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Abstract Ferromagnetic-material investigations are
active, with the applications in direct-current power
supplies, radios, televisions, high-frequency power
supplies, microwave equipments, magnetic recorders,
electrodes, sensors, ferrofluids, etc. In this paper, we
investigate the Kraenkel–Manna–Merle system for the
ultra-short waves in a saturated ferromagnetic material
with the zero conductivity in the presence of an external
field. N -fold Darboux transformation of that system is
derived via an existing Lax pair, where N is a positive
integer. Three- and four-fold solutions of that system
are determined via N = 3 and N = 4 in our N -fold
Darboux transformation. With respect to the magneti-
zation and external magnetic field related to the sat-
urated ferromagnetic material, interaction among the
three solitons and interaction among the four solitons
are graphically depicted, whichmay be useful in under-
standing certain nonlinear phenomena in the ferromag-
netic materials.
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1 Introduction

Magnetism has been a subject of intense research [1,2].
Only a few metallic elements, notably iron, cobalt,
nickel and some rare earths, have exhibited the large-
scale magnetic effects that result in the commercial
materials [3,4]. There has been certain enhancement
on the atomic spin effect in alloys or oxides of some
materials containing those elements and some neigh-
boring ions [3,5]. That enhancement has resulted from
the cooperative interaction of a large number (1013–
1014) of the atomic spins producing a region in which
all the atomic spins within it are aligned parallel [3].
Those materials have been called ferromagnetic [3].
Ferromagnetic materials have piqued the interest of
researchers due to their applications in the data process-
ing [2,3], storage [2,3,6,7] and communication [2,3].

To study certain nonlinear phenomena in optics [8],
fluid mechanics [9], Bose–Einstein condensation [10],
plasma physics [11], etc., nonlinear evolution equa-
tions have been developed. Recently, researchers have
concentrated their efforts on some nonlinear evolu-
tion equations relevant to the ferromagnetic materi-
als, such as the Lakshmanan–Porsezian–Daniel equa-
tion describing the nonlinear spin excitations in one-
dimensional isotropic biquadratic Heisenberg ferro-
magnetic spin with the octupole-dipole interaction
[12,13], a nonlinear Schrödinger-type equation for the
magnetization dynamics of a ferromagnetic thin film
with the interfacial Dzyaloshinskii–Moriya interaction
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in the long-wave-length approximation [14], a variable-
coefficient modified Kadomtsev–Petviashvili system
for certain electromagnetic waves in an isotropic
charge-free infinite ferromagnetic thin film with the
potential application in magneto-optic recording [15].
Another example has been theKraenkel–Manna–Merle
system for the ultra-short waves in a saturated ferro-
magnetic material with the zero conductivity in the
presence of an external field [16], i.e.,

− ∇ · (∇ · H) + ∇2H = ∂2

∂τ 2
(H + M) , (1a)

∂

∂τ
M = −M ∧ Heff + κM ∧ ∂

∂τ

M
ρ

, (1b)

from theMaxwell’s equationswith theLandau–Lifshitz–
Gilbert equation, where the vectors H and M stand
for the dimensionless magnetic induction and mag-
netization density, respectively, the constants ρ and κ

mean the dimensionless saturation magnetization and
Gilbert-damping parameter, respectively, ∇ represents
for the divergence of corresponding vector field and τ

denotes the normalized time variable.
Via a blend of the coordinate transformations and

certain expansion series of the magnetization density
and the magnetic induction [17], System (1) has been
transformed into the following system [17–31]:

uxt − uvx + σvx = 0, (2a)

vxt + uux = 0, (2b)

with the real differentiable functions u = u(x, t) and
v = v(x, t) standing for the magnetization and the
external magnetic field related to the saturated ferro-
magneticmaterial, respectively, the parameter σ denot-
ing the damping effect, while the subscripts meaning
the partial derivatives with respect to the space variable
x and time variable t .

Solitons, one type of the nonlinear waves, have been
studied in nonlinear optics [32–34], Bose–Einstein
condensation [35], fluid mechanics [36,37] and other
fields [38–42]. Researchers’ interests have also been
drawn to some other types of the nonlinear waves,
including the breathers [43,44], periodicwaves [45,46]
and rouge waves [47]. The Darboux transformation
(DT) has been proposed as a method for finding the
soliton solutions [48,49]. The ability to derive some
multiple solitonswithout an iterative approach has been

regarded as an advantageof the N -foldDTover the one-
fold DT, where N is a positive integer [50,51]. Other
ways for solving the nonlinear evolution equations have
been developed, such as the Hirota method [52–56],
Riemann–Hilbert approach [57], Bäcklund transforma-
tion [58–60], similarity reduction [61,62], Lie symme-
try approach [63], Pfaffian technique [64] and so on.

For System (2), Ref. [18] has obtained the corre-
sponding Lax pair as

�x = M�, M =
(

vxλ uxλ
uxλ −vxλ

)
, (3a)

�t = R�, R =
( 1

4λ
−1 − 1

2u
1
2u − 1

4λ
−1

)
, (3b)

under the damping effect coefficient σ = 0, where
� = (φ1, φ2)

T , φ1 and φ2 are the differentiable func-
tions of x and t , spectral parameter λ is a constant,
the superscript “T ” means the transpose for a vec-
tor/matrix. System (2) has been reproduced through the
compatibility conditionMt−Rx+MR−RM = 0 [18].
Contributions have been seen on System (2): bilinear
forms [17]; DT and loop-like soliton excitations [19];
rogue-wave solutions [20,21]; some soliton solutions
[17,18,22–27]; some analytic solutions [28–30] and
influence of the damping effects [31].

However, to our knowledge, N -fold DT of Sys-
tem (2) and some solitonic interactions which dif-
fer from those in Refs. [17–19,22–27] have not been
reported. In Sect. 2, we shall determine an N -fold DT
of System (2) via Lax Pair (3). In Sect. 3, based on our
N -fold DT, we shall derive the three-fold solutions of
System (2) when N = 3, which can describe the inter-
action among the three solitons, and the four-fold solu-
tions of System (2) when N = 4, which can describe
the interaction among the four solitons. In Sect. 4, we
shall discuss the solitonic interactions graphically. In
Sect. 5, our conclusions will be given.

2 N-fold DT of System (2)

To derive an N -fold DT of System (2) by virtue of Lax
Pair (3), we begin by introducing a gauge transforma-
tion

�̃ = D�, (4)
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where D is a reversible matrix and �̃ is required to
satisfy

�̃x = M̃�̃, M̃ = (Dx + DM) D−1, (5a)

�̃t = R̃�̃, R̃ = (Dt + DR) D−1, (5b)

while M̃ and R̃ have the same forms as M and R,
respectively, except that the old potentials u, v have
been replaced with new ones ũ, ṽ, and the superscript
“−1” represents the inverse of a matrix. We assume
that the N -fold Darboux matrix D is in the form of a
polynomial matrix of λ as follows:

D =
(
a b
c d

)

=

⎛
⎜⎜⎝

λ−N +
N−1∑
n=0

a(n)λ−n
N−1∑
n=0

b(n)λ−n

N−1∑
n=0

(−1)N−n+1b(n)λ−n λ−N +
N−1∑
n=0

(−1)N−na(n)λ−n

⎞
⎟⎟⎠ ,

(6)

where a(n)’s and b(n)’s are some to-be-determined
functions of x and t . Supposing that λı’s (λı �= 0,
ı = 1, 2, . . . , N ) are the N roots of detD, we have

detD = 1

λ2N

N∏
ı=1

(
λ2 − λ2ı

)
. (7)

Thus, we are able to determine a(n)
n ’s and b(n)

n ’s
uniquely via the following linear algebraic system:

N−1∑
n=0

a(n)λ−n
ı + δı

N−1∑
n=0

b(n)λ−n
ı = −λ−N

ı , (8a)

N−1∑
n=0

(−1)N−n+1b(n)λ−n
ı + δı

N−1∑
n=0

(−1)N−na(n)λ−n
ı

= −δıλ
−N
ı , (8b)

where

δı = ϕ2 (λı )

ϕ1 (λı )
, (9)

and ϕ (λ) = (ϕ1 (λ) , ϕ2 (λ))T is a solution of Lax
Pair (3), while the N parameters λı’s (λı �= λj , ı �= j )
are suitably chosen so that the determinant of the coef-
ficients for Eqs. (8) is nonzero.

Proposition 1 The matrix M̃ defined via Eq. (5a) has
the same form as M, i.e.,

M̃ =
(

ṽxλ ũxλ
ũxλ −ṽxλ

)
,

where the transformations from the old potential func-
tions u, v into the new ones ũ, ṽ are given by

ũ = u + b(N−1) (10a)

ṽ = v + a(N−1) + θ (t) , (10b)

with θ (t) being a differentiable function of t .

Proof Let D−1 = D∗/detD and

(Dx + DM) D∗ =
(
k11 (λ) k12 (λ)

k21 (λ) k22 (λ)

)
,

where

k11 (λ) = axd − bxc + [ux (bd − ac) + vx (ad + bc)] λ,

k12 (λ) = abx − axb + [
ux

(
a2 − b2

) − 2vxab
]
λ,

k21 (λ) = cxd − cdx + [
ux

(
d2 − c2

) + 2vx cd
]
λ,

k22 (λ) = adx − bcx + [ux (ac − bd) − vx (ad + bc)] λ,

(11)

and the superscript “∗” denotes the adjoint of a matrix.
Making use of Eqs. (3a), (8) and (9), we have

ax (λı ) = −δı,xb (λı ) − δı bx (λı ) ,

cx (λı ) = −δı,xd (λı ) − δı dx (λı ) ,

δı,x = uxλı − 2vxλıδı − uxλıδ
2
ı .

(12)

Following that, combining Eqs. (11) with (12) yields

k11 (λı ) = k12 (λı ) = k21 (λı ) = k22 (λı ) = 0, (13)

which indicates that λı’s are the roots of k11 (λ), k12 (λ),
k21 (λ) and k22 (λ).

It should be noted that k11 (λ), k12 (λ), k21 (λ) and
k22 (λ) are all the polynomials ofλwith order−2N+1.
With the help of Eq. (7), it can be verified that there
exists a matrix P such that

(Dx + DM) D∗ = detD · P, (14)

where

P =
(
p(1)
11 λ + p(0)

11 p(1)
12 λ + p(0)

12

p(1)
21 λ + p(0)

21 p(1)
22 λ + p(0)

22

)
,

while p(1)
11 , p

(0)
11 , p

(1)
12 , p

(0)
12 , p

(1)
21 , p

(0)
21 , p

(1)
22 and p(0)

22 are
some to-be-determined functions of x and t . In order
to determine P , we rewrite Eq. (14) as

Dx + DM = PD. (15)
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Equating the same powers of λ in Eq. (15) leads to the
following results:

p(1)
11 = vx + a(N−1)

x = ṽx ,

p(1)
12 = p(1)

21 = ux + b(N−1)
x = ũx ,

p(1)
22 = −vx − a(N−1)

x = −ṽx ,

p(0)
11 = p(0)

12 = p(0)
21 = p(0)

22 = 0.

(16)

From Eqs. (5a) and (16), we arrive at the conclusion
that P = M̃ . The proof is completed.

Proposition 2 The matrix R̃ defined via Eq. (5b) has
the same form as R under Transformations (10), i.e.,

R̃ =
( 1

4λ
−1 − 1

2 ũ
1
2 ũ − 1

4λ
−1

)
.

Proof Let

(Dt + DR) D∗ =
(
l11 (λ) l12 (λ)

l21 (λ) l22 (λ)

)
,

where

l11 (λ) = 1

4
(ad + bc) λ−1 + 1

2
u (ac + bd) + atd − bt c,

l12 (λ) = −1

2
abλ−1 − 1

2
u

(
a2 + b2

)
+ abt − atb,

l21 (λ) = 1

2
cdλ−1 + 1

2
u

(
c2 + d2

)
+ ct d − cdt ,

l22 (λ) = −1

4
(ad + bc) λ−1 − 1

2
u (ac + bd) + adt − bct .

(17)

By virtue of Eqs. (3b), (8) and (9), we have

at (λı ) = −δı,t b (λı ) − δı bt (λı ) ,

ct (λı ) = −δı,t d (λı ) − δı dt (λı ) ,

δı,t = 1

2
u − 1

2
λ−1
ı δı + 1

2
uδ2ı .

(18)

Then, applying Eqs. (17) and (18), we can verify that
λı’s are the roots of l11 (λ), l12 (λ), l21 (λ) and l22 (λ).

Noting that l11 (λ) and l22 (λ) are the polynomials of
λ with order −2N − 1, whereas l12 (λ) and l21 (λ) are
the polynomials of λwith order−2N . With the help of
Eq. (7), it can be verified that there exists a matrix Q
such that

(Dt + DR) D∗ = detD · Q, (19)

where

Q =
(
q(1)
11 λ−1 + q(0)

11 q(0)
12

q(0)
21 q(1)

22 λ−1 + q(0)
22

)
,

while q(1)
11 , q

(0)
11 , q

(0)
12 , q

(0)
21 , q

(1)
22 and q(0)

22 are some to-be-
determined functions of x and t . In order to determine
Q, we rewrite Eq. (19) as

Dt + DR = QD. (20)

Equating the same powers of λ in Eq. (20), we obtain
the following results:

q(0)
12 = −1

2
u − 1

2
b(N−1) = −1

2
ũ,

q(0)
21 = 1

2
u + 1

2
b(N−1) = 1

2
ũ,

q(1)
11 = 1

4
, q(1)

22 = −1

4
, q(0)

11 = q(0)
22 = 0.

(21)

From Eqs. (5b) and (21), we can see that Q = R̃. The
proof is completed.

According to Propositions 1 and 2, Transformations
(4) and (10) can transformLaxPair (3) intoLaxPair (5).
Further, we have the following theorem:

Theorem 1 Let u and v be the seed solutions of Sys-
tem (2), ϕ (λ) = (ϕ1 (λ) , ϕ2 (λ))T be the solution of
Lax Pair (3), then the N-Fold DT of System (2) is given
by Transformation (4) and

ũ = u + b(N−1),

ṽ = v + a(N−1) + θ (t) ,

where

a(N−1) = �a(N−1)

�
, b(N−1) = �b(N−1)

�
,
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� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ−1
1 · · · λ−N+1

1 δ1 λ−1
1 δ1 · · · λ−N+1

1 δ1

1 λ−1
2 · · · λ−N+1

2 δ2 λ−1
2 δ2 · · · λ−N+1

2 δ2
...

...
. . .

...
...

...
. . .

...

1 λ−1
N · · · λ−N+1

N δN λ−1
N δN · · · λ−N+1

N δN

(−1)N δ1 (−1)N−1λ−1
1 δ1 · · · −λ−N+1

1 δ1 (−1)N+1 (−1)Nλ−1
1 · · · λ−N+1

1
(−1)N δ2 (−1)N−1λ−1

2 δ2 · · · −λ−N+1
2 δ2 (−1)N+1 (−1)Nλ−1

2 · · · λ−N+1
2

...
...

. . .
...

...
...

. . .
...

(−1)N δN (−1)N−1λ−1
N δN · · · −λ−N+1

N δN (−1)N+1 (−1)Nλ−1
N · · · λ−N+1

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

�a(N−1) is produced from � by replacing its Nth col-
umn with (−λ−N

1 ,−λ−N
2 , . . . ,−λ−N

N ,−λ−N
1 δ1,

−λ−N
2 δ2, . . . ,−λ−N

N δN )T and �b(N−1) is produced
from � by replacing its 2Nth column with
(−λ−N

1 ,−λ−N
2 , . . . ,−λ−N

N ,−λ−N
1 δ1,−λ−N

2 δ2, . . . ,

−λ−N
N δN )T .

3 Solitonic interactions of System (2)

To obtain some solutions featuring the interactions
among the solitons of System (2), we first have to
choose the suitable seed solutions.Taking the seed solu-
tions of System (2) as u = 0, v = αx+β(t), we derive
the following solutions of Lax Pair (3):

ϕ =
(

ϕ1 (λ)

ϕ2 (λ)

)
=

(
eαλx+ 1

4λ−1t

e−αλx− 1
4λ−1t

)
, (22)

where α is a constant and β(t) is a differentiable func-
tion of t .

Then, utilizing Theorem 1, we give the three- and
four-fold solutions of System (2) as follows:

(I) When N = 3, three-fold solutions of System (2)
can be expressed as

ũ = �b(2)

�
, ṽ = αx + �a(2)

�
+ θ (t) , (23)

where

� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ−1
1 λ−2

1 δ1 λ−1
1 δ1 λ−2

1 δ1

1 λ−1
2 λ−2

2 δ2 λ−1
2 δ2 λ−2

2 δ2

1 λ−1
3 λ−2

3 δ3 λ−1
3 δ3 λ−2

3 δ3

−δ1 λ−1
1 δ1 −λ−2

1 δ1 1 −λ−1
1 λ−2

1

−δ2 λ−1
2 δ2 −λ−2

2 δ2 1 −λ−1
2 λ−2

2

−δ3 λ−1
3 δ3 −λ−2

3 δ3 1 −λ−1
3 λ−2

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

�a(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ−1
1 −λ−3

1 δ1 λ−1
1 δ1 λ−2

1 δ1

1 λ−1
2 −λ−3

2 δ2 λ−1
2 δ2 λ−2

2 δ2

1 λ−1
3 −λ−3

3 δ3 λ−1
3 δ3 λ−2

3 δ3

−δ1 λ−1
1 δ1 −λ−3

1 δ1 1 −λ−1
1 λ−2

1

−δ2 λ−1
2 δ2 −λ−3

2 δ2 1 −λ−1
2 λ−2

2

−δ3 λ−1
3 δ3 −λ−3

3 δ3 1 −λ−1
3 λ−2

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

�b(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ−1
1 λ−2

1 δ1 λ−1
1 δ1 −λ−3

1

1 λ−1
2 λ−2

2 δ2 λ−1
2 δ2 −λ−3

2

1 λ−1
3 λ−2

3 δ3 λ−1
3 δ3 −λ−3

3

−δ1 λ−1
1 δ1 −λ−2

1 δ1 1 −λ−1
1 −λ−3

1 δ1

−δ2 λ−1
2 δ2 −λ−2

2 δ2 1 −λ−1
2 −λ−3

2 δ2

−δ3 λ−1
3 δ3 −λ−2

3 δ3 1 −λ−1
3 −λ−3

3 δ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(II) When N = 4, four-fold solutions of System (2)
can be expressed as

ũ = �b(3)

�
, ṽ = αx + �a(3)

�
+ θ (t) , (24)

where
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Fig. 1 Interaction among the three solitons via Solutions (23)
with α = 1

10 , θ(t) = sin( 14 t), λ1 = − 3
2 , λ2 = −1 and λ3 = −2

� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ−1
1 λ−2

1 λ−3
1 δ1 λ−1

1 δ1 λ−2
1 δ1 λ−3

1 δ1

1 λ−1
2 λ−2

2 λ−3
2 δ2 λ−1

2 δ2 λ−2
2 δ2 λ−3

2 δ2

1 λ−1
3 λ−2

3 λ−3
3 δ3 λ−1

3 δ3 λ−2
3 δ3 λ−3

3 δ3

1 λ−1
4 λ−2

4 λ−3
4 δ4 λ−1

4 δ4 λ−2
4 δ4 λ−3

4 δ4

δ1 −λ−1
1 δ1 λ−2

1 δ1 −λ−3
1 δ1 −1 λ−1

1 −λ−2
1 λ−3

1

δ2 −λ−1
2 δ2 λ−2

2 δ2 −λ−3
2 δ2 −1 λ−1

2 −λ−2
2 λ−3

2

δ3 −λ−1
3 δ3 λ−2

3 δ3 −λ−3
3 δ3 −1 λ−1

3 −λ−2
3 λ−3

3

δ4 −λ−1
4 δ4 λ−2

4 δ4 −λ−3
4 δ4 −1 λ−1

4 −λ−2
4 λ−3

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

�a(3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ−1
1 λ−2

1 −λ−4
1 δ1 λ−1

1 δ1 λ−2
1 δ1 λ−3

1 δ1

1 λ−1
2 λ−2

2 −λ−4
2 δ2 λ−1

2 δ2 λ−2
2 δ2 λ−3

2 δ2

1 λ−1
3 λ−2

3 −λ−4
3 δ3 λ−1

3 δ3 λ−2
3 δ3 λ−3

3 δ3

1 λ−1
4 λ−2

4 −λ−4
4 δ4 λ−1

4 δ4 λ−2
4 δ4 λ−3

4 δ4

δ1 −λ−1
1 δ1 λ−2

1 δ1 −λ−4
1 δ1 −1 λ−1

1 −λ−2
1 λ−3

1

δ2 −λ−1
2 δ2 λ−2

2 δ2 −λ−4
2 δ2 −1 λ−1

2 −λ−2
2 λ−3

2

δ3 −λ−1
3 δ3 λ−2

3 δ3 −λ−4
3 δ3 −1 λ−1

3 −λ−2
3 λ−3

3

δ4 −λ−1
4 δ4 λ−2

4 δ4 −λ−4
4 δ4 −1 λ−1

4 −λ−2
4 λ−3

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

�b(3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ−1
1 λ−2

1 λ−3
1 δ1 λ−1

1 δ1 λ−2
1 δ1 −λ−4

1

1 λ−1
2 λ−2

2 λ−3
2 δ2 λ−1

2 δ2 λ−2
2 δ2 −λ−4

2

1 λ−1
3 λ−2

3 λ−3
3 δ3 λ−1

3 δ3 λ−2
3 δ3 −λ−4

3

1 λ−1
4 λ−2

4 λ−3
4 δ4 λ−1

4 δ4 λ−2
4 δ4 −λ−4

4

δ1 −λ−1
1 δ1 λ−2

1 δ1 −λ−3
1 δ1 −1 λ−1

1 −λ−2
1 −λ−4

1 δ1
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Fig. 2 Interaction among the four solitons via Solutions (24)
with α = 1

10 , θ(t) = cos( 14 t), λ1 = −3, λ2 = 3
2 , λ3 = 2 and

λ4 = −1
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4 Discussions

With N -fold DT (4) and (10), we are able to give the
N -fold solutions of System (2) via the determinants in
Theorem 1. It should be pointed out that the DT con-
structed in Ref. [19] is a special case of our N -Fold
DT (4) and (10) when N = 1 or 2. Interactions among
the solitons of System (2) can be described via the
N -fold solutions with certain parameters. Three-Fold
Solutions (23) can describe the interaction among the
three solitons with certain parameters, which is differ-
ent from those in Refs. [17–19,22–27]. With respect to
u(x, t), themagnetization related to the saturated ferro-
magneticmaterial, Fig. 1a shows the interaction among
the two bell-shape solitons and one anti-bell-shape
soliton. With respect to v(x, t), the external magnetic
field related to the saturated ferromagnetic material,
Fig. 1b displays the interaction among the three kink-
shape solitons. Those solitons interact with one another
around t = 0, and thenmove apart. Amplitudes, veloci-
ties and shapes of those solitons remainunchanged after
the interaction, indicating that the interaction is elastic.
Interaction among the four solitons can be described
via Four-Fold Solutions (24) with certain parameters,
which is different from those in Refs. [17–19,22–27].
With respect to u(x, t), the magnetization related to the
saturated ferromagnetic material, as shown in Fig. 2a,
we can see the elastic interaction among the two bell-
shape solitons and two anti-bell-shape solitons. With
respect to v(x, t), the external magnetic field related
to the saturated ferromagnetic material, elastic inter-
action among the four kink-shape solitons is exhibited
in Fig. 2b. It can be observed that the amplitudes and
shapes of those solitons change nonlinearly in the inter-
action region and then recover after the interaction.

5 Conclusions

Ferromagnetic-material investigations havebeen active,
with the applications in direct-current power supplies,
radios, televisions, high-frequency power supplies,
microwave equipments,magnetic recorders, electrodes,
sensors, ferrofluids, etc. As for the ultra-short waves
in a saturated ferromagnetic material with the zero
conductivity in the presence of an external field, with
respect to u(x, t), the magnetization related to the sat-
urated ferromagnetic material, and v(x, t), the exter-
nal magnetic field related to the saturated ferromag-
netic material, we have studied the Kraenkel–Manna–

Merle system in this paper, i.e., System (2). With Lax
Pair (3), we have constructed N -Fold DT (4) and (10)
of System (2). By virtue of N -Fold DT (4) and (10)
with N = 3 and 4, we have derived Three-Fold Solu-
tions (23) and Four-Fold Solutions (24) of System (2),
respectively. Via Three-Fold Solutions (23) and Four-
Fold Solutions (24), we have given the solitonic inter-
actions which are different from those in Refs. [17–
19,22–27]. Figure1a shows the interaction among the
two bell-shape solitons and one anti-bell-shape soli-
ton, whereas Fig. 1b displays the interaction among
the three kink-shape solitons. Figure2a exhibits the
interaction among the two bell-shape solitons and two
anti-bell-shape solitons, and Fig. 2b shows the interac-
tion among the four kink-shape solitons. As we have
observed, those interactions are elastic.
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