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Abstract The paper investigates the event-triggered
sub-optimal control problem for two-time-scale sys-
tems with unknown slow dynamics. Specifically, a
composite event-triggered optimal controller design
is proposed for the decoupled slow and fast subsys-
temswith different triggering conditions. To handle the
unknown dynamics, the actor and critic networks are
utilized to approximate the optimal controller employ-
ing tuning laws applied to the weights. The results
indicate that a system employing the proposed event-
triggered mechanism can achieve asymptotic stability
and afford a sub-optimal controller. Furthermore, Zeno
behavior is excluded with rigorous proof, and several
simulation examples and comparative studies demon-
strate the method’s effectiveness.

Keywords Two-time-scale system · Event-triggered
control · Q-learning

T. Hua · J.-W. Xiao · X.-K. Liu · Y. Lei · Y.-W. Wang
The School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology, Wuhan,
China

T. Hua · J.-W. Xiao · X.-K. Liu (B) · Y. Lei (B) ·
Y.-W. Wang
The Key Laboratory of Image Processing and Intelligent
Control, Ministry of Education, Huazhong University of
Science and Technology, Wuhan 430074, China
e-mail: xiaokangliu@hust.edu.cn

Y. Lei
e-mail: 1522062560@qq.com

1 Introduction

In many practical systems, such as electric circuits [1],
power systems [2], and spacecraft systems [3], slowand
fast dynamics coexist and are coupled. These systems
can be modeled as two-time-scale systems (TTSSs),
where the optimal control objective of TTSSs is to
minimize a predefined performance index concerning
the control energy, state variables, or other indicators.
Such problems have always been a hot topic in the
control field for TTSSs. To address these issues, it is
often required to deal with Hamilton–Jacobi–Bellman
(HJB) equations, which are hard to solve analytically.
As a result, methods focusing on finding an approx-
imate solution have become popular to realize near-
optimal control for practical needs [4,5]. Another con-
cern is that applying a traditional optimal control of
single-time-scale systems directly to TTSSs may pose
ill-conditioned numerical and high-dimensional issues.
Therefore, some effective methods have been proposed
[6–14]. For instance, when the fast dynamics decay
rapidly, the controller can be designed solely based
on the slow dynamics [6]. However, when the fast
dynamics are not globally asymptotically stable, we
can decompose the original problem into two reduced
subproblems with separate time scales and then design
a composite control strategy [7–13]. In [14], the authors
proposed a feasible alternative to utilizing a fixed-point
iteration method.
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The optimal control methods for TTSSs mentioned
above [7,8,10–12,14] assume that the system’s dynam-
ics are completely known. However, precisely param-
eterized system models are always hard to obtain in
real applications. Based on the practical background of
industrial thickening and flotation processes, model-
free optimal operational [15,16] and optimal tracking
[17] control strategies have been suggested. Utilizing
priormodel identification, the unknown systemdynam-
ics are estimated through a multi-time-scale dynamic
neural network, and then the near-optimal controller is
designed [18,19]. However, this method is still based
on precise modeling. To directly obtain the optimal
solution with unknown slow dynamics, an adaptive
composite near-optimal control strategy is designed
in the framework of adaptive dynamic programming
[20]. Nevertheless, the controllers are continuously
updated in real-time [15–20], posing implementation
challenges due to the physical devices and communi-
cation limitations.

To overcome the difficulty of continuous updat-
ing, the event-triggered mechanism has been proposed
so that the controller updates when necessary [21],
enhancing the efficient usage of restricted resources.
The event-triggered optimal control (ETOC) offers a
tradeoff between performance and resources. Thus,
a sub-optimal performance is obtained if selecting a
less-resourced oriented controller, such as an event-
triggered controller [22]. Furthermore, the upper bound
of the performance index [23,24], unmatched uncer-
tainties [25] and double-channel communication [26]
have also been studied within the scope of ETOC.
The case of nonlinear stochastic systems is consid-
ered in [27]. However, related works on ETOC are
mainly about single-time-scale systems. For example,
considering the unknown dynamics, an event-triggered
adaptive dynamic programming method has been pro-
posed based on the policy and value iteration algo-
rithms [28]. The adaptive neural network (NN) con-
trol or the adaptive fuzzy control is also a valid tool to
deal with nonparametric uncertainties [29,30]. Addi-
tionally, a model-free Q-learning-based algorithm has
been designed where the Q-function is considered a
parametrization for the state and the input [31]. Finally,
some related works concern event-triggered mecha-
nism (ETM) for TTSSs [6,9,32,33], but optimality and
unknown dynamics have not been simultaneously con-
sidered.

Based on the above discussions, ETOC for TTSSs
with unknown dynamics is still an open issue to be
investigated, as methods for single-time-scale systems
[23–25,31,34] do not apply to TTSSs directly. The
main challenge is that the errors of the slow and the
fast states are always coupled, which is not the case in
single-time scale systems.

This paper considers unknown slow dynamics and
proposes a Q-learning ETOC algorithm for TTSSs.
The Q-learning method is an adaptive dynamic pro-
gramming method using the actor-critic structure. An
action-depend function that estimates the expected
performance under a given action and a given state
through the collected input/output data selects the opti-
mal action based on the previous observations. A sig-
nificant advantage of such a strategy is that it does
not require accurately modeling the systems. The main
contribution of this paper is twofold: (1) Considering
the event-triggered sub-optimal control for TTSSs, as
existing event-triggered controllers for TTSSs mainly
focus on stabilization [6,9,32,33] and neglect perfor-
mance indicators during the control process, or focus
on using a continuous-time optimal controller without
an event-triggering mechanism [18–20]. (2) Proposing
an online approach without knowing the system’s slow
dynamics, thus not requiring prior offline training [20]
or identifying unknown dynamics [18,19]. The optimal
controller can be approximated directly with the state,
input information, and partially known dynamics.

The remainder of the paper is organized as fol-
lows. Section2 presents the background concerning the
decomposition of slow and fast modes and the optimal
control theory for TTSSs. Section3 designs the event-
triggered sub-optimal control with an unknown slow
dynamic and analyzes the stability of the original sys-
tem. Section4 demonstrates the efficiency of the pro-
posed strategy using numerical examples, and finally,
Sect. 5 concludes this work.

Notation: In denotes the identity matrix of dimen-
sion n, ‖ · ‖ represents the Euclidean norm for vec-
tors or the spectral norm for matrices, R+ is the
set of positive real numbers, and N+ denotes the
set of positive integers. For a matrix A ∈ Rn×m ,
vec(A) = [aT1 , aT2 , . . . , aTm ]T , where ai ∈ Rn is the
i th column of A, i = 1, 2, . . .m. tr(A) = ∑n

i=1 aii
indicates the trace, ⊗ indicates the Kronecker prod-
uct, λ̄(R), λ(R) denote the maximum and minimum
eigenvalue of matrix R, respectively, and O(·) is the
order of magnitude defined in [10]: vector function
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f (t, ε) ∈ Rn is said to be O(ε) over an interval [t1, t2]
if there exist positive constants k and ε∗ such that

‖ f (t, ε)‖ ≤ kε ∀ε ∈ [0, ε∗], ∀t ∈ [t1, t2].

2 Problem formation

Consider the following linear continuous-time TTSSs
described by
⎧
⎪⎨

⎪⎩

ẋ(t) = A11x(t) + A12z(t) + B1u(t), x(t0) = x0

εż(t) = A21x(t) + A22z(t) + B2u(t), z(t0) = z0

y(t) = C1x(t) + C2z(t)

(1)

where x(t) ∈ Rn1 is the slow state vector, z(t) ∈ Rn2

is the fast state vector, u(t) ∈ Rm and y(t) ∈ Rp

are the input and output, respectively. ε represents a
small positive singular perturbation parameter. A11 ∈
Rn1×n1, A12 ∈ Rn1×n2 , A21 ∈ Rn2×n1, A22 ∈
Rn2×n2 , B1 ∈ Rn1×m, B2 ∈ Rn2×m .

The objective is adjusting u to minimize the perfor-
mance index

J = 1

2

∫ ∞

0
(yT y + uT Ru)dt, R > 0. (2)

Let A =
[
A11 A12
1
ε
A21

1
ε
A22

]

, B =
[

B1
1
ε
B2

]

,C =

[C1,C2]. X =
[
x
z

]

, and the initial state X (t0) = X0 =
[
x0

z0

]

. From the optimal control theory, the exact opti-

mal control for the original system (1) with a perfor-
mance index (2) is

uopt = −R−1BT PX, (3)

where matrix P is the solution of the following Riccati
equation

0 = −PA − AT P + PBR−1BT P − CTC, (4)

and the corresponding performance index is Jopt =
1
2 X

T
0 PX0.
However, the traditional method cannot solve (4)

directly due to numerical illness. An effective way is
to divide the original system into two separate time-
scale subsystems and design the controllers separately.
Additionally, to reduce resource waste and consider
the triggering factor, the controller only updates at the
triggering instants, i.e., {tkx } and {tkz }, k ∈ N+, for the
slow and fast subsystems, respectively. The input is
written as

u = ud = K1 x̂ + K2 ẑ, (5)

where K1 ∈ Rm×n1 , K2 ∈ Rm×n2 , and the sampled
states x̂, ẑ are defined as

x̂(t) = x(tkx ), ∀t ∈ [tkx , tk+1
x )

ẑ(t) = z(tkz ), ∀t ∈ [tkz , tk+1
z )

The errors between the sampled states and the real
states are defined as

e1(t) = x̂(t) − x(t),

e2(t) = ẑ(t) − z(t).

For convenience, we denote E = (eT1 eT2 )T , K =
(K1 K2).

Assumption 1 A22 is nonsingular.
Under Assumption 1, the following Chang transforma-
tion [8] will be used to decouple the slow and the fast
modes.
[

ξ

η

]

= T

[
x
z

]

, (6)

where T =
[
In − εML −εM

L Im

]

, ξ and η denote the

decoupled slow and fast dynamics of the original sys-
tem, respectively. L ∈ Rn2×n1 and M ∈ Rn1×n2 are
the solutions of the following equations,

Λ21 + εLΛ11 − Λ22L − εLΛ12L = 0,

εΛ11M − εΛ12LM + Λ12 − MΛ22 − εMLΛ12 = 0,

whereΛ11 = A11+B1K1, Λ12 = A12+B1K2, Λ21 =
A21 + B2K1, Λ22 = A22 + B2K2.

Following the Chang transformation, the dynamics
of the original system (1) with the input (5) can be
transformed into
[

ξ̇

εη̇

]

=
[
Λ11 − Λ12L 0

0 Λ22 + εLΛ12

] [
ξ

η

]

+
[
B1 − M(B2 + εLB1)

B2 + εLB1

]

K E .

(7)

Let

ξ̂ = x̂, η̂ = Lx̂ + ẑ, e f = η̂ − η = Le1 + e2. (8)

With transformation (6), the input ud can be divided
into two parts, ud = usd + u f d , concerning ξ̂ and η̂,
respectively

usd =K0ξ̂ = K0ξ + K0e1 + O(ε)ξ + O(ε)η,

u f d =K2η̂,
(9)

where K0 and K2 will be separately designed for
the slow and fast subsystems, respectively. By sub-
stituting ξ , η with x and z by (6) and compare the
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parameters in (5), we obtain K1 = K0 + K2L . From
[7], L = A−1

22 (A21 + B2K0) + O(ε). Let A0 =
A11 − A12A

−1
22 A21, B0 = B1 − A12A

−1
22 B2, Λ0 =

A0 + B0K0. In [9] and [10], it is pointed out that for
O(ε) approximations, Λ11 − Λ12L can be approxi-
mated by Λ0 and L can be approximated by Λ−1

22 Λ21.
Along with (6), the transformed variables ξ, η can be
approximated by

ξ(t) = x(t) + O(ε)x(t) + O(ε)z(t),

η(t) = z(t) + Λ−1
22 Λ21x(t) + O(ε)x(t).

(10)

Remark 1 Note that although the anti-diagonal ele-
ments of the systemmatrix are zero in (7), the errors e1
and e2 coexist in the dynamic of ξ and η, respectively,
posing difficulties in the design of ETM.

When the inputs are updated continuously, E = 0,
and if Assumption 1 holds, the transformed system (7)
can be approximated by two subsystems. Then, the
original optimal control problem of system (1) with
performance index (2) can be converted to two sub-
problems as follows [20].

(1) For the approximated slow subsystem

ẋs = A0xs + B0us,

ys = C0xs + D0us,
(11)

where C0 = C1 −C2A
−1
22 A21, D0 = −C2A

−1
22 B2. The

objective is adjusting us to minimize the performance
index

Js =
∫ ∞

t0
rs(t)dt

= 1

2

∫ ∞

t0
(xTs C

T
0 C0xs + 2xTs C

T
0 D0us

+ uTs R0us)dt.

The reward rs(t) can also be written in a standard
quadratic form

rs(t) = 1

2
(xTs Gsxs + uTsc R0usc), (12)

where R0 = R + DT
0 D0, Gs = CT

0 (I − D0R
−1
0 DT

0 )

C0, usc = us+R−1
0 DT

0 C0xs . Note that I−D0R
−1
0 DT

0
= (I + D0R−1NT

0 )−1 > 0.
We define the value function as

Vs(xs(t)) = 1

2

∫ ∞

t
(xTs Gsxs + uTsc R0usc)dt. (13)

Let As = A0 − B0R
−1
0 DT

0 C0. From the optimal
control theory [11], if the Riccati equation

AT
s Ps + Ps As − Ps B0R

−1
0 BT

0 Ps + Gs = 0 (14)

has a positive semidefinite stabilizing solution Ps , then
the optimal control can be constructed by

u∗
sc = −R−1

0 BT
0 Psxs .

Accordingly, the optimal control of the slow subsys-
tem (11) is

u∗
s = −R−1

0 (DT
0 C0 + BT

0 Ps)xs . (15)

Since the system (11) is linear, under the optimal
control u∗

s , the optimal value function can be denoted
in a quadratic form, that is

V ∗
s (xs(t)) = 1

2
xs(t)

T Psxs(t).

For the approximated slow subsystem, we define
Hamilton function as

Hs

(

xs(t), us(xs),
∂V ∗

s (xs)

∂xs(t)

)

= ∂Vs(xs)T

∂xs(t)
ẋs(t) + rs(t).

(16)

Under the optimal control u∗
s (t), it has

Hs

(

xs(t), u
∗
s (xs),

∂V ∗
s (xs)

∂xs(t)

)

= 0.

From the form of u∗
s in (15), it can be deduced that

Hs

(

ξ(t), u∗
s (ξ),

∂V ∗
s (ξ)

∂ξ(t)

)

= 1

2
ξ T (Ps A0 + AT

0 Ps + O(ε))ξ

+ ξ T Ps B0u
∗
s + 1

2
ξ TCT

0 C0ξ + ξ TCT
0 D0u

∗
s

+ 1

2
u∗
s
T R0u

∗
s = 0.

(17)

(2) For the approximated fast subsystem

εż f = A22z f + B2u f ,

y f = C2z f .
(18)

The objective is adjusting u f to minimize the per-
formance index

J f = 1

2

∫ ∞

0
(zTf G f z f + uTf Ru f )dt,

where G f = CT
2 C2.

If the Riccati equation

AT
22Pf + Pf A22 + Pf B2R

−1BT
2 Pf − G f = 0 (19)

has a positive semidefinite stabilizing solution Pf , then
the optimal control of the fast subsystem (18) is u∗

f =
−R−1BT

2 Pf z f .
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Since the system (18) is linear, under the optimal
control u∗

f , the optimal value function can be denoted
in a quadratic form, that is

V ∗
f (z f (t)) = 1

2
εz f (t)

T Pf z f (t).

Similarly, the Hamilton function of the fast subsys-
tem is defined as

H f

(

z f (t), u f (z f ),
∂V ∗

f (z f )

∂z f

)

= 1

ε

∂V ∗
f

∂z f
ż f + 1

2
u f

T Ru f

+ 1

2
zTf G f z f .

Then under the optimal control u∗
f (η)

H f

(

η(t), u∗
f (η),

∂V ∗
f (η)

∂η(t)

)

= 1

2
ηT (Pf A22 + A22Pf + G f

+ O(ε))η + ηT Pf B2u
∗
f + 1

2
u∗
f
T Ru∗

f = 0.

(20)

With the obtained Ps and Pf by solving the above
two subproblems, the optimal composite input of the
original system (1) with the performance index (2),
operating on the actual states x and z is

u∗
c = −[(I − R−1BT

2 Pf A
−1
22 B2)R

−1
0 (DT

0 C0

+ BT
0 Ps) + R−1BT

2 Pf A
−1
22 A21]x − R−1BT

2 K2z.
(21)

Assumption 2 The triples (A0, B0,C0) and (A22, B2,

C2) are stabilizable-detectable.

Lemma 1 [7]For the dynamics of the transformed sys-
tem (7) with E = 0 and approximated by reduced order
subsystems (11) and (18), the approximated states sat-
isfy ξ(t) = xs(t) + O(ε)x + O(ε)z, η(t) = z f (t) +
O(ε)x. If Assumptions 1 and 2 hold, then (14) and (19)
have unique positive semi-definite solutions Ps and Pf ,
respectively. The composite feedback control u∗

c in (21)
is O(ε) close to uopt defined in (3). Further, Jc, the
value of the performance index obtained by (2) with
the controller u∗

c , satisfies

Jc = Jopt + O(ε2). 	

A brief proof of Lemma 1 is presented in the

appendix part.

From Lemma 1 and considering the triggering fac-
tor, the optimal control for the slow subsystem u∗

sd is
according to (15)

u∗
sd(ξ) = −R−1

0 (DT
0 C0 + BT

0 Ps)ξ̂ , (22)

and the optimal control for the fast subsystem u∗
f d is

u∗
f d(η) = −R−1BT

2 Pf η̂, (23)

Hence, the event-triggered sub-optimal composite
control is

u∗
d = u∗

sd(ξ) + u∗
f d(η). (24)

For consistency with the standard quadratic form,
we define usdc for the slow subsystem, which is an
adaption form of usc in (12) as follows

usdc(ξ) = usd + R−1
0 DT

0 C0ξ.

3 Main results

In this part, we consider the situation where the slow
dynamics are unknown, i.e., A11, A12, B1 in (1) are
unknown. So the solution of the Riccati equation (14)
cannot be obtained directly. To dealwith this problem, a
Q-learningmethod based on available data is proposed.

For convenience, denote B ′
0 = B1−M(B2+εLB1).

Referring to the time-triggered Hamiltonian function
(16), (7) and their approximations, the event-triggered
Hamiltonian functions are rewritten as follows.

Hs

(

ξ(t), usd(ξ),
∂V ∗

s (ξ)

∂ξ(t)
, K E

)

= ∂V ∗
s
T (ξ)

∂ξ
ξ̇ + 1

2
ξ TCT

0 C0ξ

+ ξ TCT
0 D0usd + 1

2
uTsd R0usd

= 1

2
ξ T (Ps A0 + AT

0 Ps + O(ε))ξ + ξ T Ps(B0K0ξ

+ B ′
0K E) + 1

2
ξ TCT

0 C0ξ

+ ξ TCT
0 D0usd + 1

2
uTsd R0usd .

Combining (9) leads to

Hs

(

ξ(t), usd(ξ),
∂V ∗

s (ξ)

∂ξ(t)
, K E

)

= 1

2
ξ T (Ps A0 + AT

0 Ps + CT
0 C0 + O(ε))ξ

+ξ T (Ps B0 + CT
0 D0)usd + ξ T Ps B

′
0K E
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−ξ T Ps B0K0e1 + 1

2
uTsd R0usd

+O(ε)ξ T Ps B0Mη. (25)

Similarly,

H f

(

η(t), u f d(η),
∂V ∗

f (η)

∂η(t)
, K E

)

= ∂V ∗
f (η)

∂η
((A22 + B2K2 + εLΛ12)η + (B2

+ εLB1)K E) + 1

2
u f d

T Ru f d + 1

2
ηT G f η

= 1

2
ηT (Pf A22 + A22Pf + G f + O(ε))η

+ ηT Pf B2u f d + ηT Pf B2K1e1

− ηT Pf B2K2Le1 + 1

2
u f d

T Ru f d .

With the derivation results in (25), define a Q function

Q(ξ, usd , K E)

= V ∗
s (ξ) + Hs(ξ, usd ,

∂V ∗
s

∂ξ
, K E)

− Hs(ξ, u∗
s ,

∂V ∗
s

∂ξ
)

= 1

2
ξ T (Ps + Ps A0 + AT

0 Ps + CT
0 C0 + O(ε))ξ

+ ξ T (Ps B0 + CT
0 D0)usd + ξ T Ps B

′
0K E

− ξ T Ps B0K0e1 + 1

2
usd

T R0usd .

(26)

Let

Φs =[1
2
ξ T ⊗ ξ T , uTsd ⊗ ξ T , K ET ⊗ ξ T ,

− (KT
0 e1)

T ⊗ ξ T ],

Wc =

⎡

⎢
⎢
⎣

vec(Ps + Ps As + As Ps + CT
0 C0 + O(ε))

vec(Ps B0 + CT
0 D0)

vec(Ps B ′
0)

vec(Ps B0)

⎤

⎥
⎥
⎦.

Then (26) can be written as

Q(ξ, usd , K E) = ΦsWc + 1

2
uTsd R0usd .

Since the vector Wc is an unknown constant vector,
an approximated critic weight vector Ŵc ∈ Rn21+3mn1

is utilized. Accordingly, we define the following func-
tion Q̂ to estimate Q.

Q̂(x, usd) = Φs Ŵc + 1

2
uTsd R0usd .

Similarly, the actor weight Ŵa ∈ Rn1 is introduced to
construct the controller

usd = Ŵ T
a ξ̂ (t), (27)

the tuning laws of Ŵc and Ŵa will be introduced later.

Remark 2 Note that the unknown parameters are all
integrated in Wc, so Q(ξ, usd , K E) is considered as
two separate parts, i.e., unknownandavailable informa-
tion. Additionally, the second part of Wc, vec(Ps B0 +
CT
0 D0), contains all the unknown information needed

in the optimal controller in (22).
The overall controller is

ud = Ŵ T
a ξ̂ (t) + K2η̂. (28)

As for the fast subsystem, the optimal controller, i.e.,
K2 = −R−1BT

2 Pf , is chosen.
According to the performance index defined in (12)

and the Hamilton function (17), under optimal control
(24), it can be obtained that

Q(ξ(t), u∗
sd)

= Q(ξ(t − T ), u∗
sd) − 1

2

∫ t

t−T
(ξ TCT

0 C0ξ

+ 2ξ TCT
0 D0us + uTs R0us)dτ,

where T denotes a small fixed time interval.
Define the error related to the critic network as

ec = Q̂(x(t), ûsd(t)) − Q̂(x(t − T ), ûsd(t − T ))

+ 1

2

∫ t

t−T
(ξ T Gsξ + usd Rusd)dτ

= Ŵ T
c (Φs(t) − Φs(t − T ))

+ 1

2

∫ t

t−T
(ξ T Gsξ + usdc Rusdc)dτ.

Define the error related to the actor as

ea = Ŵ T
a ξ(tkx ) + R−1

0 Ŵ T
cpξ(tkx ), (29)

where Ŵcp = Wc(n21+1 : n21+mn1). Let σ = Φs(t)−
Φs(t − T ), Kc = 1

2‖ec‖2, Ka = 1
2‖ea‖2.

The tuning law for the weight of the critic network
is designed as

˙̂Wc = −αc
1

(1 + σ T σ)2

∂Kc

∂Ŵc

= −αc
σ

(1 + σ T σ)2
eTc ,

(30)

where the convergence speed can be adjusted through
αc ∈ R+.
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Due to the event-triggered mechanism, the con-
troller only updates at triggering instants. The tuning
law for the weight of the actor is designed as

˙̂Wa =0,

Ŵ+
a =Ŵa − αa

1

(1 + ξ(t)T ξ(t))

∂Ka

∂Ŵa
,

=Ŵa − αa
ξ

(1 + ξ(t)T ξ(t))
eTa t = tkx ,

(31)

where αa ∈ R+ presents the convergence speed.
Let V1(ξ) = 1

2ξ
T Psξ, V2(η) = 1

2εη
T Pf η,

V̇1(ξ) =1

2
ξ̇ T Psξ + 1

2
ξ T Ps ξ̇

=1

2
ξ T (Ps A0 + AT

0 Ps + O(ε))ξ

+ ξ T Ps B0K0ξ + ξ T Ps B
′
0K E .

Apply (17) to replace Ps A0 + AT
0 Ps

V̇1(ξ) = −1

2
ξ T (CT

0 C0 + O(ε))ξ − ξ T (Ps B0

+ CT
0 D0 + O(ε))u∗

s − 1

2
u∗
s
T R0u

∗
s

+ ξ T Ps B0K0ξ + ξ T Ps B
′
0K E .

From (9), (12) and the equation ξ T Ps B0 = −u∗
sc

T

R0, it can be rewritten as

V̇1(ξ) = −1

2
ξ T (Gs + O(ε))ξ − 1

2
u∗
sc

T R0u
∗
sc

− ξ T Ps B0u
∗
s + ξ T Ps B0(usd − K0e1

+ O(ε)Mη) + ξ T Ps B
′
0K E

= −1

2
ξ T (Gs + O(ε))ξ − 1

2
u∗
sc

T R0u
∗
sc

+ u∗
sc

T R0u
∗
s − u∗

sc
T R0usd − ξ T Ps B0K0e1

+ ξ Ps B
′
0K E + O(ε)ξ T Ps B0Mη

= −1

2
ξ T (Gs + O(ε))ξ + 1

2
(u∗

sc − usdc)
T R0

× (u∗
sc − usdc) − 1

2
uTsdc R0usdc

− ξ T Ps B0K0e1 + ξ Ps B
′
0K E

+ O(ε)ξ T Ps B0Mη.

(32)

The performance index of the fast subsystem satis-
fies

V̇2(η) = 1

ε

∂V2
∂η

((A22 + O(ε))η + (B2 + O(ε))K2η

+ B2K E).

= 1

2
ηT (Pf A22 + AT

22Pf + O(ε))η

+ ηT Pf B2K2η + ηT Pf B2K E .

Similarly, for V2, apply (20) to take the place of
Pf A22 + AT

22Pf .

V̇2 = −1

2
ηT (G f + O(ε))η

+ 1

2
(u∗

f − u f d)
T R(u∗

f − u f d)

− 1

2
uTf d Ru f d + ηT Pf B2K0e1

≤ −1

2
λ(G f + O(ε))‖η‖2

+ 1

2
λ̄(R)‖R−1BT

2 Pf ‖‖e f ‖2

− 1

2
λ(R)‖u f d‖2 + ηT Pf B2K0e1.

(33)

Since e f = Le1 + e2, then

V̇1 + V̇2

≤ −1

2
ξ T (Gs + O(ε))ξ − 1

2
λ(R0)‖usdc‖2

+
(
1

2
λ̄(R0)‖R−1

0 BT
0 Ps‖2

+λ̄(R)‖L‖2‖R−1BT
2 Pf ‖2

)
‖e1‖2

+ ξ T (Ps B
′
0K1 − Ps B0K0)e1 + ηT Pf B2K0e1

− 1

2
ηT (G f + O(ε))η − 1

2
λ(R)‖u f d‖2

+ λ̄(R)‖R−1BT
2 Pf ‖2‖e2‖2 + ξ T Ps B

′
0K2e2.

(34)

When ε is small enough, there exist Gs − O(ε) >

G ′
s > 0,G f − O(ε) > G ′

f > 0. Let

∥
∥
∥W̃a

∥
∥
∥ ≤ l1,

∥
∥
∥−R−1

0 (BT
0 Ps + DT

0 C0)

∥
∥
∥ ≤ l2,

∥
∥
∥R−1

0 BT
0 Ps

∥
∥
∥ ≤ l3,

∥
∥
∥R−1

0 B ′
0
T Ps

∥
∥
∥ ≤ l4,

∥
∥
∥R−1BT

2 Pf

∥
∥
∥ ≤ l5, ‖L‖ ≤ l.

(35)
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By applying following inequalities to (34)

‖ξ‖‖e1‖ ≤ 1

2α1
‖ξ‖2 + α1

2
‖e1‖2,

‖ξ‖‖e2‖ ≤ 1

2α2
‖ξ‖2 + α2

2
‖e2‖2,

‖η‖‖e1‖ ≤ 1

2α3
‖η‖2 + α3

2
‖e1‖2,

‖e f ‖2 = ‖Le1 + e2‖2 ≤ 2l2‖e1‖2 + 2‖e2‖2.
where α1, α2, α3 and α4 are parameters to be designed
later.

Choose c1, c2, c3 and c4 which satisfies

c1 ≤1

2
λ(G ′

s) − l1λ̄(R0)

−
λ̄(R0)l3

√
l21 + l22

2α1
− λ̄(R0)l4l5

2α2

−
λ̄(R0)l4

√
l21 + l22 + l2l25
α1

,

c2 ≥(l21 + l22)λ̄(R0) + α3λ̄(R)l5

√
l21 + l22 + λ̄(R)l2l5

+ α1λ̄(R0)l4

√
l21 + l22 + l2l25

+
α1(λ̄(R0)l3

√
l21 + l22

2
,

c3 ≤1

2
λ(G ′

f ) −
λ̄(R)l5

√
l21 + l22

α3
,

c4 ≥l5λ̄(R) + α2λ̄(R0)l4l5
2

.

(36)

c1, c2, c3, c4 are assumed positive and c2, c3, and
c4 can be positive by adjusting the value of α1, α2, α3,
and α4. The positivity of c1 will be easy to obtain after
proving that l1 tends to zero as W̃a tends to the origin.

Theorem 1.Consider the two-time-scale system (1)
and suppose that Assumptions 1, 2, and (35) hold. The
weights of the networks tune as (29)-(31) and the con-
troller is designed as (28). As long as the corresponding
controller updates when either of the following condi-
tions is satisfied,

‖e1‖2 ≥ 2c1‖ξ‖2 + λ(R0)‖usdc‖2
2c2

, (37)

‖e2‖2 ≥ 2c3‖η‖2 + λ(R)‖u f d‖2
2c4

, (38)

then, there exists ε∗ > 0, such that for all ε ∈ (0, ε∗]
and any bounded initial conditions x0, z0, the states

Fig. 1 Flowchart of the proposed method. ((37) and (38) are
the triggering conditions for the slow and the fast dynamics,
respectively)

of (1) converge asymptotically to the origin, and the
controller is sub-optimal. In addition, the optimal cost
is guaranteed by

J (X0, u
∗
d) = J (X0, uopt ) + 1

2

∫ ∞

0
(u∗

d − uopt )
T

× R(u∗
d − u∗

opt )dt.
(39)

Figure1 illustrates a flowchart of the implementa-
tion process, where (37) and (38) are the two triggering
conditions for the slow and fast subsystems, respec-
tively. Once they are triggered, the input controller will
be updated.

Proof First, we prove that the system is asymptotically
stable. According to previous analysis,

V̇1(ξ)

= −1

2
ξ T G ′

sξ + 1

2
(u∗

sc − usdc)
T R0(u

∗
sc − usdc)

−1

2
uTsdc R0usdc − ξ T Ps B0Ŵ

T
a e1

+O(ε))ξ T Ps B0Mη + ξ Ps B
′
0K E
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≤ −1

2
λ(G ′

s) ‖ξ‖2 + 1

2
λ(R0)

∥
∥
∥W̃ T

a ξ − Ŵ T
a e1

∥
∥
∥
2

−1

2
λ(R0) ‖usdc‖2 − ξ T Ps B0Ŵ

T
a e1

+O(ε)ξ T Ps B0Mη + ξ Ps B
′
0K E .

The performance index of the fast subsystem satis-
fies

V̇2(η) ≤ − 1

2
λ(G ′

f )‖η‖2 − 1

2
λ(R)‖u f d‖2

+ 1

2
l5λ̄(R)‖e f ‖2 + ηT Pf B2Ŵ

T
a e1.

Note that the sum of terms concerning errors in
V̇1, V̇2 satisfies

− ξ T Ps B0K0e1 + ξ Ps B
′
0K E + ηT Pf B2Ŵ

T
a e1

≤
(

λ̄(R0)l3

√
l21 + l22 + 2λ̄(R0)l4

√
l21 + l22 + l2l25

)

‖ξ‖‖e1‖
+ λ̄(R0)l4l5‖ξ‖‖e2‖ + 2λ̄(R)l5

√
l21 + l22‖η‖‖e1‖.

Then (34) can be rewritten as

V̇1 + V̇2 ≤ − c1‖ξ‖2 − 1

2
λ(R0)‖usdc‖2 + c2‖e1‖2

− c3‖η‖2 − 1

2
λ(R)‖u f d‖2 + c4‖e2‖2.

If the system triggers when (37) or (38) is satisfied,
then V̇1 + V̇2 < 0, and thus the states of the original
system asymptotically converge to the origin.

Next, we prove that the parameters are convergent.
We define the weight estimation errors as

W̃a = −(Ps B0 + CT
0 D0)R

−1
0 − Ŵa,

W̃c = Wc − Ŵc,

W̃cp = Ps B0 + CT
0 D0 − Ŵcp.

Then

˙̃Wc = −αc
σσ T

(1 + σ T σ)2
W̃c,

W̃+
a = W̃a − αa

ξ(t)ξ T (t)

1 + ξ T (t)ξ(t)
(W̃a + Ŵcp R

−1
0 ). (40)

We set V3(W̃a) = 1
2 tr{W̃ T

a W̃a} and define V3 =
V3(W̃+

a ) − V3(W̃a). Then from the dynamic of W̃a in
(40)

 V3

= αatr

(

−W̃ T
a

ξξ T

1 + ξ T ξ
W̃a − W̃ T

a
ξξ T

1 + ξ T ξ
W̃cp R

−1
0

+ αa

2
W̃ T

a
(ξξ T )2

(1 + ξ T ξ)2
W̃a

+ αaW̃
T
a

(ξξ T )2

(1 + ξ T ξ)2
W̃cp R

−1
0

+αa

2
(W̃cp R

−1
0 )T

(ξξ T )2

(1 + ξ T ξ)2
W̃cp R

−1
0

)

.

Since tr(AB) = tr(BA), it gets

V3 = αaξ
T

1 + ξ T ξ
(−W̃aW̃

T
a − W̃cp R

−1
0 W̃ T

a

+ αa

2

‖ξ‖2
1 + ‖ξ‖2 (W̃aW̃

T
a + 2W̃cp R

−1
0 W̃a

+ W̃cp R
−1
0 (W̃cp R

−1
0 )T ))ξ.

By utilizing the following inequalities

‖ξ‖2
1 + ‖ξ‖2 ≤ 1,

−ξ T W̃cp R
−1
0 W̃ T

a ξ ≤ ξ T

2

(
1

βb
W̃cpW̃

T
cp

+βbW̃a(R
−1
0 )T R−1

0 W̃ T
a

)
ξ,

where βb can be arbitrary positive real number.
Then, it can be deduced that

V3 ≤ αa

1 + ξ T ξ
ξ T

(

−
(

1 − ‖1 − αa‖βbλ̄(R−1
0 )2

2

−αa

2

)

W̃a W̃
T
a +

( ‖1 − αa‖
2βb

+ αa

2
λ̄(R−1

0 )2
)

W̃cpW̃
T
cp

)

ξ.

Choosingproperαa, βb to ensure 1−‖1−αa‖βbλ̄(R−1
0 )2

2
− αa

2 > 0, then V3 < 0 when W̃a is beyond a certain
range than W̃cp. Since W̃cp, as part of W̃c, converges
to the origin, then ξ T (

‖1−αa‖
2βb

+ αa
2 λ̄(R−1

0 )2)W̃cpW̃ T
cp)ξ

tends to converge to the origin. So Ŵa is near optimal. In
addition, it implies that l1 becomes smaller and c1 > 0
in (36) is easier to satisfied.

Third, we prove that Zeno behavior is excluded.
For the slow mode, from (37), the triggering condi-

tion satisfies ‖e1(t)‖‖ξ(t)‖ ≥ c1
c2
. For convenience, we denote

s(t) = ‖e1(t)‖‖ξ(t)‖ . From the dynamics of the subsystems
(7), since the parameters are bounded, F1 ∈ R+ sat-
isfy ‖ξ̇ (t)‖ ≤ F1(‖ξ(t)‖ + ‖e1(t) + ‖e2(t)‖) and
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‖ė1(t)‖ ≤ F1(‖ξ(t)‖ + ‖e1(t)‖ + ‖e2(t)‖). Then, it
is further deduced that

ds

dt
≤ F1(1 + s)2 + F1

(

1 + ‖e1(t)‖
‖ξ‖

) ‖e2(t)‖
‖ξ‖ ,

t ∈ [tkx , tk+1
x ).

As the states are convergent, it has C1 ∈ R+ satisfying
C1 ≥ F1(1 + ‖e1(t)‖‖ξ‖ )

‖e2(t)‖‖ξ‖ , then dt
ds ≤ 1

F1(1+s)2+C1 .
Since s(t) changes from 0 to a number larger than c1

c2
between the two triggering instants, then the triggering

interval τs = tk+1
x − tkx >

∫ c1
c2
0

1
F1(1+s)2+C1 ds > 0.

Similarly, for the fast mode, F2, C2 ∈ R+ sat-
isfies ‖η̇(t)‖ ≤ F2(‖η(t)‖ + ‖e2(t)‖), ‖ė2(t)‖ ≤
F2(‖ξ(t)‖ + ‖e2(t)‖) and C2 ≥ F2(1+ ‖e2(t)‖‖η‖ )

‖e1(t)‖‖η‖ ,

the triggering interval τ f = tk+1
z − tkz >

∫ c3
c4
0

1
F2(1+s)2+C2 ds > 0. Thus Zeno behavior is excluded.

Regarding the performance index employing the
proposed event-triggered mechanism, [24] provides a
similar proof. Under a precise optimal control uopt
in (3) and the sub-optimal event-triggered control u∗

d ,
the performance indexes have the relation described in
(39).

This completes the proof. 	


4 Simulation

This part conducts three simulation examples involving
a four-dimensional system, a practical motor example,
and a comparison study. The slow mode dynamics are
assumed unknown, which means that A11, A12, B1 are
unavailable.

(1)The effectiveness of the proposed method
Consider a four-dimensional system, the parame-

ters are A11 =
[
0 0.4
0 0

]

, A12 =
[

0 0
0.345 0

]

, A21 =
[
0 −0.524
0 0

]

, A22 =
[−0.465 0.262

0 −1

]

, B1=[
0 0

]T
,

B2 = [
0 1

]T
. We set ε = 0.1, C1 = C2 = [1 1],

R = 1. The initial states are x(0) = [
6 5

]T
, z(0) =

[
4 2

]T
and αa = 0.5, αc = 2. The trajectories of

the states, triggering time, and inputs are depicted in
Fig. 2. Furthermore, to highlight the approximate opti-
mality of the proposed method, the optimal control is
also presented in Fig. 2. By solving the Riccati equa-
tions of the slow and fast subsystems (14), and (19)

Fig. 2 State trajectories and inputs

respectively, we obtain u∗
c = [−2.0000 − 2.5632]x +

[−0.5953− 0.5205]z from (21). The solid line depicts
the case under the proposed event-triggered control
with unknown slow dynamics, while the dotted line
illustrates that under optimal control. From Fig. 2, we
observe that the states converge asymptotically to the
origin. The minimum triggering intervals for the slow
and fast dynamics are 0.6730 s and 0.0320 s, respec-
tively, and the average triggering intervals are 1.0288 s
and 0.3182 s.

(2) A DC-motor example
In this simulation case, a practical DC-motor exam-

ple is considered, as described in [20], where the elec-
tromagnetic transient is regarded as a fast mode, while
the torque response is rather slow. The dynamics of
such systems can be modeled as

Jm
dω

dt
= − bω + kmi,

Li
di

dt
= − kbω − R0i + u,

where Jm is the equivalent moment of inertia, ω is
the angular speed, b is the equivalent viscous fric-
tion coefficient, and km and kb are the torque and
back electromotive force, respectively. i, u and R0

represent the armature current, voltage, and resis-
tance, respectively, Li is a small inductance constant,
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Fig. 3 The error of the actor network weight and the triggering
condition

and the system parameters are as follows: Jm =
0.093 kgm2, km = 0.7274 Nm, kb = 0.6 vs/rad, Li =
0.006 H, R0 = 0.6 �, b = 0.008. Rewriting the latter
formula in the form of (1), the parameters are ε = 0.06,
A11 = −0.086, A12 = 7.82, A21 = −0.6, A22 =
−0.6, B1 = 0, B2 = 1. Let C1 = 2,C2 = 1. We set
αa = 0.5, αc = 20. The calculated optimal control for
the slow mode is u∗

sc(ξ) = −0.4741ξ , and the initial
values of the states are chosen as x1(0) = 6, x2(0) = 2.
At t = 0.75 s, Ŵa = −0.4769. The error between the
actor network weight with the proposed method and
the one using the optimal control, tunes as Fig. 3 shows,
indicating that W̃a is near the origin after 0.75 s, sug-
gesting that the control gain is near-optimal. The trig-
gering condition is also depicted in Fig. 3.

(3) Comparing ETM and the proposed method
This simulation aims to compare our work and

[9]. The system parameters are the ones in the first
case. In [9], the controller is also in the form of (5)
where the control gains are K1 = [−0.6861−1.1784],
K2 = −R−1BT

2 Pf = [−0.5953 −0.5205]. Accord-
ingly, K0 = [−0.2 − 0.1]. The triggering condition is
designed as ‖ei (t)‖ ≥ c0 + c1e−α0t where i = 1, 2,
e1(t) and e2(t) denote the error between the sampled
and the real states of the slow and fast modes, respec-
tively. Here α0 = 0.1, c0 = 0.05 and c1 = 0.2 as [9].

Regarding the proposed method, to be consistent
with the basic parameters in [9], the initial control

Table 1 Data of the two methods

Triggering
number

Minimum trig-
gering interval

Average
triggering
interval

Slow dynamics
with the
method
proposed

45 1.4480 s 2.0001 s

Fast dynamics
with the
method
proposed

72 0.0090 s 1.2488 s

Slow dynamics
with the
method in [9]

164 0.0090 s 0.5388 s

Fast dynamics
with the
method in [9]

98 4.1237×10−5 s 0.8732 s

Fig. 4 Comparison of the states, triggering time, and perfor-
mance index

gains, K0, K1, and K2 are equal. Table 1 compares
the triggering numbers, minimum triggering intervals
and average triggering intervals between the proposed
method and [9] for 90 s. The trajectories of the states
and the triggering time are depicted in Fig. 4 along with
the performance index. The latter figure highlights that

123



2498 T. Hua et al.

in 90 s, although the triggering numbers of the pro-
posed method are much smaller than ETM in [9], the
suggested method has a lower cost. In [9], because of
the triggeringmechanisms, after some time, the thresh-
old of the triggering condition has a minor change. The
states influence the error’s rate of change, posing a crit-
ical impact on the triggering frequency (Fig. 3), while
in the proposedmethod, the thresholds change together
with the states. The triggering frequency in [9] is rela-
tively high at the beginning and reduceswhen time goes
to infinity, while for the proposed method, the change
of the triggering frequency is rather gentle.

5 Conclusion

This paper presents an event-triggered sub-optimal
control for TTSSswith unknown slowdynamics.Based
on the singular perturbation theory, a composite event-
triggered controller is designed. Additionally, we uti-
lize a Q-function as a critic network in the form of the
product of available information and unknown param-
eters. The controller is constructed using an actor net-
work and is updated to be sub-optimal under the pro-
posed event-triggered mechanism. Furthermore, we
prove that the triggering time intervals are strictly pos-
itive, and thus, Zeno behavior is excluded. Moreover,
the system’s global asymptotic stability is guaranteed.
Future work will address TTSSs with actuator failure
or fully unknown parameters for more general applica-
tions.
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Appendix

Proof of Lemma 1 For the dynamics of the trans-
formed system (7) and approximated reduced order
subsystems (11) and (18), the approximated states sat-
isfy ξ(t) = xs(t) + O(ε)x + O(ε)z, η(t) = z f (t) +

O(ε)x . If Assumptions 1 and 2 hold, then (14) and (19)
have unique positive semi-definite solutions Ps and Pf ,
respectively. The composite feedback control u∗

c in (21)
is O(ε) close to uopt defined in (3). Furthermore, Jc,
the value of the performance index J defined in (2) of
system (1) with control input (21), satisfies

Jc = Jopt + O(ε2).

With the substitution K0 = R−1
0 (DT

0 C0 + BT
0 Ps),

K2 = −R−1BT
2 Pf , the closed loop of the system (1)

with the feedback controller (21) is
[
ẋ
ż

]

= A∗
[

ξ

η

]

where A∗ =
[
A11 + B1(I + K2A

−1
22 B2)K0 + B1K2A

−1
22 A21 A12 + B1K2

(A22 + B2K2)A
−1
22 (A21 + B2K0)/ε (A22 + B2K2)/ε

]

.

With the transformation (6), from [10], it has
[

ξ̇

εη̇

]

=
[
As + BsK0 0

0 A f + B f K2

] [
ξ

η

]

where As = A0 − εA12A
−1
22 L(A11 − A12L), Bs =

B0 − εA12A
−1
22 LB1, A f = A22 + εL A12, B f = B2 +

εLB1. Compared to (11) and (18), if K2 are designed
such that Reλ(A22 + B2K2) < 0, the states ξ and
xs , η and z f are starting from the same bounded initial
conditions, respectively. Then there exists ε∗ > 0,∀ε ∈
[0, ε∗], ξ(t) = xs(t) + O(ε)x + O(ε)z and η(t) =
z f (t) + O(ε)x hold for all finite t ≥ t0.

Then we prove the condition of the existence of
Ps, Pf .

It has been proved in [35] that the stabilizing
solution Ps, Pf of the Riccati equation (14), (19)
exist if (As, B0, Ĉ0) and (A22, B2,C2) is stabilizable-
detectable, respectively,where ĈT

0 Ĉ0 = Gs = CT
0 (I−

D0R
−1
0 DT

0 )C0. Since (As, B0) is stabilizable if and
only if (A0, B0) is stabilizable, I − D0R

−1
0 DT

0 =
(I + D0R−1NT

0 )−1 > 0, then there exists a non-
singularly Q0 such that (Q0C0)

T (Q0C0) = Gs . So,
(As, Q0C0) is detectable if and only if (A0,C0) is
detectable.

Finally, we give a brief proof about the performance
between the composite control and optimal control
from [7].

With (19), the composite controller (21) can be
rewritten as

uc = −R−1(BT
1 Psx + BT

2 PT
m x + BT

2 Pf z)

= −R−1BT
[

Ps 0
εPT

m εPf

]

= −R−1BT
1 McX

(41)
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where Pm = [Ps(B1R−1BT
2 Pf − A12) − (AT

21Pf +
CT
1 C2)](A22 − B2R−1BT

2 Pf )
−1.

The solution of the Riccati equation (4) concern-
ing the exact optimal control P(ε) possesses a power

series expansion at ε = 0, that is P =
[

P1 εP2
εPT

2 εP3

]

+
∑∞

n=1
εi

i !

[
P(i)
1 εP(i)

2

εP(i)
2

T
εP(i)

3

]

and bring it to (4), it can be

deduced that

P1 = Ps, P2 = Pm, P3 = Pf . (42)

Since Jopt = 1
2 X0

T PX0, Jc = 1
2 X0

T PcX0 where
Pc is the positive definite solution of the following func-
tion Pc(A − SMc) + (A − SMc)

T Pc = −MT
c SMc −

CTC , let Pc − P = W . Comparing it with (4),
deduces thatW (A− SMc)+(A− SMc)

T W = −(P−
MT

c )S(P−Mc).W can also bewritten in a power series

form at ε = 0, W = ∑∞
n=0

εi

i !

[
W (i)

1 εW (i)
2

εW (i)
2

T
εW (i)

3

]

, then

from (41) and (42), (P − MT
c )S(P − Mc) = O(ε2).

Then W (0)
j = 0 and W (1)

j = 0, j = 1, 2, 3. Then

W = O(ε2), which implies that Jc = Jopt + O(ε2). 	
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