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Abstract An improved incremental harmonic bal-

ance method (IHBM) is proposed by Wang (J Sound

Vib 441:111–125, 2019) to solve the periodic

responses of the continuous nonlinear stiffness sys-

tems. However, the nonlinear damping systems

remain unsolved. This paper aims to investigate the

nonlinear damping parts by the proposed IHBM

method, which is based on the principle that any

continuous curve can be approximated by a piecewise-

linear curve with discrete nodes. The piecewise-linear

function can be considered a unified benchmark

function that can convert the complex IHBM Galerkin

process of arbitrary nonlinear damping systems to that

of unified piecewise-linear damping systems. The

general process of the proposed method for this

piecewise-linear system is derived considering the

stability of the solutions. Then, a polynomial nonlinear

damping system is investigated to validate the accu-

racy of the method. Furthermore, five typical cases of

single-degree-of-freedom (SDOF) nonlinear damping

systems are carried out, and this method is also

extended to multi-degree-of-freedom (MDOF)

systems where each nonlinear force in the systems is

expressed by the function of only one independent

DOF. The results illustrate that the proposed method

shows convenience and accuracy in obtaining the

dynamics of nonlinear systems.

Keywords Incremental harmonic balance method �
Discrete node process � Equivalent piecewise-

linearization � Nonlinear damping system � Hysteretic

system

1 Introduction

Modern mechanical design usually includes steps

from functional design to performance design. Among

the performance designs, vibration and noise reduc-

tion has become the core of many products. However,

certain designs for suppressing vibration and noise are

based on linear system designs that cannot distinguish

output characteristics under different inputs. There-

fore, control techniques that not only increase the cost

but also reduce the system’s reliability are introduced.

The nonlinear system, on the other hand, can meet the

need of the above performance designs with its own

characteristics and can be regarded as a direct, passive

vibration controller. Consequently, the application of

nonlinear components, including inertial, stiffness and

damping devices, in mechanical products has gradu-

ally expanded, and nonlinear designs and
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corresponding analysis have become mainstream

directions for mechanical designs.

There are numerous mechanisms that employ

geometry nonlinearity that can be regarded as passive

isolators to improve the performance of vibration

reduction [1–4]. However, the phenomena of the

amplitude jump in primary resonance and subhar-

monic/supharmonic responses introduced by the non-

linear stiffness may cause new problems for the

isolators’ performance [5, 6]. Thus, nonlinear damp-

ing devices are considered to suppress the resonance

amplitudes of nonlinear systems and avoid the above

shortcomings. The most classical nonlinear damping

is cubic damping, which is an effective way to reduce

vibrational amplitude among large velocity regions

[7]. Xiao [8] analyzed a nonlinear vibrator that

contained cubic damping and stiffness by the output

frequency response function. The analytical results

showed that cubic damping could provide better

performance for vibration isolators under force exci-

tation or base displacement excitation. Other polyno-

mial types of nonlinear damping include fluid

damping expressed by the square velocity mathemat-

ical model, higher-order polynomial damping [9], and

velocity & displacement-dependent damping (VDD)

[10]. Another representative type of nonlinear damp-

ing is dry friction damping, which is considered in

cases caused by the unavoidable contact with the

relative interface velocity between each element of the

isolator [5]. Different models, such as Coulomb

damping [11], have been proposed. The Coulomb

model can evolve diverse models which are closer to

reality [12], such as the continuous model that

considers elastic connection between the mass and

the contact surface [13]. Furthermore, the Coulomb

model can be developed into the hysteretic model that

refers to the lagging effect caused by material

nonlinearity. Typical hysteretic models include the

algebraic model and differential model [14–16]. The

former, such as the bilinear model, utilizes an

algebraic equation to compute the output parameters,

while the latter can be described by differential

models, such as the Bouc–Wen model. The dynamics

of the bilinear model under period excitations are

investigated by Caughey [17] via the perturbation

method. This model can be considered as a simplified

hysteretic model while its dynamics are complicated

due to the switches to various modes [18, 19]. The

Bouc–Wen model is widely analyzed due to the

perfect mathematical expressions [20, 21]. Vaiana

[15, 16] studied class of uniaxial symmetric rate-

independent models to simulate complex asymmetric

mechanical hysteresis phenomena. However, there are

hardly universal methods of solving these nonlinear

damping models.

Many methods, such as the equivalent-linear

method [22, 23], averaging method [10], and harmonic

balance method (HBM) [24, 25], are adopted to

investigate the dynamics of nonlinear systems. These

methods may face some problems involving various

nonlinear systems. For example, the computation

errors would be relatively large for systems with

strong nonlinearity, and immense derivation efforts

will be made for MDOF nonlinear systems or systems

with hysteretic models. To overcome these difficul-

ties, Lau and Cheung [26] combined the HBM with the

incremental method, and the incremental harmonic

balance method was proposed to address MDOF

systems or strongly nonlinear systems. However, the

classical IHBM [27–29] has two shortcomings: (1) the

universality problem, in which it is difficult to

construct a unified form for the derivation of different

types of nonlinear terms; (2) the derivation problem,

since it is suitable for specific forms of nonlinear

systems such as polynomial or piecewise-linear types

while other types require much more complicated

derivations or cannot be solved. In view of the above

problems, one common way is to replace or approx-

imate the Galerkin process, which is the most com-

plicated derivation process. Wang [30] improved the

IHBM with the fast Fourier transform and Broyden’s

method to reduce the derivation complexity. Kong [3]

and Sun [31] employed the multiterm IHBM to

address the piecewise-nonlinear system by a discrete

Fourier transform. The Taylor series are applied to

approximate the complicated expressions of linear

guide of the ball bearing with the polynomial

functions. Hui [14, 32] added a virtual DOF to the

hysteretic model, namely the restoring force into the

IHBM procedure to solve the Bouc–Wen model.

These attempts are efficient in solving their respective

problems and have reduced the amount of derivation

of the complex Galerkin process to a certain extent.

However, they do not completely solve the problem of

algorithm generality, and separate derivations are still

needed to solve different types of nonlinear systems.

An alternative way for the above problems is to

select a unified basic function to equate various
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nonlinear functions to the basic function, and to solve

this basic function by the traditional IHBM. Only the

Galerkin process of this basic function is essential for

the derivation. Based on this idea, the author con-

ducted a study on nonlinear stiffness systems [33].

However, the nonlinear damping systems which

consist of material nonlinearity including the hys-

teretic systems still remain unsolved by the proposed

method. In this paper, both nonlinear stiffness and

damping are included to construct a universal proce-

dure for obtaining periodic solutions to nonlinear

SDOF isolator/absorber or energy harvester systems.

Furthermore, the proposed method is extended to the

MDOF systems where each nonlinear force in the

system is expressed by the function of only one

independent DOF. The paper is organized as follows:

Sect. 2 introduces the discrete node process by

equivalent piecewise-linearization procedure to deal

with the nonlinear damping models including the

hysteretic models. In Sect. 3, the proposed IHBM is

derived together with the stability analysis of the

solutions. Section 4 examines the accuracy of the

proposed method with nonlinear damping systems.

Conclusions are drawn in Sect. 5.

2 Discrete node process for nonlinear damping

2.1 General process

Consider a SDOF, nonlinear damping model with

continuous characteristics. The velocity-force charac-

teristics are shown in Fig. 1. h(v) is the original

damping force of the system and is replaced by

g(v) with discrete nodes A-p,…,AN-p that connect end

to end with straight lines, which represents the

approximate piecewise-linear damping force. wi

denotes the arc length of the original curve segment

i, and li is the length of straight line segment i.

The equivalent piecewise-linearized error e (lin-

earized error for short) that is defined in Eq. (1) can be

utilized to determine the maximum computation result

error between the original system and the equivalent

piecewise-linearization system (result error for short).

The concept can be analogized to the two-norm.

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

�1

i¼�p

wi

li
� 1

� �2

þ
X

N�p

i¼1

wi

li
� 1

� �2
 !

v

u

u

t ð1Þ

The main idea is to transform the complex contin-

uous damping into the uniform piecewise-linear

damping, and this piecewise-linear damping system

can be solved by the IHBM. The discrete number

N obtained by node division is relevant to the

linearized error. If N approaches infinity, the equiv-

alent system can be treated as the original system as

the result error is zero, while the computation time

increases unlimitedly. Therefore, it is essential to

obtain a proper N to meet the requirement of the

computation accuracy and time, and the calibration

with the result error is given in Sect. 4.1 by a SDOF

polynomial nonlinear damping system.

The discrete node process can be carried on as

follows: first, the nonlinear damping curve is divided

into N segments by N ? 1 nodes, namely, A-p, A-

p?1,…,A-1, A0, A1,…,AN-p-1, AN-p; the node division

method can be uniformly spaced, and local refinement

can be proceeded depending on the smoothness of the

curve. Second, suppose the coordinates of these nodes

are (di, h(di)), respectively, where i is the segment

number, the slope of the linearized segment can be

computed by:

ci ¼
hðdiÞ � hðdi�1Þ

di � di�1

; c�i ¼
hðd�iÞ � hðd�iþ1Þ

d�i � d�iþ1

ð2Þ

Last, the expression of this equivalent piecewise

damping system can be written in the following

unified form:

gð0Þ¼0; d0¼0; d�p¼�1; dN�p¼1
gðxÞ¼c�iðx�d�ði�1ÞÞþhðd�ði�1ÞÞ; d�i�x�d�ði�1Þ;

ði¼1;2;:::;pÞ
gðxÞ¼ciðx�di�1Þþhðdi�1Þ; di�1�x�di;

ði¼1;2;:::;N�pÞ
ð3Þ

It should be noted that certain discontinuous

models, such as the Coulomb dry friction model, can

also be made equivalent to continuous models by

using polynomial curve fitting techniques [41].

2.2 Particular strategy for hysteresis loops

Section 2.1 discusses the nonlinear damping system

which consists of only velocity items. However, this

process cannot deal with nonlinear hysteretic systems

that contain not only velocity items but also
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displacement items. In this section the strategy for

hysteretic systems is investigated.

We address two typical kinds of hysteretic damp-

ings: the bilinear hysteretic model (shown in Fig. 2a)

and Bouc–Wen model (shown in Fig. 2b). The

discrete node process can also be applied to these

models, and they can be regarded as the same model

by the discrete node process. For example, curves

dBCE and dEDB in the Bouc–Wen model can be

linearized into piecewise-linear curves that are similar

to the corresponding curves in the bilinear model.

Therefore, these hysteretic models are degenerated

into a unified piecewise-linear form. The whole model

can be divided into three parts by point B and point E:

curves cAB, dBCE or dEDB and cEF , each part can be

linearized separately.

By the above process, when the hysteresis loops are

obtained by experiments or computed by the mathe-

matical model, the discrete node process can be

directly adopted. Additionally, most hysteretic models

do not include curves cAB and cEF , and the parameters

yB/yE for the model are the output parameters to be

calculated. These parameters can be solved by an

additional Newton-Rapson interactive method.

3 IHBM scheme with piecewise-linear systems

3.1 Piecewise-linear IHBM scheme

After the above discrete node process, the traditional

piecewise-linear IHBM procedure can be applied.

Consider a SDOF system with nonlinear damping and

stiffness characteristics:

x2 d2y

ds2
þ 2nx

dy

ds
þ yþ hð _yÞ þ rðyÞ ¼ eðsÞ ð4Þ

In Eq. (4), s is the non-dimensional time, n is the

linear damping ratio, hð _yÞ denotes the nonlinear

damping presented in Sect. 2, and rðyÞ is the nonlinear

stiffness, and these two nonlinear terms can be

replaced by the piecewise-linear functions gð _yÞ and

qðyÞ, respectively. e(s) is the external periodic force on

the system, which can be written in a trigonometric

function combination:

eðsÞ ¼ f0=2 þ
X

n

i¼1

ðfi cosðisÞ þ gisinðisÞÞ ð5Þ

The general scheme of the IHBM for piecewise-

linear models is derived here. The first step is the

Fig. 1 Discrete node process and piecewise linearization for nonlinear continuous damping
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incremental method. Assuming that the initial state

and incremental state of the solution are denoted by

parameters y0, x0 and parameters Dy, Dx, respec-

tively, the displacement and frequency near the initial

state can be expressed as

y ¼ y0 þ Dy; x ¼ x0 þ Dx ð6Þ

The incremental procedure is applied by substitut-

ing Eq. (6) into Eq. (4), and only the first-order terms

of the small increments are considered. The governing

equation is expressed as follows:

x2
0

d2Dy
ds2

þ 2nx0

dDy
ds

þ Dyþ ogð _yÞ
o _y

D _yþ oqðyÞ
oy

Dy ¼ Rþ SDx

ð7Þ

where

R ¼ � x2
0

d2y0

ds2
þ 2nx0

dy0

ds
þ y0 þ gð _y0Þ þ qðy0Þ

� �

þ eðsÞ

S ¼ �2x0

d2y0

ds2
� 2n

dy0

ds
� ogð _yÞ

ox

�

�

�

�

x¼x0

ð8Þ

As the IHBM can address the period solution of the

nonlinear system, the solution can be written in the

matrix form:

y0¼
a0

2
þ
X

mH

n¼1

ancos
ns
m

� 	

þbnsin
ns
m

� 	� 	

¼CsA

Dy¼Da0

2
þ
X

mH

n¼1

Dancos
ns
m

� 	

þDbnsin
ns
m

� 	� 	

¼CsDA

ð9Þ

where H is the number of fundamental harmonic

terms, which is set according to experience in advance,

and m is the possible order of the existing subharmonic

resonance.

Cs¼
1

2
;cos

s
m

� 	

;cos
2s
m

� �

;:::;cos
mHs
m

� �

;sin
s
m

� 	

;

�

sin
2s
m

� �

;:::;sin
mHs
m

� ��

A¼½a0;a1;:::;amH ;b1;b1;:::;bmH �T

DA¼½Da0;Da1;:::;DamH ;Db1;Db1;:::;DbmH �T

ð10Þ

The Galerkin procedure is introduced by substitut-

ing Eq. (9) into Eq. (7), and by integrating Eq. (7)

from 0 to 2pm. The 2mH ? 1 linearized equations

with 2mH ? 2 unknown variables of Dan, Dbn and Dx
can be acquired in the matrix form:

(a) (b)

Fig. 2 Hysteresis loop of models: a bilinear model; b Bouc–Wen model
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CLþCNk þ CNdð ÞDA ¼ RL þþRNk þ RNdð Þ
þ SL þ SNdð ÞDx ð11Þ

The elements of the above matrices are derived by

adopting the step function proposed by Lau [34]. The

expressions of the linear part and piecewise-linear

stiffness part of the matrices (namely CL, RL, SL, CNk

and RNk) are derived by Wang [33]. Thus, only the

piecewise-linear part of damping matrices is given in

this paper.

Assume that s1; s2; . . .; sZ are zeroes of _y0 ¼ di
(i ¼ �p; . . .;�1; 0; 1; . . .;N � p), with s0 = 0, sZ?1-

= 2mp, and t1;n; t2;n; . . .; tZþ1;n are sign functions of

_y0 � dn
(n ¼ �p� 1;�p; . . .;�1; 0; 1; . . .;N � pþ 1).

G(tu,v1, tu,v2) can be denoted by:

Gðtu;v1; tu;v2Þ ¼
1; tu;v1 � tu;v2\0

0; otherwise

(

ð12Þ

Applying sign functions, the piecewise-linear

damping part of the matrices can be expressed by:

CNd ¼
C11 C12

C21 C22

� �

; RNd ¼
R1

R2

� �

; SNd ¼
S1

S2

� �

ð13Þ

(1) Elements of matrix CNd:

C11½ �ij¼� mx0aiaj
X

Z

u¼0

X

�1

v¼�p

Gðtuþ1;v; tuþ1;vþ1Þcv

"(

þ
X

N�p

v¼1

Gðtuþ1;v�1; tuþ1;vÞcv

#

Bij
suþ1

m

� 	

� Bij
su
m

� 	� 	

)

ð14Þ

C12½ �ij¼� mx0ai
X

Z

u¼0

X

�1

v¼�p

Gðtuþ1;v; tuþ1;vþ1Þcv

"(

þ
X

N�p

v¼1

Gðtuþ1;v�1; tuþ1;vÞcv

#

Aij
suþ1

m

� 	

� Aij
su
m

� 	� 	

)

ð15Þ

C21½ �ij¼� mx0aj
X

Z

u¼0

X

�1

v¼�p

Gðtuþ1;v; tuþ1;vþ1Þcv

"(

þ
X

N�p

v¼1

Gðtuþ1;v�1; tuþ1;vÞcv

#

Dij
suþ1

m

� 	

� Dij
su
m

� 	� 	

)

ð16Þ

C22½ �ij¼� mx0

X

Z

u¼0

X

�1

v¼�p

Gðtuþ1;v; tuþ1;vþ1Þcv

"(

þ
X

N�p

v¼1

Gðtuþ1;v�1; tuþ1;vÞcv

#

Cij
suþ1

m

� 	

� Cij
su
m

� 	� 	

)

ð17Þ

(2) Elements of matrix RNd:

R1½ �i¼� mai
X

Z

u¼0

X

�1

v¼�p

Gðtuþ1;v; tuþ1;vþ1Þjv

 (

þ
X

N�p

v¼1

Gðtuþ1;v�1; tuþ1;vÞjv

!

Eijð
suþ1

m
Þ � Eijð

su
m
Þ

� 	

þ
X

�1

v¼�p

Gðtuþ1;v; tuþ1;vþ1Þcv

"

þ
X

N�p

v¼1

Gðtuþ1;v�1; tuþ1;vÞcv

#

X

mH

j¼0

ajx0 �ajðBijð
suþ1

m
Þ � Bijð

su
m
ÞÞ þ bjðAijð

suþ1

m
Þ � Aijð

su
m
ÞÞ

h i

)

ð18Þ

R2½ �i¼�m
X

Z

u¼0

X

�1

v¼�p

Gðtuþ1;v;tuþ1;vþ1Þjvþ
X

N�p

v¼1

Gðtuþ1;v�1;tuþ1;vÞjv

 !(

Fij
suþ1

m

� 	

�Fij
su
m

� 	� 	

þ
X

�1

v¼�p

Gðtuþ1;v;tuþ1;vþ1Þcv

"

þ
X

N�p

v¼1

Gðtuþ1;v�1;tuþ1;vÞcv

#

X

mH

j¼0

ajx0 �aj



Dij
suþ1

m
�Dij

su
m

� 	

þbj Cij
suþ1

m

� 	

�Cij
su
m

� 	� 	� i� o

ð19Þ

where

j�i ¼
X

i

j¼2

c�jþ1 � c�j

� �

d�jþ1;

ji ¼
X

i

j¼2

cj�1 � cj
� �

dj�1; i[ 0

ai ¼
1; i 6¼ 0

0:5 i ¼ 0

(

ð20Þ

(3) Matrix SNd can be got by multiplying matrix

CNd and determinant A.

The expressions of Aij(s), Bij(s),Cij(s),Dij(s), Eij(s),

Fij(s) can be referred to Lau [34].

3.2 Hysteretic model treatment

In the hysteretic model, the process shows the

differences compared with the above nonlinear damp-

ing systems, which consist of only velocity items.

When the loading/unloading state is determined, the

nonlinear force degenerates to the nonlinear stiffness

characteristics. Therefore, another step function is
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added to determine the state of the current motion,

which can be defined below:

Gð _y0Þ ¼
1; _y0 � 0

0; elsewise

(

ð21Þ

Gð _y0Þ can be utilized in the equivalent piecewise-

linearization process. For example, in the interval [yi,

yi?1], assuming that the stiffness for the loading state

and unloading state are ku and kl, respectively. The

equivalent stiffness keq can be written as:

keq ¼ ku � klð ÞG _y0ð Þ þ kl ð22Þ

Once the above equivalent stiffness is obtained, a

similar procedure can be adopted to solve the vibra-

tional characteristics of the hysteretic nonlinearities.

First, the displacement restoring force under the

loading/unloading state is divided by the discrete node

process with the same node division method, and the

displacement nodes yi (i ¼ �p; . . .;N � p) of both

states remain the same. The linearized error e is

checked to ensure that the maximum results error is

within the allowable range. Second, all roots of s for

y-yi = 0 and dy/ds = 0 are computed, and then

arranged in ascending order. Third, step functions

are used to define the loading/unloading state for every

adjacent minimum interval. And the equivalent stiff-

ness stiffnesses are obtained for the piecewise-linear

IHBM to solve Eq. (11).

3.3 Stability of the periodic solution

Using Floquet theory, the perturbation of the solution

is investigated. Assume the small turbulence solution

at the x0 state of y0 for Eq. (11) is defined by dy, and

the solution after perturbation can be expressed by

y ¼ y0 þ dy ð23Þ

Equation (23) is substitute into Eq. (11), and

Eq. (11) still holds for the original state with y0. The

linearized equation for small perturbation dy can be

obtained as follows:

x2
0d€yþ2nx0d _y

þ g _y0 þ d _yð Þ � g _y0ð Þ
d _y

þ q y0 þ dyð Þ � q y0ð Þ
dy

¼ 0
ð24Þ

By the definition of g _yð Þ and qðyÞ, the last two terms

of Eq. (24) on the left-hand side can be written using

step functions:

Cnl ¼
g _y0 þ d _yð Þ � g _y0ð Þ

d _y
¼
X

�1

v¼�p

Gðtuþ1;v; tuþ1;vþ1Þcv

þ
X

N�p

v¼1

Gðtuþ1;v�1; tuþ1;vÞcv

ð25Þ

Knl ¼ q y0 þ dyð Þ � q y0ð Þ
dy

¼
X

�1

v¼�q

Gðsuþ1;v; suþ1;vþ1Þkv

þ
X

M�q

v¼1

Gðsuþ1;v�1; suþ1;vÞkv

ð26Þ

In Eq. (26), s1;n; s2;n; . . .; sMþ1;n are the sign func-

tions of y0-en (n ¼ �pk � 1;�pk; . . .;�1; 0;

1; . . .;M � pk þ 1), and kn and en (n ¼ �pk � 1;

�pk; . . .;�1; 0; 1; . . .;M � pk þ 1) are the stiffnesses

and displacements, respectively, for the nonlinear

stiffness systems. The symbols pk and M for the

nonlinear stiffness are similar to the description in

Fig. 1 and Eq. (2). Equation (24) can be transformed

into the linear ordinary differential equation:

_Y ¼ QðsÞY ð27Þ

where

Y ¼ dy; d _y½ �T

QðsÞ ¼
0 1

�Knl

x2
0

� 2nþ Cnl

x0

2

4

3

5

ð28Þ

The standard process for Floquet theory can be

adopted by obtaining the monodromy matrix P from

the matrix Q(s)which can be referred to Wang [6]. The

Floquet multipliers, which are calculated by the

eigenvalues of the monodromy matrix P, are acquired

to decide the stability of the solutions, and the

judgment condition is whether any eigenvalue leaves

the unit circle. The acquisition of the monodromy

matrix P can be proceeded in Eq. (30) by assuming

that matrix Q(s) is constant between sm-1 and sm with

a relatively small interval length of Dm = sm-sm-1:

Mm ¼ 1

Dm

Z sm

sm�1

Q sð Þds ð29Þ

P¼
Y

Nm

i¼1

expðDmMmÞ ð30Þ
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where period 2mp is divided into Nm intervals for

stability analysis.

4 Numerical applications

In this section, eight nonlinear damping systems are

investigated by the proposed method. First, a typical

polynomial damping system is analyzed to show the

relationship of the discrete number, linearized error

and result error. Second, hysteretic models, including

the bilinear model and Bouc–Wen models, are

adopted. Third, nonlinear SDOF systems that

compromises of both nonlinear stiffness and damping

are investigated. Last, this method is extended to

MDOF systems.

4.1 Validations

An example of the nonlinear damping SDOF system

with unstable solutions can be described in Eq. (31).

Habib [9] investigated a harmonically excited, SDOF

oscillator with isolated resonance curves (IRCs):

€yþ yþ c1 _yþ c3 _y
3 þ _y5 ¼ 2f cos xtð Þ ð31Þ

The nonlinear part of this oscillator is a polynomial

damping, which is solved by the averaging method [9].

Figure 3 shows the characteristics of the nonlinear

damping with the velocity region from - 1.2 to 1.2.

The plot shows that when - 0.7\ y\ 0.7, h(y) frus-

trates slightly, and the curvature is small.

Due to the complexity of the nonlinear damping,

unstable solutions can be obtained within the fre-

quency range from 0.8 to 1.2 for the case f = 0.01,

c1 = 0.1, and c3 = - 0.6. This can be found from

Fig. 4, where there are two regions, namely [0.985,

0.991] and [1.009, 1.015], and the Floquet multipliers

are larger than 1. This finding is consistent with the

results computed by Habib. The result obtained by the

improved DIHBM and by the numerical simulation,

such as the Runge–Kutta method (RKM), are almostFig. 3 Damping curves of the nonlinear model
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equivalent. As the unstable regions cannot be obtained

from RKM, the reference result for the calibration is

chosen from the result by the numerical continuation

and bifurcation tool MatCont [35].

Figure 5 illustrates the effects of different N values

from 20 to 50 on the frequency response curves of this

polynomial damping system. The results are compared

with the reference result obtained by the MatCont.

Major result errors occur in the turning unstable re-

gions and the maximum resonance region.

As shown in Fig. 4a, there are five regions divided

by two unstable parts. Figure 6 calculates the result

errors of different discrete numbers for the five

regions. The maximum result errors are located at

the transitions between the stable region and unsta-

ble region. The result errors decrease with an increase

in N. The traditional IHBM can be regarded as the

DIHBM with the discrete number approaching to

infinity. To balance the computational speed and

accuracy, a proper discrete number is essential to

choose within an allowable error value in advance, for
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example, 5% in this paper. When N is increased to 32,

the maximum result error decreases to 4.82%, which is

less than the predetermined result error.

This calibration is assumed to extend to the

nonlinear damping systems, and the approximate

linearized error of 1.4 9 10–3 can meet the require-

ment of the allowable error for engineering applica-

tions. In addition, if the order of the polynomial

damping curve is relatively high or the nonlinear

damping curve is nonsmooth, the discrete number

should be set to a larger value or refinements of these

regions are needed. Otherwise, the discrete number

can be selected to a much smaller value.

4.2 Numerical investigation of the hysteretic

models

4.2.1 Bilinear hysteretic model

In Sect. 2.2, the characteristics of the bilinear hys-

teretic model are introduced. A bilinear model is

shown in Fig. 7. The loading/unloading displacement

regime falls between - 0.15 and 0.15. The nonlinear

restoring force can be expressed by six linear

functions, namely Regimes I * VI. If the maximum

displacement is less than 0.15, Regimes I and VI are

omitted, and the displacements of points B and D are

dependent on the response of the system.

F y; _yð Þ ¼

10yþ 1:1; Regime I

10yþ 1:1; Regime IIð _y[ 0Þ
1:2yþ 0:22; Regime IIIð _y[ 0Þ
10y� 1:1; Regime IVð _y� 0Þ
10y� 1:1; Regime Vð _y� 0Þ
1:2y� 0:22; Regime VI

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð32Þ

Generally, the above functions are not essential to

the proposed method. Only six points, namely,

A * F, which can depict the whole loading/unloading

procedure (including the velocity item of y), are

needed to compute the dynamics of the system.

The nondimensional governing equation is

described below:

€yþ 2n _yþ F y; _yð Þ ¼ f cos xtð Þ ð33Þ

where n = 0.05 and f = 1.0. The number of harmonics

is set to 3 to cover all the fundamental frequency

responses. Figure 8 presents the frequency response

curves of the bilinear hysteretic system. The results

from the proposed DIHBM match those obtained by

the RKM and Computational Continuation Core

(COCO) [36], which is available for nonsmooth

nonlinear dynamical problems.

The stiffness ratio is 8.33 in adjacent intervals near

points B and D for both the loading state and unloading

state, which implies that this hysteretic model may

show strong nonlinearity and that the proposed method

can provide a systematic procedure to acquire the

dynamics of the system. When the frequency ranges

from 3.112 to 2.903, the unstable region occurs as the

Floquet multipliers leave the unit circle.

4.2.2 Bouc–Wen model

The bilinear model can be regarded as the special case

of the Bouc–Wen model for the proposed method.

However, the linearized error occurs when the system

is shifted from the Bouc–Wen model to the piecewise-

linear hysteretic model.

The dynamical equations for the Bouc–Wen model

can be expressed by:

€yþ 2nx0 _yþ mx2
0yþ 1 � cð Þx2

0z ¼ B sin xtð Þ
_z ¼ A _y� a _yj jz zj jn�1�b _y zj jn

ð34Þ

Fig. 7 Stiffness-damping characteristic curve of bilinear

hysteretic model
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The parameters A, a, b, and n are non-dimensional

Bouc–Wen parameters fitted by experimental data of

the hysteretic force z. In this paper, n is set to 1 to

obtain the explicit expressions of the Bouc–Wen

model, and the hysteresis loop can be expressed by

four parts on the displacement 9 force plane consid-

ering the signs of _y and z [37]. The expressions are

zI ¼
A

a� b
1 � e� a�bð Þ y�y0ð Þ
� 	

; a 6¼ b

A y� y0ð Þ; a ¼ b

8

<

:

;Regime I

: _y� 0; z[ 0

ð35Þ

zII¼
� A

aþb
1�e aþbð Þ y�y0ð Þ
� 	

; a 6¼�b

A y�y0ð Þ; a¼�b

8

<

:

;RegimeII

: _y�0;z�0

ð36Þ

zIII¼
� A

a�b
1�e a�bð Þ yþy0ð Þ
� 	

;a 6¼b

A yþy0ð Þ; a¼b

8

<

:

;RegimeIII

: _y[0;z�0

ð37Þ

zIV¼
A

aþb
1�e� aþbð Þ yþy0ð Þ
� 	

; a 6¼�b

A yþy0ð Þ; a¼�b

8

<

:

;RegimeIV

: _y[0;z[0

ð38Þ

In the above equations, y0 is the displacement at

z = 0 and can be obtained by the experiment in

advance or by the displacement responses. In the latter

situation, another Newton-Rapson iteration, whose

computations are more time-consuming, is needed, as

the displacement integral constant is the variable that

needs to be solved in the proposed method.

In this section, two typical Bouc–Wen cases,

namely (a) a = 0.1, b = 0.5; (b) a = 0.1 b = - 0.5,

are investigated by the proposed method. Other

parameters shown in Eq. (34) are n = 0.05, n = 1,

m = 0.05, x0 = 1.0, c = 0, A = 0.95, B = 0.5 which

are equivalent to those of Okuizumi [38], the results

are compared with the multiple time scale method.

Figure 9 depicts the restoring forces with

displacements.

The number of harmonics is set to 3 to satisfy the

computational accuracy. There are eight regimes for

the discrete node process, and each regime is uni-

formly divided. Note that Regimes 1 and 8, Regimes 2

and 7, Regimes 3 and 6, Regimes 4 and 5 use the same
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division method (the division strategy for Case b is

similar to Case a). The discrete numbers and linearized

errors for the situation, where the maximum displace-

ment is set to 2.0 as an example, are listed in Table 1.

The linearized errors for both cases are less than

1.4 9 10–3, which can meet the allowed error limit.

Figure 10 shows that the results computed by the

proposed method and multiple time scale (MTS)

method are consistent with those by the COCO. The

hollow circle represents the numerical results by the

COCO, the hollow triangle illustrates the results by

Okuizumi [38], and the black solid line denotes the

solutions obtained by the proposed method. From the

plots, the proposed method is more accurate than the

MTS method including the unstable regions inFig. 9 Restoring force characteristics of the Bouc–Wen model

Table 1 Relationship between the discrete number and the linearized error for both cases

Case a Case b

Regime Displacement

range

Discrete number,

N
Linearized

error

Regime Displacement

range

Discrete number,

N
Linearized

error

1 [- 3.8 - 1] 4 4.6 9 10–4 1 [- 3.8 - 1] 5 4.1 9 10–4

2 [- 1 - 0.16] 2 4.0 9 10–4 2 [- 1 - 0.37] 1 1.0 9 10–3

3 [- 0.16 0] 3 0.3 9 10–4 3 [- 0.37 0] 3 1.5 9 10–4

4 [0 0.16] 3 0.3 9 10–4 4 [0 0.37] 3 1.1 9 10–4

5 [0.16 1] 2 1.5 9 10–3 5 [0.37 1] 1 1.6 9 10–3

6 [1 3.8] 4 4.6 9 10–4 6 [1 3.8] 5 4.1 9 10–4

7 [0.16 1] – 4.0 9 10–4 7 [0.37 1] – 1.0 9 10–3

8 [0 0.16] – 0.3 9 10–4 8 [0 0.37] – 1.5 9 10–4

9 [- 0.16 0] – 0.3 9 10–4 9 [- 0.37 0] – 1.1 9 10–4

10 [- 1 - 0.16] – 1.5 9 10–3 10 [- 1 - 0.37] – 1.6 9 10–3

Total [- 3.8 3.8] 18 6.7 9 10–4 Total [- 3.8 3.8] 18 6.9 9 10–4
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Fig. 10b. The softening characteristics are revealed as

the peak frequency shifts to the left in Case a, and the

hardening features are represented as it shifts to the

right in Case b.

4.3 Numerical investigation of the complex

models

Apart from nonlinear damping, the improved method

can obtain period solutions of most continuous types of

nonlinear systems. Gao [5] investigated a compact quasi-

zero frequency vibration isolator (VI) with a high-static

and low-dynamic stiffness (HSLD) and fluid damping

device. The dynamics of this new device can be solved

by the proposed method, while the averaging method

would cause computational errors under strong nonlin-

earity. In addition, the experimental data of the stiffness

characteristics can be directly applied to the proposed

method without adopting the curve fitting techniques.

The control equation obtained by Gao is given in

Eq. (39), where the second, third and fourth terms on

the left side of the equation denote the HSLD stiffness

fitted by the experimental results, and the fifth and

sixth terms represent the nonlinear fluid damping,

which is obtained by the empirical data.

€yþ x2
0yþ a2y

2 þ a3y
3 þ c1 _yþ c2 _y _yj j ¼ F1 cosxt

ð39Þ

Transforming Eq. (39), the nondimensional equa-

tion can be acquired:

€zþ zþ k2z
2 þ k3z

3 þ d1 _zþ d2 _z _zj j ¼ f cos sð Þ ð40Þ

where

y ¼ Az; d1 ¼ c1

x0

; d2 ¼ c2A; k2 ¼ a2A

x2
0

; k3 ¼ a3A
2

x2
0

f ¼ F

Ax2
0

ð41Þ

The parameters are listed as follows: A = 0.001 m,

d1 = 0.0815, d2 = 0.005, k2 = 0.085, k3 = 0.03, and

f = 0.59. The discrete number for the fluid damping is

10; the corresponding linearized error is 1.04 9 10–5;

and N for the nonlinear stiffness is 14 with a linearized

error of 5.81 9 10–4.

Unlike the traditional averaging method, which is

inaccurate in the peak resonance region and is hard to

show subharmonic resonance, the proposed method

can give detailed information with high accuracy in

Fig. 11. Additionally, the unstable zone calculated by

the eigenvalues is suitable for the design criterion in

jump avoidance.

Carpineto [39] introduced a hysteretic damper into the

passive nonlinear TMD and discovered that reasonable

selection of parameters, especially the excitation ampli-

tude, would enable a system transition from softening to

hardening. The control equation is described below:
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€yþ 2n _yþ kyþ k3y
3 þ z ¼ f cos sð Þ

z ¼ 1 � kð Þ _y� a _yj jz zj jn�1�b _y zj jn
ð42Þ

The softening Bouc–Wen model (a ? b[ 0) is

applied in this softening-hardening TMD. Figure 12

shows the frequency–response curves of the TMD

with different excitation amplitudes by the proposed

method; the other parameters are n = 0.022, n = 1,

k = 0.52, k3 = 0.015, a = 0.5, and b = 0.5. When f is

small, the material nonlinearity dominates the fre-

quency response curve. As f gradually increases, the

frequency response curve gradually changes from a

softening characteristic to a hardening characteristic,

indicating that the geometrical nonlinearity has a

major role in the frequency response curve.

4.4 Numerical investigation of the MDOF

nonlinear system

In engineering applications, the MDOF system is

introduced and designed in certain vibration isolators/

absorbers or energy harvester for better performance.

The proposed method can be an alternative way to

solve the dynamics of these systems. Assuming that a

ND DOF system without coupling of degrees of

freedom, and that the coupling of displacement and

velocity for each degree of freedom is limited to

hysteresis, the force for each DOF can be expressed by:

fj ¼
X

N1

i¼1

rjiðyiÞþ
X

N2

i¼1

hjið _yiÞ þ
X

N3

i¼1

zjiðyi; _yiÞ; j

¼ 1; 2; :::;ND ð43Þ

where the symbols r, h, and z refer to the force of

nonlinear stiffness, nonlinear damping and hysteresis,

respectively. N1, N2 and N3 are the numbers of the

nonlinear terms of the above forces. After satisfying

the linearized error condition, Eq. (43) can be written

by the piecewise-linear form for each DOF:

fj �
X

N1

i¼1

qjiðyiÞþ
X

N2

i¼1

gjið _yiÞ þ
X

N3

i¼1

zdjiðyi; _yiÞ; j

¼ 1; 2; :::;ND ð44Þ

where symbols q, g, and zd refer to the force of

piecewise-linear stiffness, damping and hysteresis,

respectively. The dynamic equations can be written in

matrix form:

M
d2y

dt2
þC

dy

dt
þKyþ

X

N1

i¼1

q1iðyiÞþ
X

N2

i¼1

g1ið _yiÞþ
X

N3

i¼1

zd1iðyi; _yiÞ

::: :::

X

N1

i¼1

qNDiðyiÞþ
X

N2

i¼1

gNDið _yiÞþ
X

N3

i¼1

zdNDiðyi; _yiÞ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

¼eðsÞ

ð45Þ

The nonlinear matrices CNK, CND, RNK, RND for

each nonlinear DOF can be calculated by Eqs. (14)–

(19). Equation (4) can be extended to Eq. (43) by the

expansion of the matrix dimension in the DIHBM.

Noting that each DOF is independent according to the

assumption, Eq. (45) can be solved directly using the

procedure in Sect. 3.

Zhang [40] analyzed 1-DOF and 2-DOF nonlinear

energy sink (NES) with geometrically nonlinear

damping and stiffness. A schematic diagram of a

linear oscillator with 1-DOF NES is depicted in

Fig. 13a. The nonlinear stiffness of the NES is

composed of the linear stiffness k221 and nonlinear

cubic stiffness k223, the damping part is a nonlinear

cubic damping with damping coefficient k. An

0.5 0.8 1.1 1.4
0

2

4

6

8

10

f=1.00

f=0.80
f=0.60

f=0.40
f=0.20
f=0.10D

is
pa

lc
em

en
t A

m
pl

itu
de

Frequency, 

f=0.05
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external harmonic force is applied to m1 with ampli-

tude A. The mathematical model of this NES is derived

below:

€x1 þ x1 þ ek221 x1 � x2ð Þ þ ek223 x1 � x2ð Þ3

þ ek _x1 � _x2ð Þ3¼ eA cos xtð Þ
€x2 � k221 x1 � x2ð Þ � k223 x1 � x2ð Þ3

� k _x1 � _x2ð Þ3¼ 0

ð46Þ

where e is the mass ratio of m2 and m1. The linear

damping c1 is disregarded in this case. Setting

y1 = x1- x2 and y2 = x2, Eq. (46) can be rewritten in

matrix form:

1

e
1

e
0 1

" #

€y1

€y2

� �

þ
1

e
þ k221

1

e
�k221 0

" #

y1

y2

� �

þ Fnl þHnl ¼
A cos xtð Þ

0

� �

ð47Þ

where Fnl and Hnl are defined as listed below and can

be linearized by Gstiff and Gdamp, respectively, using

the discrete node process. The parameters are k = 0.3,

e = 0.1, k221 = 1.333, k223 = 0.333 and A = 0.3.

Fnl ¼
k223y

3
1

�k223y
3
1

� �

;Hnl ¼
k _y3

1

�k _y3
1

� �

ð48Þ

The discrete number for the nonlinear item on Gstiff

is 16 for the interval from - 1.5 to 1.5; the linearized

error is 1.2 9 10–3; and this value for the nonlinear

item on Gdamp is 26 in the region from - 3 to 3, where

the linearized error is decreased to 1.2 9 10–3.

Figure 14 illustrates the response characteristics of

the linear oscillator with 1-DOF NES. The amplitudes

of y1 and y2 obtained by the proposed method show

agreement with those obtained by the numerical

simulation of MatCont.

Furthermore, the linear oscillator with 2-DOF NES

is solved by the DIHBM. Shown in Fig. 13b, the

nondimensional mathematical model of this NES is

expressed as follows:

€x1 þ 2n _x1 þ x1 þ ek221 x1 � x2ð Þ þ ek223 x1 � x2ð Þ3

þ ek1 _x1 � _x2ð Þ3¼ eA cos xtð Þ
g€x2 � k221 x1 � x2ð Þ � k223 x1 � x2ð Þ3�k1 _x1 � _x2ð Þ3

þ k331 x2 � x3ð Þ þ k333 x2 � x3ð Þ3þk2 _x2 � _x3ð Þ3¼ 0

1 � gð Þ€x3 � k331 x2 � x3ð Þ � k333 x2 � x3ð Þ3�k2 _x2 � _x3ð Þ3¼ 0

ð49Þ

where eg and e(1-g) are the mass ratios of m2/ m1 and

m3/m1, respectively. Setting y1 = x1-x2, y2 = x2-x3,

and y3 = x3, Eq. (49) can be arranged in matrix form:

k1 c1

m1

cn2kn2

m2

x1

x2

F

k1 c1

m1

cn2kn2

m2

x1

x2

F

cn3kn3

m3
x3

(a) (b)

Fig. 13 Schematic of a linear oscillator with 1-DOF NES and 2-DOF NES
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The parameters are e = 0.1, g = 0.6, n = 0.02,

k1 = 0.3, k2 = 0.3, k221 = 0.133, k223 = 1.333,

k331 = 0.133, k333 = 1.333 and A = 0.3. The dividing

method for the discrete node process is similar to the

1-DOF NES case.

Figure 15 shows the frequency response curves of

each DOF. Comparison with the results from MatCont

verifies the accuracy of the proposed DIHBM

including the two unstable regimes [0.403, 0.670]

and [1.109, 1.120].

Moreover, the hysteretic model can be adopted in

the MDOF system. The nonlinear cubic item kn2 is

replaced with the hysteretic restoring force for the

linear oscillator with 1-DOF NES. The hysteretic

characteristics are described by the combination of the

nonlinear cubic stiffness and the nonlinear hysteretic

damping, which is depicted in Fig. 16. The nonlinear

elastic restoring force remains consistent with kn2,

while the hysteretic damping is approximately

expressed by elliptic characteristics. The major axis

length and minor axis length are set to 0.3 and to 0.03,

respectively, in this case. The other parameters remain

equivalent to those of the linear oscillator in the

1-DOF NES case.

Figure 17 shows the results obtained by the

proposed method and the COCO. A comparison of

these two methods again demonstrates the accuracy of

the improved DIHBM. As the hysteretic device is

exerted on mass m2, which corresponds to the second

resonance peak, the introduction of the hysteretic force
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Fig. 14 Response diagram for a linear oscillator with 1-DOF NES: a frequency response curve of amplitude of y1; b frequency

response curve of amplitude of y2
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has an effect on decreasing the amplitude around the

second resonance peak of both DOFs.

5 Conclusion

Based on the work by Wang [33], this paper extends

the improved IHBM to the nonlinear damping system.

This method is indicated to be efficient for obtaining

the dynamics of both nonlinear stiffness systems and

nonlinear damping systems. Compared with the tradi-

tional IHBM, it establishes a simpler and more general

algorithm for the analysis of nonlinear vibration

characteristics, promotes applications of IHBM in

nonlinear damping systems.
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P compared with x

Fig. 16 Nonlinear elastic restoring force and hysteretic

damping force
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The discrete node process for nonlinear damping

systems is introduced to convert nonlinear systems

with piecewise-linear systems, and the IHBM proce-

dure for these piecewise-linearized damping systems,

together with the stability of the solutions, is inves-

tigated. A quantified equivalent piecewise-lineariza-

tion error process is proposed to meet the requirements

of the veracity of the proposed method. A nonlinear

polynomial damping system is selected to validate the

proposed method by computing the dynamics of the

system. The results show that the linearized error,

which reaches approximately 1.4 9 10–3, is applica-

ble for analyzing nonlinear damping systems within

the preset 5% error value. Five nonlinear damping

SDOF systems are investigated. The results prove the

accuracy of the improved method. Additionally, Two

MDOF nonlinear systems are employed to demon-

strate the extendibility of the proposed method.

Furthermore, the proposed method can expand its

research in the displacement velocity-dependent iso-

lators in further studies.
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