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Abstract In this paper we develop two new approa-
ches for directly assessing stability of nonlinear wave-
based solutions, with application to jointed elastic bars.
In the first stability approach, we strain a stiffness
parameter and construct analytical stability bound-
aries using a wave-based method. Not only does this
accurately determine stability of the periodic solutions
found in the example case of two bars connected by
a nonlinear joint, but it directly governs the response
and stability of parametrically forced continuous sys-
tems without resorting to discretization, a new devel-
opment in of itself. In the second stability approach,
we pose a perturbation eigenproblem residue (PER)
and show that changes in the sign of the PER locate
critical points where stability changes from stable to
unstable, and vice-versa. Lastly, we discuss follow-on
research using the developed stability approaches. In
particular, we identify an opportunity to study stabil-
ity around internal resonance, and then identify a need
to further develop and interpret the PER approach to
directly predict stability.
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1 Introduction

In a companion paper [1], we developed two wave-
based methods for predicting the nonlinear vibration
response of jointed, continuous elastic bars. These
methods consist of a nonlinear wave-based vibration
approach (WBVA) informedby re-usable, perturbation-
derived scattering functions, and a numerical plane
wave expansion (PWE) approach exploitingwave solu-
tions as expansion quantities. Both approaches were
applied to finding periodic solutions in example sys-
tems in which continuous bars, connected by nonlin-
ear joints, are constrained at their ends and harmoni-
cally excited.As documented in [1], the twoapproaches
exhibit very good accuracy while significantly reduc-
ing the computation time required to obtain periodic
solutions. They are also notable for having fixed prob-
lem size, independent of frequency. Arguably, stability
of the periodic solutions predicted is as important as the
solutions themselves. In [1] we report stability results
for the examples studied using two new stability meth-
ods, which we deferred discussion of until the present
paper.

Directmethods for assessing stability ofwave-based
solutions have not been presented in the literature, the
necessity ofwhichhas been stated in recent studies (see,
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for instance [2,3]). When stability has been treated,
previous studies, owing to a lack of alternatives, have
chosen to project the wave-based solution onto a finite
element mesh and then use time-domain monodromy
matrix calculations to estimate stability. Although this
approach is very attractive owing to its simplicity, it
leads to inaccuracies at larger amplitudes, which we
document in Appendix A. In this paper, we assess sta-
bility of the multi-harmonic periodic solutions found
in [1] using two new approaches: a strained parameter,
analytical method applied to the governing partial dif-
ferential equations based loosely on the technique as
applied to parametrically excited ordinary differential
equations [4], and a computational method employ-
ing the residue of the perturbed system’s eigenvalue
problem. Both are informed by Floquet theory. Flo-
quet theory (see [4]) provides the theoretical basis for
the fact that stability transitions of a system perturbed
around a periodic solution occur when the perturbed
system has a purely imaginary eigenvalue with mag-
nitude equaling an integer multiple of the frequency
of the response (among other cases, see Sect. 3 below).
Detection of such points along a forced response curve,
as opposed to a complete spectral decomposition of
the perturbed system for each response on the curve
(such as the HBMperturbation approach in [5]), under-
pins both proposed approaches. In the strained param-
eter approach we find stability tongues in the parame-
ter space distinguishing stable and unstable solutions,
while in the perturbed eigenproblem residue approach
we employ Floquet theory to find changes in the com-
puted residues which indicate a stability transition.

The paper is organized as follows: we first develop
an analytical, wave-based stability approach based on
straining a single stiffness parameter in Sect. 2. This
strained parameter approach yields stability curves
(i.e., Arnold tongues) and surfaces associated with
a parametrically excited continuous system. Next, in
Sect. 3 we develop a computational approach termed
the perturbation eigenproblem residue (PER) for pre-
dicting stability changes in the forced problem. In
Sect. 4 we apply both methods to determine the stabil-
ity of the two example systems studied in [1]. The paper
concludes with discussions of the results and avenues
for future work.

2 Stability via the strained parameter approach

We now formulate an analytical approach to determine
stability of the multiple periodic solutions found in
[1] for the single-jointed system shown in Fig. 1. The
approach shares many similarities with the “strained
parameter”, or Lindstedt-Poincaré, approach employed
in the study of the dampedMathieu equation [4].While
the Mathieu equation is a single ordinary differential
equation, the strained parameter approach developed
herein assesses stability of continuous systems gov-
erned by partial differential equations. In addition, the
motivating example studied consists of multiple con-
tinuous domains connected by a nonlinear joint.

The equations governing vibration response in the
linearly elastic bars are given by,

ρA
∂2uL
∂t2

− Ey A
∂2uL
∂X2 = fL (X, t), 0 < X < (α1 + α2)l

(1)

ρA
∂2uR
∂t2

− Ey A
∂2uR
∂X2 = fR(X, t), (α1 + α2) < X < l

(2)

where the left and right bars have displacement fields
denoted by uL (X, t) and uR (X, t), while fL (X, t)
and fR (X, t) denote forcing per unit length in the left
and right subdomains, respectively. For simplicity of
resulting expressions, the two bars considered share
the same Young’s modulus Ey , density per unit vol-
ume ρ, and cross-sectional area A. The three values for
αi , i = 1, 2, 3, form a partition of unity. Four boundary
conditions are required to completely specify the vibra-
tion response of two jointed bars. The two clamped
ends provide two boundary conditions, uL(0, t) = 0
and uR(l, t) = 0, while two others arise at the joint,

Ey A
∂uL
∂X

]
X=X J

= K (uR−uL) + ε� (uR−uL)3

+C

(
∂uR

∂t
− ∂uL

∂t

)]
X=X J

, (3)

Ey A
∂uR

∂X

]
X=X J

= K (uR−uL) + ε� (uR−uL)3

+C

(
∂uR

∂t
− ∂uL

∂t

)]
X=X J

, (4)

where X J = (α1 + α2)l. The joint considered has lin-
ear and cubic restoring stiffness characterized by coef-
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Fig. 1 Two linearly elastic bars joined by a nonlinear spring
and a linear dashpot. Each bar has one fixed end. Single-
frequency plane waves are injected at the location of the forcing.
Note that each wave coefficient includes itself plus its complex

conjugate—this is only shown for a+, but assumed for all other
coefficients. The global coordinate X denotes position starting
from the left end. Periodic solutions to this problem have been
found in [1]

ficients K and ε�, respectively, and linear damping
characterized by C . Note that ε denotes a small book-
keeping parameter later set to one [4].

We identify any periodic solution [1] with left and
right displacement fields denoted by u∗

L(X, t) and
u∗
R(X, t), respectively. Next, we assess the local stabil-

ity of these solutions by introducing small perturbations
δuL(X, t) and δuR(X, t) such that the total displace-
ment fields are now given by,

uL(X, t) =u∗
L(X, t) + δuL(X, t), 0 < X < X J ,

(5)

uR(X, t) =u∗
R(X, t) + δuR(X, t), X J < X < l.

(6)

Substituting the above into the governing field equa-
tions, Eqs. (1), and (2), the joint conditions, Eqs. (3),
and (4), and the zero displacement boundary condi-
tions, we retain only linear terms in δuL(X, t) and
δuR(X, t), yielding

ρA
∂2δuL
∂t2

− Ey A
∂2δuL
∂X2 = 0, 0 < X < X J , (7)

ρA
∂2uR

∂t2
− Ey A

∂2uR

∂X2 = 0, X J < X < l, (8)

Ey A
∂δuL
∂X

∣∣∣∣
X=X J

=
[
K + 3ε�u∗2

J (t)
]
(δuR(X J , t)

−δuL(X J , t)) + C (δu̇ R(X J , t) − δu̇L(X J , t)) , (9)

Ey A
∂δuR

∂X

∣∣∣∣
X=X J

=
[
K + 3ε�u∗2

J (t)
]
(δuR(X J , t)

−δuL(X J , t)) + C (δu̇ R(X J , t) − δu̇L(X J , t)) ,

(10)

δuL(0, t) = 0, (11)

δuR(0, t) = 0, (12)

whereu∗
J (t) ≡ u∗

R(X J , t)−u∗
L(X J , t)denotes the joint

displacement. Retaining only terms up to and includ-
ingO(ε) in the stability analysis (i.e., only retaining the
fundamental harmonic in u∗

J (t)), we rewrite the brack-
eted term on the right-hand side of Eqs. (9), and (10)
as,
[
K + 3ε�u∗2

J (t)
]

= K
′ + εP cos(2ωt), (13)

where we have used u∗
J (t) ≡ a∗ cos (ωt + φ∗), φ∗

denotes the joint displacement phase relative to the
forcing, K

′ ≡ K+ 3ε�a∗2
2 , and P ≡ 3�a∗2

2 .Wenote that
both the amplitude, a∗, and phase, φ∗, are known from
the solutions obtained in [1], and these fully distinguish
one solution from another.

Using Eq. (13) in Eqs. (7–12), we recover a para-
metrically excited problem as illustrated in Fig. 2(a).
While this problem arises from studying the stability
of a directly excited system, it may be of general inter-
est. For example, similar problems will arise when two
domains are connected by time-varying stiffness, such
as in parametrically drivenmicromechanical oscillators
[6]. For the forced problem, of interest herein, stability
of the solution is guaranteed when the parametrically
excited problem is stable.
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Fig. 2 a Damped,
parametrically excited
system arising from the
local stability analysis of the
corresponding forced
system; solution approach at
b zeroth-order, c first-order,
and d second-order

We next proceed to find wave-based solutions to the
linear problem illustrated in Fig. 2(a). To do so, we
employ a strained parameter approach. We first expand
δuL and δuR ,

δuL (X, t) = u(0)
L (X, t) + εu(1)

L (X, t)

+ ε2u(2)
L (X, t) + O

(
ε3

)
, (14)

δuR (X, t) = u(0)
R (X, t) + εu(1)

R (X, t)

+ ε2u(2)
R (X, t) + O

(
ε3

)
, (15)

and subsequently expand the static component of the
spring stiffness,

K
′ = K0 + εK1 + ε2K2 + O

(
ε3

)
, (16)

which amounts to “straining” the stiffness in the prob-
lem. We also place the damping at first order to avoid
decay in the ensuing zeroth-order problem: C → εĈ .
Substitution of the expanded and ordered quantities

into Eqs. (7–13) results in three ordered problems, as
illustrated in Fig. 2(b–d), governed by,

O
(
ε0

)
:

ρA
∂2u(0)

L

∂t2
− Ey A

∂2u(0)
L

∂X2 = 0, 0 < X < X J , (17)

ρA
∂2u(0)

R

∂t2
− Ey A

∂2u(0)
R

∂X2 = 0, X J < X < l, (18)

Ey A
∂u(0)

L

∂X

∣∣∣∣∣
X=X J

= K0

(
u(0)
R − u(0)

L

)∣∣∣
X=X J

, (19)

u(0)
L (0, t) = 0, (20)

Ey A
∂u(0)

R

∂X

∣∣∣∣∣
X=X J

= K0

(
u(0)
R − u(0)

L

)∣∣∣
X=X J

, (21)

u(0)
R (l, t) = 0, (22)

O
(
ε1

)
:
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ρA
∂2u(1)

L

∂t2
− Ey A

∂2u(1)
L

∂X2 = 0, 0 < X < X J , (23)

ρA
∂2u(1)

R

∂t2
− Ey A

∂2u(1)
R

∂X2 = 0, X J < X < l, (24)

Ey A
∂u(1)

L

∂X

∣∣∣∣∣
X=X J

= K0

(
u(1)
R − u(1)

L

)∣∣∣
X=X J

+F (1)(t),

(25)

u(1)
L (0, t) = 0, (26)

Ey A
∂u(1)

R

∂X

∣∣∣∣∣
X=X J

= K0

(
u(1)
R − u(1)

L

)∣∣∣
X=X J

+F (1)(t),

(27)

u(1)
R (l, t) = 0, (28)

O
(
ε2

)
:

ρA
∂2u(2)

L

∂t2
− Ey A

∂2u(2)
L

∂X2 = 0, 0 < X < X J , (29)

ρA
∂2u(2)

R

∂t2
− Ey A

∂2u(2)
R

∂X2 = 0, X J < X < l, (30)

Ey A
∂u(2)

L

∂X

∣∣∣∣∣
X=X J

= K0

(
u(2)
R − u(2)

L

)∣∣∣
X=X J

+F (2)(t),

(31)

u(2)
L (0, t) = 0, (32)

Ey A
∂u(2)

R

∂X

∣∣∣∣∣
X=X J

= K0

(
u(2)
R − u(2)

L

)∣∣∣
X=X J

+F (2)(t)

(33)

u(2)
R (l, t) = 0, (34)

where the forcing arising at the joints at O(ε1) and
O(ε2), respectively, is given by:

F (1)(t) = (K1 + P cos(2ωt))
(
u(0)
R (X J , t) − u(0)

L (X J , t)
)

+ Ĉ
(
u̇(0)
R (X J , t) − u̇(0)

L (X J , t)
)

, (35)

F (2)(t) = (K1 + P cos(2ωt))
(
u(1)
R (X J , t) − u(1)

L (X J , t)
)

+ K2

(
u(0)
R (X J , t) − u(0)

L (X J , t)
)

+ Ĉ
(
u̇(1)
R (X J , t) − u̇(1)

L (X J , t)
)

. (36)

Similar to the wave-based solution procedure for the
nonlinear forced problem [1], we seek exact wave solu-
tions for the three linear problems shown in Fig. 2(b–
d). Starting with the zeroth-order problem in Fig. 2(b),

we assign wave coefficients a+
0 , a

−
0 , . . ., d

−
0 and their

complex conjugates. Note that the subscript notation
here is different from that used in [1] where subscripts
were used to denote the harmonic index while they are
used here to denote the ordered wave components of
the perturbation analysis. These coefficients are related
by propagation relationships,

b+
0 = a+

0 e
ikβ1l , a−

0 = b−
0 e

ikβ1l , d+
0

= c+
0 e

ikβ2l , c−
0 = d−

0 e
ikβ2l , (37)

joint conditions,

c+
0 = i E y Ak

−2K0 + i Ey Ak
c−
0 + −2K0

−2K0 + i Ey Ak
b+
0 ,

b−
0 = i E y Ak

−2K0 + i Ey Ak
b+
0 + −2K0

−2K0 + i Ey Ak
c−
0 ,

(38)

and clamped boundary conditions,

a+
0 = −a−

0 , d+
0 = −d−

0 , (39)

where k denotes the wavenumber associated with the
system’s j th natural frequency,ω j . We point the reader
to more details on wave-based approaches in [1], par-
ticularly as concerns joint conditions for the wave coef-
ficients. Note that the zeroth-order stability problem is
an eigenvalue problem. Next, we assemble the coeffi-
cient relationships into the form,

A(0)
s

(
ω j ; K0

)
z(0)
s = 0, (40)

where z(0)
s denotes an eigenvector holding the eight

zeroth-order wave coefficients (see Fig. 2(b)) and
A(0)
s

(
ω j ; K0

)
denotes the zeroth-order stability coeffi-

cient matrix as a function of the j th natural frequency
ω j and parameterized by stiffness K0. Note that the

dependence of A(0)
s on frequency is nonlinear, and as a

result, there are an infinite number of natural frequen-
cies satisfying Eq. (40) consistent with the fact that the
jointed system is continuous. While it is not apparent
until the next order analysis, we also note that K0 will
be chosen based on requiring the eigenfrequency ω j to
be equal to the forcing frequency ω. The zeroth-order
problem is completed by finding the eigenvalues and
eigenvectors associated with Eq. (40) [7].

Following completion of the zeroth-order problem,
we turn our attention to the first-order problem.Wenote
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that the zeroth-order spring stretch required to evaluate
Eq. (35) is now known and given by,

u(0)
R (X J , t) − u(0)

L (X J , t) = a(0) cos
(
ω j (K0)t

)
+b(0) sin

(
ω j (K0)t

)
, (41)

where explicit dependence of ω j on K0 is noted. Since
the zeroth-order solution is an eigenfunction, we can
freely choose the harmonic amplitudes a(0) and b(0).
Substitution of Eq. (41) into Eq. (35) yields an updated
first-order forcing,

F (1)(t) = Pa(0)

2
cos

(
(2ω − ω j (K0))t

)

− Pb(0)

2
sin

(
(2ω − ω j (K0))t

)

+ Pa(0)

2
cos

(
(2ω + ω j (K0))t

)

+ Pb(0)

2
sin

(
(2ω + ω j (K0))t

)

+
(
K1a

(0) + Ĉω j (K0)b
(0)

)
cos(ω j (K0)t)

+
(
K1b

(0) − Ĉω j (K0)a
(0)

)
sin(ω j (K0)t).

(42)

We note secular, or resonant, terms on the right-hand
side of Eq. (42) having frequency dependence equal
to one of the zeroth-order system’s eigenfrequencies;
namely the underlined terms. Thesemust be eliminated
in order for the response to be bounded and to satisfy
the assumed ordering of the asymptotic expansions. In
addition, for particular choices of K0 such that 2ω −
ω j (K0) = ω j (K0), additional secular terms appear as
indicated by the doubly underlined terms. In particular,
the latter condition holds for a certain value of K0 close,
but not equal, to K from the forced problem. When
this occurs, the excitation frequency ω equals the j th

eigenfrequencyω j (K0), as remarkedduring the zeroth-
order problem.

Proceeding with the choice of K0 such that ω =
ω j (K0), we remove secular terms by requiring,[
K1 + P

2 Ĉω

−Ĉω K1 − P
2

] {
a(0)

b(0)

}
=

{
0
0

}
. (43)

Zeroing the determinant of the coefficient matrix in Eq.
(43) yields K1,

K1 = ±1

2

√
P2 − 4Ĉ2ω2. (44)

We note that the two values of K1 in Eqs. (44) begin
to form two sides of a stability tongue in the P versus
K

′
plane, as seen later. With known values for K1, it is

also possible to find the eigenvectors, but these are not
needed from this point forward.

With secular terms removed, we must still find
the forced response associated with the non-secular
terms in Eq. (42). As is the usual practice in pertur-
bation approaches [4], we neglect the homogeneous
(or unforced) solution in all orders above the zeroth-
order without loss of generality. With the choice of
K0 established, the non-secular forcing occurs at fre-
quency 3ω j (K0). We find the forced response of the
O(ε1) problem using another exact wave approach,
as depicted by the wave coefficients in Fig. 2(c) and
their complex conjugates. These first-order wave coef-
ficients are related by propagation relationships,

b+
1 = a+

1 e
i3kβ1l , a−

1 = b−
1 e

i3kβ1l ,

d+
1 = c+

1 e
i3kβ2l , c−

1 = d−
1 e

i3kβ2l , (45)

joint conditions,

c+
1 = i3Ey Ak

−2K0 + i3Ey Ak
c−
1 + −2K0

−2K0 + i3Ey Ak
b+
3

+
P
4 a

(0)

−2K0 + i3Ey Ak
+

i P
4 b(0)

−2K0 + i3Ey Ak
,

b−
1 = i3Ey Ak

−2K0 + i3Ey Ak
b+
1 + −2K0

−2K0 + i3Ey Ak
c−
1

−
P
4 a

(0)

−2K0 + i3Ey Ak
−

i P
4 b(0)

−2K0 + i3Ey Ak
, (46)

and clamped boundary conditions,

a+
1 = −a−

1 , d+
1 = −d−

1 , (47)

where the joint conditions have been developed similar
to the discussion in [1] with the exclusion of damping

and the inclusion of imposed forces Pa(0)

4 e−3ω j (K0)t +
i Pb(0)

4 e−3ω j (K0)t + c.c.. Similar to the zeroth-order
problem, we assemble the coefficient relationships into
matrix form,

A(1)
s

(
3ω j (K0)

)
z(1)
s = f (1)s , (48)

where z(1)
s holds the eight first-order wave coefficients,

A(1)
s

(
3ω j (K0)

)
denotes the first-order stability coeffi-

cient matrix, and f (1)s holds forcing terms proportional
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to P
4 a

(0) and i P
4 b(0). Unlike the eigenvalue problem at

zeroth-order, Eq. (48) admits a single solution for the
coefficients via inversion ofA(1)

s
(
3ω j (K0)

)
, when this

inverse exists. For cases where this is not possible (see
discussion of one such case in Sect. 4), it is implied that
the strained system is resonant at 3ω j (K0) in addition
to having ω j (K0) as a resonance. We will, however,
not dwell on this aspect presently and proceed with
the general formulation of the method assuming that
A(1)
s

(
3ω j (K0)

)
is non-singular.

Following the solution of Eq. (48), the spring dis-
placement required in the second-order problem can be
written as,

u(1)
R (X J , t) − u(1)

L (X J , t) = a(1) cos
(
3ω j (K0)t

)
+b(1) sin

(
3ω j (K0)t

)
,

(49)

where we note that a(1) depends only on a(0) (and not
b(0)), and b(1) depends only on b(0) (and not a(0)). In

fact, a
(1)

a(0) = b(1)

b(0) . This results from the similarity in how

a(0) and b(0) appear in the first-order joint relationships.
With the first-order problem complete, we turn final

attention to the second-order problem. Substitution of
ω = ω j (K0) and Eqs. (41), (49) into Eq. (36) yields an
updated second-order forcing, ofwhichonly the secular
portion is of interest,

F (2)
sec(t) =

(
Pa(1)

2
+ K2a

(0)

)
cos(ω j (K0)t)

+
(
Pb(1)

2
+ K2b

(0)

)
sin(ω j (K0)t). (50)

Elimination of the two secular terms yields,

K2 = − P

2

a(1)

a(0)
= − P

2

b(1)

b(0)
= − P

2
r (1)/(0), (51)

where we introduce r (1)/(0) to represent the ratio of
first- to zeroth-order spring displacement components.

Lastly, we reconstitute the strained stiffness,

K
′ =K0 ± ε

1

2

√
P2 − 4Ĉ2ω2 − ε2

P

2
r (1)/(0)+O

(
ε3

)
,

(52)

recalling that K0 is found by enforcing that the exci-
tation frequency ω equals the j th natural frequency of
the zeroth-order stability problem, ω = ω j (K0). It is
apparent from Eq. (52) that non-zero damping lifts the
stability curves off of the K ′ axis, and thus has a stabi-
lizing effect. To return fully to assessing stability of the

forced problem, we recall that K
′ ≡ K + 3ε�a∗2

2 and

P ≡ 3�a∗2
2 , where a∗ and φ∗ denote the joint displace-

ment’s amplitude and phase for the periodic solution
under consideration. We also note that Ĉ and � always
appear with ε, and thus, no generality is lost in setting
ε to one. Inverting Eq. (52) yields two curves defining
the stability tongue [8] separating stable and unstable
solutions in the P versus K

′
plane (depicted in Fig. 7

for the single-jointed case).
We note that the strained parameter approach may

also be developed for the two-jointed system studied in
[1], where it is only necessary to strain one of the two
joint stiffnesses, regardless of the fact that these two
joints have the same stiffness—i.e., if they differed, it
would still be only necessary to strain one or the other,
and not both. This is due to the fact that the stabil-
ity problem has codimension-1, i.e., only one resonant
condition must be met, and thus, only one parameter
must be strained [9].

3 Stability via the perturbed eigenproblem residue
approach

The second stability approach is based on a PWE for-
mulation of the perturbed system of the original prob-
lem.We consider a generic single jointed-bar vibration
problem of the form

ρA
∂2uL
∂t2

− Ey A
∂2uL
∂X2 = fL(X, t), 0 < X < X J

(53)

ρA
∂2uR

∂t2
− Ey A

∂2uR

∂X2 = fR(X, t), X J < X < l

(54)

Ey A
∂uL
∂X

]
X=X J

= fnl(�u,�u̇, . . . ) (55)

Ey A
∂uR

∂X

]
X=X J

= fnl(�u,�u̇, . . . ), (56)

uL(0, t) = 0, (57)

uR(l, t) = 0, (58)

and formulate the approach using this case as an exam-
ple.Application to caseswithmultiple joints is straight-
forward since the method does not make assumptions
on the number or types of nonlinearities present. In the
above, fL(X, t) and fR(X, t) denote general forcing
functions (independent of the solution uL ,R). We note
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that this approach does not demand the presence of a
small parameter, i.e., this approach is applicable for
arbitrarily strong nonlinearities and not just weak non-
linearities (as was the case for the strained parameter
approach presented in Sect. 2). Following the notation
in Sect. 2, we use starred superscripts to denote the
periodic solutions u∗

L ,R of the original forced vibration
problem and δuL ,R to denote infinitesimal perturba-
tions of the

left solution ← u∗
L (X, t) + δuL (X, t), 0 < X < X J ,

(59)

right solution ← u∗
R(X, t) + δuR(X, t), X J < X < l.

(60)

Substituting these expressions into Eqs. (53–58) and
dropping the higher-order terms yields a homogeneous
set of governing equations for δuL ,R . These can be
expressed as

ρA
∂2δuL
∂t2

− Ey A
∂2δuL
∂X2 = 0, 0 < X < X J (61)

ρA
∂2δuR

∂t2
− Ey A

∂2δuR

∂X2 = 0, X J < X < l (62)

Ey A
∂δuL
∂X

]
X=X J

= ∂ fnl
∂u

]
�u∗,...

�δu

+ ∂ fnl
∂ u̇

]
�u∗,...

�δ̇u (63)

Ey A
∂δuR

∂X

]
X=X J

= ∂ fnl
∂u

]
�u∗,...

�δu

+ ∂ fnl
∂ u̇

]
�u∗,...

�δ̇u. (64)

δuL(0, t) = 0, (65)

δuR(l, t) = 0. (66)

Since u∗
L ,R(X, t) (and therefore �u∗,�u̇∗, . . . ) is

fixed from the solution of Eqs. (53–58), the above is
a linear homogeneous PDE with time-varying linear
stiffness and damping acting at the joint, and the solu-
tion can be obtained using a wave-based approach. An
important aspect in the homogeneous case, however,
is that the frequency of the response is complex and
unknown, unlike the inhomogeneous case where the
frequency is real and fixed by the excitation. Resort-
ing to a multi-harmonic wave-based representation of
the solution, the solution δuL can be represented, for

instance, around the joint as

δuL(X, t) =
∑
j

(
d+
j e

jkX e− jλt + d−
j e

− jkX e− jλt
)

+ c.c. α1l < X < (α1 + α2)l, (67)

where k in the above comes from the dispersion rela-
tionship λ = √

E/ρk. Here, λ denotes the unknown
complex frequency that the perturbed system responds
at. Assembling this system and using the FFT to obtain
the wave-component stiffness coefficient contributions
for the periodic stiffness terms in Eqs. (63) and (64)
above (which are 2π/ω-periodic), we obtain a linear
set of equations of the form

A(λ;P, u∗, ω)z = 0 (68)

where z ∈ C
NwNh is a complex vector consisting of the

Nh complex harmonics of the Nw wave components;
A ∈ C

Nr Nh×Nr Nh is a complex matrix that is a func-
tion of λ alone (but parameterized by the periodic solu-
tion u∗, ω). Note that no AFT (Alternating Frequency
-Time) procedure needs to be carried out in terms of
the complex frequency λ here; we use the appropriate
entries of the frequency-domain Jacobian of the PWE
residue function (see [1]) to get the periodic stiffness
components once. As expected from Floquet theory,
this is a Nonlinear EigenProblem (NEP) in λ. How-
ever, since A contains exponentials of λ, it is not, in
general, possible to spectrally decompose this problem
quite easily and, furthermore, there exist an infinite set
of eigenpairs. We unsuccessfully attempted the use of
the Padé approximant and interpolatory Krylov tech-
niques1 for partial spectral decomposition of this NEP,
but still feel that such approaches must be explored in
detail in the future to enable quantitative stability anal-
ysis.

Qualitative analysis of stability can, however, be
carried out merely by seeking out the points along a
given forced response curve where transitions of sta-
bility occur in amanner that completely avoids the chal-
lenges associated with spectral decomposition. Floquet
theory asserts [4] that stability transitions occur when
the perturbed system has as eigenvalue imξ , a purely
imaginary quantity with integerm > 0, with three pos-
sibilities for ξ :

ξ = 0; Perturbation remains unchanging in time;

1 As implemented in http://guettel.com/rktoolbox/examples/
html/example_nlep.html.
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ξ = ω; Perturbation varies periodically with the
same fundamental period as the solution;
and

ξ = ω/2; Perturbation varies periodically with twice
the fundamental period as the solution.

Choosing ξ = 0 gives rise to the trivial solution and
need not be considered in the context of continuum
dynamics with homogeneous essential boundary con-
ditions. In amulti-harmonic approach such as thewave-
based strategies considered presently, m can be set to
1 without loss of generality since the higher harmonics
will be intrinsically included for each ξ . In our con-
text, therefore, the cases corresponding to ξ = ω and
ξ = ω/2 will have to be considered.

If ξ is an eigenvalue of the system in Eq. (68), the
determinant of A

]
λ=iξ will be exactly zero. Checking

for points along any given forced response curve where
this happens allows one to obtain the stability transi-
tion or critical points directly. Since A is complex, the
determinant is, in general (for the caseswhen ξ is not an
eigenvalue), also complex,making the task of detecting
the zero point on a forced response curve challenging.
We first therefore create a fully real counterpart of the
Jacobianmatrix (this process was previously alluded to
in [1]). Denoting by 	{z} and 
{z} the real and imagi-
nary parts of the vector of wave component harmonics
z, Eq. (68) can be rewritten as

Az = A	{z} + iA
{z}
= [

A iA
] [	{z}


{z}
]

. (69)

Symbols denoting the functional and parametric depen-
dences of A are dropped in the above for brevity.
Decomposing the complex quantityAz into its real and
imaginary parts denoted by 	{Az} and 
{Az}, respec-
tively, yields the following fully real form of Eq. (68):[	{Az}


{Az}
]

=
[	{A} 	{iA}

{A} 
{iA}

] [	{z}

{z}

]
=

[
0
0

]
. (70)

The Jacobian matrix of this system,

Â =
[	{A} 	{iA}

{A} 
{iA}

]
, (71)

is fully real and its determinant will be real always.
Along a forced response curve, a zero-crossing of

the determinant of A]λ=iξ will be the same as a sign

change in the determinant of Â
]
λ=iξ

. The quantity

det (Â)
]
λ=iξ

will be referred to as the Perturbation

Eigenproblem Residue (PER) henceforth. The sign-
change property will be clear if elaborated upon in the
following manner: suppose the true eigenvalues of Eq.
(70) are denoted by γ j with j being the index of the
eigenvalue, we can write the PER as a characteristic
polynomial in the following manner:

PER = pÂ(λ)
= α

∞∏
j=1

(λ − γ j )

= α

∞∏
j=1

|λ − γ j |ei
∑∞

j=1 λ − γ j (72)

Here |(.)| and (.) denote the absolute value and angle
of their complex arguments respectively, and α is some
real constant. A sufficient condition for the existence
and validity of such a polynomial representation is the
analyticity of the PER for all points λ on the complex
domain. The existence of a Taylor series representation
is guaranteed in this case, justifying the use of the poly-
nomial form above. This is clearly the case here since
λ only appears as smooth functions in the matrix A(λ)

(and therefore in its determinant). This analyticity con-
dition could be violated in some problems with non-
smooth nonlinearities (e.g., Filippov dynamical sys-
tems, see, for instance [10]). In these cases, classical
Floquet theory is not strictly applicable and further con-
siderations become necessary. We will presently not
concern ourselves with such issues and proceed with
the discussion making note of the fact that this frame-
work is invalid for such cases. We also note here that
there are no bounded values of λ for which the PER
becomes unbounded; i.e., the characteristic polynomial
does not have any poles on the complex plane. It, how-
ever, has an infinite number of zeros (despite the finite
size of Â), referred interchangeably here as eigenvalues
of the NEP, consistent with that expected in continuum
dynamics.

Since the PER is always real, the effective phase∑∞
j=1 λ − γ j is either 0◦ or 180◦. Consider two points

right before and after a transition in stability such as
shown in Fig. 3. Just before the critical point (point A
in Fig. 3), the zero γ

(A)
m closest to iξ will lie just to its

left (since the solution is known to be stable) such that
the quantity iξ − γ

(A)
m equals 0◦. Equivalently, the

vector in the complex plane joining γ
(A)
m to iξ points to

the right since this solution is known to be stable. The
total angle of the PER at this point can be expressed as
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Fig. 3 A schematic forced response (stable: blue, solid lines;
unstable: red, dashed lines) with insets showing the complex
plane including the point iξ , the corresponding closest zero
γ

(A,B)
m , and the complex vector (iξ − γ

(A,B)
m ) denoted using

a line segment and terminal arrow. A and B are two points on
the response curve across the stability transition

the sum,

PERA =
∞∑
j=1
j 
=m

iξ − γ
(A)
j + iξ − γ

(A)
m

=
∞∑
j=1
j 
=m

iξ − γ
(A)
j , (73)

where the zero term is canceled in the final expression,
which itself has to be either 180◦ or 0◦ since the PER
is a real quantity.

Looking at a point just after the transition (point B
in Fig. 3), the zero γ

(B)
m has crossed through iξ and

will now lie just to its right. Consequently, the quantity
iξ − γ

(B)
m now takes a value of 180◦, and we can

express the total angle of the PER at this point as the
sum,

PERB =
∞∑
j=1
j 
=m

iξ − γ
(B)
j + iξ − γ

(B)
m

=
∞∑
j=1
j 
=m

iξ − γ
(B)
j + 180◦. (74)

Around these transition points, due to the arbitrarily
small change in the excitation frequency ω and ensu-

ing response amplitude, the zeros away from iξ are
assumed to undergo only negligible changes and there-
fore γ

(A)
j � γ

(B)
j is assumed for j 
= m. The first term

in Eq. (74) is approximated as PERA (see Eq. (73)
above) and can be simplified as

PERB = PERA + 180◦. (75)

This shows that the difference in complex angle
between the PERvalues across a critical point is exactly
180◦. Since the PER is always a real number, this
amounts to a sign change as mentioned earlier. Sim-
ilar reasoning can be employed to observe that a sign
change will also happen at the other critical point in
Fig. 3 where the solutions transition from unstable to
stable.

One drawback of the method presented is the fact
that it can only predict stability changes and it is not
possible, in general, to determine the stability of a solu-
tion from just the sign or the value of the PER. Exact
stability determination would instead require knowl-
edge of the location in the left or right half-plane for all
infinite number of γ j , of which little can be said at this
point. An exploration of the necessary conditions for
the PER sign change (stability transition is just a suffi-
cient condition) is deferred for future research. But the
efficacy of the approach is empirically demonstrated
by the fact that it provides satisfactory estimates of the
stable and unstable branches on the response curve for
both the numerical examples considered in [1].

4 Stability results for an example system

In this section we present stability results for the
single-jointed example problem illustrated in Fig. 1
and parameterized by quantities appearing in Table 1.
Periodic solutions to this problem are presented in [1],
which also contains stability results for a second exam-
ple problem consisting of three bars connected by two
nonlinear joints.

The stability boundary predicted by the strained
parameter approach for a fixed excitation frequency
ω is a parabolic curve (known as a stability or Arnold
tongue), in the P − K ′ space, where P denotes the
periodic stiffness and K ′ the constant stiffness of the
parametrically forced system (recall ε set to 1)—such a
curve will be presented later. If, in addition, we vary the
frequency, a stability surface results separating regions
of stable and unstable parametrically forced systems.
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Table 1 Mechanical and geometric parameters used for the
single-jointed bar example (see Fig. 1 for accompanying
schematic)

Parameter Value

Ey 262 GPa

ρ 1280 kg/m3

K 109 N/m

C 320 N/(ms−1)

� 108 N/m3

A 1.7145× 10−3 m2

l 1.0 m

α1 0.28

α1 + α2 1/3

α3 2/3

We present this surface in the subplots of Fig. 4 near the
second natural frequency of the single-jointed system
shown in Fig. 1, and label it as the StabilityBoundary—
note that this boundary is the same surface in all six
sub-figures. We provide a narrated video in the sup-
plementary material which includes revolving views
of the figures and further explanations. The stability
analysis is carried-out up to, and including, first-order
terms. When we return to the directly forced system,
specifying values for the joint linear and nonlinear stiff-
ness, K and �, respectively, together with the excita-
tion frequencyω and response amplitude a∗ for a given
periodic solution, yields a point in the K ′ − P − ω

space; see Eq. (13). If this point falls inside of the sta-
bility boundary, the solution is unstable, whereas as if
it falls outside, the solution is stable. If in addition we
sweep frequency, response curves result which lie in
the same space - these appear in Fig. 4 as curves whose
stable portions are indicated by solid black lines, and
whose unstable portions by dashed green lines. A first-
order WBVA approach is used to obtain the solutions
(see [1] for details) and a first-order strained parameter
approach is used to obtain the stability boundaries. We
present solution curves at forcing levels of 7.5 MN,
15 MN, and 30 MN, and we provide two views for
each forcing level to aid visualization. It is important
to note that while K is fixed along these curves, K

′
is

not, and thus the curves bend towards increasing K
′

as resonance is approached and the response ampli-
tude a∗ increases. If we also vary the linear stiffness
K in the directly forced problem, we can generate a

solution surface, shaded blue in Fig. 4 and labeled as
the Solution Manifold. The solution curves and mani-
fold occupy more space inside of the stability bound-
ary as the forcing increases, as depicted in the pro-
gression of sub-figures. For example, at 7.5 MN forc-
ing, the solution manifold never intersects the stability
boundary, indicating all solutions are stable. In fact,
the solutions for 7.5 MN forcing closely resemble the
linear solutions such that no appreciable bending of
the frequency response curve occurs, and thus multi-
ple solutions near resonance have yet to appear. At 15
MN and 30 MN forcing, appreciable bending occurs
together with multiple solutions and the solution man-
ifolds intersect with the stability boundaries. For these
forcing levels, the portions of the response curves asso-
ciated with mid-amplitude response are now unstable.
Lastly, we note that the intersection of the surface man-
ifold with the stability boundary marks the Transition
Boundary, as indicated by the solid magenta curves in
the sub-figures.

We study the convergence of the stability tongues as
the analysis order increases in Fig. 5. The sub-figure on
the left presents the frequency response curve for the
single-jointed system studied, evaluated with a forc-
ing of 45 MN. At such a large forcing level, the ratio
of nonlinear to linear restoring force at resonance is
0.25, well-above that which can be expected for solu-
tion accuracy. However, this forcing level yields three
solutions whose stability can be used to test the accu-
racy of first-order versus second-order stability anal-
yses. The three solutions are indicated in the left sub-
figure at 81.6k rad/s using threemarkers. Subsequently,
values for P and K

′
for each are computed and indi-

cated with the same markers in the right sub-figure,
togetherwith the stability tongue corresponding to 81.6
k rad/s. We note from the right sub-figure that the sta-
bility tongues match closely at low values of P , and
thus, only first-order stability is necessary to assess
the stability of solutions at low forcing, justifying the
use of first-order analysis in Fig. 4. At higher forc-
ing amplitudes, the mid- and high-amplitude solutions
correspond to larger values of P . If first-order stabil-
ity analysis is employed, the stability determination
can be inaccurate, and thus second-order stability must
be employed. This is clearly documented in Fig. 5(b)
where the high-amplitude solution appears inside of
the first-order stability tongue, erroneously suggesting
unstable response. However, using second-order sta-
bility analysis, this solution subsequently lies outside
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Fig. 4 Stability boundaries from the strained parameter
approach and the solution manifolds (first-order perturbation for
both) of the single-jointed system corresponding to excitation

amplitudes of a 7.5 MN; b 15 MN; and c 30 MN. Two views of
the surface are presented in each sub-figure for clarity

of the stability tongue as the tongue appears rotated
away from the first-order tongue. In our investigations
of solution response and stability using theWBVA and
the strained parameter approach, focusing specifically
on the resonance peak where issues in stability pre-

diction might arise, we have found first-order analysis
is always accurate for responses in which the ratio of
nonlinear to linear restoring force is less than 0.1.

Next we investigate the PER stability approach in
the context of the single-jointed system. For all fre-
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Fig. 5 Stability assessment of periodic solutions in the single-
jointed systemaround the second resonance, undergoing a45MN
amplitude periodic excitation: a first harmonic periodic response
with three solutions indicated at 81.6 k rad/s, and b accompany-
ing stability boundaries at 81.6 k rad/s using first- and second-

order stability analysis. Also shown in (b) are the P and K ′ pairs
for the three periodic solutionswhere, in both sub-figures, a circle
denotes the low-amplitude solution, squares the mid-amplitude
solution, and hexagrams the high-amplitude solution

quency responses considered, we set ξ equal to the
excitation frequency ω in detecting critical points for
which the sign of the PER changes. No critical points
were found by setting ξ to ω/2, implying that stabil-
ity loss occurs only through the ξ = ω case for the

present system, consistent with the strained parameter
approach. Figure 6 plots the frequency response and
the perturbation eigenproblem residue corresponding
to the PWE solution of the single-jointed system har-
monically forced at an amplitude of 30 MN using both

Fig. 6 Frequency response (first harmonic amplitude) of the
PWE solution of the single-jointed system undergoing harmonic
excitation near the second resonance with amplitude 30 MN,
along with the perturbation eigenproblem residue using a a lin-

ear scale and b a log scale. Stability transition points are denoted
by red points, while the stable and unstable solutions are plotted
in blue and red, respectively
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Fig. 7 First- and second-order stability boundaries from the strained parameter approach for the single-jointed system

Fig. 8 Comparison of the forced response stability predictions
for the single-jointed system a using the FE-HB approach with
frequency domain Hill’s coefficients [5] for stability determi-
nation, and b using the PWE frequency response and the PER

stability approach developed in Sect. 3. In all figures, the stable
and unstable branches are plotted using solid and dashed lines,
respectively

a linear and log scale. Specifically, we plot the PER,

det (Â)
]
λ=iξ

, evaluated using λ = iω. The left sub-

figure shows the PER clearly changing signs at the two
bifurcation points in the frequency response curve, cor-
rectly indicating stability transitions in agreement with
the strained parameter approach. In the right sub-figure,
the log value of the PER drops sharply at the bifurca-
tion points, but interestingly, shows a drop and local
minimum at approximately 79.8 k rad/s.

The PER approach does not provide insight into the
mechanism for the log value exhibiting a local mini-
mum at approximately 79.8 k rad/s. Revisiting the sta-
bility boundaries predicted by the strained parameter
approach, however, provides the requisite insight. Fig-
ure7 presents the stability boundaries when we carry-
out the strained parameter approach to the first- and
second-orders. At the second order, which also neces-
sitates the inclusion of third harmonic terms, K2 (and
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thus K ′) goes unbounded at the same point in frequency
where the PER exhibits a local minimum. Examining
the coefficient matrix A(3ω; K0) evaluated near the
local minimum frequency, we find that it has a zero
eigenvalue at 79.7636 k rad/s. Since the determinant
of a matrix equals the product of its eigenvalues, it is
apparent that 3ω at this frequency satisfies an internal
resonance condition. Further investigation of the inter-
nal resonance mechanism lies beyond the scope of this
paper, but may offer an interesting direction for follow-
on efforts.

Lastly, Fig. 8 presents the finite element validation
and PWE forced response solutions for the single-
jointed system, where we assess stability of the PWE
solutions using the PER approach. We note strong
agreement between the two approaches in both the pre-
dicted response and accompanying stability. Notably,
at a forcing level of 45 MN, the ratio of nonlinear to
linear restoring force at resonance is over 0.7, which
is well-beyond the validity region for the WBVA and
the strained parameter stability approach. However, the
PWE combined with the PER stability approach accu-
rately captures both the frequency response and the
multiple solution stability at all amplitudes considered.
This can be further contrasted with the poor perfor-
mance of the finite-element substitution approach dis-
cussed earlier and documented in Fig. 9(a).

5 Concluding remarks

As pointed out by previous researchers, a direct anal-
ysis of stability has been lacking in the literature for
nonlinear wave-based solution approaches.We address
this deficiency by developing two direct approaches,
and then apply the methods to determine solution sta-
bility of an harmonically forced, example two-bar sys-
tem connected by a nonlinear joint. The first stability
approach expands (or strains) a stiffness parameter in
the problem, which allows one to construct analytical
stability boundaries in the parameter space of the per-
turbed problem using a wave-based method. Not only
does this determine stability of periodic solutions aris-
ing from direct excitation of a continuous system, but
it also directly governs the response and stability of
parametrically forced continuous systems, which is a
new development in and of itself. The second stabil-
ity approach is primarily a computational tool which
searches for sign changes in the residue of the per-

turbed eigenproblem. The strained parameter approach
holds for only moderate nonlinear response due to its
reliance on an asymptotic expansion; the PER avoids
this limitation and in fact is used to determine stability
of periodic solutions at large nonlinear response.

We now list some avenues for future research that
were identified during the course of this study. One
issue with the PER approach, as presented herein, is
that it can only determine locations of stability change,
and does not assess stability directly. Therefore, a PER
approach that can assess the latter warrants inves-
tigation. Further, the PER method described in this
paper only involves a sufficient condition for the sign
change. An investigation of the necessary conditions
could potentially yield greater insights. Both stability
approaches (strained parameter as well as PER) rely
on Floquet theory, whose applicability for non-smooth
problems is not very clear at this point. This will have
to be studied in detail (see [10], for instance) to under-
stand the theoretical limitations of the methods more
clearly. The internal resonance observed in the single-
jointed problem (see Fig. 6 and related discussions)
should also be given additional attention.
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Appendix A

In this appendix, the PWEapproach [1] is used to obtain
the frequency responses of the single jointed system
(Fig. 1) around its first resonance.We then project these
solutions onto a 90-element finite element mesh, for
use as initial conditions, and estimate its monodromy
matrix using transient simulations over a single period.
The predicted stability using this hybrid approach is
indicated in Fig. 9(a). Comparing these stability pre-
dictions with pure finite element stability predictions
(Fig. 9(b), which use frequency domain Hill’s coef-
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Fig. 9 Comparison of the forced response stability predictions
for the single-jointed system a using the PWE-computed fre-
quency responses with stability assessed using transient Flo-
quet multipliers estimated from the FE model, and b the FE-

HB-computed frequency responses using the frequency domain
Hill’s coefficient approach [5] (reproduced from Fig. 8). In all
figures, the stable and unstable branches are plotted using solid
and dashed lines, respectively

ficients [5]), shows that although the response curves
are nearly the same, the stability predictions contradict,
specifically around the peaks at large forcing levels.
This shows that the hybrid approach can lead to incor-
rect conclusions about solution stability, and motivates
the need for direct wave-based stability approaches.
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