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Abstract The ambient temperature and the time

delay of signal transmission are very important

influences on the synchronization behavior of neu-

ronal networks. In this paper, a neuronal network with

the power-law degree distribution is constructed using

a Hodgkin–Huxley model containing a temperature

modulation factor and noise, and neurons at each node

of the scale-free network are interconnected by

electrical and chemical synapses, respectively. In

scale-free networks with different ambient tempera-

tures, the absence of time delay causes the synchro-

nization of networks connected by both synaptic types

to increase with coupling strength at lower tempera-

tures, while the opposite is shown for networks

connected by chemical synapses at higher tempera-

tures. Networks connected by both synaptic types

show multiple synchronization transitions when there

is the time delay. Surprisingly, there is a temperature

threshold for scale-free networks connected by chem-

ical synapses, beyond which synchronization becomes

very poor. By introducing the coefficient of variation

and the mean inter-spikes intervals, it is found that the

emergence of temperature thresholds for networks

connected by chemical synapses is caused by a further

increase in the difference in firing frequency of

neurons due to increasing temperature. Finally, the

generality of the results and mechanisms studied in

scale-free networks is verified by investigating the

effects of different network scales on synchronization.
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1 Introduction

The nervous system is a typical nonlinear system, in

which neuron is an extremely important specialized

cell, and the research in neuroscience had been

focused on the various dynamic properties of neuron.

In 1952, Hodgkin and Huxley [1] established the

famous Hodgkin–Huxley (HH) model based on

experimental data of neuronal great axons in the

squid, using the current balance formula and consid-

ering ion channel effects. Subsequently, the HHmodel

has been widely studied in computational neuro-

science because of its very good biological signifi-

cance [2–4], and many derivative models [5–10] have

been applied in different studies. The HH model has

been widely used in various studies because it contains

a temperature factor that allows it to accurately

quantify much of the firing activity of neurons in

different ambient temperatures. For example, Yu et al.

[11] used the HHmodel to study neuronal responses to

filtered signals. Ding et al. [12] investigated the effects
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of temperature and ion channel blockage on myeli-

nated axons composed of an improved HH model.

Neurons can communicate with each other due to

the presence of an important site called a synapse,

where information can be transmitted from one neuron

to another [13–15]. The synapses can be roughly

divided into electrical and chemical synapses due to

the different ways of transmitting information. Elec-

trical synapses allow continuous communication

between neurons through gaps in the membrane,

while chemical synapses transmit information to other

neurons by releasing neurotransmitters [16]. These

two types of synapses cause different electrical

activity of neurons in the network, so it is extremely

important to study networks with different synaptic

connections. The effects and mechanisms of both

types of synapses have been extensively studied

[17, 18]. Andreev et al. [19] investigated the emer-

gence of chimeric states in bistable HH in scale-free,

small-world and random networks containing chem-

ical synapses.

In computational neuroscience, a neuron is studied

from the perspective of a multi-compartment model

[20–22], which simulates a ‘‘real’’ neuron, and a

single-compartment model [23–26], which abstracts

the characteristics of the membrane potential. In

networks composed of neurons, the transmission of

action potentials in the network is usually studied, and

to reduce the complexity of the network, the single-

compartment model is mostly used [27–29]. To study

the dynamics of neuronal populations in networks,

many types of networks have been built, such as scale-

free [30], small-world [31], and random networks

[32]. Scale-free networks have been extensively

studied because of their realistic features of growa-

bility and preferential connectivity [33–35]. Wang

et al. [36] studied the effect of message transmission

delay on synchronization in a scale-free network using

Rulkovmap. Hao et al. [37] investigated the difference

between chemical and electrical synaptic effects on

synchronization in a scale-free network.

Important phenomena such as synchronization

occur when neurons in a neuronal network transmit

information to each other [38–41] and they all have a

very important role [42–46]. Synchronization phe-

nomena have been discovered and carefully studied in

living organisms [47, 48]. In neuroscience, it has been

found in many studies that synchronization can occur

both in good organismal behavior, such as processes of

memory [49] and consciousness formation [50],

cortical areas of visual motion [51], and problems of

cognitive level [52], as well as in some organismal

diseases, such as epilepsy [53] and parkinsonism [54].

Therefore, it is of great importance to study the

synchronization behavior in complex networks, and

much valuable work has been done in scale-free

networks [55–57].

The HH model incorporates a temperature factor to

accommodate experimental data at different temper-

atures [1, 58]. Temperature has been shown to be

critical in many biological experiments as well as in

computational simulations [59–61]. Temperature

affects the activity of ion channels of neurons and

the efficiency of energy transfers, and therefore can

have a dramatic impact on the information propaga-

tion and collective dynamics of neural networks [62].

Signal transmission in the nervous system can be

affected by some important intrinsic factors, such as

noise [63–66] with time delay of signal transmission.

In this paper, a Gaussian white noise with ideal

statistical properties is used. Many biological exper-

iments [67–69] have shown that action potentials

propagate along axons at a speed of 20 to 60 m/s [70],

so the time delay of signal transmission in the nervous

system is widely present. Guo et al. [71] investigated

the intrinsic coding mechanism of signals in neurons

by adding Gaussian white noise to auditory neurons.

Wang et al. [72] examined the effect of external

electric fields on the synchronization of neuronal

network systems in the presence of Gaussian white

noise.

This paper focuses on the effect of ambient

temperature and signal transmission delay on scale-

free neural networks. Previous studies have shown the

existence of an optimal temperature for signal trans-

mission in the network [12], and we investigate the

existence of a threshold for the effect of temperature

on the network synchronization network and the

possible mechanisms for its existence. The network

undergoes multiple synchronization transitions under

the influence of time delays [36], and we discuss the

appearance of multiple synchronization transitions

under the influence of temperature and the effect of

time delays on it. The degree of nodes varies widely in

scale-free networks [30], and we explore the robust-

ness of multiple synchronization transitions under the

influence of temperature at different network scales,

showing the generality of the findings.
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In this paper, a scale-free network composed of HH

neuron models containing temperature modulators is

employed. Neurons in the network are interconnected

by electrical and chemical synapses, respectively, and

their changes in membrane potential are interfered by

white noise. A statistic called the synchronization

factor is introduced to quantify the visually observed

synchronization phenomenon and to explore the effect

of ambient temperature and time delay on the

synchronization of the network. To reveal the under-

lying mechanism in the phenomenon, the coefficient

of variation (CV) and the mean inter-spikes intervals

(ISIs) are used in the study.

2 Mathematical model and methods

For studying the dynamics of neurons in a network, the

Hodgkin–Huxley (HH) model is used as the node of

the network, which can describe the change of

neuronal transmembrane potential with time. A

Gaussian white noise is added to the spatio-temporal

evolution of the neurons in the network to play a

certain interference role. The mathematical model is

described as follows:

cm
dVi

dt
¼ �IiNa � IiK � IiL þ Iiext þ Iisyn þ niðtÞ;

IiNa ¼ gNam
3
i hiðVi � VNaÞ;

IiK ¼ gkn
4
i ðVi � VkÞ;

IiL ¼ gLðVi � VLÞ;

8
>>><

>>>:

ð1Þ

where cm describes the membrane capacitance per unit

area of the neuron, which is fixed to 1lF=cm2 in this

study. Vi denotes the transmembrane potential of the i-

th neuron in the network. The sequences of neurons of

the network are all denoted in the equation by the

subscript i (i = 1,…,N; N is the total number of nodes

in the network). The delayed-rectified K? channel

current, the transient Naþ channel current and the

leakage current of HH model are denoted by Iiext, IiNa
and IiL, respectively. The maximum conductivities of

the ion channels used in the model are gNa = 120 mS/

cm2, gK = 36 mS/cm2 and gL = 0.3mS/cm2. The

reversal potentials of the corresponding ion channels

are VNa = 50 mV, VK = - 77 mV and VL-

= - 54.4 mV, respectively. The detailed meaning

of these parameters can be seen in [1]. Iiext means the

external electrode current per unit area of the injected

neurons. The Gaussian white noise added to the model

is denoted by ni (t), and its statistical properties are the
mean ni tð Þh i ¼ 0, and the autocorrelation

niðtÞni t0ð Þh i ¼ 2Ddðt � t0Þ. d (t) is the Dirac function,

and D is the noise intensity and is fixed to 0.1

mA
�
cm2. The three gating variables ðn;m; hÞ in the

model are denoted as follows:

dxi
dt

¼ axi Við Þ 1� xið Þ � bxi Við Þxi; x ¼ n; m; hð Þ

ð2Þ

where the terms axiðViÞ and bxiðViÞ denote the opening
and closing rates of the counterpart ion channels,

respectively, and they are expressed as follows:

aniðViÞ ¼
0:01/ðTÞðVi þ 55Þ

1� expð�ðVi þ 55Þ=10Þ ;
bniðViÞ ¼ 0:125/ðTÞ expð�ðVi þ 65Þ=80Þ;

ami
ðViÞ ¼

0:1/ðTÞðVi þ 40Þ
1� expð�ðVi þ 40Þ=10Þ ;

bmi
ðViÞ ¼ 4/ðTÞ expð�ðVi þ 40Þ=18Þ;

ahiðViÞ ¼ 0:07/ðTÞ expð�ðVi þ 65Þ=20Þ;
bhiðViÞ ¼

/ðTÞ
1þ expð�ðVi þ 35Þ=10Þ :

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð3Þ

In the above equations, m and h describe the degree of

activation and inactivation of Naþ, respectively, while

n indicates the activation of Kþ. From the Law of

Arrhenius, the effect of the ambient environment

temperature to which the neuron is exposed can be

obtained using the temperature modulation factor

/ðTÞ. In different species, this factor is different [58].
In this study, the values obtained in the experiments on

the giant nerve fibers of the squid are used and the

expressions are as follows [1]:

/ðTÞ ¼ 3ðT�6:3 �CÞ=10 �C: ð4Þ

The term Tmeans the temperature of environment. It

has been shown in previous studies [73] that neurons

begin to shift to a resting state at T ¼ 24 �C. The

temperature range studied in this paper is between

0 �C and 24 �C.
In this work, electrical and chemical synapses are

used for the connection of neurons in the network,

respectively. The electrical synapse can be expressed as:

Iisyn ¼
X

j

GijeijðVjðt � sÞ � VðtÞiÞ; ð5Þ

where Gij are the coupling intensity. For simplicity,

the coupling intensity between neurons is set to the
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same value G in the study. eij is the connection matrix,

and s is the delay in the transmission of synaptic

signals. For chemical synaptic currents, the expression

with a function can be as follows [74]:

Iisyn ¼
P

j

Gijeijaðt � s� tjÞðVsyn � ViÞ;

aðtÞ ¼ t

ssyn
expð� t

ssyn
ÞHðtÞ:

8
><

>:
ð6Þ

Same as the electrical synaptic current,Gij, eij and s
denote the coupling intensity, the connection matrix

and time delay, respectively. tj represents the last

firing time of the j-th neuron before time t � s. Vsyn is

the synaptic reversal potential, which is used in the

study for excitatory synapses, so it is set to 0 mV. The

characteristic time constant for the interaction of two

neurons ssyn is fixed as 2 ms. HðtÞ is the Heaviside

function.

The topology of the network has a significant effect

on the transfer of information between neurons. This

study uses the topology proposed by Barabási and

Albert [30] called scale-free network, which has the

property of growth and preferential connectivity.

Unless noted otherwise, the number of nodes in the

network is set to N = 200. Each node in the network is

consistent with the neuronal oscillator in Eq. (1) and

the connections between the nodes are represented by

the connection matrix eij. Based on Ref. [30], a new

node is added to the network and the probability of

connection to the old node is pðkiÞ ¼ ki

.P
j kj, where

ki denotes the degree of the i-th neuron. The initial

number of nodes in the network is given as m0 ¼ 5,

and they are interconnected. After that each new

addition of nodes will be connected to two old nodes.

The obtained network is the power-law degree distri-

bution, which is on the double logarithmic graph with

a slope of the line of about -3. This scheme of

preferential connectivity and growth results in an

average degree of kh i ¼
P

i ki
�
N ¼ 4 for the network

in this work.

To quantify the synchronization of the network as

observed visually, a statistical physical quantity called

the synchronization factor is introduced into this

study. This statistical physical quantity is based on

mean-field theory and is defined as [75]:

R ¼
F2
� �

� Fh i2
1
N

PN
i¼1 ð V2

ih i � Vih i2Þ
; F ¼ 1

N

XN

i¼1

Vi: ð7Þ

The results of its calculation give a very good

indicator of the condition of spatio-temporal synchro-

nization of neurons in the network. By studying the

synchronization factors under different conditions, the

synchronization levels and synchronization transition

of the network are revealed intuitively. The Vi in

Eq. (7) is the transmembrane potential calculated from

Eq. (1). N is the total number of neurons in the scale-

free network. The term �h i denotes the temporal

average of the variable over time. The synchronization

factor R indicates the perfect and no synchronization

by tending to 1 and 0, respectively.

3 Results and discussions

In this section, to obtain the numerical simulation

results of the neuronal model in different cases, the

Euler forward algorithm is used, and the step size is set

to 0.01 ms. The transients caused by the initial values

are removed before each calculation. In this study, the

synchronization of neuron populations in the scale-

free network is explored, so a suitable external

electrode current is first selected. The external elec-

trode current Iiext ¼ 20lA
�
cm2 is chosen so that the

neurons can generate spiking discharges. The space–

time firing raster plots of the neuronal network are first

investigated under different coupling intensities with-

out considering the signal transmission delay (s ¼ 0).

In the spatiotemporal firing raster plots, the black dots

indicate neuronal firing, while the white parts indicate

the subthreshold values of neuronal membrane poten-

tials. In Fig. 1, the spatiotemporal firing raster plots of

the scale-free neuronal network connected by electri-

cal synapses at different temperatures and at different

coupling intensities are shown. The spatiotemporal

firing raster plots with increasing coupling intensity

are shown in the results of Fig. 1 for each of the two

temperatures (T ¼ 0 �C and T ¼ 10 �C). The results

are a visual representation of the gradual increase in

synchronization. Next, the spatiotemporal firing raster

plots of the network connected by chemical synapses

are investigated. The collective firing behavior of

neurons at different temperatures (T ¼ 0 �C and

T ¼ 10 �C) with increasing coupling intensity is

shown in Fig. 2.

A surprising phenomenon appears in Fig. 2, where

the synchronization visually becomes better with
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increasing coupling intensity at smaller temperatures,

as in Fig. 2(a1, a2, and a3). However, at larger

temperatures, the synchronization visually becomes

worse with increasing coupling intensity, as in

Fig. 2(b1, b2, and b3). To quantify the visually

observed synchronization phenomenon, synchroniza-

tion factors are employed in the study. Next, the

synchronization factors of the network connected by

Fig. 1 Space–time firing raster plots of neuronal membrane

potentials at different electrical synaptic coupling intensities G.

Without considering the signal transmission delay (s = 0), the

coupling intensity in the figure is a1, b1 G = 0.0001; a2, b2

G = 0.003; a3, b3 G = 0.01 for temperature T ¼ 0 �C and

T ¼ 10 �C. The synchronization becomes better as the coupling

intensity increases

Fig. 2 Space–time firing raster plots of neuronal membrane

potentials at different chemical synaptic coupling intensities G.

Without considering the signal transmission delay (s = 0), the

coupling intensity in the figure is a1, b1 G = 0.0001; a2, b2

G = 0.003; a3, b3 G = 0.01 for temperature T ¼ 0 �C and

T ¼ 10 �C. At larger temperatures, the synchronization

becomes worse instead as the coupling intensity becomes larger
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electrical and chemical synapses with enhanced cou-

pling intensity at different temperatures are shown in

Fig. 3.

The results shown in Fig. 3 are consistent with the

visual results in Figs. 1 and 2. The results in Fig. 3

indicate that the synchronization factor increases with

increasing coupling intensity when the network is

connected by electrical synapses. When the network is

connected by chemical synapses, the synchronization

factor increases with increasing coupling intensity for

smaller temperatures and decreases with increasing

coupling intensity for larger temperatures. The syn-

chronization factor of the network connected by both

electrical and chemical synapsesdecreaseswith increas-

ing temperature at the same coupling intensity. The

above results are further verified in Fig. 3(a2, b2) where

the coupling intensity G is further increased. The results

clearly indicate that the synchronization factor of the

network connected by chemical synapses decreases

much more with increasing temperature than that of the

network connected by electrical synapses. For a more

comprehensive study of the dynamic behavior of the

coupling intensity in different cases, the two-parameter

diagrams of the synchronization factors of the coupling

intensity G versus the time delay s are shown in

Fig. 4(a1, b1) when the ambient temperature is set to

T = 6.3 �C. In the absence of time delay (s = 0), the

two-parameter diagrams of the synchronization factors

of the coupling intensity G versus the ambient temper-

ature T are shown in Fig. 4(a2, b2).

The results in Fig. 4(a2, b2) show that, in the

absence of time delay (s = 0), the synchronization of

Fig. 3 Distribution of the synchronization factor with increas-

ing coupling intensity G at different temperatures T. Without

considering the signal transmission delay (s = 0), the synchro-

nization factors of the network connected by electrical and

chemical synapses are distributed in a1, a2 and b1, b2,

respectively. When the coupling intensity increases, the

synchronization factor of the network is enhanced for electrical

synaptic connections, while that for chemical synaptic connec-

tions decreases at higher temperatures
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the network with increasing coupling intensity G at

different temperatures T appears in perfect accordance

with the results shown in Fig. 3. However, a temper-

ature threshold emerges for the network connected by

chemical synapses, such that the synchronization

becomes very poor when it is greater than the

threshold. The results in Fig. 4(a1, b1) show that the

networks connected by electrical and chemical

synapses show synchronous transitions with increas-

ing time delays s for different coupling intensities G.

Considering that the signal processing and transmis-

sion in a real neural system takes a certain amount of

time, a time delay s will be added in the next study. In
order to keep the system in a steady state for the next

study, the synaptic coupling intensity will be fixed at

G ¼ 0:1. With the time delay set at s ¼ 30 ms, the

spatiotemporal firing raster plots of the network

connected by electrical and chemical synapses at

different temperatures are shown in Fig. 5.

The results in Fig. 5 show that the networks

connected by electrical and chemical synapses exhibit

multiple synchronous transitions at different temper-

atures. Figure 5(a1), (a3) and (b1), (b3) shows very

poor synchronization, while Fig. 5(a2), (a4) and (b2),

(b4) shows very good synchronization. The results

clearly show multiple transformations of synchroniza-

tion, i.e., alternating from poor to good and back to

poor transformations. Next, to investigate the effect of

time delay, the temperature is set to T ¼ 5:3 �C and

the spatiotemporal firing raster plots at different time

delays are displayed in Fig. 6. Similar to the results in

Fig. 5, multiple synchronization transitions are also

Fig. 4 Two-parameter diagram on the synchronization factor.

The synchronization factors of the network connected by

electrical and chemical synapses are distributed in a1, b1 and

a2, b2, respectively. (a1), (b1) The horizontal and vertical

coordinates indicate the coupling intensity G and time delay s of

the network, respectively, and the ambient temperature is fixed

at T = 6.3 �C. (a2), (b2) The horizontal and vertical coordinates
indicate the coupling intensity G and the ambient temperature T

of the network, respectively, and the time delay is fixed at s = 0
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exhibited in Fig. 6 at different time delays. To observe

this synchronization transition phenomenon more

intuitively, the synchronization of the network is

quantified using a synchronization factor. The distri-

bution of the synchronization factor with increasing

temperature at different time delays is illustrated in

Fig. 7, and the distribution of the synchronization

factor with increasing time delays at different tem-

peratures is presented in Fig. 8.

The results in Fig. 7 show that at time delay of

s ¼ 0, as in Fig. 7(a1) and (b1), the synchronization

factor of the network connected by electrical synapses

is large and decreases only slightly with increasing

temperature, which is consistent with the results in

Fig. 3(a1) and (a2). The synchronization factor of the

network connected by chemical synapses becomes

smaller rapidly with increasing temperature, which is

consistent with the results in Fig. 3(b1) and (b2). In the

presence of suitable time delays, as in Fig. 7(a2), (a3)

and (b2), (b3), multiple synchronization transitions

can be observed. Surprisingly, the results in Fig. 7 also

show that when the network is connected by electrical

synapses, the synchronization factor becomes larger

overall as the temperature rises. When the network is

connected by chemical synapses, the synchronization

factor becomes very small when the temperature

exceeds a threshold (approximately T ¼ 15 �C) and
does not get larger afterward. The results in Fig. 8

indicate that the network connected by electrical

synapses shows multiple synchronization transitions

with increasing time delays at different temperatures

and the synchronization factor becomes larger overall.

The distribution of the synchronization factor of the

network connected by chemical synapses also shows

multiple synchronization transitions and an overall

increase at lower temperatures, as in Fig. 8(b1). At

higher temperatures, there are also multiple synchro-

nization transitions and the overall is smaller, as in

Fig. 5 Space–time firing raster plots of neuronal membrane

potentials of the network connected by electrical and chemical

synapses at different temperatures T. At the time delay of s ¼
30 ms and a coupling intensity of G ¼ 0:1, the results of

synchronization of networks connected by electrical synapses at

different ambient temperatures are shown for a1, a2, a3, a4, and
of networks connected by chemical synapses for b1, b2, b3, b4,
respectively. Both connection types showed multiple synchro-

nization transitions at different temperatures

123

2700 Y. Wu et al.



Fig. 8(b2). After the temperature exceeds the thresh-

old, the synchronization factors become very small

and do not get larger, as in Fig. 8(b3). To further

investigate the multiple synchronization transitions of

the network with respect to ambient temperature T and

time delay s, the two-parameter diagrams of the

synchronization factors are plotted in Fig. 9.

The results in Fig. 9 show very clearly that the

network connected by electrical and chemical

synapses undergoes multiple synchronization transi-

tions with increasing ambient temperature T and time

delay s. The time delay s plays a crucial role for the

synchronization transition. Both (a) and (b) of Fig. 9

show that when the time delay s is relatively small,

both decrease with increasing temperature and do not

show multiple synchronization transitions. Networks

connected by chemical synapses quickly become very

poorly synchronized with increasing temperature

when the time delay is small. With increasing time

delay both networks undergomultiple synchronization

transitions. Multiple synchronization transitions also

occur as the temperature increases under the effect of

time delay. Figure 9 verifies the phenomenon found in

Figs.7 and 8. The network, connected by electrical

synapses, shows multiple synchronization transitions

with increasing temperature under time delay, and its

synchronization factor becomes larger overall. At

larger time delays and temperatures, its synchroniza-

tion becomes very good and does not become poor

again, as shown in Fig. 9(a). For networks connected

by chemical synapses, multiple synchronization tran-

sitions can occur at both increasing time delays and

temperatures, while there exists a threshold value

(approximately T ¼ 15 �C) for temperature beyond

which the synchronization factor becomes very small

and does not increase again, which is consistent with

previous findings. It is further investigated that this

previously observed phenomenon in which the syn-

chronization factor of the network connected by

electrical synapses becomes large at higher tempera-

tures, and the synchronization factor of the network

connected by chemical synapses becomes very small

Fig. 6 Space–time firing raster plots of neuronal membrane

potentials of the network connected by electrical and chemical

synapses at different time delay s. At the ambient temperature of

T ¼ 5:3 �C and a coupling intensity of G ¼ 0:1, the results of

synchronization of networks connected by electrical synapses at

different time delay are shown for a1, a2, a3, a4, and of

networks connected by chemical synapses for b1, b2, b3, b4,
respectively. Both connection types showed multiple synchro-

nization transitions at different temperatures
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when the threshold is exceeded. The membrane

potentials of the network at different temperatures

for both types of connections (sampled neurons i ¼ 2

and i ¼ 100) are shown in Figs. 10 and 11.

Figures 10 and 11 show the membrane potential of

neurons in the network connected by electrical and

chemical synapses at a time delay of. In Fig. 10, it is

shown that the firing frequency of neurons increases as

the temperature T increases. There is a marked phase

difference in Fig. 10(a) and (b), and this phase

difference remains stable, which causes the asynchro-

nization of the network. Figure 10(c) and (d) has a

very small phase difference and the network is

remarkably well synchronized, all of which are the

same as the results shown in Fig. 7. It is assumed here

that the asynchronization of the network connected by

electrical synapses is mainly due to the phase differ-

ence. When the temperature is too high, the neuronal

firing frequency becomes larger, and the effect of

phase difference on synchronization decreases as the

firing frequency of neurons becomes larger. The

asynchronization of the network connected by chem-

ical synapses when the temperature is small is also

shown in Fig. 11mainly due to phase differences, as in

(a) and (b). In Fig. 11(c) and (d), it is shown that the

phase difference of the spikes changes from large to

small and then to large again for larger temperatures in

a cyclic process that causes the network asynchro-

nization. It is assumed here that the reason for the

asynchronization of the network connected by

Fig. 7 Distribution of the synchronization factor with increas-

ing ambient temperature T at different time delays s.At the
coupling intensity of G = 0.1, the results of the synchronization

factor distribution of the network connected by electrical

synapses are shown in a1, a2, a3, and of the network connected
by chemical synapses are shown in b1, b2, b3. With a

suitable time delay, multiple synchronization transitions are

observed for both connection types
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chemical synapses at temperatures above the threshold

is mainly due to the inconsistent firing frequency of the

neurons in the network. To verify the assumptions of

studies that the synchronization of networks connected

by electrical and chemical synapses becomes better

and worse, respectively, when the temperature is too

high, a statistic called the coefficient of variation (CV)

and which systematically measures the degree of

regularity of the neuronal electrical activity [76] is

introduced, with the expression as follows:

CVi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ISI2i
� �

� ISIih i2
q

ISIih i ð8Þ

where i denotes the i-th neuron in the neuronal

network. ISIih i is the average of all inter-spikes

intervals (ISIs) of the i-th neuron at a certain time. The

firing of the i-th neuron becomes more regular as CVi

decreases. ISIih i is described as follows:

ISIih i ¼ 1

n

Xn

j¼1

ðtjþ1 � tjÞ ð9Þ

Fig. 8 Distribution of the synchronization factor with increas-

ing time delays s at different ambient temperature T. At the

coupling intensity of G = 0.1, the results of the synchronization

factor distribution of the network connected by electrical

synapses are shown in a1, a2, a3, and of the network connected
by chemical synapses are shown in b1, b2, b3. As the time delay

increases, multiple synchronization transitions are observed for

both connection types
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where tj denotes the j-th spike of the i-th neuron, while

n denotes the number of spikes. The duration of each

calculation of the average ISIi is 10,000 time units to

ensure the statistical correctness.

In Fig. 12, (a1) and (b1) show the distribution of the

CV of the network connected by electrical and

chemical synapses, respectively, with increasing tem-

perature at higher temperatures. The results show that

the CVs of the 2-th and 100-th neurons of the network

connected by both types and the average CV of the

network are smaller. The smaller CVs indicate a better

firing regularity of the network. As the temperature

increases, the discharge frequency increases and the

CV becomes smaller overall. The CV in Fig. 12(a1)

will have regions that suddenly increase and then

become smaller, and a comparison with Fig. 7(a2)

reveals that these are the regions where the synchro-

nization factor becomes smaller. This shows that the

reduction in the network synchronization factor

caused by phase asynchronization also makes the

neuronal firing in the network connected by electrical

synapses less regular, i.e., the CV becomes larger. The

average ISI of the 2-th and 100-th neurons in the

network connected by the two types and their

differences are shown in (a2) and (b2). The results

show that the average ISI decreases further with

increasing temperature. Figure 12(a2) shows that the

difference in the average ISI is very small almost close

to zero. Combined with the conclusion of the large

degree of network discharge regularity in (a1), this

further supports the previous conclusion that the

asynchronization of the network connected by the

electrical synapses is due to the phase inconsistency of

the spike firing, and that the effect of the phase

inconsistency on synchronization decreases as the

temperature increases and the frequency of the firing

increases. The difference in the average ISI in

Fig. 12(b2) is around 0.16, which indicates a differ-

ence of one spike for about 20 to 30 spikes. Combined

with the conclusion of the large degree of network

firing regularity in (b1), this further supports the

previous conclusion that the asynchrony of networks

connected by chemical synapses is a result of incon-

sistent firing frequency of neurons in the network, and

the effect of inconsistent firing frequency on synchro-

nization becomes larger as the temperature increases

and the firing frequency becomes higher. Figure 12

illustrates very well the conclusion obtained in

Fig. 11.

Fig. 9 Two-parameter diagram on the synchronization factor

with respect to ambient temperature T and time delay s. At the
coupling intensity of G = 0.1, the synchronization factors of the

network connected by electrical and chemical synapses are

distributed in a and b, respectively. The network connected by

both connection types clearly shows multiple synchronization

transitions
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To further verify the generality of the above

study, the scale of the network, i.e., the number of

nodes in the network, is changed to observe the

effect on the distribution of synchronization factors

and the results are shown in Fig. 13. The distribu-

tion of synchronization factors with increasing

temperature for networks connected by both synap-

tic types at different network scales is shown in

Fig. 13. The time delay is set at s ¼ 20ms, and the

coupling strength is fixed at G ¼ 0:1, and the number

of nodes in the network is set to N = 200, 400, 1000

and 2000, respectively. The results in Fig. 13 show

that changing the scale of the network has a very small

and negligible effect on the network connected by the

two synapse types. Such results further demonstrate

the generality of the above study in the scale-free

network.

4 Conclusions

In conclusion, the synchronization of neuron popula-

tions in scale-free networks is investigated at different

ambient temperatures as well as time delays. The

Hodgkin–Huxley (HH) model containing the temper-

ature factor is employed as the model of neurons in the

scale-free network for the study, and electrical and

chemical synapses are used to connect the neurons,

respectively. The synchronization factor is used to

quantify the synchronization phenomenon observed

visually in the network. It is found that networks

connected by electrical and chemical synapses

undergo synchronization transitions at different time

delays and ambient temperatures. A temperature

threshold is found in the network connected by

Fig. 10 Membrane potential of neurons (i = 2 and i = 100) in

networks connected by electrical synapses. The time delay and

the coupling intensity are fixed at s = 30 ms and G = 0.1,

respectively. The membrane potentials of neurons at different

temperatures are shown in a, b, c, and d, respectively. The
asynchrony of the network connected by electrical synapses is

caused by phase differences
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chemical synapses, beyond which the synchronization

of the network becomes very poor.

Without considering the time delay, for networks

connected by electrical synapses, the synchronization

of the network becomes better as the coupling

intensity increases. For networks connected by chem-

ical synapses, as the coupling intensity increases, the

network synchronization becomes better at lower

temperatures, while at higher temperatures, the syn-

chronization becomes worse instead. When the cou-

pling intensity of the network is constant, the

synchronization of the network connected by both

synapses deteriorates with increasing temperature,

while the deterioration is greater for the network

connected by chemical synapses.

The network connected by the two synaptic

types under consideration of time delay shows

multiple synchronization transitions with increasing

delay, and the network also shows multiple syn-

chronization transitions with increasing temperature

under the effect of time delay. At higher temper-

atures, the synchronization of the network

connected by electrical synapses is better overall,

while the synchronization of the network connected

by chemical synapses turns very poor after the

temperature exceeds a threshold (approximately

T ¼ 15 �C) and does not get better again. By intro-

ducing the coefficient of variation (CV) as well as the

mean inter-spikes intervals (ISIs), it turns out that the

main reasons for this phenomenon at higher temper-

atures are: (1) In networks connected by electrical

synapses, the main cause of asynchronization is the

phase inconsistency of the neuronal spike firing. When

the temperature increases, the firing frequency

increases, which leads to an overall better synchro-

nization of the network connected by electrical

synapses at high temperatures. (2) In networks con-

nected by chemical synapses, the main factor causing

asynchronization is the inconsistent frequency (or

average ISI) of neuronal spike firing. The increase in

temperature makes the firing frequency increase,

resulting in a phase difference of one spike for 20 to

30 spikes, and such a phenomenon causes a very poor

synchronization of the network.

Fig. 11 Membrane

potential of neurons (i = 2

and i = 100) in networks

connected by chemical

synapses. The time delay

and the coupling intensity

are fixed at s = 30 ms and
G = 0.1, respectively. The

membrane potentials of

neurons at different

temperatures are shown in a,
b, c, and d, respectively. At
higher temperatures, the

asynchrony is caused by the

different firing frequencies

of the neurons in the

network
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Finally, in order to determine whether the previ-

ously studied phenomena and their mechanisms in this

paper are universal, the distribution of the synchro-

nization factor with temperature is investigated in

networks of different scales (with different number of

nodes). It is found that the distribution of the

synchronization factor with temperature change is

not affected by the scale of the network in the role of

time delay. This consequence proves the generality of

our study.

Fig. 12 Coefficient of

variation (CV) and mean

inter-spikes intervals (ISIs)

with respect to temperature

for the 2-th and 100-th

neurons of the network

connected by electrical and

chemical synapses at higher

temperatures. The time

delay and the coupling

intensity are fixed at

s = 30 ms and G = 0.1,

respectively. a1, b1
Distribution of the CV of the

2-th and 100-th neurons and

the average CV of all

neurons in the neuronal

network as the temperature

increases; a2, b2
Distribution of the average

ISI of the 2-th and 100-th

neurons and the difference

as the temperature increases

in the neuronal network

Fig. 13 Distribution of

synchronization factors with

increasing temperature for

networks of different scales

connected by chemical and

electrical synapses when the

time delay is fixed at s =
20ms and the coupling

intensity is G = 0.1. The

effect of network scale on

networks connected by both

types is very small
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