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Abstract In this study, a dynamic analysis method

for flexible multibody systems using Reissner–Mind-

lin shells was developed, and an edge center-based

strain smoothing mixed interpolation of tensorial

components (MITC) method that described the defor-

mation of flexible shells was presented. Three primary

achievements were completed. First, a new dynamics

equation for Reissner–Mindlin shells based on the

floating frame of reference formulation was modeled,

in which the coupling of the bending and membrane

deformations with rigid motion was considered com-

prehensively. Second, an edge center-based strain

smoothing (ECSS) method that effectively improved

the membrane and bending behavior for MITC3

elements was proposed. Third, the ECSS method

was designed to construct a linear strain field within an

element to ensure the strain consistency at the junction

center of the element, resulting in a smoother stress

field. The superior performance of the proposed

method was verified by convergence analyses, and

its advantages for flexible multibody dynamics anal-

yses were also highlighted numerically.

Keywords Flexible multibody dynamics �Reissner–
Mindlin shell � MITC element � Strain smoothing

List of symbols

O� xyz The inertial coordinate system

O
I � xIyIzI The floating coordinate system

e� x̂ŷẑ The local coordinate system of element

e

rPf
, _rPf

and

€rPf

The spatial position, velocity, and

acceleration of point Pf

RI
The translational displacement of O

I �
xIyIzI with respect to O� xyz

hI , xI and

eI
The rotational displacement, angular

velocity and angular acceleration of

O
I � xIyIzI with respect to O� xyz

AI The coordinate transformation matrix

between two coordinate systems

uf Deformation displacement in

O
I � xIyIzI

ûf Deformation displacement in e� x̂ŷẑ

qf The global nodal displacement vector

Ne Element shape function matrix

~em, ~eb and

es

Respectively corresponding to the

smoothed membrane strain, smoothed

bending strain, and shear strain

~B
e
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~B
e

b and

Be
s

Respectively corresponding to the

smoothed membrane strain matrix,

smoothed bending strain matrix, and
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v
External load vector and velocity

coupling vector
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1 Introduction

Thin-walled structures such as plates and shells are

often designed and applied in engineering practice

because of their remarkable performance. The struc-

tural characteristics of plates and shells have been

widely investigated by researchers, and a series of

classical plate and shell theoretical models have been

proposed, such as Kirchhoff Love theory and Reiss-

ner–Mindlin theory [1–5]. The structural characteris-

tics of plates and shells have been paid much attention

by researchers, and a series of analytical and numer-

ical methods have been proposed to investigate them

[6–10]. Nevertheless, many multibody dynamic sys-

tems composed of plates and shells exist in mechanical

and aerospace engineering fields [11, 12]. It is worth

noting that because deformation in thin-walled struc-

tures is common, it is more reasonable to regard a

structure as a flexible multibody system consisting of

plates and shells.

The dynamic theory of flexible multibody system

reveals the dynamic characteristics of a systemwhen it

experiences a large range of spatial motion. Because

of the complexity of the governing equations, which

are usually solved numerically, there are two key

points, one is the interaction, or coupling, between the

spatial motion of the flexible body and its structural

deformation, and the other is the discretization of

structural deformation. In particular, for thin-walled

structures, discretization through 3D solid elements is

computationally costly. Therefore, it is very important

to establish the dynamic model of thin-walled struc-

ture based on shell theory and adopt appropriate

numerical method for discretization.

Many scholars have made important contributions

to flexible multibody system modeling, which can be

traced back to the kineto-elastodynamics (KED)

method proposed by Winfry [13, 14] for flexible beam

dynamics in mechanical systems. The KED method is

a unidirectional coupling analysis of rigid dynamics

and structural dynamics, and it ignores the influence of

structural deformation on rigid motion. The KDE

method has exposed problems in the analysis of

modern lightweight mechanical systems with high

flexibility, and this method has difficulty in meeting

the needs of engineering practice. Many scholars,

represented by Shabana et al., subsequently developed

theoretical modeling methods for flexible multibody

systems, such as the floating frame of reference

formulation (FFRF) [15, 16], the geometrically exact

formulation (GEF) [17–19], and the absolute node

coordinate formulation (ANCF) [20–22]. The GEF is

primarily used to study beams, and is only seldom used

for plate and shell structures [23, 24]. Updating the

algorithm for rotation parameters and handling the

singularity are two problems involved in the GEF. The

ANCF avoids the problem of describing the complex

rotation of a flexible body using a slope vector, and

Wang et al. applied ANCF to study the dynamics of

thin shells [25–27]. However, a large number of

degrees of freedom (DOFs) make the simulation

process inefficient, and the convergence is poor due to

Poisson’s ratio and shear locking problems. Both GEF

and ANCF are more suitable analyzing multibody

systems with large deformation, while FFRF is a

powerful tool widely adopted in engineering systems

with common elastic deformation. The FFRF couples

the rigid motion and elastic deformation of a flexible

body by establishing a floating reference coordinate

system and representing the flexible deformation in

this coordinate system. At present, the FFRF is

primarily used to study the dynamics of solid struc-

tures [28–31], but the research regarding using FFRF

modeling for shell structures is limited.

One characteristic of the FFRF is that it can flexibly

select the deformation discretization method for a

flexible body, such as the finite segment method, the

assumed modal method, the finite element method

(FEM), and the meshfree method. The FEM is

undoubtedly the most recognized method for the

analysis of plate and shell structures. Among them, the

Reissner–Mindlin shell element, which takes the

transverse shear strains into consideration and only

requires a C0-continuous shape function for displace-

ment discretization, has attracted the attention of most

researchers. C0-continuous shell elements inherently

have two kinds of locking problems: shear locking and

membrane locking. Scholars have conducted many in-

depth studies regarding the shear locking problem.

They have proposed several correction schemes to

handle the shear strain in a shell element, such as the

reducing integration scheme [32], the assumed natural

strain (ANS) method [33, 34], the discrete shear gap

(DSG) method [35–37]. The mixed interpolation of

tensorial components (MITC) method proposed by

Bathe et al. [38] has a simple formula. Besides, the

element stiffness matrix is not affected by node

numbering. Because the three-node MITC (MITC3)
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element has attractive advantages mentioned above,

many of its enhancements have been further devel-

oped [39, 40]. The strain smoothing theory [41] has

recently been introduced into the conventional FEM to

improve its performance, and it can essentially be

regarded as an optimal treatment for membrane

deformation. The so-called smoothed finite element

methods (SFEMs), such as the node-based SFEM

(NSFEM) and the edge-based SFEM (ESFEM) pro-

posed by Liu et al. [42–45], are effective means of

improving accuracy without adding DOFs. These

methods can also be conveniently combined with

other methods that can overcome shear locking, such

as the MITC and DSG methods, to study plate and

shell structures [46–48]. Lee et al. [49–51] proposed a

new strain smoothing element (SSE) to further

improve the performance and applied it to linear and

nonlinear analyses of shells, thereby significantly

improving the membrane behavior. A breakthrough

is that the SSE constructs linear strain within an

element based on a low-order element through a strain

smoothing operation and a linear combination of

strains. More recently, Tang et al. [52, 53] presented

an edge center-based strain smoothing (ECSS) ele-

ment, which not only constructs an element-linear

strain field but also accounts for strain consistency at

the element junction center, thus significantly improv-

ing the stress smoothness.

In this paper, we extend the FFRF to study the

dynamics of thin-walled structures, and a flexible

multibody system dynamics modeling method of

Reissner–Mindlin shell is proposed. To efficiently

and accurately characterize the elastic deformation of

Reissner–Mindlin shell, an edge center-based strain

smoothing mixed interpolation of tensorial compo-

nents (ECSS-MITC) method is presented, which can

optimally improve the membrane, bending, and shear

behavior of shell element, as well as dramatically

improve the stress field smoothness without additional

post-processing.

The organization of the paper is described as

follows. In Sect. 2, the kinematic equation for a

Reissner–Mindlin shell is discussed within FFRF

framework. In Sect. 3, the proposed ECSS-MITC

discretization scheme is introduced in detail. Based on

the information in Sects. 2 and 3, the construction of a

dynamics equation for a flexible multibody system

with shells is described in Sect. 4. The key matrix

integral formula involved in the dynamics equation

and the reduced order method for solving the equation

based on modal synthesis are given in ‘‘Appendix A’’

and ‘‘Appendix B’’, respectively. Section 5 discusses

the performance testing of the ECSS-MITC scheme us-

ing two benchmark structure analyses. Section 6

presents three numerical examples of flexible multi-

body dynamics. Finally, a summary and further

propositions for the entire work are provided in

Sect. 7.

2 Kinematic description of Reissner–Mindlin shell

A spatial flexible shell I is shown in Fig. 1, where

O� xyz is the inertial coordinate system. O
I � xIyIzI

is the floating coordinate system and is rigidly linked

to the shell. In the figure, a point P in the shell space is

deformed to a point Pf during movement. The spatial

position rPf
of Pf can be expressed by Eq. (1):

rPf
¼ RI þ r

O
I
Pf

¼ RI þ AIr
O

I
Pf

¼ RI þ AI r0
O

I
P
þ uf

� �
ð1Þ

In Eq. (1),RI ¼ RI
x RI

y RI
z

� �T
is described in the

inertial coordinate system and represents the transla-

tional displacement of O
I � xIyIzI with respect to

O� xyz. r
O

I
Pf
is the position vector of point Pf relative

to the origin O
I
of the floating coordinate system, and

its vector in the floating coordinate system O
I � xIyIzI

is denoted as r
O

I
Pf
. r

O
I
Pf

¼ r0
O

I
P
þ uf consists of two

parts, namely the position r0
O

I
P
of point P without

deformation and the displacement uf caused by the

deformation. Both are described in O
I � xIyIzI . AI is

the coordinate transformation matrix between two

coordinate systems, consisting of the rotational dis-

placement hI ¼ hIx hIy hIz
h iT

of the floating coor-

dinate system with respect to the inertial coordinate

system.

For plate and shell problems, the middle plane is

generally extracted to represent the entire motion. As

shown in Fig. 1, the middle surface of the shell

structure is a spatial curved surface, which is regarded

as a splicing of several planes. A local coordinate

system e� x̂ŷẑ, can be constructed, where the
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coordinate plane e� x̂ŷ is located in the original plane

and the eẑ axis is perpendicular to e� x̂ŷ. According to

the Reissner–Mindlin plate theory, the displacement

uf x; y; zð Þ caused by deformation can be firstly

expressed in e� x̂ŷẑ by Eq. (2):

ûf x̂; ŷ; ẑð Þ ¼
ûo x̂; ŷð Þ þ ẑĥoy x̂; ŷð Þ
v̂o x̂; ŷð Þ � ẑĥox x̂; ŷð Þ

ŵo x̂; ŷð Þ

2
4

3
5 ð2Þ

Equation (2) shows that the displacement vector in

the plate space is represented by three translational

DOFs (û0, v̂0, and ŵ0) and two rotational DOFs (ĥox
and ĥoy) in the middle plane of the plate. Since the

different plates spliced into shells are in different local

coordinate systems, to facilitate subsequent transfor-

mation into a unified coordinate system, a rotational

DOF ĥoz along eẑ is introduced here. The deformation

can be expressed discretely by Eqs. (3)–(6):

ûo ¼
X
i

Niûi ð3Þ

û0 ¼ û0 v̂0 ŵ0 ĥox ĥoy ĥoz
� �T ð4Þ

ûi ¼ ûi v̂i ŵi ĥxi ĥyi ĥzi
� �T ð5Þ

Ni ¼ diag Ni Ni Ni Ni Ni Nif g ð6Þ

In Eqs. (3)–(6), Ni represents the interpolation

function and ûi represents the generalized displace-

ment array of discrete nodes.

Accordingly, ûf is expressed by Eqs. (7)–(10):

ûf ¼
X
i

Ŝiûi ð7Þ

Ŝi ¼ Ŝim þ ẑŜib ð8Þ

Ŝim ¼
Ni 0 0 0 0 0

0 Ni 0 0 0 0

0 0 Ni 0 0 0

2
4

3
5 ð9Þ

Fig. 1 Kinematic

representation of a shell
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Ŝib ¼
0 0 0 0 Ni 0

0 0 0 �Ni 0 0

0 0 0 0 0 0

2
4

3
5 ð10Þ

The general form of Eq. (7) is obtained through

matrix assembly:

ûf ¼ Ŝq̂I
f ð11Þ

Ŝ ¼ Ŝm þ ẑŜb ð12Þ

where q̂I
f ¼ ûT

1 ûT
2 � � � ûT

n

� �T
represents the glo-

bal DOFs of the deformed body I, and n is the total

number of nodes.

The deformation displacements uf and ûf are the

same vectors represented in different coordinate

systems, and Eq. (13) represents the transformation

relationship between them:

uf ¼ keûf ð13Þ

In Eq. (13), ke is the transformation matrix between

coordinate systems O
I � xIyIzI and e� x̂ŷẑ. Similarly,

there is also a transformation relationship between the

nodal displacements:

qI
f ¼ Tq̂I

f ð14Þ

where T is assembled from the transformation matrix

ke corresponding to each local coordinate system.

Equations (15) and (16) can be obtained by substitut-

ing Eqs. (11) and (14) into Eq. (13):

uf ¼ keŜq̂I
f ¼ keŜT

T
qI
f ¼ keSq

I

f ð15Þ

S ¼ ŜT
T ¼ Sm þ ẑSb ð16Þ

Substituting Eq. (15) into (1) yields Eq. (17):

rPf
¼ RI þ AIr

O
I
Pf

¼ RI þ AI r0
O

I
P
þ keSq

I

f

� �
ð17Þ

By taking the derivative of Eq. (17) with respect to

time and considering _r
0

O
I
P, Eqs. (18) and (19) are

obtained:

_rPf
¼ _R

I þ AI _r
O

I
Pf
þ xI � r

O
I
Pf

ð18Þ

_r
O

I
Pf

¼ keS _q
I

f ð19Þ

In a similar way, taking the second derivative of

Eq. (17) with respect to time yields Eqs. (20) and (21):

€rPf
¼ €R

I þ AI€r
O

I
Pf
þ 2xI � _r

O
I
Pf
þ eI � r

O
I
Pf
þ xI

� xI � r
O

I
Pf

� �

ð20Þ

€r
O

I
Pf

¼ keS€q
I

f ð21Þ

Rewriting Eqs. (18) and (20) produces Eqs. (22)

and (23):

_rPf
¼ I �~r

O
I
Pf

AIkeS
h i _R

I

xI

_q
I

f

2
64

3
75 ¼ LI _X

I ð22Þ

€rPf
¼ I �~r

O
I
Pf

AIkeS
h i €R

I

eI
€q
I

f

2
64

3
75þ 2 ~xIAIkeS _q

I

f

þ ~xI ~xIr
O

i
Pf

¼ LI €X
I þ aI

v

ð23Þ

where LI ¼ I �~r
O

I
Pf

AIkeS
h i

, _X
I ¼

_R
I

xI

_q
I

f

2
64

3
75,

€X
I ¼

€R
I

eI
€q
I

f

2
64

3
75 and aI

v ¼ 2 ~xIAIkeS _q
I

f þ ~xI ~xIr
O

I
Pf
. ~xI

and ~r
O

I
Pf

are the antisymmetric matrices correspond-

ing to the vectors xI and r
O

I
Pf

respectively.

Considering Eq. (16), r
O

I
Pf

and aI
v can be decom-

posed into three parts:

r
O

I
Pf

¼ r0
O

I
Pf

þ rm
O

I
Pf

þ ẑrb
O

I
Pf

ð24Þ

aI
v ¼ aI0

v þ aIm
v þ ẑaIb

v ð25Þ

where:

r0
O

I
Pf

¼ AIr0
O

I
Pf

rm
O

I
Pf

¼ AIkeSmqI
f

rb
O

I
Pf

¼ AIkeSbq
I
f

8>>><
>>>:

ð26Þ
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aI0
v ¼ ~xI ~xIr0

O
I
Pf

aIm
v ¼ 2 ~xIAIkeSm

_q
I

f þ ~xI ~xIrm
O

I
Pf

aIb
v ¼ 2 ~xIAIkeSb

_q
I

f þ ~xI ~xIrb
O

I
Pf

8>>>><
>>>>:

ð27Þ

Remark 1 rm
O

I
Pf

and aIm
v represent the motion caused

by the membrane deformation of the shell. rb
O

I
Pf

and

aIb
v denote the motion caused by the bending behavior

of the shell, which is a characteristic of shell structures

rather than solid structures due to the rotational DOFs

introduced previously. Both the membrane and bend-

ing deformations are coupled to the dynamic equation

and affect the dynamic characteristics of the system.

3 Deformation discretization based on the ECSS-

MITC method

3.1 MITC3 Reissner–Mindlin shell element

According to the finite element strategy, curved shells

were discretized into spatial triangular elements in this

study. The node numbers in the spatial triangular shell

element are denoted in the counterclockwise direction

as i, j, and k. To analyze a triangular Reissner–Mindlin

plate element e, a local coordinate system e� x̂ŷẑ is

established for the element. Node i is employed as the

origin, and the coordinate axis ix̂ is located in the

element edge ij, as shown in Fig. 2. Based on Eq. (3),

the element displacement can be expressed in the

matrix form presented in Eqs. (28)–(31):

ûe
o ¼ N̂

e
q̂e
f ð28Þ

N̂
e ¼ Ni Nj Nk½ � ð29Þ

q̂e
f ¼ q̂T

fi q̂T
fj q̂T

fk

h iT
ð30Þ

q̂fl ¼ ûl v̂l ŵl ĥlx̂ ĥlŷ ĥlẑ
� �T

l ¼ i; j; kð Þ
ð31Þ

In Eqs. (28)–(31), q̂e
f is the local nodal displace-

ment, and Nl denotes the matrix of shape function for

node l. The shape function of a three-node triangular

element is expressed as Eqs. (32) and (33):

Nl ¼
1

2Ae
al þ blx̂þ clŷð Þ l ¼ i; j; kð Þ ð32Þ

ai ¼ x̂jŷk � x̂kŷj

aj ¼ x̂kŷi � x̂iŷk

ak ¼ x̂iŷj � x̂jŷi

8><
>:

;

bi ¼ ŷj � ŷk

bj ¼ ŷk � ŷi

bk ¼ ŷi � ŷj

8><
>:

;

ci ¼ �x̂j þ x̂k

cj ¼ �x̂k þ x̂i

ck ¼ �x̂i þ x̂j

8><
>:

ð33Þ

In Eqs. (32) and (33), Ae is the area of the element,

and x̂l; ŷlð Þ are node coordinates in the local coordinate
system as shown in Fig. 2.

Equations (34)–(37) can be obtained using

Eq. (14):

q̂e
f ¼ Teð ÞTqe

f ð34Þ

qe
f ¼ qT

fi qT
fj qT

fk

h iT
ð35Þ

Te ¼ diag He He Hef g ð36Þ

Fig. 2 Spatial triangular

shell element
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He ¼ ke 0
0 ke

� 	
ð37Þ

Substituting Eq. (34) into (28) yields Eq. (38):

ûe
o ¼ N̂

e
Teð ÞTqe

f ð38Þ

Assembling Eq. (38) into a global form to facilitate

final calculations produces Eqs. (39) and (40):

ûe
o ¼ Neqf ð39Þ

Ne ¼ �� � Ni Teð ÞT � � � Nj Teð ÞT � � � Nk Teð ÞT � � �
� �

ð40Þ

In Eqs. (39) and (40), qf ¼ qT
f1 qT

f2 � � � qT
fN

h iT
represents the global nodal displacement vector, and N

is the number of nodes. The size of matrix Ne is

6� 6N, where the position corresponding to node

serial number l (l ¼ i; j; k) is Nl Teð ÞT|fflfflfflffl{zfflfflfflffl}
6�6

and the other

positions are 0
6�6

.

For cases of small deformation, the strain compo-

nents of the Reissner–Mindlin plate can be expressed

by Eqs. (41) and (42):

e ¼ em
0

� 	
þ ẑeb

0

� 	
þ 0

es

� 	
ð41Þ

em ¼

oûo
ox̂
ov̂o
oŷ

oûo
oŷ

þ ov̂o
ox̂

2
666664

3
777775
; eb ¼

oĥoy
ox̂

� oĥox
oŷ

oĥoy
oŷ

� oĥox
ox̂

2
66666664

3
77777775
;

es ¼
oŵ

ox
þ ĥy

oŵ

oy
� ĥx

2
64

3
75

ð42Þ

where em, eb and es correspond to the membrane,

bending, and shear strains, respectively. In an MITC3

element, the membrane and bending strain compo-

nents are obtained using Eq. (42):

eem ¼ Be
mqf ð43Þ

eeb ¼ Be
bqf ð44Þ

Be
m ¼ � � � Bmi Teð ÞT � � � Bmj Teð ÞT � � � Bmk Teð ÞT � � �

� �

ð45Þ

Be
b ¼ � � � Bbi Teð ÞT � � � Bbj Teð ÞT � � � Bbk Teð ÞT � � �

� �

ð46Þ

where

Bml ¼
1

2Ae

bl 0 0 0 0 0

0 cl 0 0 0 0

cl bl 0 0 0 0

2
4

3
5 l ¼ i; j; kð Þ

ð47Þ

Bbl ¼
1

2Ae

0 0 0 0 bl 0

0 0 0 �cl 0 0

0 0 0 �bl cl 0

2
4

3
5 l ¼ i; j; kð Þ

ð48Þ

To handle the shear locking problem, an MITC3

element assumes a constant covariant transverse shear

strain condition along its edge [38]

Reference [48], thus, the shear strain component

can be expressed by Eqs. (49)–(50).

ees ¼ Be
sqf ð49Þ

Be
s ¼ � � � Bsi Teð ÞT � � � Bsj Teð ÞT � � � Bsk Teð ÞT � � �

� �

ð50Þ

Bsi¼J�1
0 0 �1

ck
3
� cj

6
� bk

3
þ bj

6
0

0 0 �1 � cj
3
þ ck

6

bj
3
� bk

6
0

2
64

3
75

ð51Þ

Bsj¼J�1
0 0 1

ck
2
þ cj

6
� bk

2
� bj

6
0

0 0 0 � cj
6

bj
6

0

2
64

3
75 ð52Þ

Bsm¼J�1
0 0 0

ck
6

� bk
6

0

0 0 1 � cj
2
� ck

6

bj
2
þ bk

6
0

2
64

3
75

ð53Þ

In Eqs. (51)–(53), J�1 ¼ 1
2Ae

bj bk
cj ck

� 	
.
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3.2 Edge center-based strain smoothing method

Equation (42) indicates that em and eb are constant

matrices in an MITC3 element, resulting in disconti-

nuity of the strain field obtained by numerical analysis.

To improve the smoothness of the strain field, a linear

strain field construction method using edge centers is

first proposed. Then, the strain smoothing operation

performed through adjacent elements is further devel-

oped to update the strain values of the edge centers of

linear elements.

Referring to the concept of linear displacement field

construction, the gradient of a physical quantityw Pð Þ at
point P in an element can be constructed in linear

form, as shown in Eq. (54):

w Pð Þ ¼
X
l

N
Pð Þ
l wl ð54Þ

where N
Pð Þ
l denotes the shape function value at point P

and wl indicates nodal gradient.

Generally, the values of three points that are not

collinear can construct a linear field in a two-

dimensional plane. In this study, the three edge centers

of the triangular element were employed to construct a

corresponding linear gradient field. As shown in

Fig. 3, the gradient values of the edge centers can be

measured by nodal gradient interpolation.

w E1ð Þ

w E2ð Þ

w E3ð Þ

2
4

3
5 ¼

N
E1ð Þ
i N

E1ð Þ
j N

E1ð Þ
k

N
E2ð Þ
i N

E2ð Þ
j N

E2ð Þ
k

N
E3ð Þ
i N

E3ð Þ
j N

E3ð Þ
k

2
664

3
775

wi

wj

wk

2
4

3
5

¼ JEC

wi

wj

wk

2
4

3
5 ð55Þ

where JEC is the matrix of the shape function values:

JEC ¼ 1

2

1 1 0

0 1 1

1 0 1

2
4

3
5 ð56Þ

By inverting Eq. (55), the nodal gradients

expressed by the edge centers or face centers can be

obtained; then the gradient field in the element can be

calculated using Eq. (54).

wi

wj

wk

2
4

3
5 ¼ J�1

EC

w E1ð Þ

w E2ð Þ

w E3ð Þ

2
4

3
5 ð57Þ

The strain is constant inside conventional linear

elements, so it is useless to apply Eq. (57) directly.

Therefore, a strain smoothing method based on the

edge centers was developed during this study. The

edge center strains are updated by smoothing the

strains of adjacent elements, which makes Eq. (57)

meaningful.

Since the strain tensor of a shell element is defined

in the corresponding local coordinate system, the

strain smoothing strategies in different coordinate

systems are given by Eq. (58):

~e1 ¼ 1

A1 þ A2

A1e
1
1 þ A2R

Te22R
� �

ð58Þ

In Eq. (58), Ai is the element area of ei, and e ji
(i; j ¼ 1; 2) denotes the matrix form of the element

strain tensor of ei in coordinate system Oj. The

transformation relation between the two coordinate

systems is given by the orthogonal matrix R.

In a target element, such as the red element shown

in Fig. 4, the smoothed strains on its three edge centers

are obtained by a smoothing operation with adjacent

elements, such as the blue elements shown in Fig. 4.

Equation (58) can be expanded to obtain smoothed

forms of the membrane and bending strain

components:

~eEk
m ¼ 1

Ae þ Aek
Aeeem þ Aekeek!e

m

� �
¼ ~B

Ek

m qf

k ¼ 1; 2; 3ð Þ
ð59Þ

~eEk

b ¼ 1

Ae þ Aek
Aeeeb þ Aekeek!e

b

� �
¼ ~B

Ek

b qf

k ¼ 1; 2; 3ð Þ
ð60Þ

eek!e
m ¼ RmRmk

eekm ¼ RmRmk
Bek
mqf ¼ Bek!e

m qf ð61Þ

Fig. 3 Edge centers of the triangular element
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eek!e
b ¼ RbRbk

eekb ¼ RbRbk
Bek
b qf ¼ Bek!e

b qf ð62Þ

~B
Ek

m ¼ 1

Ae þ Aek
AeBe

m þ AekBek!e
m

� �
ð63Þ

~B
Ek

b ¼ 1

Ae þ Aek
AeBe

b þ AekBek!e
b

� �
ð64Þ

In Eqs. (59)–(64), eem and eeb represent the mem-

brane and bending strains, respectively, of the target

element e in its own local coordinate system. eekm and

eekb are the strains of the adjacent elements ek in their

own local coordinate system, and they are denoted as

eek!e
m and eek!e

b after a conversion to the coordinate

system of element e using Eqs. (61) and (62). In these

equations, the transformation matrixes Rm, Rb, Rmk

and Rbk
are given by Eqs. (65) and (66):

Rm

� �T¼ Rb

� �T

¼

n2x̂ex n2ŷex 2nx̂exnŷex
n2x̂ey n2ŷey 2nx̂eynŷey
n2x̂ez n2ŷez 2nx̂eznŷez

nx̂exnx̂ey nŷexnŷey nx̂exnŷey þ nŷexnx̂ey
nx̂eynx̂ez nŷeynŷez nx̂eznŷey þ nŷeznx̂ey
nx̂exnx̂ez nŷexnŷez nx̂exnŷez þ nŷexnx̂ez

2
6666664

3
7777775

ð65Þ

Rmk
¼ Rbk

¼

n2x̂ek x n2ŷek x nx̂ek xnŷek x

n2x̂ek y n2ŷek y nx̂ek ynŷek y

n2x̂ek z n2ŷek z nx̂ek znŷek z

2nx̂ek xnx̂ek y 2nŷek xnŷek y nx̂ek xnŷek y þ nŷek xnx̂ek y

2nx̂ek ynx̂ek z 2nŷek ynŷek z nx̂ek znŷek y þ nŷek znx̂ek y

2nx̂ek xnx̂ek z 2nŷek xnŷek z nx̂ek xnŷek z þ nŷek xnx̂ek z

2
6666666664

3
7777777775

ð66Þ

It should be noted that if there is no adjacent

element on an edge of the target element, the target

element itself is used as the adjacent element during

the smoothing operation. Substituting the updated

smoothed strains of edge centers obtained using

Eqs. (59) and (60) into Eq. (57), and expanding it

yields Eqs. (67)–(70):

~eim ¼ ~eE1

m � ~eE2

m þ ~eE3

m ¼ ~B
i

mqf

~e jm ¼ ~eE1

m þ ~eE2

m � ~eE3

m ¼ ~B
j

mqf

~ekm ¼ �~eE1

m þ ~eE2

m þ ~eE3

m ¼ ~B
k

mqf

8>><
>>:

ð67Þ

~eib ¼ ~eE1

b � ~eE2

b þ ~eE3

b ¼ ~B
i

bqf

~e jb ¼ ~eE1

b þ ~eE2

b � ~eE3

b ¼ ~B
j

bqf

~ekb ¼ �~eE1

b þ ~eE2

b þ ~eE3

b ¼ ~B
k

bqf

8>><
>>:

ð68Þ

~B
i

m ¼ ~B
E1

m � ~B
E2

m þ ~B
E3

m

~B
j

m ¼ ~B
E1

m þ ~B
E2

m � ~B
E3

m

~B
k

m ¼ � ~B
E1

m þ ~B
E2

m þ ~B
E3

m

8><
>:

ð69Þ

~B
i

b ¼ ~B
E1

b � ~B
E2

b þ ~B
E3

b

~B
j

b ¼ ~B
E1

b þ ~B
E2

b � ~B
E3

b

~B
k

b ¼ � ~B
E1

b þ ~B
E2

b þ ~B
E3

b

8><
>:

ð70Þ

Accordingly, the element-linear strain field can be

expressed by Eqs. (71)–(74):

~eem ¼ Ni~e
i
m þ Nj~e

j
m þ Nk~e

k
m ¼ ~B

e

md ð71Þ

~eeb ¼ Ni~e
i
b þ Nj~e

j
b þ Nk~e

k
b ¼ ~B

e

bd ð72Þ

~B
e

m ¼ Ni
~B
i

m þ Nj
~B
j

m þ Nk
~B
k

m ð73Þ

~B
e

b ¼ Ni
~B
i

b þ Nj
~B
j

b þ Nk
~B
k

b ð74Þ

Remark 2 According to the smoothing strategy in

Eqs. (59) and (60), consistency of the membrane and

Fig. 4 Target element and adjacent elements
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bending strains at the element junction center can be

ensured.

Proof. Adjacent shell elements are shown in Fig. 5.

If e1 is selected as the target element, then the

smoothed strain ~e1 can be expressed by Eq. (75):

~e1 ¼ 1

A1 þ A2

A1e
1
1 þ A2R

Te22R
� �

ð75Þ

If e2 is selected as the target element, then the

smoothed strain ~e2 is expressed by Eq. (76):

~e2 ¼ 1

A1 þ A2

A1Re11R
T þ A2e

2
2

� �
ð76Þ

Equation (77) necessarily follows:

~e1 ¼ RT~e2R; ~e2 ¼ R~e1RT ð77Þ

Equation (77) indicates that ~e1 and ~e2 are the same

strain tensors represented in different coordinate

systems. Therefore, the strain smoothing method

proposed in this study ensures that the membrane

and bending strains at the element junction are

consistent, thereby improving the smoothness of the

global stresses and strains from those of linear

elements with discontinuous strains.

4 Dynamic equations for a flexible multibody

system based on the ECSS-MITC method

4.1 Principle of virtual power

The virtual work caused by the elastic force of shell I

can be expressed by Eq. (78):

dWI
f ¼ �

Z

XI
deTmDmemdX

I þ
Z

XI
deTbDbebdX

I



þ
Z

XI
deTs DsesdX

I

�

Dm ¼ tD0; Db ¼
t3

12
D0; Ds ¼ jtG

1 0

0 1

� 	

D0 ¼
E

1� v2

1 v 0

v 1 0

0 0 1� vð Þ=2

2
64

3
75

ð78Þ

where G denotes the shear modulus, j ¼ 5=6 repre-

sents the shear correction coefficient, and E and v are

the Young’s modulus and Poisson’s ratio,

respectively.

The geometry of the flexible body is approximated

by discrete elements, and then Eqs. (49), (71) and (72)

are substituted into Eq. (78) to obtain Eq. (79):

dWI
f ¼ �d qI

f

� �T

KI
ff q

I
f

KI
ff ¼ KI

m þ KI
b þ KI

s

KI
m ¼

X
e

Z

XI
e

~B
e

m

� �T

Dm
~B
e

mdX
I

Ke
b ¼

X
e

Z

XI
e

~B
e

b

� �T

Db
~B
e

bdX
I

Ke
s ¼

X
e

Z

XI
e

Be
s

� �T
DsB

e
sdX

I

8>>>>>>>>><
>>>>>>>>>:

ð79Þ

Equation (79) is then extended to include rigid

displacement:

dWI
f ¼ � XI

� �T
KIdXI ¼ QI

f

� �T

dXI

KI ¼
0 0 0

0 0 0

0 0 KI
ff

2
64

3
75

ð80Þ

In Eq. (80), QI
f ¼ � KI

� �T
XI denotes the general-

ized elastic force.

The external force acting on the shell is represented

by FI
l . The virtual work caused by FI

l given by

Eq. (81):

dWI
l ¼ FI

l

� �T
drPf

ð81Þ

Considering:

Fig. 5 Shell elements and their local coordinate systems
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drPf
¼

orPf

oXI dXI ¼
o _rPf

o _X
I dXI ¼ LIdXI ð82Þ

Hence:

dWi
l ¼ Fi

l

� �T
LidXi ¼ Qi

l

� �T
dXi ð83Þ

In Eq. (83), QI
l ¼ LI

� �T
FI
l denotes the generalized

external force.

Based on this analysis, the generalized force can be

expressed by Eq. (84):

QI ¼ QI
f þ QI

l ð84Þ

Equation (85) is obtained from the virtual power

principle:
Z

XI
qId _rIPf

� �T

€rIPf
dXI � d _X

I
� �T

QI ¼ 0 ð85Þ

where qI denotes the density of shell I. Substituting

Eqs. (22) and (23) into Eq. (85) yields Eq. (86):

d _X
I

� �T
Z

XI
qI LI
� �T

LI €X
I þ aI

v

� �
dXI

þd _X
I

� �T

KIXI � d _X
I

� �T

QI
l ¼ 0

ð86Þ

Equation (87) is obtained by further rearranging

Eq. (86) and accounting for the arbitrariness of

d _X
i

� �T

:

MI €X
I þ KIXI ¼ QI

l � QI
v

MI ¼
Z

XI
qI LI
� �T

LIdXI ; QI
v ¼

Z

XI
qI LI
� �T

aI
vdX

I

ð87Þ

Equation (87) is the dynamic equation for the shell

in an unconstrained state. Detailed forms of the mass

matrix MI and the velocity coupling vector QI
v are

discussed in ‘‘Appendix A’’.

4.2 Governing equations with constraints

For a dynamic system with N multiflexible bodies in a

free state, the system dynamics equation can be

expressed by Eq. (88):

M €X þ KX ¼ Ql � Qv

M ¼ diag M1 � � � MI � � � MN
� �

K ¼ diag K1 � � � KI � � � KN
� �

X ¼ X1
� �T � � � XI

� �T � � � XN
� �Th iT

Ql ¼ Q1
l

� �T � � � QI
l

� �T � � � QN
l

� �Th iT

Qv ¼ Q1
v

� �T � � � QI
v

� �T � � � QN
v

� �Th iT

ð88Þ

Considering kinematic constraints in a multibody

system, the vector equation in Eq. (89) is satisfied:

C X; tð Þ ¼ 0 ð89Þ

By introducing a Lagrange multiplier a, the

following differential equations are obtained:

M €X þ KX þ CT
Xa ¼ Ql � Qv ð90Þ

where CX is the Jacobian of the constraint function

C X; tð Þ.
The acceleration constraint equation is obtained by

taking the second derivative of the constraint equation

with respect to time

€C ¼ CX
€X þ Qc

Qc ¼ �Ctt � 2CXt
_X � CX

_X
� �

X
_X

ð91Þ

The governing equation with kinematic constraints

is obtained by combining Eqs. (88) and (91):

M CT
X

CX 0

� 	
€X
a

� 	
¼ Ql � Qv � KX

Qc

� 	
ð92Þ

5 Convergence tests

For this section, two typical structural analyses were

conducted to verify the performance of the proposed

ECSS-MITC method. To quantitatively measure the

accuracy of the numerical method, the strain energy

error norm ee was defined as shown in Eq. (93):

ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Enum � ERefj j

ERef

r
ð93Þ

where Enum and ERef represent the numerical and

reference strain energy results, respectively.
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5.1 Hyperboloid shell

First, a hyperboloid shell problem was used as a

benchmark to conduct a comprehensive performance

test of the proposed ECSS-MITCmethod. As shown in

Fig. 6, the thickness is represented by t and the middle

surface of the hyperboloid shell satisfies the geometric

equation: x2 þ y2 ¼ 1þ z2, where y 2 �1; 1½ �. The

inner wall of the shell was subjected to a harmonic

pressure distribution of p ¼ p0cos 2hð Þ, where

p0 ¼ 1000. When the upper and lower ends of the

shell are clamped, the shell is in a state dominated by

membrane deformation. This was the situation of

focus during this test. Considering the symmetry of the

problem, one-eighth of the original problem was

selected for analysis. Meshes were assigned as shown

in Fig. 6, in which N meshes were uniformly arranged

along the y axis. Regular meshes were uniformly

arranged along the circumferential direction, while

there were distorted for distortion meshes. The mesh

size was defined as h ¼ 1=N.

Figure 7 shows the strain energy error convergence

curves for the four numerical methods at different

thicknesses. In the figure, R represents the linear fitting

slope corresponding to the curve. The smaller log eeð Þ
or log hð Þ respectively represent the smaller error or the

finer mesh, and a larger R value indicates a greater

error convergence rate. It can be seen from the overall

trend of the curves in the figure that the error of the

ECSS-MITC method is smaller than that of the other

three methods, and the error converges faster with the

increase of the number of meshes. In addition, as the

thickness decreases, these methods are affected by

shear locking, while the ECSS-MITC method is

relatively less affected. It can be concluded that the

ECSS-MITC method proposed in this study possesses

advantages over other methods in terms of the error

convergence rate and accuracy, and can satisfactorily

overcome the shear locking problem.

Figures 8 and 9 show Von Mises equivalent stress

distributions obtained from different numerical meth-

ods with N ¼ 16 (without other post-processing).

Although it has been proven above that the ECSS

scheme proposed in this paper can guarantee strain

consistency at the element edge junctions, this advan-

tage is more intuitively highlighted in these figures.

The results of the MITC3, DSG and NSFEM methods

all have obvious stress discontinuities between ele-

ments or between smoothed domains, while the ECSS-

MITC results are relatively smoother. Additionally,

the smoothness of the ECSS-MITC results is weak at

the boundary with a large stress gradient. This occurs

primarily because of the lack of elements involved in

the smoothing operation at the boundary. Managing

this problem will also be the focus of subsequent

research.

Subsequently, the sensitivity to mesh distortion and

the computational efficiency of the ECSS-MITC

method were tested, and the results are shown in

Figs. 10 and 11, respectively. The results in Fig. 10

indicate that the error convergence curve for the

ECSS-MITC method is not seriously affected by the

distorted mesh. For the computational efficiency

study, we present a curve analyzing the error versus

the CPU runtime (tCPU), and all methods were

programmed into the same hardware environment

(CPU: Intel Core i7-10510U; Memory: 16 GB).

Compared with the other methods tested, the ECSS-

MITC has certain advantages in computational

efficiency.

5.2 Cylindrical shell

Next, a cylindrical shell with length L ¼ 1, radius R ¼
1 and thickness t as shown in Fig. 12, was employed as

another benchmark problem for convergence tests.

Two cylindrical shell states are discussed. They are

clamped and free at both ends of the shell (z ¼ �L),

corresponding to membrane-dominated and bending-

dominated problems, respectively. The inner wall of

the shell was subjected to a distributed load equal to

that in the hyperboloid shell analysis:

p hð Þ ¼ p0cos 2hð Þ, where p0 ¼ 1000. The material

parameters were also the same as for the hyperboloid

shell. Considering symmetry, one-eighth of theFig. 6 Geometry and mesh of the hyperboloid shell
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original model was selected for analysis. The strategy

of arranging N meshes along the axis was adopted as

shown in Fig. 6, and the mesh size was defined as

h ¼ L=N. The reference results were obtained by

simulating in Abaqus (15,958 nodes and 15,700

quadratic quadrilateral elements).

Figure 13 shows the convergence curves for the

four numerical methods at different thicknesses for the

analysis of the membrane-dominant problem, and

Fig. 14 shows the results for the bending-dominant

problem. In this verification process, we can find that

membrane locking and bending locking have a greater

impact on the NSFEM and DSG methods. Although

Fig. 7 Convergence curves

for the strain energy error

norm with different

thicknesses: a t ¼ 0:01, and
b t ¼ 0:001. (Color
figure online)

Fig. 8 Von Mises equivalent stress distributions in the top surface with thickness t ¼ 0:01 using different methods: a DSG, b MITC3,

c NSFEM, d ECSS-MITC, and e Abaqus. (Color figure online)
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the MITC3 method has certain advantages in over-

coming membrane locking and bending locking, the

effect of the ECSS-MITC method is more obvious.

Similarly, the ECSS-MITC method is less sensitive to

shear locking effects as the thickness decreases.

Based on the analysis results of the above two

benchmark examples, it can be concluded that: firstly,

the ECSS-MITC method has obvious effect in over-

coming membrane locking and shear locking, and thus

exhibits high accuracy and high error convergence rate

Fig. 9 VonMises equivalent stress distributions in the top surface with thickness t ¼ 0:001 using different methods: a DSG, b MITC3,

c NSFEM, d ECSS-MITC, and e Abaqus. (Color figure online)

Fig. 10 Strain energy convergence curves using distorted mesh

with thickness of t ¼ 0:001. (Color figure online)
Fig. 11 Computational efficiency curves with thickness of

t ¼ 0:001. (Color figure online)
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in the analysis. Secondly, the ECSS-MITC method is

less sensitive to mesh distortion and has high compu-

tational efficiency. Finally, the ECSS-MITC can

obtain a smoother stress field without additional

post-processing.

6 Numerical tests of dynamic problems

6.1 In-plane single pendulum

A two-dimensional pendulum dynamics problem was

first considered to illustrate the advantages of using the

proposed ECSS method for flexible dynamics analy-

ses. As shown in Fig. 15, a beam rotated about axis Oz

under the drive of momentM ¼ 100 Nmm. The beam

was assumed to be in a state of plane stress and had a

unit thickness. Reference results were obtained in

Abaqus using four-node quadrilateral elements, and

the total number of nodes and elements were 15,175

and 14,869, respectively.

Figures 16, 17, 18 and 19 show the rotation angle,

rotational angular velocity, displacement, and strain

energy results, respectively, obtained from the ECSS

method, as well as error comparisons with two other

numerical methods. These figures show that the results

Fig. 12 Cylindrical shell

Fig. 13 Strain energy error convergence results for the membrane problem: a t=L ¼ 0:01, and b t=L ¼ 0:001. (Color figure online)

Fig. 14 Strain energy error

convergence results for the

bending problem: a
t=L ¼ 0:01, and b
t=L ¼ 0:001. (Color
figure online)
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obtained from the ECSS method are highly consistent

with the Abaqus simulation results. In addition, by

analyzing the accuracy of the three methods, it is not

difficult to observe that the accuracy of the ECSS

method is higher than that of the FEM or the NSFEM

for this dynamic analysis.

6.2 Double pendulum problem for shell structures

Next, a double pendulum system composed of thin-

walled structures was investigated. As shown in

Fig. 20, a flexible shell was fixed to the ground by a

revolute joint, and a rigid plate was connected to one

end of the shell by another revolute joint. The shell

was a quarter of a cylindrical shell with a radius of

R ¼ 500 mm, a width of W1 ¼ 200 mm and a thick-

ness of t1 ¼ 10 mm. The plate had a width of

W2 ¼ 200 mm, a length of L ¼ 500 mm and a thick-

ness of t2 ¼ 10 mm. The flexible shell was subjected

to a momentM ¼ M0sin 8ptð Þ along theOz axis, where
M0 ¼ �200 Nm and the minus sign indicates the

negative direction along the Oz axis. Under the

revolute joint constraints, the shell rotated around

the Oz axis and drove the plate to move with the shell,

while the plate rotated around the edge CD. In this

analysis, a modal synthesis method was adopted to

further reduce the order of the system. A supplemental

Fig. 15 Geometry, materials and mesh for the single pendulum

model. (Color figure online)

Fig. 16 Rotation curves for

the beam: a angle, and

b absolute error. (Color

figure online)

Fig. 17 Angular velocity of

the beam: a velocity, and

b absolute error. (Color

figure online)
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description of the modal synthesis theory is provided

in ‘‘Appendix B’’. Reference results were obtained in

Abaqus using four-node quadrilateral elements, and

the total number of nodes and elements were 10,047

and 9800, respectively.

First, the influence of the number of modes on the

results is discussed. Figure 21 shows the strain energy

curves for the flexible shell obtained by selecting the

first 2, 5, and 10 modes. The figure shows that when

only the first two modes are selected, the strain energy

error obtained is significantly larger. When the first 5

and 10 modes are selected, there is no obvious

difference between the results. Therefore, to reduce

the computational burden, the first five modes were

used for subsequent analysis.

Figures 22 and 23 show the rigid rotational angular

displacement and the angular velocity of the double

pendulum system respectively. Figure 24 shows the

displacement curve of point B in the rotation process.

These results indicate that the method presented in this

study can obtain satisfactory results for the analysis of

Fig. 18 Displacement

curve at point 50; 10ð Þ:
a displacement in the

y direction, and b absolute

error. (Color figure online)

Fig. 19 Strain energy of the beam, a strain energy, and b absolute error. (Color figure online)

Fig. 20 Double pendulum system with a thin-walled structure,

and the mesh for the flexible shell
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Fig. 21 Strain energy response of the flexible shell, a strain energy, and b absolute error (Color figure online)

Fig. 22 Rotation curves for the multibody systems: a flexible shell, and b rigid plate. (Color figure online)

Fig. 23 Angular velocity of the multibody systems: a flexible shell, and b rigid plate (Color figure online)
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multibody problems. Furthermore, Fig. 25 shows the

stress distribution in the flexible shell for different

numerical discretization schemes. It is apparent that

the ECSS-MITC method still possesses the advantage

of obtaining a highly smooth stress field for this

example.

Furthermore, we compare the running time of the

two methods. Table 1 lists the discretization strategy

of the flexible body and the CPU time of the running

process. It can be seen that the computational

efficiency of ECSS-MITC is satisfactory. In addition,

it should be noted that there is still room for

optimization of our program code to further improve

the computational efficiency.

6.3 Dynamics analysis of an engineering

manipulator

Finally, the proposed method was applied to the

dynamic analysis of an engineering manipulator.

Figure 26 shows the 3D geometric model for the

whole manipulator system. A motor drove the manip-

ulator to rotate around the shaft after passing through a

reducer. The load was fixed at one end of the

Fig. 24 Displacement curve at point B: a in the x direction, and b in the y direction. (Color figure online)

Fig. 25 VonMises equivalent stresses in flexible shell at t ¼ 0:2 s, a DSG, b MITC3, c NSFEM, d ECSS-MITC, and d Abaqus. (Color

figure online)

Table 1 Comparison of discretization strategy and computation time between the two methods

Element type No. of elements No. of nodes CPU time (min)

Abaqus Four-node quadrilateral 9800 10,047 86

ECSS-MITC Three-node triangular 780 440 24

123

Flexible multibody dynamic analysis of shells with an edge 3271



manipulator and moved to a corresponding position

with the manipulator to complete the work process.

The manipulator was welded with steel plates and

shells with a thickness of 4 mm, while the load, with a

total mass of about 80 kg, was regarded as a rigid body

during the motion process. The output driving torque

curve for the motor after the reducer is shown in

Fig. 27. Reference results were obtained by simulation

in Abaqus, and pre-processing used a mixed triangle

and quadrilateral mesh. The numbers of triangular and

quadrilateral meshes were 491 and 31,631, respec-

tively, and the total number of nodes was 31,937. In

the ECSS-MITC numerical analysis, a total of 2494

triangular elements and 1296 nodes were used. The

modal synthesis method was again employed to select

the first five modes for analysis.

Figure 28 shows the rotation angle and angular

velocity curves for the manipulator during its motion.

Figure 29 shows the displacement curve of the

barycenter of the load. In addition, in the analysis of

this problem, ECSS-MITC uses a small number of

meshes to get a good agreement with the reference,

and its running time is about 50 min. Abaqus, as a

reference, uses a large number of meshes and runs for

a total of about 14 h. It is apparent that the method

proposed in this study is highly accurate and efficient

when solving complicated models, which indicates

that it has considerable engineering application value.

Synthesis of the above three dynamic problems.We

sum up two key points, one is that the ESS-MITC

method still maintains its own advantages in the

analysis of flexible multibody dynamics. The other is

that the multibody dynamics method of shell structure

proposed in this paper can well analyze the dynamic

characteristics of various thin-walled structures and

has a wide range of applications.

7 Conclusions

The main purpose of this paper is to study the

dynamics of multibody systems with thin-walled

structures. To solve this problem, we propose a

dynamic modeling method for flexible multibody

system based on the Reissner–Mindlin shell in the

FFRF framework. In addition, an ECSS-MITC

method is proposed for the numerical discretization

of shell structures. In this paper, we give a rigorous

mathematical derivation of our work. On this basis, a

series of numerical examples are given to verify our

work.

The ECSS-MITC method proposed in this study

processes the membrane and bending strains by strain

smoothing with an MITC3 element. A linear strain

field is constructed within the element and the strain

consistency is ensured at the element junction center.

Therefore, the ECSS-MITCmethod not only improves

the membrane behavior, but also produces a smoother

stress field without additional post-processing.

Through the analysis of two benchmark examples,

the ECSS-MITCmethod shows excellent performance

in analysis of shell problem, such as high precision,

high error convergence, less sensitive to mesh distor-

tion and high efficiency. In particular, it can obtain a

smoother stress field without additional post-

processing.

In the light of the deformation characteristics of the

Reissner–Mindlin plates, in addition to the membrane

behavior, the bending behavior is also coupled with

the rigid motion in the dynamics equation, which is

different from the behavior of the solid flexible

multibody model. By combining with the ECSS-

MITC method, we have achieved satisfactory results

Fig. 26 Manipulator system

Fig. 27 Torque curve
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in the analysis of the flexible multibody systems. The

results of dynamic response are in good agreement

with the reference results under a small number of

meshes.

The model presented in this paper can be regarded

as a general dynamics model for flexible multibody

analyses of Reissner–Mindlin shells. Importantly, they

can be conveniently and efficiently applied to engi-

neering problems. Although the work in this paper

focuses on the problem of large rotation and small

deformation, we intend to further explore the problem

of nonlinear deformation and the coupling of multiple

physical fields.
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Appendix A

Integral of the element mass matrix

After the structure is discretized, the symmetrical mass

matrix can be expressed as follows:

Fig. 28 Manipulator

rotation results: a angle, and

b angular velocity. (Color

figure online)

Fig. 29 Displacement

results for the barycenter of

the load: a in the x direction,
and b in the y direction.
(Color figure online)
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MI ¼
X
e

Z

XI
e

qI LI
� �T

LIdXI ¼
X
e

MI
e

where MI
e represents the element mass matrix, which

is symmetric. It can be decomposed into the following

block matrices, which represent the rigid translation,

rigid rotation, flexible deformation and the coupling

among them, respectively.

MI
e ¼

X
e

Z

XI
e

qI LI
� �T

LIdXI

¼

MI
eRR MI

eRh MI
eRf

MI
eRh

� �T
MI

ehh MI
ehf

MI
eRf

� �T

MI
ehf

� �T

MI
eff

2
664

3
775

Based on the formula of LI ¼
I �~r

O
I
Pf

AIkeS
h i

derived in Sect. 2, the formula

of each block matrix in MI
e is presented in detail

below.

(1) MI
eRR ¼

R
XI

e
qIIdXI ¼ mI

eIwhere mI
e ¼

R
XI

e
qIdXI

denotes the element mass.

(2) MI
eRh ¼ �

R
XI

e
qI~r

O
I
Pf
dXI .

Considering Eq. (24):

MI
eRh ¼ �

Z

XI
e

qI ~r0
O

I
Pf

þ ~rm
O

I
Pf

þ ẑ~rb
O

I
Pf

 �
dXI

¼ �
Z
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Z h
2

�h
2
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O

I
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þ ~rm
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I
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O

I
Pf

 �
dẑdA

¼ �qIhI
Z
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~r0
O

I
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þ ~rm
O

I
Pf

 �
dA

where hI is the element thickness.

(3) MI
eRf ¼ �

R
XI

e
qIAIkeSdXI .

Considering Eq. (16):

MI
eRf ¼ �qIAIke

Z

XI
e
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¼ �qIAIke
Z

Ae

Z h
2

�h
2

Sm þ ẑSb

� �
dẑdA

¼ �qIhIAIke
Z

Ae

SmdA
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I
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O

I
Pf
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O
I
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O

I
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(5) MI
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R
XI

e
qI~rT

O
I
Pf

AIkeSdXI ¼
R
XI

e
qI~r

O
I
Pf

AIkeSdXI .

Similarly:
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Z
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2

�hI

2

qI ~r0
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I
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(6) MI
eff ¼

R
XI

e
qI AIkeS
� �T

AIkeS
� �

dXI .

Since AI
� �T

AI ¼ keð ÞTke ¼ I:

MI
eff ¼

Z

XI
e

qIS
T
SdXI

¼
Z

Ae

Z hI

2

�hI

2

qI Sm þ ẑSb

� �T
Sm þ ẑSb

� �
dẑdA

¼ qIhI
Z
Ae

S
T

mSmdAþ qI
hIð Þ3

12

Z
Ae

S
T

bSbdA

Integral of the element velocity coupling vector

The specific expression for QI
v can be similarly

decomposed:

QI
v ¼

X
e

Z

XI
e

qI LI
� �T

aI
vdX

I ¼
X
e

QI
evR

QI
evh

QI
evf

2
4

3
5

Similarly, consider Eqs. (16), (24) and (25) to

integrate the above vectors:
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Appendix B

By solving the generalized eigenvalue equation

x2MI
ffu

I ¼ KI
ffu

I , the modal shape uI
j corresponding

to the jth natural frequency of flexible body I can be

obtained. The physical coordinates qI
f can be con-

verted to the modal space by selecting the firstM-order

modes:

qI
f ¼ VMpI

where pI indicates the modal coordinates, and VM ¼
uI
1 uI

2 � � � uI
M

� �
consists of the first M-order

modes.

In general, the employed modal order M is far less

than the DOFs of the discrete flexible body. Therefore,

the original governing equation Eq. (87) can be

reduced to the following equation:

MI
RR MI

Rh
~M
I

Rf

MI
Rh

� �T
MI

hh
~M
I

hf

~M
I

Rf

� �T
~M
I
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� �T
~M
I

ff

2
6664

3
7775

€R
I
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2
4

3
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þ
0 0 0
0 0 0
0 0 ~K

I

ff

2
4

3
5

RI

hI

pI

2
4

3
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¼
QI

R

QI
h

~Q
I

f

2
64

3
75

where ~M
I

Rf ¼ MI
Rf VM , ~M

I

hf ¼ MI
hf VM ,

~M
I

ff ¼ VT
MMI

ff VM , ~K
I

ff ¼ VT
MKI

ff VM , ~Q
I

f ¼ VT
MQI

f .
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