−e − 2 ≤ x ≤ −e,
−2g(x)(a1 − a2) < 0, for α

dl−e − 2 < x < −e − 2,
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where equality clearly cannot hold for entire closed
orbit of system (21). Thus, the vector field (F(x) −
y, g(x)) of system (21) is rotated about tc by [22, Defi-
nition 1.6] or Definition 3.3 of [41, Chapter 4]. By The-
orem 3.4 of [41, Chapter 4], the semi-stable limit cycle
γ2 will bifurcate into at least one unstable large limit
cycle γ21 and one stable large limit cycle γ22, when tc
varies in the suitable direction. It implies that there are
at least three large limit cycles. This is a contradiction.
Suppose that system (21) exhibits one large limit cycle
γ4. We claim that γ4 is unstable. Otherwise, γ4 is stable
or semi-stable. If γ4 is stable, then there exists an large
limit cycle that is unstable by the Poincaré–Bendixson
theorem between γ1 and γ4. This is contradictory. If γ4
is semi-stable, then system (21) exhibits at least two
large limit cycles when tc varies in the suitable direc-
tion. This is a contradiction. The assertion is proved.
In conclusion, system (21) has at most one large limit
cycle in the Case (a). Moreover, the large limit cycle
is unstable if it exists.

Consider Case (b). Notice that O of system (21) is
an unstable focus. Based on (28), system (21) exhibits
at most three large limit cycles. Denote as �1, �2 and
�3, where �1, �2 and �3 are adjacent, �1 is the inner
most one and �3 is the outer most one. Moreover, we
have
∮

�1

F ′(x)dt < 0,
∮

�2

F ′(x)dt = 0,
∮

�3

F ′(x)dt > 0.

By the same arguments, system (21) exhibits at least
four large limit cycles when tc varies in the suitable
direction. This is a contradiction. Thus, system (21)
has no large limit cycles or a stable large limit cycle
or two large limit cycles in the Case (b), where one
of the two large limit cycles is stable, the other one is
unstable, and the stable one lies in the interior of the
unstable one. This finishes the proof of Lemma 5.2. 
�

Based on Lemma 5.1, it suffices to investigate the
existence and uniqueness of homoclinic loops of sys-
tem (1) with dc ≤ 0, α > −dc, tr 2 − 4dr < 0, and
tc < t∗c in G1.

Lemma 5.3 When dc ≤ 0, α > −dc, t2r − 4dr <

0, tc < t∗c in G1, system (1) has a unique homoclinic
loop and a unique limit cycle when tc = ϕ(α), where
the function tc = ϕ(α) is continuous and monotonous
satisfying ϕ(α) < t∗c . Moreover, the homoclinic loop is
unstable and the limit cycle is stable.

Proof First of all, we prove the existence of homoclinic
loops of system (21). Denote W+

Nl
as the stable man-

ifold of the right-hand side of Nl of system (21), and
W−

Nl
as the unstable manifold of the right-hand side of

Nl of system (21). Since there is no equilibrium point at
infinity in the right half plane by Lemma 4.2, the mani-
foldsW+

Nl
andW−

Nl
must intersect the curve y = F(x).

Denote the first intersection points of W+
Nl

and W−
Nl

with the curve y = F(x) as A : (xA, F(xA)) and
B : (xB, F(xB)), respectively. It is clear that system
(21) has a homoclinic loop if and only if xA − xB = 0.
To prove the existence of homoclinic loops of system
(21), it suffices to prove that xA−xB has different signs
for the two different cases tc = t∗c and tc → −∞.

Consider tc = t∗c . It follows from statement (b)
of Lemma 5.1 that system (21) exhibits neither limit
cycles nor homoclinic loops, which implies xA − xB �=
0. Note that O of system (21) is an unstable focus.
We claim that xA − xB < 0, as shown in Fig. 13a.
Otherwise, there exists at least one limit cycle by the
Poincaré–Bendixson theorem, which contradicts the
nonexistence of limit cycles of system (21). The asser-
tion of xA − xB < 0 is proved.

Consider tc → −∞. Define M : (−e − 2, F(−e −
2)) as the intersection point of the curve y = F(x) and
the left switching line �̂l , and P (resp. Q) be the first
intersection point of the positive (resp. negative) orbit
passing through M and the curve y = F(x). Note that
there is no equilibrium point at infinity in the right half
plane by Lemma 4.2. Therefore, when tc → −∞, we
obtain that P lies on the right-hand side of Q, as shown
in Fig. 13b. According to the continuous dependence of
the solution on parameters and initial values, it follows
that A also lies on the right-hand side of B. In other
words, xA − xB > 0, as shown in Fig. 13b.

By the aforementioned discussion and the contin-
uous dependence of the solution on parameters and
the mean value theorem, there are some values tc ∈
(−∞, t∗c ) so that xA − xB = 0 for system (21), as
shown in Fig. 13c. Therefore, we proved the existence
of homoclinic loops of system (21).

Secondly, we show the uniqueness of homoclinic
loops of system (21). We claim that the manifoldsW+

Nl

andW−
Nl

of Nl of system (21) rotate clockwise when tc
increases and tr , tl , dr , dc, dl , α are fixed. For simplic-
ity, by the transformation

x → x, y → y + F̂(x),
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(a) (b)

Fig. 12 The discussion of large limit cycles of system (21)

system (21) is changed into

dx

dt
= −y,

dy

dt
= ĝ(x) + f (x)y, (38)

where

f (x) = F̂ ′(x) =
⎧
⎨

⎩

tr , if x > −e,
tc, if − e − 2 ≤ x ≤ −e,
tl , if x < −e − 2.

It means that O of system (21) is moved to O1 : (0, 0)
of system (38), and Nl of system (21) is moved to
Nl1 : ((dr/dl − 1)e + 2dc/dl − 2, 0) of system (38).
Obviously, system (38) is topologically equivalent to
system (21), which implies that all aforementioned dis-
cussions which hold for system (21) are also available
for system (38). Therefore, we can assume that sys-
tem (38) exhibits a homoclinic loop for a certain value
tc ∈ (−∞, t∗c ), which has one intersection point P in
the positive x-axis, two intersection points Q1 (up) and
Q2 (down) in the left switching line �̂l , and two inter-
section pointsM (up) and N (down) in the right switch-
ing line�r̂ , as shown in Fig. 13d. Fix tr , tl , dr , dc, dl , α
and take tc → tc + ε, where |ε| is sufficiently small. It
can easily be seen that systems (38) and (38)|tc→tc+ε are
the same in the region {(x, y) ∈ R

2|x < −e−2}, which
means that the orbit segment ̂Q1Nl1Q2 will not change
whenwe perturb the parameter tc. Assume that the orbit
segments M̂Q1 and Q̂2N are changed into the orbit

segments M̂1Q1 and Q̂2N2, respectively, whenwe per-
turb the parameter tc, where the point M1 is below the
pointM , the point N2 is below the point N , andM1 and
N2 are the points of the orbit after perturbation start-
ing from Q1 and Q2 and intersecting with the right
switching line �r̂ for the first time as t decreases and
increases, respectively, as shown in Fig. 13d. We claim
that ε > 0.Wewill repeat this argument briefly later on.
According to the fact that systems (38) and (38)|tc→tc+ε

are the same in the region {(x, y) ∈ R
2|x > −e} and

the solutions of systems (38) and (38)|tc→tc+ε satisfy
the existence, uniqueness and continuity with respect
to initial conditions and parameters, it follows that we
can directly obtain that the orbit segments P̂M and
N̂ P are changed into the orbit segments P̂1M1 and
N̂2P2, respectively, when we perturb the parameter tc,
where the orbit segments P̂1M1 and N̂2P2 are below the
orbit segments P̂M and N̂ P , respectively, and P1 and
P2 are the points of the orbit after perturbation start-
ing from Q1 and Q2 and intersecting with the positive
x-axis for the first time as t decreases and increases,
respectively, as shown in Fig. 13d. Moreover, by the
continuous dependence of solution on initial value and
parameters, the points P1 and P2 must exist and be in
a small neighborhood of the homoclinic loop.

We now prove ε > 0. Set d1(x) := yε(x) − y0(x),
−e − 2 ≤ x ≤ −e be the vertical distance between
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the orbit segments M̂1Q1 and M̂Q1, where y = yε(x)
and y = y0(x) represent the orbit segments M̂1Q1 and
M̂Q1, respectively. Then we obtain from system (38)
that

d1(x) = d1(x) − d1(−e − 2)

= {yε(x) − y0(x)}|x−e−2

=
∫ x

−e−2

(−α + (tc + ε)yε(s)

−yε(s)
− −α + tc y0(s)

−y0(s)

)

ds

= H1(x) + H2(x) (39)

for all x ∈ (−e − 2,−e), where

H1(x) = −ε(x + e + 2),

H2(x) =
∫ x

−e−2
d1(s)H3(s)ds and

H3(x) = −α

yε(s)y0(s)
.

It follows from (39) that

d1(x)H3(x) = H1(x)H3(x) + H2(x)H3(x),

which implies that

dH2(x)

dx
= H1(x)H3(x) + H2(x)H3(x). (40)

Solving H2(x) from the first-order linear differential
equation (40) by the formula of constant variation and
the initial condition H2(−e − 2) = 0, we have

H2(x) =
∫ x

−e−2
H1(s)H3(s) exp

{∫ x

s
H3(η)dη

}

ds.

(41)

Further, by (39) and (41) we have

d1(x) = H1(x) +
∫ x

−e−2
H1(s)H3(s)

exp

{∫ x

s
H3(η)dη

}

ds

= H1(x) −
∫ x

−e−2
H1(s)d

(

exp

{∫ x

s
H3(η)dη

})

= H1(−e − 2) exp

{∫ x

−e−2
H3(η)dη

}

+
∫ x

−e−2
H ′
1(s) exp

{∫ x

s
H3(η)dη

}

ds

= −ε

∫ x

−e−2
exp

{∫ x

s
H3(η)dη

}

ds

< 0 (resp. > 0), if ε > 0 (resp. ε < 0). (42)

Let d2(x) := zε(x) − z0(x), −e − 2 ≤ x ≤ −e be
the vertical distance between the orbit segments Q̂2N2

and Q̂2N , where y = zε(x) and y = z0(x) represent
the orbit segments Q̂2N2 and Q̂2N , respectively. It is
similar to prove that

d2(x) = −ε

∫ x

−e−2
exp

{∫ x

s
H4(η)dη

}

ds

< 0 (resp. > 0), if ε > 0(resp. ε < 0). (43)

for all x ∈ (−e − 2,−e), where

H4(x) = −α

zε(s)z0(s)
.

Therefore, the assertion of ε > 0 is proved by (42)
and (43), which means that both the stable mani-
fold W+

Nl
and the unstable manifold W−

Nl
of Nl of

system (21) rotate clockwise when tc increases and
tr , tl , dr , dc, dl , α are fixed. Hence, we obtain the
uniqueness of homoclinic loops of system (21) by the
aforementioned discussion. In other words, there is a
continuous and monotonous function ϕ(α) on tc such
that system (1) exhibits a unique homoclinic loopwhen
tc = ϕ(α), where ϕ(α) < t∗c .

Thirdly, we prove the stability of homoclinic loops
of system (21). Although system (21) is piecewise lin-
ear and Lipschitz continuous in R

2 and Theorem 3.3
of [15] holds for a system satisfying C2, we can easily
show that Theorem 3.3 of [15] holds for system (21).
Regarding the saddle Nl of system (21), its eigenvalues
are denoted by λ− and λ+, where λ− < 0 < λ+ and
λ− + λ+ = tl . Since tl > 0, the homoclinic loop of
system (21) is unstable by Theorem 3.3 of [15].

Finally, we prove the coexistence of limit cycle and
homoclinic loop of system (21). By the aforementioned
analysis, we know that the homoclinic loop of system
(21) is unstable when it exists. Recall that O of system
(21) is an unstable focus. Therefore, it clear that there
exists limit cycle in the interior of the homoclinic loop
by the Poincaré–Bendixson theorem. According the
fact that system (21) exhibits atmost two limit cycles by
Lemma 5.2, we claim that there exists a unique limit
cycle that is stable in the interior of the homoclinic
loop. Otherwise, there exist two limit cycles in the inte-
rior of the homoclinic loop. Then, the two limit cycles
consist of a stable one and a semi-stable one by the
Poincaré–Bendixson theorem. We know that the vec-
tor field (F(x)−y, g(x)) of system (21) is rotated about
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tc by the proof of Lemma 5.2. Hence, when tc varies
in the suitable direction, system (21) exhibits at least
three limit cycles. This is a contradiction. The asser-
tion is proved. Therefore, there exists a unique limit
cycle that is stable in the interior of the homoclinic
loop. According to Theorem 3.5 of [41, Chapter 4], it
follows that the stable limit cycle lying the interior of
the homoclinic loop of system (21) expands when tc
increases. So is system (1). The proof is completed. 
�

We have proved the existence of limit cycles of sys-
tem (1) in Lemma 5.2, and then we now can give the
uniqueness of limit cycles and the exactly two limit
cycles of system (1) based onLemma5.3,when dc ≤ 0,
α > −dc, tr 2 − 4dr < 0, and tc < t∗c in G1.
Lemma 5.4 Consider dc ≤ 0, α > −dc, t2r −4dr < 0,
tc < t∗c in G1. There is a continuous function tc = φ(α)

such that the following statements hold, where ϕ(α) <

φ(α) < t∗c .

(a) When tc ∈ (−∞, ϕ(α)), system (1) exhibits a
unique limit cycle, which is stable.

(b) When tc ∈ (ϕ(α), φ(α)), system (1) exhibits exactly
two limit cycles. The inner limit cycle is stable and
the outer one is unstable.

(c) When tc = φ(α), system (1) exhibits a unique limit
cycle, which is semi-stable.

(d) When tc ∈ (φ(α), t∗c ), system (1) exhibits no limit
cycles.

Proof According to Lemma 5.3, it follows that system
(1) exhibits a unique homoclinic loop that is unsta-
ble when tc = ϕ(α) as shown in Fig. 14b, where
the function ϕ(α; tr , tl , dr , dc, dl) is a continuous and
monotonous function on tc, and ϕ(α) < t∗c . Denote
W+

El
as the stable manifold of the right-hand side

of El of system (1), and W−
El

as the unstable mani-
fold of the right-hand side of El of system (1). By
the proof of Lemma 5.3, we know that the mani-
folds W+

El
and W−

El
rotate clockwise when tc increases

and tr , tl , dr , dc, dl , α are fixed. If the homoclinic loop
breaks, then the relative location of the stable man-
ifold W+

El
and the unstable manifold W−

El
will occur

two cases, as shown in Fig. 14a, c, where ε > 0 is
sufficiently small.

Firstly, we prove conclusion (a). When tc ∈ (−∞,

ϕ(α)), the relative location of the stable manifold W+
El

and the unstable manifoldW−
El

is as shown in Fig. 14a.
Hence, we can construct the outer boundary curve.
Since Er is an unstable focus, we can construct the
inner boundary curve in a small neighborhood of Er .
By the Poincaré–Bendixson theorem, there exists at
least one limit cycle surrounding Er . We have known
that system (1) exhibits at most two limit cycles by
Lemma 5.2. Assume that there exist two limit cycles
surrounding Er . Then, the two limit cycles consist of
a stable one and a semi-stable one by the Poincaré–
Bendixson theorem, which leads to the conclusion that
system (1) exhibits at least three limit cycles when tc
varies in the suitable direction. This is a contradiction.
Hence, there exists a unique limit cycle, which is sta-
ble. Moreover, the stable limit cycle expands when tc
increases. Conclusion (a) is proven.

Secondly, we prove conclusions (b) and (c). When
tc ∈ (ϕ(α),+∞), the relative location of the stable
manifold W+

El
and the unstable manifold W−

El
is as

shown in Fig. 14c. We have shown that system (1)
exhibits a unique limit cycle that is stable in conclusion
(a) when tc ∈ (−∞, ϕ(α)); a unique limit cycle that
is stable and lies in the interior of the unstable homo-
clinic loop in Lemma 5.3 when tc = ϕ(α). Combining
Lemma 5.2 and the Poincaré–Bendixson theorem, we
claim that system (1) exhibits two limit cycles when
tc ∈ (ϕ(α), ϕ(α)+ε), where the inner limit cycle is sta-
ble and the outer one is unstable. Otherwise, system (1)
has no limit cycles when tc ∈ (ϕ(α), ϕ(α)+ε); a stable
homoclinic loopwhen tc = ϕ(α). This is contradictory.
Hence, system (1) has exactly two limit cycles when
tc ∈ (ϕ(α), ϕ(α) + ε). Moreover, the attracting limit
cycle expands and the repelling one contracts when tc
increases. Therefore, by the continuous dependence of
solutions on parameters and the mean value theorem,
we further obtain that there exists a continuous func-
tion φ(α; tr , tl , dr , dc, dl) such that when tc = φ(α)

system (1) exhibits a unique limit cycle that is semi-
stable, where ϕ(α) < φ(α) < t∗c . Then, system (1) has
two limit cycles when ϕ(α) < tc < φ(α). Conclusions
(b) and (c) are proved.

Finally, we prove conclusion (d). When φ(α) <

tc < t∗c , the semi-stable limit cycle disappears. Hence,
system (1) has no limit cycles.Conclusion (d) is proved.


�
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(a) (b)

(c) (d)

Fig. 13 The discussion of the existence and uniqueness of homoclinic loops of system (1)

(a) (b) (c)

Fig. 14 The homoclinic loop bifurcation of system (1)

5.2 Limit cycles and homoclinic loops of system (1)
with dc < 0 and dc < α ≤ −dc in G1

The following lemma is to give the nonexistence of
limit cycles and homoclinic loops of system (1), when
dc < 0 and dc < α ≤ −dc in G1.

Lemma 5.5 Considering dc < 0, dc < α ≤ −dc in
G1, system (1) exhibits neither limit cycles nor homo-
clinic loops, if one of the following statements holds:

(a) tr 2 − 4dr ≥ 0;
(b) tr 2 − 4dr < 0 and tc ≥ 0.

Proof Consider tr 2 − 4dr ≥ 0. O of system (21) is an
unstable nodebyLemma4.1,which implies that system
(21) has at least one invariant line in Sr̂ . Thus, any orbit
passing the switching line �r̂ has no intersections with
the switching line �r̂ again. Moreover, limit cycles of
system (21) must only surround O if it exists. Thus,
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system (21) exhibits neither limit cycles nor homoclinic
loops. The condition (a) is proved.

Consider tr 2 − 4dr < 0 and tc ≥ 0. From
Lemma 4.1, we know that O of system (21) is an unsta-
ble focus, Nc (resp. Ncl ) of system (21) is a saddle if
dc < α < −dc (resp. α = −dc). In order to study
the nonexistence of limit cycles and homoclinic loops
of system (21), construct an energy function along the
vector field of system (21) as follows

E(x, y) :=
∫ x

0
g(s)ds + y2

2
.

Then, we have

dE(x, y)

dt
= g(x)F(x) > 0 (resp. = 0),

if x �= 0 (resp.x = 0),

when tc ≥ 0 and dc < α ≤ −dc in the region
{(x, y) ∈ R

2|x ≥ (dr/dc − 1)e}. We claim that system
(21) exhibits neither limit cycles nor homoclinic loops
in this case. Otherwise, we have
∮

�

dE =
∮

�

g(x)F(x) > 0,

for any limit cycle or homoclinic loop� of system (21),
which contradicts the fact

∮

�
dE = 0. This completes

the proof. 
�
Based on Lemma 5.5, we give the existence and

uniqueness of limit cycles and homoclinic loops of sys-
tem (1), when dc < 0, dc < α ≤ −dc, t2r − 4dr < 0
and tc < 0 in G1.
Lemma 5.6 Consider dc < 0, dc < α ≤ −dc,
t2r − 4dr < 0 and tc < 0 in G1. There is a continuous
function tc = h(α) such that the following statements
hold, where h(α) < 0.

(a) System (1) exhibits a unique limit cycle that is stable
if and only if tc < h(α).

(b) System (1) exhibits a stable homoclinic loop if and
only if tc = h(α).

(c) System (1) exhibits neither limit cycles nor homo-
clinic loops if and only if tc > h(α).

Proof In [31], Llibre, Ponce and Valls studied the limit
cycles of the following Liénard piecewise linear differ-
ential system

dx

dτ
= F̃(x) − y,

dy

dτ
= g̃(x), (44)

where

F̃(x) =
⎧
⎨

⎩

TR(x − v) + TCv, if x > v,

TCx, if − u ≤ x ≤ v,

TL(x + u) − TCu, if x < −u,

g̃(x) =
⎧
⎨

⎩

r(x − v) + v, if x > v,

x, if − u ≤ x ≤ v,

l(x + u) − u, if x < −u,

and the constants u and v are positive. When TR =
TC �= 0 and r = 1, F̃(x) and g̃(x) of system (44) can
be simplified as the following form

F̂(x) =
{
TRx, if x ≥ −u,

TL(x + u) − TRu, if x < −u,

and

ĝ(x) =
{
x, if x ≥ −u,

l(x + u) − u, if x < −u.

Assuming dr > 0 and applying

TR = tr√
dr

, TL = tc√
dr

, l = dc
dr

, u = e, (45)

we obtain that F̂(x) and ĝ(x) of system (44) can be
further simplified to

F(x) =
{ tr√

dr
x, if x ≥ −e,

tc√
dr

(x + e) − tr√
dr
e, if x < −e,

and

g(x) =
{
x, if x ≥ −e,
dc
dr

(x + e) − e, if x < −e.

By the scaling transformation y → y/
√
dr , τ →√

dr t , system (44) becomes

dx

dt
= F(x) − y,

dy

dt
= g(x), (46)

where,

F(x) =
{
tr x, if x ≥ −e,
tc(x + e) − tr e, if x < −e,

and

g(x) =
{
dr x, if x ≥ −e,
dc(x + e) − dr e, if x < −e.

Using Lemma 4.1, we know that system (21) has
two equilibrium points O and Nc when dc < α <

−dc; O and Ncl when α = −dc > 0. Moreover, O
of system (21) is an unstable focus for t2r − 4dr <
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0, Nc and Ncl of system (21) are saddles. It is clear
that the above equilibrium points all lie in the region
{(x, y) ∈ R

2|x ≥ −e − 2}. Based on the index theory,
limit cycle of system (21) lies in the region {(x, y) ∈
R
2|x ≥ −e − 2} if it exists. It is important to note

that system (21) and system (46) are the same in the
region {(x, y) ∈ R

2|x ≥ −e − 2}. Moreover, systems
(44) and (46) are topologically equivalent. Therefore,
we can directly obtain some results of limit cycles and
homoclinic loops of system (1) by using the known
results of limit cycles and homoclinic loops of system
(44) (see [31]).

Consider TR = TC > 0, |TC | < 2, TL < 0, r = 1
and l < 0 in system (44). By (45), we have tr > 0,
tc < 0, dr > 0, dc < 0 and t2r −4dr < 0 in system (46).
System (46) has two equilibrium points, M : (0, 0) and
N : ((dr/dc − 1)e, (tcdr/dc − tr )e). M of system (46)
is exactly O of system (21) when dc < α ≤ −dc,
N of system (46) is exactly Nc of system (21) when
dc < α < −dc; and N of system (46) is exactly Ncl

of system (21) when α = −dc > 0. If TR = TC > 0,
|TC | < 2, TL < 0, r = 1 and l < 0 hold, we recall that
system (44) has a unique limit cycle surrounding the
origin that is stable if and only if eπγ Y l+ + Y l− < 0; a
stable homoclinic loop if and only if eπγ Y l+ +Y l− = 0;
neither limit cycles nor homoclinic loops if and only if
eπγ Y l+ + Y l− > 0 by Theorem 3 of [31], where

γ = TC
√

4 − T 2
C

, ω =
√

4 − T 2
C

2
,

σ = TC
2

, δ± =
TL ±

√

T 2
L − 4l

2l
,

ψ± = 2 · arctan
(

ω
√

(σ − δ±)2 + ω2 ± (σ − δ±)

)

,

Y l± = ±u · exp(±γψ±)

√

(σ − δ±)2 + ω2.

Therefore, if tr > 0, tc < 0, dr > 0, dc < 0 and
t2r − 4dr < 0 hold, system (46) exhibits a unique limit
cycle that is stable surrounding the origin if and only if
eπγ Y l+ +Y l− < 0; a stable homoclinic loop if and only
if eπγ Y l++Y l− = 0; neither limit cycles nor homoclinic
loops if and only if eπγ Y l+ + Y l− > 0, where

γ = tr
√
4dr − t2r

, ω =
√
4dr − t2r
2
√
dr

,

σ = tr
2
√
dr

, δ± = √
dr · tc ± √

t2c − 4dc
2dc

,

ψ± = 2 · arctan
(

ω
√

(σ − δ±)2 + ω2 ± (σ − δ±)

)

,

Y l± = ±e · exp(±γψ±)

√

(σ − δ±)2 + ω2.

Besides, for a1 < a2, we can compute
∣
∣
∣
∣
F(x)|tc=a1 − y g(x)
F(x)|tc=a2 − y g(x)

∣
∣
∣
∣

=
{= 0, for x ≥ −e,

(x + e)g(x)(a1 − a2) < 0, for x < −e,

where equality clearly cannot hold for entire closed
orbit of system (46). Hence, the vector field (F(x) −
y, g(x)) of system (46) is rotated about tc by [22, Def-
inition 1.6] or Definition 3.3 of [41, Chapter 4]. This
implies the result. 
�

6 Proofs of Theorems 2.1–2.6

Proof of Theorem 2.1 It follows from Lemma 4.1 that
system (1) exhibits a continuum of non-isolated equi-
librium points CE when α = 0 in G11. If α = ε and
ε > 0 is small, CE will vanish and an unstable focus
Er and a saddle El will appear. Moreover, it is evident
that there is no limit cycle by the qualitative property of
CE . Therefore,DB1 andDB2 are degenerate boundary
equilibrium bifurcation curves.

Applying Lemma 5.3, we know that system (1)
exhibits a unique homoclinic loop that is unstable when
α > 0 and tc = ϕ(α) in G11, where the function ϕ(α)

is a continuous and monotonous function on tc and
ϕ(α) < t∗c . Therefore, homoclinic bifurcation curve
HL is obtained.

According to Lemma 5.4, it follows that system (1)
exhibits a unique limit cycle that is semi-stable when
α > 0 and tc = φ(α) in G11, where φ(α) is a con-
tinuous on tc and ϕ(α) < φ(α) < t∗c . If α > 0,
tc = φ(α) + ε and ε > 0 (ε is small), the semi-stable
limit cycle will vanish. However, there are two limit
cycles accompanied by the vanish of the semi-stable
limit cycle if ε < 0. Hence, DL is called as double
limit cycle bifurcation curve.

By the aforementioned discussion and Lemma 4.2,
we obtain that there is no limit cycle when parameters
belong to the region I (see Fig. 1b for its global phase
portraits in the Poincaré disc) or II (see Fig. 1c for its
global phase portraits in the Poincaré disc); one stable
limit cycle when parameters belong to the region III
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(a) (b)

(c) (d)

(e)

Fig. 15 Numerical phase portraits of system (1) with (tr , tl , dr , dc, dl ) = (0.1, 1, 0.5, 0,−1) ∈ G11
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(see Fig. 1d for its global phase portraits in the Poincaré
disc); two limit cycles when parameters belong to the
region IV (see Fig. 1e for its global phase portraits in
the Poincaré disc). This completes the proof. 
�

Proof of Theorem 2.2 Proceeding as in the proof of
Theorem 2.1, we have the degenerate boundary equi-
librium bifurcation curves DB1 and DB2 in G12. By
Lemma 4.1, system (1) exhibits no equilibrium point
when α < 0 in G12; two equilibrium points El and Er

when α > 0 in G12, where El is a saddle, Er is an
unstable node. Hence, system (1) has no limit cycles.

Basedon the aforementioneddiscussion andLemma4.2,
we obtain the global phase portraits in the Poincaré disc
of the regions V (see Fig. 2b) and VI (see Fig. 2c). The
proof is completed. 
�

Remark 5 Since the proof of Theorem 2.4 is similar
with the proof of Theorem 2.1 and the proofs of The-
orems 2.3, 2.5 and 2.6 are similar with the proof of
Theorem 2.2, we omit the corresponding proofs.

7 Numerical results

In order to illustrate our theoretical results, we give
some numerical phase portraits of system (1). Let
(tr , tl , dr , dc, dl) = (0.1, 1, 0.5, 0,−1) ∈ G11. By
numerical simulations, system (1) exhibits no limit
cycles for (α, tc) = (1,−0.3) (see Fig. 15a); one
semi-stable limit cycle for (α, tc) = (1,−0.426) (see
Fig. 15b); two limit cycles for (α, tc) = (1,−0.51) (see
Fig. 15c); one unstable homoclinic loop and one stable
limit cycle for (α, tc) = (1,−0.5285) (see Fig. 15d);
and one stable limit cycle for (α, tc) = (1,−1.6) (see
Fig. 15e).

Set (tr , tl , dr , dc, dl) = (0.1, 1, 0.5,−0.1,−1) ∈
G14. By numerical simulations, system (1) exhibits no
limit cycles for (α, tc) = (1,−0.3) (see Fig. 16a); one
semi-stable limit cycle for (α, tc) = (1,−0.476) (see
Fig. 16b); two limit cycles for (α, tc) = (1,−0.5) (see
Fig. 16c); one unstable homoclinic loop and one sta-
ble limit cycle for (α, tc) = (1,−0.55) (see Fig. 16d);
and one stable limit cycle for (α, tc) = (1,−1) (see
Fig. 16e). And system (1) has no limit cycles for
(α, tc) = (0,−0.1) (see Fig. 16f); one homoclinic loop
for (α, tc) = (0,−0.12799) (see Fig. 16g); and one sta-
ble limit cycle for (α, tc) = (0,−0.3) (see Fig. 16h).

8 Concluding remarks

In this section, we compare the global dynamics and
techniques of this paper to those of known papers.
Based on all results in this paper, global phase portraits
in the Poincaré disc and the bifurcation diagram of sys-
tem (1) were given completely for the case tr tl > 0,
drdl < 0, dc ≤ 0.

When tr tl > 0 and drdl > 0, the global dynamics of
system (1) are completely different compared with this
paper, see [12,31,35] and references therein. For exam-
ple, consider system (1) with tr tl > 0, dr > 0, dc > 0,
dl > 0, and then system (1) has a unique equilibrium
point that lies in an open linear zone or a switching line.
However, the results of this paper for the finite equi-
librium point are utterly different and more complex,
where system (1) has two isolated equilibrium points
for α > dc; one equilibrium point (one continuum of
non-isolated equilibriumpoint asdc = 0or one isolated
equilibriumpoint asdc < 0) forα = dc; no equilibrium
point for α < dc, see Lemma 4.1 for more descriptions.
Naturally, the global phase portraits and bifurcations of
system (1) in this paper are completely different from
those of system (1) with tr tl > 0, dr > 0, dc > 0,
dl > 0. Since drdl < 0, it means that the dynamic of
the one of the exterior linear zones is saddle and the
remaining one is anti-saddle. Therefore, the results of
this paper have the special dynamical behavior that is
the coexistence of limit cycle and homoclinic loop.

Llibre et al. [31] proved the existence and unique-
ness of homoclinic loop involving two linear zones for
system (1) with some restrictions. In this paper, we
show the existence and uniqueness of homoclinic loop
involving three linear zones for system (1) by using
new techniques. To explain why, we recall the tech-
niques used to prove the existence and uniqueness of
homoclinic loop in [31]. When tl = tc, dl = dc or
tr = tc, dr = dc system (1) becomes a continuous
piecewise linear system with only two different linear
zones. Without loss of generality, we consider the case
tl = tc, dl = dc and then system (1) becomes

dx

dt
= F(x) − y,

dy

dt
= g(x) − α, (47)

where

F(x) =
{
tr (x − 1) + tc, if x > 1,
tcx, if x ≤ 1,
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(a) (b)

(c) (d)

(e) (f)

Fig. 16 Numerical phase portraits of system (1) with (tr , tl , dr , dc, dl ) = (0.1, 1, 0.5,−0.1,−1) ∈ G14
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(g) (h)

Fig. 16 continued

and

g(x) =
{
dr (x − 1) + dc, if x > 1,
dcx, if x ≤ 1.

Without loss of generality, consider system (47) with
tr < 0, 0 < tc < 2, dr < 0, dc > 0, α < dc, see
the section 4 of [31] for more descriptions. Firstly, they
computed the stable manifold and the unstable mani-
fold of the left-hand side of saddle point of system (47)
by the Jacobian matrix of saddle point. Let A and B be
the intersection points of the stable manifold and the
unstable manifold of the left-hand side of saddle point
with the switching line x = 1, respectively. Secondly,
they calculated the orbits γ1 and γ2 starting from A
and B in the region {(x, y) ∈ R

2|x < 1}, respectively.
Finally, they obtained the conclusion of the existence
and uniqueness of homoclinic loop for system (47) if
γ1 and γ2 intersect each other.

Now, look at the problems we face. Without loss of
generality, consider system (1) with dr > 0, dc ≤ 0,
dl < 0, tr > 0, tc < t∗c , tl > 0, α > −dc and
t2r −4dr < 0. It then follows from Lemma 4.1 that sys-
tem (1) has two equilibrium points El and Er , which
are lie in Sl and Sr , respectively. Since El is a sad-
dle, the homoclinic loop involves three linear zones
if it exists. Although we know that the dynamics of
the left and right linear zones of system (1) are saddle
and focus respectively, it is quite difficult to study the
existence and uniqueness of homoclinic loop involv-
ing three linear zones by the above techniques because
of complex computations. In other words, we have to

adopt new techniques to solve our face problems, see
Lemma5.3 formore descriptions.Denote the first inter-
section points of the stable manifold and the unstable
manifold of the right-hand side of saddle point of sys-
tem (1) with the curve y = F(x) as A : (xA, F(xA))

and B : (xB, F(xB)), respectively. First, we prove that
xA−xB < 0 for tc = t∗c and xA−xB > 0 for tc → −∞.
By the zero point theorem, we obtain the existence of
homoclinic loop of system (1), i.e., xA − xB = 0 for
some values tc. Second, we show that the stable man-
ifold and the unstable manifold of the right-hand side
of saddle point of system (1) rotate clockwise when tc
increases and tr , tl , dr , dc, dl , α are fixed. Therefore,
we know that the homoclinic loop of system (1) is
unique if it exists. By the aforementioned two steps, we
give the existence and uniqueness of homoclinic loop.
Finally, we prove the coexistence of limit cycle and the
above homoclinic loop by reduction to absurdity, , see
Lemma 5.3 for more descriptions.
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