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Abstract In this paper, an encryption model for the
grayscale and color images based on novel magic
square, and differential encoding technique along with
chaotic map has been proposed. The coordinate posi-
tions of the plain image have been randomized by
implementing the 2D Arnold scrambling algorithm in
confusion phase. The magic square constructed by a
novel approach has been used to alter the pixel values of
the original image. The differential encoding technique
has been introduced in the model to raise the bit-level
security. Further, the piece-wise linear chaotic map has
been utilized in the diffusion phase to increase ran-
domization for increasing the complexity. The visual
analysis as well as histogram and correlation coeffi-
cient analysis has been performed to test the resistance
of the proposed model against different kinds of statis-
tical, entropy, and cropping attacks. The effect of infor-
mation loss of the plain image hidden in the encrypted
image has been investigated by trimming the one-third
andone-fourth portion of the encrypted image.Thepro-
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posedmodel has also been tested against the differential
attacks by examining the NPCR and UACI scores. A
comparison of the propounded model with the other
existing encryption models has also been made for val-
idation. The results show that the proposed model is
advantageous and feasible for the image encryption-
related applications.
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1 Introduction

The recent advancements in networking and commu-
nication technologies raises the demand to store and
transmit data over the networkwhich requires improve-
ment in the application areas concerning cryptogra-
phy, cybersecurity, etc. [72]. The data transmitted and
stored using open network are prone to information
leakage. With the increase in volume, velocity, and
veracity of the multimedia data, it becomes necessary
to enhance the security, confidentiality, and privacy of
the information [38,57]. The requirement of confiden-
tiality and authenticity of the information being down-
loaded, uploaded, and stored is one of the major issues
in cloud data storage and encryption related applica-
tions. Thus, the need for securing the information from
illegal and unlicensed access becomes a necessity [8].
Cryptography is a vital technique which guarantees the
privacy of secret data by converting it to an unrecog-
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nizable form. Both images and text are converted to an
unreadable form using the process of encryption [53].

Images play a significant role as an essential multi-
media resource in the modern big data era which con-
stitutes a large amount of information [30,70]. Hence-
forth, the maintenance of integrity and security of
images have become a major concern in many fields
such as military, internet communication, multimedia
systems, telemedicine, e-commerce, e-learning, bank-
ing, etc. [13,56,60]. The modern cryptographic appli-
cations offer aworkable solution to the persisting issues
of sharing images through internet.

In general, the image encryption model is divided
into two parts: confusion and diffusion [17,23]. The
randomness in the pixels of plain image is introduced
in the confusion process, whereas the pixel values of
the image are altered in the diffusion process by using
various methods [19].

Frequently, mathematics plays a vital role in various
cryptographic models for enhancing the level of secu-
rity [40,44,63,67]. The researchers have utilized dif-
ferent techniques such as chaotic maps, matrix theory,
wavelet theory, numerical techniques, magic cubes,
transformation theory, elliptic curves, DNA encod-
ing, etc., for encrypting images [10,43,50,52,64]. The
matrix theory fulfills the requirement by using singular
value decomposition, permutation, inverse of matrices,
etc., in cryptographic models [43,45,68]. Most com-
monly, the special type of matrices named as magic
squares raise the level of randomness in the encryp-
tion models to a higher extent [41]. In addition to
matrix theory, the chaosmaps have beenwidely used by
the experimenters in the image encryption algorithms
because of its unpredictability and sensitivity of initial
state [25,49]. The shuffling and altering of image pix-
els have been performed in the confusion and diffusion
phases, respectively, of the encryption algorithms by
using different chaotic maps [32,37]. Despite this the
sensitivity of chaotic maps to parameter initialization
disturbs the stability of image encryption algorithms.
Thus, the chaotic maps are required to be used in com-
bination with other components to achieve the opti-
mum extent of stability. Moreover, it is also necessary
to introduce the newmethods for construction of magic
squares which are capable of raising the level of ran-
domness in the image encryptionmodels in comparison
to the existing models.

In this work, a new approach for the generation of
magic square has been instigated. The flexible struc-

tural features as well as complex arrangement of the
elements of a novel magic square along with chaotic
map anddifferential encoding enlighten theway toward
the field of image encryption. The proposed model has
been implemented on both color as well as grayscale
images. The alteration in pixel values has been per-
formed by taking advantage of elements and properties
of newly constructed magic square which enhances the
reliability and feasibility of the proposed model.

The rest of paper is outlined as under: The related
work is outlined in Sect. 2. The motivation behind this
work is elaborated in Sect. 3. The detailed descrip-
tion of all the phases of the proposed encryption and
decryption model along with the construction of novel
magic square is given in Sect. 4. The anatomization and
detailed discussions of the proposed model are pre-
sented in Sect. 5. The conclusions procured from the
work are delineated in Sect. 6.

2 Related work

A square matrix of order n, in which the elements
alongside each row, each column, and each of the two
main diagonals are sum up to a fixed constant is known
asmagic square [34]. The algebraic properties ofmagic
squares enlighten the way toward different applica-
tion areas illustrated as image processing, cryptogra-
phy, game theory, graph theory, and appreciably more.

The researchers represented several methods for the
construction of magic squares having fabulous mathe-
matical characteristics. Li et al. showed the construc-
tion of pandiagonalmagic squares of doubly even order
using magic rectangles [29]. Lee et al. gave the neces-
sary and sufficient condition for the non-singularity of
regular magic squares by virtue of centro-skew matri-
ces [28]. Chan et al. gave the method for the con-
struction of singular and non-singular regular classi-
cal magic squares of odd order [6]. Liu et al. proved
the non-singularity of the odd-order classical regu-
lar magic square generated using the centro-skew S-
circulant matrix [31]. Miranda et al. gave a method
for the generation of doubly even-order magic square
along with the generalization of Durer′s magic square
[33]. The growingneedof randomness in cryptographic
models motivated the researchers to introduce reliable
method for the construction of magic squares.

The various types of chaotic maps are used in com-
bination with other components for the improvement
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in security of image encryption models in case of
both grayscale and color images by the researchers.
Shuangyuan et al. instigated the image encryption tech-
nique based on matrix transformation by locating the
possible changed region [48]. Pappachan and Baby
proposed image encryption model using combination
of magic square and Tinkerbell maps [36]. Zhong
et al. came forward with the concept of Good Lat-
tice Point (GLP) for image encryption algorithms by
modifying the pixel values using magic square oper-
ations [69]. Sowmiya et al. utilized the elements of
pandiagonal magic squares in the model generated to
encrypt images [51]. Farhan et al. [9] generated the
keys using magic square for color image encryption.
Rageed and Sadiq [39] introduced the composition of
magic square along with 3D-chaotic map to encrypt
and decrypt color images. Hua et al. [21] propounded
a color image encryption algorithm using orthogonal
Latin squares and 2D chaotic map. Wang and Liu [55]
performed the image encryption by associating the
octree diffusing and magic square scrambling with
chaotic maps. Senthilnayaki et al. propounded a medi-
cal image encryptionmodel based onmagic square and
particle swarm optimization (PSO) [47].

From the earlier work, it has been concluded that the
erstwhile image encryption models lack in efficiency
due to tight correlation, high redundancy, and big data
stream. Also, it is necessary to introduce more mathe-
matically rigorous method for the construction of large
order magic squares. Moreover, the image encryption
models based on single component along with either
chaotic map or magic square are resilient in spite of
the models based on combination of more than two
components. Henceforth, in this paper the mathemat-
ically strong method for the generation of large order
magic squares is formulated. Furthermore, this novel
magic square is used in association with chaotic maps
and differential encoding technique for encryption of
both color as well as grayscale images. The differen-
tial encoding is utilized for the first time in encryption
model to enhance the bit-level security and complexity.

3 Motivation

It has been observed from the literature that the math-
ematical approaches are capable of generating a more
secure encryption models in comparison to any other
techniques. Also, the less frequent availability of math-

ematically rigorous methods for the construction of
large ordermagic squares has beennoticedbyus.More-
over, the magic squares are capable of generating a
more secure encryption algorithm on combining with
other components such as chaotic maps, scrambling
techniques, DNA encoding, wavelet algorithms, etc. In
addition, with growing demands it is necessary to pay
attention to some techniques which are not explored
yet. The differential encoding is one such technique
which has not been utilized widely in spite of its great
ability to provide the bit-level privacy to the encrypted
data. Hence, these limitations of the benchmark mod-
els motivate us to propose an image encryption model
by combining the concepts of magic square and differ-
ential encoding technique with the chaotic maps. The
instigation of a novel magic square raises the level of
complexity and security by making use of its elements.
Also, the differential encoding technique is used to
enhance the bit-level security of the proposed encryp-
tion model. Thus, the integration of chaotic map with
the magic square and differential encoding in the pro-
pounded encryption model efficiently neglects all the
major shortcomings of the image encryption models.

4 Proposed encryption/decryption model

The proposed model for encryption and decryption of
grayscale and color images has been instigated in this
paper. Figure1 shows the block diagram of the pro-
posed encryption model. In the proposed model the
encryption process comprises of two phases: confu-
sion and diffusion. The scrambling technique has been
used in the confusion phase to randomize the image
pixels. Further, the diffusion phase has been accom-
plished using components: magic square, differential
encoding technique, and chaotic map are explained in
the following subsections.

4.1 Encryption model

All the phases of the encryption model have been
explained in this subsection. The proposed model has
been implemented on both grayscale and color images
of different sizes. The systematic arrangement of all
the components of the propounded image encryption
model is shown in Fig. 1.
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Fig. 1 Block diagram of
proposed encryption model

4.1.1 Confusion phase

In this phase, the initial locations of the pixels in the
plain image are changed to anyother random location to
increase the haphazardness at the starting point of the
encryption process [17]. In the proposed encryption
model the scrambling has been performed by imple-
menting 2D Arnold map given in Algorithm 1.

Algorithm 1 Scrambling Algorithm
Input: Image (imgM×N ), where M is the number
of rows and N is the number of columns, number of
iterations (i tr).
Output: Scrambling image (scramble_img)
Begin
A=[1,1;1,2]
for k = 1 : i tr

for i = 1 : M
for j = 1 : N

r = (A × [i − 1; j − 1])mod M
scramble_img(i, j) = img(r1 + 1, r2 +

1)

end
end

end

4.1.2 Diffusion phase

The diffusion phase of encryption model is essential to
alter the pixel values of the plain image for generat-
ing an encrypted image. The propounded model con-
tains components in the diffusion phase: magic square,
differential encoding technique, and chaotic map are
explained as follows:

4.1.0.1 Magic square

The n × n-array of n2 numbers in which the sum of
elements of each row, each column, main diagonal, and
anti-diagonal is equal to a fixed constant is called as
magic square and the fixed constant is termed as magic
constant [42].Mathematically, if [ai j ] is amagic square
of order n, then
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n∑

j=1

ai j = k and
n∑

j=1

a ji = k ∀ i = 1, 2, 3, . . .

(1)
n∑

i=1

aii = k and
n∑

i=1

ai,n−i+1 = k. (2)

The utilization of magic squares in the encryption
model raises the level of complexity and security of
the encrypted image. Moreover, the level of security
in the proposed encryption model has been escalated
by combining the concept of magic square with other
components. The elements of magic squares have been
used to change the pixel values of the plain image in the
proposed model. The doubly even-order magic square
of order sixteen has been harnessed in the propounded
model generated by using following novel approach:

Let us consider two sets P = {pk | ∀ 1 ≤ k ≤ n
2 }

and Q = {ql | ∀ 1 ≤ l ≤ n
2 }, where

pk =
{
4s + 1 if k is odd

4s + 4 if k is even
and

ql =
{
4s + 2 if l is odd

4s + 3 if l is even
(3)

for all 0 ≤ s ≤ n
4 − 1. Thus, the elements of first row

of A = [ai j ]n×n are given by

a1 j =
{
j if j ∈ P

n2 + 1 − j if j ∈ Q
. (4)

Now, define

δr =
{
n(n − r) + 1 − a1 j if j ∈ P

n(n + r) + 1 − a1 j if j ∈ Q

for all 1 ≤ r ≤ n

2
− 1. (5)

The filling of remaining first n
2 − 1 number of rows of

A, starting from second row, is performed by using the
following procedure:

Let s1 = {1, 2, 5, 6, . . .} = {x f | ∀ 1 ≤ f ≤ n
4 }

and s2 = {3, 4, 7, 8, . . .} = {yg | ∀ 1 ≤ g ≤ n
4 − 1} be

any two sets, where

x f =
{
4h + 1 if f is odd

4h + 2 if f is even
and

yg =
{
4h + 3 if g is odd

4h + 4 if g is even
(6)

for 0 ≤ h ≤
⌊
n
8 − 1

2

⌋
.

Therefore, the elements of all the remaining rows
starting from the second row and up to

( n
2

)th row are
given by

ar+1, j =
{

δr if r ∈ s1
n2 + 1 − δr if r ∈ s2

. (7)

The elements of the lower half portion of matrix A, i.e.,
from

( n
2 + 1

)th row to nth row, are calculated by using
the following expression

an−i+1, j = n2 + 1 − ai,n− j+1, for 1 ≤ j ≤ n. (8)

Therefore, the sum of elements of the first row (i.e. for
i = 1) is
n∑

j=1

a1 j =
∑

j∈P

j +
∑

j∈Q
(n2 + 1 − j)

=
∑

j∈P

j +
∑

j∈Q
(n2 + 1) −

∑

j∈Q
j

=
∑

j∈Q
(n2 + 1)

{
∵

∑
pk =

∑
ql

}

= n(n2 + 1)

2
. (9)

The sum of elements of the i th row, for 2 ≤ i ≤ n
2 ,

evaluated by considering two cases is given by
Case-I: when r ∈ s1 then the row sum is
n∑

j=1

ai j =
n∑

j=1

ar+1, j

=
n∑

j=1

δr =
∑

j∈P

{n(n − r) + 1 − a1 j }

+
∑

j∈Q
{n(n + r) + 1 − a1 j } = (n2 + 1)

∑

j∈P

(1) + (n2 + 1)
∑

j∈Q
(1)

−nr
∑

j∈P

(1) + nr
∑

j∈Q
(1)

−
⎛

⎝
∑

j∈P

a1 j +
∑

j∈Q
a1 j

⎞

⎠

= (n2 + 1)
(n
2

)
+ (n2 + 1)

(n
2

)

−nr
(n
2

)
+ nr

(n
2

)

−
⎛

⎝
∑

j∈P

j +
∑

j∈Q
(n2 + 1 − j)

⎞

⎠ {from (9)}
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= n(n2 + 1)

2
. (10)

Case-II: when r ∈ s2 then the row sum is
n∑

j=1

ai j =
n∑

j=1

ar+1, j =
n∑

j=1

(
n2 + 1 − δr

)

=
∑

j∈P

{n2 + 1 − n2 + nr − 1 + a1 j }

+
∑

j∈Q
{n2 + 1 − n2 − nr − 1 + a1 j }

=
∑

j∈P

nr −
∑

j∈Q
nr +

⎛

⎝
∑

j∈P

a1 j +
∑

j∈Q
a1 j

⎞

⎠

= nr
∑

j∈P

(1) − nr
∑

j∈Q
(1)

+n(n2 + 1)

2
{from (9)}

= nr
(n
2

)
− nr

(n
2

)

+n(n2 + 1)

2
= n(n2 + 1)

2
. (11)

Next, the sum of elements of each i th row, for n
2 + 1 ≤

i ≤ n, is
n∑

j=1

ai j =
n∑

j=1

an−i+1, j =
n∑

j=1

{n2 + 1 − ai,n− j+1}

= (n2 + 1)
n∑

j=1

(1) − n(n2 + 1)

2
⎧
⎨

⎩∵
n∑

j=1

ai,n− j+1 =
n∑

j=1

ai j ,

for 1 ≤ i ≤ n

2

}

= n(n2 + 1)

2
. (12)

Themain diagonal elements of thematrix A are defined
by

aii = (n + 1)(i − 1) + 1, for 1 ≤ i ≤ n, (13)

and their sum is evaluated by
n∑

i=1

aii =
n∑

i=1

{(n + 1)(i − 1) + 1}

= (n + 1)
n∑

i=1

(i − 1) +
n∑

i=1

(1)

= (n + 1)

(
n(n + 1)

2
− n

)
+ n

= n(n2 + 1)

2
. (14)

Similarly, the anti-diagonal elements of the matrix A
are defined by

ai,n−i+1 = (n − 1)i + 1, for 1 ≤ i ≤ n (15)

and their sum is
n∑

i=1

ai,n−i+1 =
n∑

i=1

{(n − 1)i + 1}

= (n − 1)
n(n + 1)

2
+ n

= n(n2 + 1)

2
. (16)

The column-wise definition of the above-constructed
matrix A = [ai j ]n×n is given below:

For j = 1, the elements of matrix A are given by

ai1 =
{
n(i − 1) + 1 if i ∈ P

n(n + 1 − i) if i ∈ Q
(17)

and their sum is
n∑

i=1

ai1 =
∑

i∈P

{n(i − 1) + 1}

+
∑

i∈Q
{(n2 + 1) − n(i − 1) − 1}

= n
∑

i∈P

(i − 1) +
∑

i∈P

(1) + (n2 + 1)

∑

i∈Q
(1) − n

∑

i∈Q
(i − 1) −

∑

i∈Q
(1)

= n

(
n(n + 1)

4
− n

2

)
+ n

2
+ n(n2 + 1)

2

−n

(
n(n + 1)

4
− n

2

)
− n

2

= n(n2 + 1)

2
. (18)

For 2 ≤ j ≤ n
2 , the elements of thematrix A are defined

by

ai j = ai,r+1 =
{
n2 + 1 − δ′

r if r ∈ s1
δ′
r if r ∈ s2

(19)

where, δ′
r =

{
ai1 + r if i ∈ P

ai1 − r if i ∈ Q
(20)
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Fig. 2 Block diagram of
differential encoding
technique

and s1, s2, P, Q, r are same as defined previously and
their sum is evaluated as below:
Case-I: when r ∈ s1 then the sum of elements of each
column is
n∑

i=1

ai j =
n∑

i=1

ai,r+1 =
n∑

i=1

{(n2 + 1) − δ′
r }

= (n2 + 1)
n∑

i=1

(1) −
∑

i∈P

(ai1 + r)

−
∑

i∈Q
(ai1 − r)

= n(n2 + 1) − n(n2 + 1)

2
− r

(n
2

)

+r
(n
2

)
= n(n2 + 1)

2
. (21)

Case-II: when r ∈ s2 then the sum of elements of each
column is
n∑

i=1

ai j =
n∑

i=1

ai,r+1 =
n∑

i=1

δ′
r

=
∑

i∈P

(ai1 + r) +
∑

i∈Q
(ai1 − r)

=
⎛

⎝
∑

i∈P

ai1 +
∑

i∈Q
ai1

⎞

⎠ +
∑

i∈P

r −
∑

i∈Q
r

= n(n2 + 1)

2
+ r

(n
2

)

−r
(n
2

)
= n(n2 + 1)

2
. (22)

Now, for n
2 + 1 ≤ j ≤ n, the elements of the above-

generated matrix A are given by

ai,n− j+1 = (n2 + 1) − an−i+1, j , for 1 ≤ i ≤ n (23)

and their sum is
n∑

i=1

ai j =
n∑

i=1

ai,n− j+1 =
n∑

i=1

{(n2 + 1) − an−i+1, j }

{
∵

n∑

i=1

an−i+1, j = n(n2 + 1)

2
,

for 1 ≤ j ≤ n

2

}

= (n2 + 1)n − n(n2 + 1)

2
= n(n2 + 1)

2
. (24)

Hence, the matrix A constructed above is a magic

square with magic sum n(n2+1)
2 .

Algorithm2 for the constructionof above-introduced
new class of doubly even-ordered magic square is as
under:

Algorithm 2 Construction Algorithm
Input: Order n(= 4m) of magic square A =
[ai j ]n×n .
Output: Magic square A of order n.

Begin
for s = 0 : n/4 − 1

for k = 1 : n/2
if k is even

pk = 4s + 4
else

pk = 4s + 1
end
P = [pk]

end
end
for s = 0 : n/4 − 1

for l = 1 : n/2
if l is even

ql = 4s + 3
else

ql = 4s + 2
end
Q = [ql ]

end
end
for h = 0 : � n

8 − 1
2�

for f = 1 : n/4
if( f mod 2 = 0)
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x f = 4h + 2
else

x f = 4h + 1
end
s1 = [x f ]

end
end
for h = 0 : � n

8 − 1
2�

for g = 1 : n
4 − 1

if(g mod 2 = 0)
yg = 4h + 4

else
yg = 4h + 3

end
s2 = [yg]

end
end
for j = 1 : n

if( j ∈ P)
a1 j = j

else
a1 j = n2 + 1 − j

end
end
for r = 1 : ( n2 − 1)

for j = 1 : n
if( j ∈ P)

δr = n(n − r) + 1 − a1 j
else

δr = n(n + r) + 1 − a1 j
end

end
end
for r = 1 : ( n2 − 1)

for j = 1 : n
if (r ∈ s1)

ar+1, j = δr
else

ar+1, j = n2 + 1 − δr
end

end
end
for i = ( n2 + 1) : n

for j = 1 : n
ai j = n2 + 1 − an−i+1,n− j+1

end
end

Fig. 3 Illustration of differential encoding technique used in
encryption model

4.1.0.2 Differential encoding technique

The differential encoding technique is implemented to
impart unambiguous signal reception. In this technique,
the previous reference bit is XOR with next bit in the
sequence to hide the bit information of the plain image
[73]. In this paper, it has been applied to encode the
elements of the magic square which raises the level of
security and complexity of the encrypted image. The
encoding and decoding formulas used in implementa-
tion of this technique have been given below:

en = dn ⊕ en−1 (25)

d̃n = ẽn ⊕ ẽn−1 (26)

where dn, en, d̃n and ẽn are the input, encoded, receiver
and decoded sequences.

The block diagram of the differential encoding
technique is depicted in Fig. 2. The examples of the
sequence employed in the encryption and decryption
model generated by this technique are demonstrated in
Figs. 3 and4.

4.1.0.3 Chaotic map

The random behavior, vulnerability, and suscepti-
bility features of the chaotic maps increase their
demand in the image encryption models [11]. The
sequences generated using Piece-wise Linear Chaotic
Map (PWLCM) alter the pixel values of the plain image
to a high extent. Moreover, the chaotic maps generate
different sequences each time for the same imagewhich
makes it hard for the intruders to fetch any information
related to the plain image from the encrypted image.
Two secret keys n0 (control parameters) and x0 (initial
value) are used for the generation of chaotic sequences.

The complete utilization of the above components
in the encryption model is outlined in Algorithm 3 as
under:
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Algorithm 3 Encryption Algorithm
Input: Color (imgM×N×l) or Grayscale (imgM×N )

image, Secret key key1(n0, x0)
Output: Encrypted image (enc_img)
Begin

Step 1: The pixel values of img are scrambled using
Algorithm 1

Step 2: Convert the 2D image array to 1D array
(img_1D)

Step 3: Use the secret key key1(n0, x0) to generate
the chaotic sequence
X1 = x0
for i = 2 : M × N

X1(i) = n0×X1(i−1)×(1−X1(i−1))
end

Step 4: To convert the continuous chaotic values into
discrete values use the equation
X1 = �X1 × 1014� mod 256

Step 5: Convert the values of X1 into binary form
(bin_X1)

Step 6: Generate the doubly even order magic square
(MS) of order 16 using algorithm 2.

Step 7: Scramble the elements of magic square using
Algorithm 1 and convert it into 1D array
(m_square)

Step 8: for i = 1 : M × N
(a) bin_sq(i)=binary value of (m_square

(img_1D(i) + 1))
(b) Generate encryptedvalues (enc)by applying

differential encoding in the values bin_sq(i)
and bin_X1

(c) Apply circular shift on enc binary values and
convert it into decimal values

(d) Generate encrypted image (e_img) by con-
verting 1D array to 2D array end

Step 9: count_component=size(img)
if size(count_component,2)==3

l1 = img(:, :, 1), l2 = img(:, :, 2), l3 =
img(:, :, 3)

for l p, p = 1, 2, 3
Repeat Steps 1 to 8
cp = e_img

end
enc_imgcolor = c1 || c2 || c3

else
l = img

Repeat Steps 1 to 8

enc_imggray = e_img
end

4.2 Decryption model

The decryption has been accomplished by applying the
encryption algorithm in reverse order. Starting with the
conversion of 2D encrypted image to 1D array, the
reverse circular shift and XOR operation have been
applied to fetch the encoded magic square values using
chaotic maps in binary form. The reverse differential
encoding technique is used to extract the actual selected
entries of the magic square which are further used to
fetch the pixel values of the plain image. The reverse
scrambling algorithm has been used to restore the orig-
inal positions of the pixels in the plain image from the
encrypted image. The reverse of the scrambling process
is depicted with the help of Algorithm 4 as below:

Algorithm 4 Reverse Scrambling Algorithm
Input:Scramble image (scramble_imgM×N ),where
M is the number of rows and N is the number of
columns, number of iterations (i tr).
Output: Unscrambling image (unscramble_img)
Begin
A=[1,1;1,2]
for k = 1 : i tr

for i = 1 : M
for j = 1 : N

r = (A × [i − 1; j − 1])mod M
unscramble_img(r1 + 1, r2 + 1) =

scramble_img(i, j)
end

end
end

5 Results and discussions

In this paper, the proposed encryption and decryp-
tion model based on the integration of magic square
and differential encoding with chaotic maps has been
analyzed. The model has been investigated in MAT-
LAB 2021a platform, on Windows 10 Pro operating
system with Intel� Xenon� CPU E5-2650 v3 (2.30
GHz) and 8GB of RAM. The 20 grayscale and 10
color images have been investigated using the proposed
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Fig. 4 Illustration of differential encoding technique used in decryption model

Image Name Original Image Encrypted Image Decrypted Image

4.1.04

4.1.05

7.2.01

5.3.01

5.1.12

Fig. 5 Encrypted and Decrypted test images
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image encryption model while the results of only 17
images have been shown in the paper. The images avail-
able in USC-SIPI database have been utilized for the
attestation of the propounded model [59]. The secu-
rity, visual and statistical examination of the proposed
model has been performed to confirm the resistance
ability of themodel against differential, entropy, visual,
statistical, and cropping attacks. The grayscale and
color images of resolution 256×256 pixels, 512×512
pixels, and 1024 × 1024 pixels have been considered
for experimentation of the proposed model.

5.1 Visual analysis

The visual analysis is used to check the dissimilar-
ity and similarity of the plain image with encrypted
and decrypted image respectively. Figure5 depicts the
plain, encrypted, and decrypted grayscale and color
images of different sizes using the proposed model.
In case of color images, the component-wise encryp-
tion has been carried out using the proposed model.
The encrypted images constitute the smooth distribu-
tion of the RGB and grayscale components. The visual
inspection of the encrypted images shows that no infor-
mation about structural outline of the plain image has
been revealed. Also, a high visual similarity has been
observed between decrypted and plain images.

5.2 Histogram analysis

The histograms invaded the demographic dissimilarity
between the pixel values of the plain and encrypted
images. The effectiveness of the resistance against sta-
tistical attacks of the encryption model is guaranteed
by the even and smooth distribution plots [2].

In Figs. 6 and7, the histograms of original and
encrypted color and grayscale images are represented.
The uneven distribution in the histogram of the plain
images convey the useful information about the pixel
values. The histograms of the encrypted images are uni-
formly distributed in the case of grayscale as well as
color images which guarantee the strength of the pro-
posedmodel to resist statistical attacks. The uniformity
in the histograms is justified by using the chi-square
test [17,23,35] to obtain the numerical results instead
of visual spoofing and its values are calculated by the

following formula:

χ2 =
N∑

i=1

(Pi − Ei )
2

Ei

where Ei = MN
256 and Pi represents the expected and

observed frequencies of each level in the image and
i = 1, 2, 3, . . . , 255. Generally, for the different levels
of significance the chi-square values are χ2

0.05(255) =
293.2478, χ2

0.01(255) = 310.4574 and χ2
0.1(255) =

284.3359.
In Table 1, the chi-square values of the encrypted

image are less than the chi-square values of the plain
image which proves the uniformity of histograms of
encrypted images.

5.3 Key space analysis

The security of an image encryption model from the
brute-force attacks is assured by the enough large size
of key space. The required size of the key spacemust be
greater than 2128 to resist the brute-force attacks effec-
tively [39,46]. In the proposed image encryptionmodel
the key k = (k1, k2, k3, k4) is used for the decryp-
tion process at the receiver end. Here, the sub-keys
k1, k2, k3, k4 represent the size of key of the 2DArnold

Table 1 Chi-square test values of color andgrayscale test images

Image name Type Plain image Encrypted image

4.1.01 Color 161648.19 247.78

4.1.02 Color 279285.98 258.29

4.1.03 Color 757390.70 257.11

4.1.04 Color 81482.60 244.15

4.1.05 Color 317258.15 252.90

4.1.08 Color 338837.91 254.36

4.2.07 Color 340999.44 247.75

5.1.09 Gray 135687.57 250.02

5.1.10 Gray 50862.54 258.48

5.1.11 Gray 220848.68 274.57

5.1.12 Gray 282061.56 241.40

5.2.08 Gray 298865.24 231.33

5.2.09 Gray 441857.81 266.74

7.1.01 Gray 1153566.31 273.24

5.3.01 Gray 709340.68 270.39

5.3.02 Gray 1974776.14 256.50

7.2.01 Gray 7199928.10 217.44
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map used as scrambling technique, the size of key gen-
erated by magic square, the size of key produced by
reference bits, and the size of key consisting of the
parameters n0 = (n1, n2, n3) as well as initial values
x0 = (x1, x2, x3) of the PWLCM map respectively.
Further, if the size of each element of the magic square
of order m is 2b bits then the size of the sub-key k2 is
(2b)m

2
. Also, if the computer precision is 10−15 then

the size of key generated by each parameter and initial
value in PWLCM is 1015 which means the size of sub-
key k4 is (1015)3 × (1015)3 ≈ 2299. Hence, the total
size of the key space is calculated as

k1 × (2b)m
2 × k3 × (1015)3 × (1015)3

≈ k1 × (2b)m
2 × k3 × 2299

= k1 × k3 × (2bm
2+299)

which is much larger than 2128. This infers that the pro-
posed model is capable of resisting brute-force attacks.

5.4 Key sensitivity analysis

The high sensitivity of the key in the encryption model
guarantee the infeasibility of the brute force attack to
decrypt the encrypted image. It means that the slight-
est changes made in the key used for decryption pur-
pose do not allow the images to be get decrypted
[4,65]. In the proposed model, the change in only a
single parameter of the key k = (k1, k2, k3, k4) do not
allow the encrypted image to reveal any information

Fig. 6 Histograms of color test images

Fig. 7 Histograms of grayscale test images
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related to the plain image. For instance, in case of RGB
image if change the initial value x0 = (x1, x2, x3) of
the PWLCM from x1 = 0.157613081677548, x2 =
0.970592781760616, x3 = 0.957166948242946 to
x1 = 0.157613081977548, x2 = 0.970592781960616,
x3 = 0.957166948942946 then this modified key do
not generate the original plain image. Similarly, the
intruder will never be able to obtain the original plain
image if two ormore parameters of the key are changed.
The results of the decrypted images after changing one,
two and three parameters in the key of the image 4.1.04
(RGB image) and 5.1.12 (gray image) are shown in
Fig. 8which ensures that the proposedmodel efficiently
resists the brute force attacks.

5.5 Speed analysis

The time taken for the execution of an algorithm
is also a significant factor, with respect to enhanced
security level. The times taken by the encryption and
decryption algorithms of the proposed model are given
in Table 2, in case of both grayscale and color test
images. The average times taken for the encryption
of grayscale images of sizes 256 × 256, 512 × 512
and 1024 × 1024 pixels are 2.3 s, 9.5 s and 38.5 s
respectively. In the same way, the encryption times of
256×256 and 512×512 pixels color images are 6.75 s
and 27.7 s, respectively. Also, their corresponding aver-
age decryption times in case of both grayscale as well
as color images are 3.66 s, 14.95 s, 60.31 s, 11.07 s
and 45.23 s. It has been concluded that the proposed
model is faster in comparison to some erstwhile mod-
els [3,5,16,24,54,58,66]. Also, the proposed image
encryption model is slower in comparison to the other
state-of-the-art models [22,26,62,64]. The main rea-
son is that in order to improve the encryption security
of this encryption method the image is scrambled with
complex chaotic map, and the alteration of image pixel
values using the elements of proposed magic square,
which greatly increases the encryption speed.

The comparative analysis of the average values of
time taken for encryption and decryption of 256× 256
grayscale images is represented in Table 3. The bold
values indicate that the proposedmodel has better speed
efficiency in comparison to erstwhile image encryption
models. The data used for comparison of the algorithms
introduced by Hu et al. [16], Wang and Liu [58], Zhan
et al. [65], Chai et al. [5] has been taken from Yan et
al. [62].

Table 2 Speed analysis of color and grayscale test images

Image Type Encryption time (in s) Decryption time (in s)

4.1.01 Color 6.6579 11.1714

4.1.02 Color 6.8697 10.8531

4.1.03 Color 6.7266 11.1876

4.1.04 Color 6.8697 11.2047

4.1.05 Color 6.6579 10.9451

4.1.08 Color 6.7345 11.0839

4.2.07 Color 27.7834 45.0566

5.1.09 Gray 2.3498 3.6401

5.1.10 Gray 2.3713 3.6636

5.1.11 Gray 2.3765 3.6734

5.1.12 Gray 2.3537 3.6529

5.2.08 Gray 9.5224 14.7534

5.2.09 Gray 9.5346 15.3539

5.3.01 Gray 38.5357 60.9303

5.3.02 Gray 38.5562 59.7302

7.1.01 Gray 9.5179 14.7603

7.2.01 Gray 38.6883 60.2592

Table 3 A comparative analysis of average encryption and
decryption speeds

Encryption
model

Average encryp-
tion time (in s)

Average decryp-
tion time (in s)

Ayoup et al. [3] 7.32 –

Hu et al. [16] 14.83 14.96

Wang and Liu [58] 15.82 13.35

Zhan et al. [66] 38.39 36.98

Chai et al. [5] 10.79 10.73

Vidhya et al. [54] 10.44 –

Kumar et al. [24] 10.44 –

Proposed 2.36 3.66

5.6 Correlation coefficient analysis

The relation between the neighboring pixels of the plain
and encrypted images is revealed by evaluating the cor-
relation coefficients [12] horizontally, vertically and
diagonally using the formula given below:

r(u, v) =
∑N

i=1

((
ui − 1

N

∑n
i=1 ui

) (
vi − 1

N

∑N
i=1 vi

))

√
∑N

i=1

(
ui − 1

N

∑N
i=1 ui

)2
√

∑N
i=1

(
vi − 1

N

∑N
i=1 vi

)2

(27)
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)d()c()b()a(

)h()g()f()e(

Fig. 8 a, e plain images ��4.1.04′′ and ��5.1.12′′; b, f decrypted form of images with one key changed; c, g decrypted form of images
with two keys changed; d, h decrypted form of images with three keys changed

where N is the size of the image and u, v are adjacent
pixel values of the grayscale image or RGB compo-
nents.

The average horizontal, vertical and diagonal corre-
lation coefficients have been evaluated for both plain
and encrypted images in this work. The correlation
between neighboring pixels of the plain and encrypted
images has been performed by randomly choosing
3000 pairs of neighboring pixels in opposite directions.
The pixels value (x + 1, y) with respect to the variable
position (x, y) is considered for horizontal correlation.
In the same way, the neighboring pixels (x, y + 1) and
(x +1, y+1) have been used for vertical and diagonal
correlation respectively over the value (x, y).

In Fig. 9, the average horizontal, vertical, and diag-
onal correlation scatter plot of the color images have
been depicted. The linear relationship has been fol-
lowed in the plots of plain imagewhich infers the strong
correlation between the neighboring pixel values. On
the other hand, the weak correlation between the neigh-
boring pixel values of the encrypted image in the figure
shows that the statistical attacks get weaker against the
proposed model.

Figure 10 represents the correlation coefficient scat-
ter plots of the grayscale images. The plots of plain
images show that the points are closely placed along the

diagonal line which implies high correlation between
the neighboring pixels. While the symmetrically dis-
tributed points in the plots of encrypted images depict
the low correlational among the neighboring pixels.
Thus, the proposed model greatly minimizes the corre-
lation between the neighboring pixels of the encrypted
image which enhances the resisting power of the pro-
posed model against statistical attack.

The average values of correlation coefficients of the
plain and encrypted images are indicated in Table 4.
The negative values of the correlation coefficient of
the encrypted images obtained by using the proposed
model depicts the weak relationship among the neigh-
boring pixels. This implies that the proposed model is
highly resistant to statistical-based attacks.

5.7 Information entropy analysis

The distribution and randomness in the pixels of an
image is measured by entropy parameter and is calcu-
lated using the formula shown as follows:

H(t) =
255∑

i=0

p(ti ) loga

(
1

p(ti )

)
(28)
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lanogaiDlacitreVlatnoziroH

4.1.04

4.1.05

Fig. 9 Correlation between two adjacent pixels of plain and encrypted color test images
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lanogaiDlacitreVlatnoziroH

7.2.01

5.3.01

Fig. 10 Correlation between two adjacent pixels of plain and encrypted grayscale test images
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Table 4 Correlation coefficients of color and grayscale test images

Image name Type Plain image Encrypted image
Horizontal Vertical Diagonal Horizontal Vertical Diagonal

4.1.01 Color 0.9622 0.9729 0.9393 − 0.0042 0.0079 − 0.0361

4.1.02 Color 0.9582 0.9450 0.9184 − 0.0140 − 0.0277 − 0.0068

4.1.03 Color 0.9278 0.9391 0.8982 0.0036 − 0.0207 − 0.0101

4.1.04 Color 0.9878 0.9776 0.9669 − 0.0004 − 0.0244 − 0.0064

4.1.05 Color 0.9289 0.9667 0.9131 − 0.0024 − 0.0377 − 0.0229

4.1.08 Color 0.9396 0.9640 0.9015 − 0.0315 − 0.0072 − 0.0213

4.2.07 Color 0.9670 0.9649 0.9512 − 0.0234 − 0.0238 − 0.0014

5.1.09 Gray 0.9417 0.9009 0.8560 − 0.0071 − 0.0023 − 0.0379

5.1.10 Gray 0.8553 0.9028 0.7063 − 0.0069 − 0.0094 − 0.0039

5.1.11 Gray 0.9356 0.9526 0.9042 − 0.0274 − 0.0506 − 0.0118

5.1.12 Gray 0.9783 0.9544 0.9331 − 0.0111 − 0.0072 − 0.0306

5.2.08 Gray 0.8918 0.9194 0.8456 − 0.0129 − 0.0184 − 0.0019

5.2.09 Gray 0.8644 0.8576 0.8071 − 0.0222 − 0.0195 0.0064

7.1.01 Gray 0.9229 0.9602 0.9045 − 0.003 − 0.0100 − 0.0009

5.3.01 Gray 0.9822 0.9776 0.9652 − 0.0085 − 0.0442 − 0.0155

5.3.02 Gray 0.9022 0.9062 0.8649 − 0.0112 − 0.0251 − 0.0188

7.2.01 Gray 0.9423 0.9593 0.9448 − 0.0064 − 0.0232 − 0.0110

where ti is the pixel value and p(ti ) is its probability of
occurrence in the image.

Table 5 contains the entropy values of color and
grayscale images. It has been delineated that the
entropy values of the encrypted images procured using
the proposed model lies between 7.9970 and 7.9999
which is near to 8. Hence, in the proposed model there
are very less chances of information leakage. This
implies that the proposed model is less prone to sta-
tistical and entropy attacks.

The comparison of the proposedmodelwith the erst-
whilemodels for the entropy values is shown inTable 6.
The bold values indicate the better score obtained by the
proposed model which proves that the proposed model
is more secure to the entropy and statistical attacks as
compared to the existing models.

5.8 Differential attack

The information transmitted through open network in
the form of images is prone to the differential attacks.
The performance of the model against differential
attack is ensured by using the two widely used param-
eters: NPCR and UACI. The extent of percentage of

distinct pixels in the two encrypted images is measured
by using NPCR (number of pixels change rate). On the
other hand, UACI metric (unified averaged changed
intensity) depicts the average dissimilarity between the
two encrypted images. The formulas used for finding
the NPCR and UACI values are as follows:

NPCR(C1,C2) =
∑M

i=1
∑N

j=1 c(i, j)

w × h
(29)

UACI(C1,C2) = 1

w × h⎛

⎝
M∑

i=1

N∑

j=1

|C1(i, j) − C2(i, j)|
255

⎞

⎠

(30)

where M and N represent the width and height of
the plain image, C1 and C2 are two encrypted images
encrypted before and after one pixel change, c is the dif-
ference between the corresponding pixel values of the
encrypted images C1 and C2, and w × h is the number
of pixels in the plain image.

TheNPCRandUACIvalues of the encrypted images
using the proposedmodel are shown inTable 7. Theval-
ues of NPCR and UACI have been analyzed for signif-
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Table 5 Entropy values of
color and grayscale test
images

Image name Type Plain image Encrypted image

4.1.01 Color 6.4155 7.9973

4.1.02 Color 6.2945 7.9990

4.1.03 Color 5.9709 7.9991

4.1.04 Color 7.4270 7.9992

4.1.05 Color 7.0686 7.9990

4.1.08 Color 6.8527 7.9990

4.2.07 Color 7.6698 7.9998

5.1.09 Gray 6.7093 7.9972

5.1.10 Gray 7.3118 7.9971

5.1.11 Gray 6.4523 7.9970

5.1.12 Gray 6.7057 7.9973

5.2.08 Gray 7.2010 7.9994

5.2.09 Gray 6.9940 7.9993

7.1.01 Gray 6.0274 7.9992

5.3.01 Gray 7.5237 7.9998

5.3.02 Gray 6.8303 7.9998

7.2.01 Gray 5.6415 7.9999

Table 6 A comparison of entropy values

Image name → 5.1.09 5.1.10 5.1.11 5.1.12 5.2.08 5.2.09 7.1.01 5.3.01 5.3.02 7.2.01
Plain entropy → 6.7093 7.3118 6.4523 6.7057 7.2010 6.9940 6.0274 7.5237 6.8303 5.6415

Encrypted entropy

Hu and Li [15] 7.9974 7.9975 7.9971 7.9975 7.9993 7.9992 7.9992 7.9998 7.9998 7.9998

Alawida et al. [1] 7.9965 7.9972 7.9973 7.9954 7.9992 7.9990 7.9980 7.9993 7.9992 7.9988

Lan et al. [27] 7.9971 7.9971 7.9973 7.9968 7.9993 7.9993 7.9992 7.9998 7.9998 7.9998

Hua and Zhou [18] 7.9971 7.9971 7.9972 7.9970 7.9993 7.9993 7.9992 7.9998 7.9998 7.9998

Hua et al. [19] 7.9973 7.9972 7.9975 7.9968 7.9993 7.9993 7.9993 7.9998 7.9998 7.9992

Zhou et al. [71] 7.9966 7.9971 7.9975 7.9972 7.9991 7.9992 7.9990 7.9998 7.9996 7.9996

Wu et al. [61] 7.9972 7.9970 7.9974 7.9974 7.9993 7.9993 7.9992 7.9998 7.9998 7.9992

Proposed model 7.9972 7.9971 7.9970 7.9973 7.9994 7.9993 7.9993 7.9998 7.9998 7.9999

icance value at α = 0.05. The proposed model pass the
test results for all the images corresponding to the the-
oretical NPCR and UACI critical values which shows
the resistance against the differential attacks.

In Table 8, juxtaposition of the proposedmodel with
existing models is presented. The bold values of NPCR
and UACI indicates the failure of the encryption mod-
els. It has been observed that the proposed model pass

all the NPCR and UACI test results for the significant
level at α = 0.05. However, the existing encryption
models proposed by [2], [27] and [18] do not give a test
result of 100% which implies that these models can be
prone to the differential attack than the rest of the mod-
els. However, the proposed scheme exhibits excellent
performance by comparison,which proves the progress
of this work.
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Table 7 The NPCR and UACI results of color and grayscale images (significance level α = 0.05)

Theoretical NPCR and UACI critical values [63]
256 × 256 NPCR∗

0.05 = 0.995693 UACI∗−
0.05 = 0.332824, UACI∗+

0.05 = 0.336447
512 × 512 NPCR∗

0.05 = 0.995893 UACI∗−
0.05 = 0.333730, UACI∗+

0.05 = 0.335541
1024 × 1024 NPCR∗

0.05 = 0.995994 UACI∗−
0.05 = 0.334183, UACI∗+

0.05 = 0.335088
Experimental NPCR and UACI values using proposed model
Image name Type Image size NPCR UACI Pass rate (%)

4.1.01 Color 256 × 256 0.9961 0.3352 100

4.1.02 Color 256 × 256 0.9961 0.3339 100

4.1.03 Color 256 × 256 0.9961 0.3335 100

4.1.04 Color 256 × 256 0.9962 0.3346 100

4.1.05 Color 256 × 256 0.9961 0.3340 100

4.1.08 Color 256 × 256 0.9962 0.3355 100

4.2.07 Color 512 × 512 0.9961 0.3346 100

5.1.09 Gray 256 × 256 0.9961 0.3353 100

5.1.10 Gray 256 × 256 0.9958 0.3338 100

5.1.11 Gray 256 × 256 0.9961 0.3351 100

5.1.12 Gray 256 × 256 0.9960 0.3335 100

5.2.08 Gray 512 × 512 0.9961 0.3342 100

5.2.09 Gray 512 × 512 0.9960 0.3344 100

7.1.01 Gray 512 × 512 0.9960 0.3342 100

5.3.01 Gray 1024 × 1024 0.9961 0.3348 100

5.3.02 Gray 1024 × 1024 0.9961 0.3345 100

7.2.01 Gray 1024 × 1024 0.9960 0.3347 100

Table 8 A comparison of NPCR and UACI values

Image name → 5.1.09 5.1.10 5.1.11 5.1.12 5.2.08 5.2.09 7.1.01 5.3.01 5.3.02 7.2.01 Test results (%)

Hu and Li [15]

NPCR 0.99629 0.99576 0.99622 0.99611 0.99603 0.99635 0.99598 0.99623 0.99613 0.99616 100

UACI 0.33365 0.33422 0.33518 0.33487 0.33481 0.33474 0.33398 0.33468 0.33455 0.33484 100

Hua et al. [20]

NPCR 0.99628 0.99629 0.99706 0.99706 0.99625 0.99629 0.99621 0.99606 0.99619 0.99608 100

UACI 0.33505 0.33524 0.33511 0.33417 0.33497 0.33478 0.33415 0.33468 0.33443 0.33469 100

Alawida et al. [2]

NPCR 0.99603 0.99636 0.99942 0.99792 0.99960 0.99876 0.99957 0.99950 0.99982 0.99980 100

UACI 0.33552 0.33453 0.33586 0.33453 0.33692 0.33548 0.33648 0.33508 0.33514 0.33487 60

Lan et al. [27]

NPCR 0.99600 0.99640 0.99600 0.99610 0.99620 0.99630 0.99590 0.99610 0.99610 0.99610 100

UACI 0.33420 0.33450 0.33410 0.33400 0.33450 0.33570 0.33470 0.33470 0.33490 0.33500 90

Hua and Zhou [18]

NPCR 0.99607 0.99615 0.99624 0.99570 0.99587 0.99626 0.99599 0.99593 0.99613 0.99616 90

UACI 0.33446 0.33494 0.33554 0.33430 0.334008 0.33480 0.33504 0.33459 0.33461 0.33456 100

Proposed model

NPCR 0.99613 0.99584 0.99610 0.99599 0.99610 0.99597 0.99600 0.99606 0.99609 0.99602 100

UACI 0.33534 0.33380 0.33508 0.33345 0.33424 0.33441 0.33425 0.33480 0.33452 0.33474 100
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Plain image Encrypted image Cropped image Decrypted Image

Images after (1/3)rd trimming

Images after (1/4)th trimming

Images after (1/3)rd trimming

Images after (1/4)th trimming

Fig. 11 Cropping attack analysis results for (1/3)rd and (1/4)th data loss

5.9 Cropping attack

The anti-shearing aptness of the encryption model is
verified by trimming some portions of the encrypted

image. The trimming can spread the subtle changes in
the plain image to the whole encrypted image in the
encryption process. It also, tells about the effect of data
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Table 9 SSIM values of
color and grayscale test
images

Image name Type Plain versus encrypted Plain versus decrypted

4.1.01 Color 0.0079 1.0000

4.1.02 Color 0.0043 1.0000

4.1.03 Color 0.0095 1.0000

4.1.04 Color 0.0096 1.0000

4.1.05 Color 0.0089 1.0000

4.1.08 Color 0.0089 1.0000

4.2.07 Color 0.0074 1.0000

5.1.09 Gray 0.0103 1.0000

5.1.10 Gray 0.0106 1.0000

5.1.11 Gray 0.0106 1.0000

5.1.12 Gray 0.0088 1.0000

5.2.08 Gray 0.0106 1.0000

5.2.09 Gray 0.0082 1.0000

7.1.01 Gray 0.0107 1.0000

5.3.01 Gray 0.0080 1.0000

5.3.02 Gray 0.0094 1.0000

7.2.01 Gray 0.0049 1.0000

loss in an encrypted image before decryption process
[19].

The cropping attack has been applied on all the
test images, but the results of only one grayscale and
one color image are represented in Fig. 11. It has been
observed that decryption process of the proposedmodel
can still recover the plain image even after the loss of
(1/3)rd and (1/4)th amount of data in the encrypted
image [17]. The most of the information of the recov-
ered images are easily recognizable even with addition
of some noise. Therefore, when the encrypted image
encounters cropping attack in the transmission, the pro-
posed model has better security and can effectively
resist the cropping attack.

5.10 SSIM

Structural Similarity IndexMetric (SSIM) qualifies the
degree of structural invariance between the two images
[7]. It ranges from 0 to 1. The SSIM value 1 instigates
that the images are completely indistinguishable, while
its 0 value represents the characteristic dissimilarity
between two images [14].

From Table 9 it has been analyzed that the plain
versus decrypted images got the SSIM value equal
to 1 which depicts the complete structural similarity
between the plain anddecrypted images. TheSSIMval-
ues of the plain versus encrypted images ranges from
0.0043 to 0.0107 which means that the two images are
completely distinct with respect to the image pixel val-
ues. Hence, the proposed image encryption model is
effective and feasible against statistical attacks which
implies that there are very few chances of information
loss.

The experimental and statistical analysis conveys
that the proposed image encryption and decryption
model has better performance as compared to the exist-
ingmodels. The experimental results show that the pro-
posed model resist statistical, entropy, differential, and
cropping attacks in an efficient way.

6 Conclusion

This work propounds an image encryption and decryp-
tion model based on the scrambling algorithm, a novel
magic square and differential encoding technique along
with chaotic maps to enhance the level of security and
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privacy. The propounded model comprises two phases:
confusion and diffusion. In the proposed model, the
coordinate positions of the image pixels have been ran-
domized by employing the scrambling algorithmwhich
intensifies the degree of intricacy in the encrypted
image before altering the pixel values. The elements
of the magic square are utilized to change the image
pixel values which reduce the plain image informa-
tion hidden in the encrypted image. Further, the bit-
level security of the proposedmodel has been improved
by virtue of the implementation of the differential
encoding technique on the magic square values. The
XOR operation has been performed on the encoded
and chaotic map values before applying the circular
shift. Next, the complexity of the magic square values
has been increased by using differential encoding and
chaotic map. The in-depth security, structural, visual,
and robustness anatomization of the propoundedmodel
have been performed to check the validity of the model
against entropy, statistical, cropping, and differential
attacks. The comparative inspection of the proposed
model with the existing models reveals that the pro-
posed model is more secure against different types of
attacks. Henceforth, the proposedmodel is feasible and
efficient for cryptographic application areas. In future,
the researchers may work on the combination of alge-
braic properties of the magic square propounded in this
paper along with wavelet transformations, numerical
methods, DNA encoding technique, etc. These combi-
nations might be able to generate the image encryption
model with more enhanced level of security and com-
plexity. Also, the proposed model will be tested for
video and audio data encryption.

Data availability The data that support the findings of the study
are available in USC-SIPI [http://sipi.usc.edu/database].
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