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Abstract In recent years, quantum computing has
made breakthrough progress. Due to the characteris-
tics of qubits, image processing may be made more
efficient and secure using quantum ciphers. There-
fore, a qubit-level selective scrambling and overlapping
feedback diffusion method based on a new 2D cross
Sine2 − Logistic chaotic map is proposed. We pro-
pose a new type of cross two-dimensional chaotic map
that combines Sine and Logistic chaotic systems. Com-
paredwith the traditional Sine andLogistic chaotic sys-
tems, the new chaotic system has a hyperchaotic state.
Additionally, it solves the problem of periodic win-
dows.With a broader parameter space andmore chaotic
performance, operational efficiency is improved. In the
quantum image encryption scheme, based on a novel
enhanced quantum representation model, the plaintext
image is preprocessed, and the pixel value is changed
by qubit level selective scrambling. At the same time,
it can achieve the effect of diffusion and make the
data more secure. Next, the pixel value position of the
image is changed by chaos-based row/column cyclic
shift and index scrambling, which greatly serves the
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purpose of confusion. A diffusion method of quantum
overlapping feedback diffusion is proposed to improve
the avalanche effect of the encryption algorithm, and
finally, the encrypted image is obtained. The experi-
mental results and performance analysis show that the
quantum image encryption scheme proposed in this
paper is highly secure and reliable.

Keywords 2D cross hyperchaotic system · Quantum
image encryption · Quantum selective scrambling ·
Cycle row/column scrambling · Quantum overlapping
feedback diffusion

1 Introduction

In recent years, with the rapid development of the Inter-
net and modern communications, the quantity of data
for multimedia transmission and sharing has increased
significantly. Digital images are widely used in per-
sonal, social, national and other fields as an important
multimedia resource. The question of how to ensure the
safe transmissionof images has piqued the interest of an
increasing number of people. Since digital images are
characterized by high data redundancy and large data
volume, they are susceptible to various attack types
throughout the transmission process. Therefore, image
encryption algorithms have been extensively studied.
However, due to the amount of information included
in the image, classic encryption algorithms such as
AES and DES [1,2] are no any longer applicable in
the field of image encryption. For a large amount of
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information, the encryption speed will be very slow.
Research on more applicable image encryption meth-
ods has become a more urgent need in real applica-
tions. In 1989, themathematicianMatthews introduced
chaos into the encryption system for the first time, and
proposed and explained the concept of chaotic cryp-
tography [3]. Since then, various schemes have been
developed for chaos-based image encryption, which
show higher encryption efficiency compared with tra-
ditional image encryption methods. In 1998, Fridrich J
was the first to propose an image encryption algorithm
based on a chaotic system [4]. Then, some researchers
continue to propose image encryption schemes that
make considerable use of chaotic systems. Nezhad et
al. proposed a chaos-based image encryption algorithm
using Tent chaos map and DNA coding [5]. Moumen
et al. proposed an image encryption method based on
steganographic LSB, AES and RSA algorithms [6].
This algorithm eliminates the secret key sharing step in
the encryption process. Ye et al. proposed a quantum
logistic image encryption algorithm based on SHA-3
and RSA. The proposed algorithm is very suitable for
secure communication in public cryptosystems [7]. Sun
et al. [8] proposed an optical color image encryption
scheme based on fingerprint keys, which can encrypt
the primary color image hidden in the grayscale car-
rier image into three noise-like holograms. Li et al.
introduced a two-dimensional smooth map and inves-
tigated its robustness to chaos in infinite parameter
spaces [9]. At the same time, a chaos-based pseudo-
random number generator is designed based on the
optimized robust chaotic map. The analysis shows that
the pseudo-randomnumber generator has high random-
ness. Yu et al. [10] proposed an encryption separa-
tion algorithm using compressed sensing, which has
the potential to greatly increase the key space while
also significantly improving the algorithm’s security.
Moumen et al. proposed a new secure partial encryp-
tion method for medical images using the graph col-
oring problem, and experiments show that encrypted
data have better security [11]. Huang et al. proposed a
two-dimensional linear canonical transform for an opti-
cal multi-image encryption scheme [12], using two-
dimensional LCT parameters and Logistic map as the
master key to expanding the key space. Zhou et al.
proposed an image encryption algorithm based on cir-
cle index table scrambling and partition diffusion [13].
Through experimental analysis, the superiority of this
scheme is verified.

Because of their fast iteration speed and easy imple-
mentation, low-dimensional chaotic systems are com-
monly used in image encryption. Liu et al. proposed a
digital image watermarking method based on Logis-
tic and RSA encryption [14]. Li et al. proposed a
chaos-based bit-level permutation encryption scheme
for color images [15], using Tent chaotic map to gener-
ate control sequences, but because the Tent chaoticmap
parameters are relatively singular, the chaotic space is
small, and it is insecure and easy to predict. With con-
tinuous research, many scholars have discovered that
low-dimensional chaotic systems have a small num-
ber of variables and parameters, and the key space is
small, whichmakes their structure simple and therefore
insecure. High-dimensional chaotic systems are more
complex, havemore control parameters and have better
randomness than low-dimensional chaotic systems. As
a result, numerous researchers use high-dimensional
chaotic systems for image encryption algorithms.
Hosny et al. proposed a hyperchaotic image encryption
algorithm [16]. The algorithm uses a six-dimensional
hyperchaotic system and uses the Fibonacci Q-matrix
to diffuse the image. Liu et al. proposed an encryp-
tion algorithm based on compressed sensing and non-
linear diffusion. The designers proposed a new five-
dimensional chaotic system with a more complex key
stream [17].High-dimensional chaoticmaps havemore
variables or parameters, so there is a larger chaotic
space. However, this requires considerable time, so it
is not suitable for real-time applications [18]. There-
fore, in recent years, some scholars have proposed new
chaotic systems and designed chaotic maps with more
complex and rich dynamical behaviors. Teng et al. con-
structed a crossed 2D hyperchaotic map using a nonlin-
ear function and two chaotic maps with crossed struc-
tures [19]. Additionally, the control parameter range is
larger, and the chaotic system can have the complex
chaotic trajectory phenomenon of a high-dimensional
chaotic system, so complex chaotic behavior is easier
to realize. Hua et al. proposed a chaotic 2D-LASM
map with higher ergodicity [20], and the proposed
new chaotic system has larger parameters scope. Li
et al. propose a scheme for self-reproducing dynam-
ics in a two-dimensional discrete map, to study self-
reproducing dynamics in discrete-time systems by con-
structing a two-dimensional map with an infinite num-
ber of fixed points [21]. Ye et al. developed an elliptic
curve public key cryptography algorithm and proposed
a new ImproBsys chaotic system with better chaotic
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behavior. It has two positive Lyapunov exponents to
show hyperchaotic phenomena [22].

Generally, image processing algorithms are more
complex and take much longer to calculate. Quantum
computing has made breakthrough progress. Using the
superposition characteristics of quantum states, com-
puting efficiency can be greatly improved. Combining
quantum images with classical image encryption is a
safe and effective cryptographic system scheme. Some
scholars have designed a variety of quantum image
representation models [23–32]. Among them, flexible
representation of quantum image (FRQI) and novel
enhanced quantum representation (NEQR) models are
frequently used because their coding modes are similar
to classical images. The NEQR model can accurately
restore the original information through measurement
[33]. Zhou et al. used the NEQR representation model
to propose a quantum image encryption method based
on the Lorenz hyperchaotic system [34]. Hu et al. pro-
posed a quantum image encryption algorithm based on
Logistic map, using the generalized Arnold transform.
It performs verywell improving the efficiency of image
encryption algorithms [35]. Liu et al. proposed a three-
level quantum image encryption algorithm based on
Logistic map [36]. Using Quantum Arnold Transform
(QArT) to process qubits representing position infor-
mation, the proposed encryption method has higher
security. In addition, the processing efficiency is higher
than that of the traditional encryption scheme. Dai et
al. [37] proposed a novel quantum multi-image com-
pression encryption algorithm based on the quantum
discrete cosine transform and four-dimensional hyper-
chaotic Henon map. Luo et al. proposed an image
encryption scheme based on hyperchaos and quantum
coding [38]. It is performed by a bit-level adjacency
swap operation, which has less complexity than a tra-
ditional bit-level swap operation.

In response to the above problems, we proposed a
new 2D cross Sine2 − Logistic chaotic map, and pro-
posed a quantum image encryption method based on
the chaotic map. The simulation results derived from
bifurcation diagrams, phase diagrams and Lyapunov
exponents show that the 2D cross Sine2 − Logistic
map has a hyperchaotic state and very good chaotic per-
formance. Themethod proposed in this paper combines
quantum images with classical encryption methods.
Specifically, the novel enhanced quantum representa-
tion (NEQR) model is used to represent a traditional
digital image as a quantum state. The key is related to

the plaintext image; that is, different grayscale images
generate different keys, which improves the resistance
to the selected plaintext attack safety. The gray value
of the quantum state is changed by the quantum selec-
tive scrambling method, and the diffusion effect can be
achieved by scrambling the position level. A chaos-
based row/column cyclic shift operation is used to
change the position of the gray value. Moreover, in
order to improve the security of the algorithm, a diffu-
sion method of quantum overlapping feedback diffu-
sion is proposed, which diffuses the scrambled image
and finally obtains the encrypted image.

The main contributions of this paper are as follows:

1. A new type of two-dimensional cross hyperchaotic
map is proposed, which solves the shortcomings
of the small key space and simple structure of
low-dimensional chaotic systems, and overcomes
the obvious periodic window behavior of existing
chaotic maps. It greatly improves the range of con-
trol parameters, solves the defects of slow itera-
tion speed and high computational cost of high-
dimensional chaotic systems, realizes the complex-
ity of chaotic mapping, is easier to implement and
shows very good chaotic behavior.

2. A quantum selection scrambling operation based
on the NEQR model is proposed. By scrambling
the qubit level, the pixel value can be changed, the
effect of diffusion can be achieved at the same time,
and the security of the data can be improved.

3. A chaos-based quantum overlapping feedback dif-
fusion method is proposed, which further improves
the security of the algorithm and improves the
avalanche effect of the encryption algorithm. Even
a small change in the original plaintext will cause
a large difference in the ciphertext image.

The remaining sections of this article are organized
as follows. Section 2 details the 2D cross Sine2 −
Logistic hyperchaotic system and evaluates its chaotic
behavior. Section 3 introduces the NEQR quantum
image representation model. Section 4 introduces the
quantum selective scrambling method in detail. Sec-
tion 5 introduces the overlapping feedback diffusion
method of the quantum image. Section 6 describes the
proposed quantum image encryption scheme in detail.
Section 7 describes the simulation results and perfor-
mance analysis. Conclusions are provided in Sect. 8.
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2 The proposed 2D hyperchaotic map

2.1 Definition of the 2D cross Sine2 − Logistic
hyperchaotic system

In this paper, we propose a new 2D cross Sine2 −
Logistic hyperchaotic system with two input states
xn, yn and two cross outputs states xn+1, yn+1. The
mathematical expression of this cross-system is shown
in Eq. (1). Generally, functions f1 and f2 are two
chaotic maps. The output is xn+1 when the input is
yn and yn+1 when the input is xn .{
xn+1 = f1(yn)

yn+1 = f2(xn)
(1)

Here, we designed and improved the cross-chaotic sys-
tem. The sine square chaotic system and the classic
logistic chaotic system are introduced. In particular,
it needs to be pointed out that the System (2) com-
bines the characteristics of sine chaotic map and logis-
tic chaotic map and retains the advantages of the low-
dimensional chaotic system such as fast iteration speed
and high operating efficiency. Additionally, our hyper-
chaotic system effectively avoids the security risks
caused by the periodic window embedded in chaotic
domain. Experimental analysis shows that this 2D sys-
tem exhibits excellent hyperchaotic behavior. The state
equations of the 2D cross Sine2 − Logistic hyper-
chaotic system are shown in Eq. (2).{
xn+1 = sin2(μ ∗ arcsin

√
yn)

yn+1 = α ∗ xn ∗ (1 − xn)
(2)

where α,μ are control parameters. When α = 4, μ ∈
[0.5,+∞], the chaotic system has good hyperchaotic
behavior. That is, there are two stable positive Lya-
punov exponents.

2.2 Performance analysis

2.2.1 Bifurcation diagram

The chaotic behavior of the system may be determined
using the bifurcation diagram of the chaotic sequence.
To better describe the dynamic behavior and perfor-
mance improvement of this 2D cross Sine2−Logistic
hyperchaotic system, we compare its bifurcation dia-
gramwith the bifurcation diagrams of the original Sine
map and the Logistic map, as shown in Fig. 1.

From Fig. 1a, b, it is not difficult to find that the Sine
map and Logistic map only exhibit chaotic properties
in a small range of parameters and furthermore, man-
ifest distinct periodic window behavior. Figure 1c, d
shows bifurcations of the x-sequence and y-sequence
in the Sine2− Logistic hyperchaotic systems, respec-
tively, when the initial conditions are x0 = 0.3538 and
y0 = 0.4262 and the control parameter μ ∈ [0, 4].
This hyperchaotic map has a larger parameter range
and better stochasticity than the Sine and Logistic map
and presents a full mapping state more quickly when
entering chaotic behavior.

To better demonstrate the long-range validity of this
hyperchaotic system parameter, we control the param-
eters μ to keep increasing, and the System (2) still has
excellent chaotic behavior. Figure 1e, f shows the bifur-
cation results of μ ∈ [0, 50]. As a result, the 2D cross
Sine2 − Logistic hyperchaotic system has a larger
range of control parameters and better stochasticity
than the traditional Sine map and Logistic map.

2.2.2 Phase diagram

The phase diagram represents the distribution of
chaotic attractors on the two-dimensional phase plane.
The larger the area occupied in the phase diagram is,
the better the chaotic performance of the chaotic sys-
tem. The initial conditions are set to x0 = 0.3538
and y0 = 0.4262, and the phase diagram of system
(2) is shown in Fig. 2. Figure 2a is the phase dia-
gram of the 2D Logistic Map (2D-LM) [39], Fig. 2b is
the phase diagram of the 2D Sine Logistic Modulation
Map (2D-SLMM) [40], and Fig. 2c, d is the 2D cross
Sine2−Logistic phase diagramswhen the parameters
μ = 3.6239 and μ = 6.9521.

The results show that our system ismore distributed,
covering almost all areas, and not clustered in one
region. In other words, the hyperchaotic sequence gen-
erated by system (2) is a uniform random sequencewith
good ergodic properties.

2.2.3 Lyapunov exponent

Using the Lyapunov exponent, it is possible to describe
the sensitivity of chaotic systems to initial values.
To determine whether a nonlinear system has chaotic
motion, it is necessary to check whether its Lyapunov
exponent λ is positive.
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Fig. 1 a Sine map; b logisitc map; c Sine2 − Logistic map of x sequence for μ ∈ [0, 4]; d Sine2 − Logistic map of y sequence for
μ ∈ [0, 4]; e Sine2 − Logistic map of x sequence for μ ∈ [0, 50]; f Sine2 − Logistic map of y sequence for μ ∈ [0, 50]
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Fig. 2 a 2D-LM; b 2D-SLMM; c Sine2 − Logistic map phase
diagram forμ = 3.6239;d Sine2−Logisticmapphase diagram
for μ = 6.9521

There may be more than one Lyapunov exponent
greater than zero in high-dimensional phase space,
complicating the system’s motion. Chaos with more
than one positive exponent in the high-dimensional
phase space has been called hyperchaos.

In a general sense, the higher the dimensionality is,
the higher the possibility of hyperchaotic phenomena in
nonlinear systems. However, high-dimensional chaotic
systems usually have long iteration times and high
computational complexity. This measurement uses the
separation rate between infinitely close trajectories, as
shown in Eq. (3).

λ = lim
n→∞

1

n

n−1∑
i=0

ln | f ′(xi ) | (3)

Figure 3a, b shows the Lyapunov of Sine and Logistic
chaotic maps. As can be shown, the Lyapunov expo-
nent value of the two is greater than 0 only over a small
parameter range. As shown in Fig. 3c, when the param-
eters of our proposed chaotic system are greater than
0.5, theLyapunovexponent values are all greater than0.
The lower right part of Fig. 3c is a zoomed-in local area
picture. Literature [9] proposed a compound operation-
based optimization control method of complexity. The-
oretical analysis shows that the values of Lyapunov
exponent will increase in logarithmic form when the
control parameters vary in real space. Thus, the com-
plexity of the chaotic sequence increases. From this,
we can also clearly see that the Lyapunov exponent of
the proposed chaotic map increases with the increase in
the parameters. Meanwhile, the chaotic system has two
positive Lyapunov exponent values, indicating that the
chaotic system we proposed is a hyperchaotic system
with more complex dynamics. The chaos performance
is better. Meanwhile, literature [13] mentions that the
applied map can keep robust hyperchaotic behaviors
by selecting proper parameters. In fact, our proposed
chaotic map, when the control parameter is increased
to a larger positive number, the value of the Lyapunov
exponent is still a positive number, maintaining robust
hyperchaotic behavior. Compared with the Sine map
and theLogisticmap, the 2D Sine2 − Logistic chaotic
system we proposed has a greater Lyapunov expo-
nent value, a larger parameter range and exhibits good
chaotic behavior.

Fig. 3 a Sine map; b logisitc map; c Sine2 − Logistic map
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2.2.4 The 0–1 test

The 0–1 test [41] is used to evaluate the chaotic per-
formance of the proposed 2D cross Sine2 − Logistic
system. For c ∈ [0, π ], the 0–1 test value K of chaotic
sequence

{
Wj

}
, j ∈ [1, 2, . . . , n] is calculated as

shown in Eq. (4):

K = logMc(n)

log n
(4)

Mc(n) = lim
N→∞

1

N

n∑
j=1

[pc( j + n) − pc( j)]2

+ [qc( j + n) − qc( j)]2
(5)

pc(n) =
n∑
j=1

Wjcos(ir) (6)

qc(n) =
n∑
j=1

Wj sin(ir) (7)

The closer K gets to 1, themore complex its dynamic
behavior, and the faster it is equal to 1, the faster it
enters into the chaotic state. Figure 4a presents the 0–1
test results of Sine, Logistic, and x , y sequences of the
2D cross Sine2 − Logistic chaotic map, μ ∈ [0, 4].
Obviously, the proposed hyperchaotic system hasmore
complex chaotic behavior than the other two systems.

To further demonstrate the long-range chaotic per-
formance of this hyperchaotic system, we also calcu-
lated the K values, μ ∈ [0, 50], as shown in Fig. 4b,
c. Experimental results show that our chaotic system
exhibits good chaotic behavior over a wide range of
parameters.

2.2.5 Sample entropy

Sample entropy is a measurement tool used to quanti-
tatively measure the complexity of a dynamic system
[42]. When sample entropy is positive, the nonlinear
system behaves as chaos.

The two sequences x and y of the proposed hyper-
chaotic system demonstrate good chaotic performance.
When μ is greater than 0.6, the sample entropies are
significantly higher than 1, as shown by the red and
blue lines in Fig. 5a. In contrast, neither traditional
Sine nor Logistic map has a sample entropy greater
than 1. In other words, the complexity of this 2D cross
Sine2 − Logistic chaotic map is much higher than
that of Sine map and Logistic map.

We tested the effect of increasing the parameter
range on the sample entropy in this chaotic system
in Fig. 5b, c. The results show that the system has
consistently stable chaotic properties when the con-
trol parameter is extended. This means that if this pro-
posed chaotic system is used as the random number
generator of the cryptosystem, this cryptosystem will
have a wider key space and can better resist brute-force
attacks.

2.2.6 Sensitivity analysis of the initial value

Sensitivity to initial values is one of the important
characteristics of chaotic systems. When the initial
value changes slightly, completely different chaotic
sequences will be generated.

We modified the initial values of Sine map and
Logistic map as well as the proposed hyperchaotic
system 10−16. After about 55 iterations, the Sine and

Fig. 4 a 0–1 test experiment comparison; b Sine2 − Logistic map of x sequence for μ ∈ [0, 50]; c Sine2 − Logistic map of y
sequence for μ ∈ [0, 50]
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Fig. 5 a Sample entropy test comparison; b Sine2 − Logistic map of x sequence for μ ∈ [0, 50]; c Sine2 − Logistic map of y
sequence for μ ∈ [0, 50]

Logisitc chaotic sequences are completely different
from the original sequences, as shown in Fig. 6a,
b. However, the 2D cross Sine2 − Logistic chaotic
system requires only 25 iterations, and the generated
chaotic sequences are completely different from the
original, as shown in Fig. 6c, d. Therefore, the transient
effects of chaotic systems can be effectively mitigated
and the security of chaotic systems can be improved.

2.2.7 NIST test

The NIST test is a tool for evaluating the nonlinear
properties of chaotic systems and the stochastic per-
formance of data [43]. NIST random tests include 16
different test measures, and each test will produce a
P value. Only when the P value is within the range
of [0.01, 1], the test be judged to have passed. We
performed NIST random tests on the data sequences
generated by the 2D cross Sine2 − Logistic hyper-
chaotic system, and the results are listed in Table 1.
All results pass the tests, indicating that our chaotic
sequences have measurable randomness.

In addition to the above performance analysis, we
also analyze the complexity of the chaotic system. We
iterate through different chaotic systems and compare
them with our proposed chaotic system. Among them,
the 2D Sine Logistic modulation graph is from the lit-
erature [40], as shown in Eq. (8). It can be found that
the chaotic map also uses the sine function. Addition-
ally, it is compared with other two-dimensional chaotic
systems. Table 2 shows that the iteration timeof the pro-
posed chaotic system is longer than that of the same-
dimensional chaotic system, but the iteration is gen-
erally fast. Furthermore, the proposed chaotic system

still exhibits hyperchaotic behavior even with a two-
dimensional chaotic map.

{
xn+1 = α(sin(πyn) + β)xn(1 − xn)

yn+1 = α(sin(πxn+1) + β)yn(1 − yn)
(8)

The above performance analysis shows that our pro-
posed chaotic system has a very large parameter range
and has hyperchaotic behavior. At the same time, it
exhibits good chaotic characteristics, and can generate
more complex chaotic sequences. In applications, it is
very suitable for encryption systems.

3 NEQR representation model

Zhang et al. [24] improved the FQRI model and
proposed a novel enhanced quantum representation
(NEQR) model for representing quantum images. A
grayscale image I of 2n×2n is representedby theNEQR
model as follows:

|I 〉 = 1

2n

2n−1∑
y=0

2n−1∑
x=0

|PY X 〉 ⊗ |yx〉 (9)

where |PY X 〉 = |p7yx p6yx · · · p1yx p0yx 〉 denotes the
grayscale information of the pixel corresponding to the
position |yx〉, and |yx〉 = |y〉|x〉 = |yn−1yn−2 · · · y0〉|
xn−1xn−2 · · · x0〉 is the position coordinate; the symbol
⊗ represents the tensor product operation. Take a 2×2
sized quantum image as an example, as shown in Fig. 7,
and its NEQR model is represented as Eq. (10):
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Fig. 6 a Sine map; b logisitc map; c Sine2 − Logistic map of x sequence; d Sine2 − Logistic map of y sequence

|I 〉 = 1

2
(|0〉 ⊗ |00〉 + |100〉 ⊗ |01〉 + |200〉 ⊗ |10〉

+ |255〉 ⊗ |11〉)
= 1

2
(|00000000〉 ⊗ |00〉 + |01100100〉 ⊗ |01〉

+ |11001000〉 ⊗ |10〉 + |11111111〉 ⊗ |11〉)

(10)

4 Qubit-level selection scrambling

In this section, we propose a quantum selective scram-
bling method. The method consists of three functional

modules: qubit-level shift operation, qubit-level cross-
XOR-Shift operation and qubit-level cyclic shift oper-
ation. Qubits are selectively scrambled to alter the
grayscale of a quantum image diffuse the image.

4.1 Qubit-level shift operation

We design a quantum circuit consisting of controlled
swap gates. The value of each pixel (Y , X ) is changed
by using a qubit-level shift operation.

Taking the quantum circuit shown in Fig. 8 as an
example, we perform a shift operation on the qubits,
i.e., first swap the 7th qubit with the 3rd qubit, the 6th
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Table 1 NIST statistical test results

Statistical test X Y

P value State P value State

Frequency 0.909834 Pass 0.672582 Pass

Block frequency 0.236804 Pass 0.028836 Pass

Cumulative sums (forward) 0.992042 Pass 0.859177 Pass

Cumulative sums (reverse) 0.955606 Pass 0.482196 Pass

Runs 0.912010 Pass 0.596054 Pass

Longest run of ones 0.411378 Pass 0.427718 Pass

Non-overlapping template 0.991728 Pass 0.939401 Pass

Serial 0.889149 Pass 0.738474 Pass

Linear complexity 0.397492 Pass 0.101523 Pass

Random excursions 0.915301 Pass 0.989948 Pass

Random excursions variant 0.952246 Pass 0.909620 Pass

Approximate entropy 0.178595 Pass 0.438333 Pass

Universal 0.019175 Pass 0.792042 Pass

FFT 0.080739 Pass 0.541289 Pass

Rank 0.631117 Pass 0.504020 Pass

Overlapping template 0.382867 Pass 0.574918 Pass

Table 2 Iterative comparison of chaotic systems

Chaos sequence generation time (s)

Iteration times Our proposed chaotic map 2D Logistic-Tent chaotic map 2D Henon chaotic map 2D Sine Logistic Modulation Map

300000 0.066657 0.016820 0.035081 0.060611

600000 0.148492 0.033743 0.068294 0.146796

Fig. 7 A grayscale image
represented by NEQR
model

qubitwith the 2nd qubit, the 5th qubitwith the 1st qubit,
and the 4th qubit with the 0th qubit, and then swap the
6th qubit with the 5th qubit, the 4th qubit with the 3rd
qubit and the 2nd qubit with the 1st qubit. The resulting
qubit-level can be expressed as:

|p7′
yx 〉 = |p3yx 〉 |p6′

yx 〉 = |p1yx 〉
|p5′

yx 〉 = |p2yx 〉 |p4′
yx 〉 = |p7yx 〉

|p3′
yx 〉 = |p0yx 〉 |p2′

yx 〉 = |p5yx 〉
|p1′

yx 〉 = |p6yx 〉 |p0′
yx 〉 = |p4yx 〉

(11)

For the pixel value (Y , X ), the qubit-level shift opera-
tion can be realized by the controlled swap gate UY X ,
and the controlled swap gate UY X is defined as:

UY X (|PY X 〉) = UY X (|p7yx p6yx · · · p1yx p0yx 〉)
= |p3yx p1yx p2yx p7yx p0yx p5yx p6yx p4yx 〉

(12)

The gray value is changed from |p7yx p6yx · · · p1yx p0yx 〉 to
|p3yx p1yx p2yx p7yx p0yx p5yx p6yx p4yx 〉 by the shift operation
on the qubit-level. Although swap gates only change
the position of the qubits, they change the pixel value
to achieve diffusion.

4.2 Qubit-level cross-XOR-shift operation

In the proposed scheme, cross exclusive OR and shift
operations are performed on the qubit level, as shown
in Fig. 9.
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Fig. 8 Quantum circuit for qubit-level shift operations

Fig. 9 Quantum circuit with cross-XOR-shift operation

First the XOR operation of the quantum bit is per-
formed. In quantum circuits, CNOT gates are used to
implement the XOR operation. The specific execution
process is as follows: the 0th qubit is XOR with the
7th qubit to obtain the new 7th qubit state, the 1st qubit
is XOR with the 6th qubit to obtain the new 6th qubit
state, the 2nd qubit is XOR with the 5th qubit to get
the new 5th qubit state, the 3rd qubit is XOR with the
4th qubit to get the new 4th qubit state. The resulting
qubits are expressed as:

|p7′
yx 〉 = |p0yx ⊕ p7yx 〉 |p6′

yx 〉 = |p1yx ⊕ p6yx 〉
|p5′

yx 〉 = |p2yx ⊕ p5yx 〉 |p4′
yx 〉 = |p3yx ⊕ p4yx 〉

|p3′
yx 〉 = |p3yx 〉 |p2′

yx 〉 = |p2yx 〉
|p1′

yx 〉 = |p1yx 〉 |p0′
yx 〉 = |p0yx 〉

(13)

The gray value changes from|p7yx p6yx · · · p1yx p0yx 〉 to

|p7′
yx p

6′
yx · · · p1

′
yx p

0′
yx 〉.

Second, the bit-level shift operation on the gray
value|p7′

yx p
6′
yx · · · p1′

yx p
0′
yx 〉 can be implemented by the

controlled swap gate UY X . The gray value is changed
from |p7′

yx p
6′
yx · · · p1′

yx p
0′
yx 〉 to |p3′

yx p
5′
yx p

1′
yx p

4′
yx p

0′
yx p

2′
yx

p6
′
yx p

7′
yx 〉, and the obtained qubits can be expressed as:

|p7′
yx 〉 = |p3′

yx 〉 |p6′
yx 〉 = |p5′

yx 〉
|p5′

yx 〉 = |p1′
yx 〉 |p4′

yx 〉 = |p4′
yx 〉

|p3′
yx 〉 = |p0′

yx 〉 |p2′
yx 〉 = |p2′

yx 〉
|p1′

yx 〉 = |p6′
yx 〉 |p0′

yx 〉 = |p7′
yx 〉

(14)

By the controlled swap gateUY X , the pixel value (Y, X)

of the quantum image can execute the qubit-level cross-
XOR-shift operations; then, the controlled swap gate
can be defined as:

UY X (|PY X 〉) = UY X (|p7yx p6yx · · · p1yx p0yx 〉)
= |p3′

yx p
5′
yx p

1′
yx p

4′
yx p

0′
yx p

2′
yx p

6′
yx p

7′
yx 〉

(15)

4.3 Qubit-level cyclic shift operation

The cyclic left shift operation of the pixel value(Y, X)

is realized through the quantum swap gate. As shown
in Fig. 10, the pixel value (Y , X ) of the quantum image
is cyclically shifted t times to the left. The left side of
Fig. 10 illustrates that the quantum bits are sequentially
cyclically shifted 1 bit left, i.e.,|p7yx 〉 to |p6yx 〉 to |p5yx 〉
to |p4yx 〉 to |p3yx 〉 to |p2yx 〉 to |p1yx 〉 to |p0yx 〉 to |p7yx 〉.
The right side of Fig. 10 shows the result of a circular
left shift of t bits.

The controlled swap gate UY X performs a qubit-
level cyclic shift operation on the pixel value (Y,X).
The UY X is defined as:

UY X (|PY X 〉) = UY X (|p7yx p6yx · · · p1yx p0yx 〉)
= |p7−t

yx · · · p0yx · · · p7−t+1
yx 〉 (16)

In addition, the entire quantum image can be com-
pleted through the cyclic shift control sequence CS ={
t1, t2, . . . , t22n

}
. 22n is the total number of pixels in

the image, and CS can be generated by the sender and
receiver of the data through a chaotic system; seeSect. 6
for details.
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Fig. 10 Quantum circuit of qubit-level cyclic shift operation

5 Overlapping feedback diffusion of quantum
images

In order to improve the avalanche effect of the encryp-
tion algorithm, an overlapping feedback diffusion
method of quantum images is proposed, as shown in
Fig. 11. Small changes in the original plaintext will also
cause great differences in the ciphertext. The quantum
overlapping feedback diffusion operation is shown in
Eq. (17):{

|c jyx 〉 = |C j
y−1x 〉 ⊕ |Z j

yx 〉
|C j

yx 〉 = |c jyx 〉 ⊕ |X1 j
yx 〉

(17)

where X1 denotes the sequence of encryption keys, and
the quantum image is used to store the encryption key.
Therefore, the quantum key image |X1〉 is generated
using the NEQR model.

Z is the input of the diffusion operation. Depend-
ing on the actual encryption process, it can be either
the original plaintext or the output result of the previ-
ous encryption operation. In our proposed algorithm,
here Z is the result of the previous scrambling step.
As a result, the NEQR model is used to construct the
quantum image|Z〉.

|c jyx 〉 is the j-th qubit of the y-th element of the x-th

row in the diffusion intermediate result. |C j
y−1x 〉 is the

j-th qubit of the (y − 1)-th element of the x-th row in

the diffusion output result. |C j ′
yx 〉 is the j-th qubit of

the y-th element of the x-th row in the diffusion output
result.

where the first value of |C j
yx 〉 is the inverse of the

first value of the |Z j
yx 〉 value. j = 0,1,2,…,7.

Fig. 11 Quantum circuit with overlapping feedback diffusion

The result of quantum image overlap feedback dif-
fusion related is not only to the encryption key, but also
to the result of the previous qubit diffusion, which can
satisfy the avalanche effect and improve the security of
the algorithm.

123



Quantum image encryption scheme based on 2D 2827

Fig. 12 Encryption flow chart

6 Quantum image encryption scheme

The designed quantum image encryption scheme con-
sists of three stages. In the key generation stage, a 2D
cross Sine2−Logistic chaotic map is used to generate
random key sequences related to the plaintext image. In
the qubit-level scrambling stage, the quantum selective
scrambling operation is used to scramble the position
of the qubit, and at the same time, it can disguise pixel
values, achieving the effect of confusion and diffusion.
In the qubit-level diffusion stage, the avalanche effect
of the encryption scheme is further improved using the
overlapping feedback diffusion method. The proposed
scheme’s specific implementation steps are described
below, and the encryption flowchart is shown in Fig. 12.

Step 1. Use SHA-256 to calculate the hash value
of the plaintext image I with the size of M × N . The
following formula may be used to obtain the 256-bit
hash value represented by a hexadecimal array:

H(I ) = Sha256(I ) = [h1, h2, . . . , h64] (18)

Step 2. The initial value of the 2D cross Sine2 −
Logistic chaotic map is generated using array H (I )
in the following ways:{
x0 = hex2dec(H(I )(α : α + 7)) × 10−10

y0 = hex2dec(H(I )(β : β + 7)) × 10−10
(19)

where hex2dec() represents the conversion function of
the hexadecimal number to the decimal number. α, β

are the keys set by the user.
Step 3. According to the NEQR model shown in

Eq. (9), the classical image I is represented as a quantum
image |I 〉.

Step 4. Iterate the 2Dcross Sine2−Logistic chaotic
map with the initial values x0, y0 obtain two pseudo-
random sequences X , Y with lengths of M × N . The
pseudo-random sequences X and Y are then mapped
to between 0 and 255, representing X1 and Y1.{
X = {x(1), x(2), x(3), . . . , x(M × N )}
Y = {y(1), y(2), y(3), . . . , y(M × N )} (20)

Step 5. The cyclic row/column shift control sequences
CRS1,CRS2,CCS1,CCS2 are obtained by segmen-
tation:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CRS1 = X1(1 : M)

CRS2 = X1(M + 1 : 2 × M)

CCS1 = Y1(1 : N )

CCS2 = Y1(N + 1 : 2 × N )

(21)

Step 6. The chaotic random sequence Y is mapped
between 1 and 3, and between 1 and 4 to obtain the
selection control sequence SC and the cyclic shift con-
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trol sequence CS, respectively.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SC = uint8(mod(ceil(Y ∗ 106), 3) + 1),

SC ∈ [1, 2, 3]
CS = uint8(mod(ceil(Y ∗ 106), 4) + 1),

CS ∈ [1, 2, 3, 4]
(22)

Step 7. The proposed quantum selective scrambling
method (in Sect. 4) changes the gray value of the quan-
tum image |I 〉. The controlled swap gateUY X is defined
as the sub-operation SY X . The specific description is as
follows:

SY X =

⎛
⎜⎜⎝I ⊗

2n−1∑
y=0

2n−1∑
x=0

yx �=Y X

|yx〉〈yx |

⎞
⎟⎟⎠

+

⎧⎪⎨
⎪⎩
UY X ⊗ |Y X〉〈Y X |, SC = 1

UY X ⊗ |Y X〉〈Y X |, SC = 2

UY X ⊗ |Y X〉〈Y X |, SC = 3

(23)

The qubit-level selective shift operation of the pixel
value, which can be realized by the quantum sub-
operation SY X ;

SY X |I 〉

= SY X

⎛
⎝ 1

2n

2n−1∑
y=0

2n−1∑
x=0

|Pyx 〉|yx〉
⎞
⎠

= 1

2n
SY X

⎛
⎜⎜⎝

2n−1∑
y=0

2n−1∑
x=0

yx �=Y X

|Pyx 〉|yx〉 + |PY X 〉|Y X〉

⎞
⎟⎟⎠

= 1

2n

⎛
⎜⎜⎝

2n−1∑
y=0

2n−1∑
x=0

yx �=Y X

|Pyx 〉|yx〉

+

⎧⎪⎪⎨
⎪⎪⎩
UY X |PY X 〉|Y X〉, SC = 1

UY X |PY X 〉|Y X〉, SC = 2

UY X |PY X 〉|Y X〉, SC = 3

⎞
⎟⎟⎠

= 1

2n

⎛
⎜⎜⎝

2n−1∑
y=0

2n−1∑
x=0

yx �=Y X

|Pyx 〉|yx〉+

⎧⎪⎪⎨
⎪⎪⎩

|p3Y X p
1
Y X p

2
Y X p

7
Y X p

0
Y X p

5
Y X p

6
Y X p

4
Y X 〉|Y X〉, SC = 1

|p3′
Y X p

5′
Y X p

1′
Y X p

4′
Y X p

0′
Y X p

2′
Y X p

6′
Y X p

7′
Y X 〉|Y X〉, SC = 2

|p7−t
Y X · · · p0Y X · · · p7−t+1

Y X 〉|Y X〉, SC = 3

⎞
⎟⎟⎠

(24)

SY1X1 SY X |I 〉

= SY1X1 (SY X (
1

2n

2n−1∑
y=0

2n−1∑
x=0

|Pyx 〉|yx〉))

= 1

2n

⎛
⎜⎜⎝

2n−1∑
y=0

2n−1∑
x=0

yx �=Y X,Y1X1

|Pyx 〉|yx〉

+

⎧⎪⎨
⎪⎩
UY X |PY X 〉|Y X〉, SC = 1

UY X |PY X 〉|Y X〉, SC = 2

UY X |PY X 〉|Y X〉, SC = 3

+

⎧⎪⎨
⎪⎩
UY X |PY1X1 〉|Y1X1〉, SC = 1

UY X |PY1X1 〉|Y1X1〉, SC = 2

UY X |PY1X1 〉|Y1X1〉, SC = 3

⎞
⎟⎠

= 1

2n

( 2n−1∑
y=0

2n−1∑
x=0

yx �=Y X,Y1X1

|Pyx 〉|yx〉

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|p3Y X p1Y X p2Y X p7Y X p0Y X p5Y X p6Y X p4Y X 〉|Y X〉,
SC = 1

|p3′
Y X p5

′
Y X p1

′
Y X p4

′
Y X p0

′
Y X p2

′
Y X p6

′
Y X p7

′
Y X 〉|Y X〉,

SC = 2

|p7−t
Y X · · · p0Y X · · · p7−t+1

Y X 〉|Y X〉,
SC = 3

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|p3Y1X1
p1Y1X1

p2Y1X1
p7Y1X1

p0Y1X1
p5Y1X1

p6Y1X1
p4Y1X1

〉|Y1X1〉,
SC = 1

|p3′
Y1X1

p5
′

Y1X1
p1

′
Y1X1

p4
′

Y1X1
p0

′
Y1X1

p2
′

Y1X1
p6

′
Y1X1

p7
′

Y1X1
〉|Y1X1〉

SC = 2

|p7−t
Y1X1

· · · p0Y1X1
· · · p7−t+1

Y1X1
〉|Y1X1〉,SC = 3

)

(25)

We change all the pixel values of the quantum plain-
text image |I 〉 to obtain the quantum selective scram-
bled image |I1〉 as follows:

S|I 〉 =
2n−1∏
Y=0

2n−1∏
X=0

SY X |I 〉

=
2n−1∏
Y=0

2n−1∏
X=0

SY X

⎛
⎝ 1

2n

2n−1∑
Y=0

2n−1∑
X=0

|PY X 〉|Y X〉
⎞
⎠

= 1

2n

2n−1∑
Y=0

2n−1∑
X=0

SY X (|PY X 〉|Y X〉)

= 1

2n

2n−1∑
Y=0

2n−1∑
X=0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|p3Y X p
1
Y X p

2
Y X p

7
Y X p

0
Y X p

5
Y X

p6Y X p
4
Y X 〉|Y X〉, SC = 1

|p3′
Y X p

5′
Y X p

1′
Y X p

4′
Y X p

0′
Y X p

2′
Y X

p6
′

Y X p
7′
Y X 〉|Y X〉, SC = 2

|p7−t
Y X · · · p0Y X · · · p7−t+1

Y X 〉|Y X〉,
SC = 3

123



Quantum image encryption scheme based on 2D 2829

= 1

2n

2n−1∑
Y=0

2n−1∑
X=0

|P ′
Y X 〉|Y X〉

= |I ′〉 (26)

Step 8. The chaos-based row/column cyclic shift
method is used to change the position of image pix-
els and reduce the correlation between adjacent pixels.
Classic grayscale information is accurately extracted
from quantum image models by quantum measure-
ment, as shown in Algorithm 1.

Algorithm 1: The chaos-based row/column cyclic
shift method
Input: Read the classic image I1 of size M×N, Sequence

CRS1,CRS2,CCS1,CCS2
Output: Scrambling image Z

1 for i ← to M do
2 if CRS1>=CCS1 then
3 z(i,:)= circshift(I1(i,:),double(CRS1(i))-

double(CCS1(i)));
4 else
5 z(i,:)= circshift(I1(i,:),-(double(CCS1(i))-

double(CRS1(i))));
6 end
7 end
8 for j ← to N do
9 if CRS2>=CCS2 then

10 zz(:,j)=
circshift(z(:,j),double(CRS2(j))-double(CCS2(j)));

11 else
12 zz(:,j)= circshift(z(:,j),-(double(CCS2(j))-

double(CRS2(j))));
13 end
14 end

In the case of the 4× 4 image shown in Fig. 13, it is
clear that the pixel values at each location have changed
to achieve confusion. Then, an index scrambling oper-
ation is performed on the scrambled image, and finally,
a scrambled image Z with a size of M ×N is obtained.

Step 9. The scrambled image Z can be expressed as
a quantum state through Eq. (9) of NEQR.

Step 10. The final ciphertext image |C〉 is obtained
using overlapping feedback diffusion. The diagram in
Fig. 14 briefly describes the chaotic overlapping feed-
back diffusion process, which achieves the avalanche
effect and greatly improves the algorithm’s security.

Since this algorithm is symmetric, the decryption
process is the inverse of the encryption process.

7 Experimental simulation and performance
analysis

To verify the security and effectiveness of the algo-
rithm, three grayscale images of 512×512 “Boat,”
“Pepper” and “Baboon,” a color image “Lung” and two
gray images “House” and “Butterfly” of 256×256 are
used as test images.

The experiment was carried out in the following
environment: Windows 10 operating system, numeri-
cal simulation in MATLAB R2015b. The simulation
results of encryption and decryption are shown in
Fig. 15. No meaningful information can be observed
at all anymore from the encrypted images Fig. 15b, e,
h. The decrypted images Fig. 15c, f, i completely recon-
struct the original content of the plaintext images.

7.1 Key space analysis

It is noted that an encryption algorithm’s key space
is sufficiently large (greater than 2100), it may suc-
cessfully resist brute force attacks [44]. The encryp-
tion algorithm proposed in this paper has three keys
x0, y0, μ, and the accuracy of the initial key is set to
10−16, so the key space is (1016)

3 = 1048 > 2100 ≈
1.27 × 1030. Therefore, this encryption scheme has a
large key space, which enables it to resist brute force
attacks.

7.2 Key sensitivity analysis

Key sensitivity refers to the small changes in the key
during the image encryption process, which will have a
great impact on the decrypted image [45]. Given initial
key key = x0, y0. We change the initial keys x0 and y0
by 10−15 to obtain the changed keys Ekey1, Ekey2:

{
Ekey1 = {

x0 + 10−15, y0
}

Ekey2 = {
x0, y0 + 10−15

} (27)

⎧⎪⎨
⎪⎩
C = encrypt (key, P)

C1 = encrypt (Ekey1, P)

C2 = encrypt (Ekey2, P)

(28)

⎧⎪⎨
⎪⎩
D = decrypt (key,C)

W1 = decrypt (Ekey1,C)

W2 = decrypt (Ekey2,C)

(29)
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Fig. 13 Chaos-based
row/column cyclic shift
operation

Fig. 14 Chaotic overlapping feedback diffusion process

where encrypt() and decrypt() are the algorithm func-
tions for encryption and decryption, respectively. P is a
plaintext image, andC,C1 andC2are images encrypted
with keys key, Ekey1andEkey2, respectively. D is
the correctly decrypted image decrypted with the cor-
rect key. W1 and W2 are the wrong decrypted images

obtained by performing decryption operations with
wrong keys Ekey1, Ekey2.

Figure 16 shows the correctly decrypted image D
of “Boat” and its corresponding incorrectly decrypted
imagesW1 andW2. Figure 17 shows the “Boat” plain-
text image and its corresponding encrypted images C,
C1 and C2.
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Fig. 15 The results of
encryption and decryption:
a boat; b encrypted (a); c
decrypted (b); d peppers; e
encrypted (d); f decrypted
(e); g lung; h encrypted (g);
i decrypted (h)

Fig. 16 a Correctly
decrypted image D; b
incorrectly decrypted image
W1; c incorrectly decrypted
image W2

In this paper, key sensitivity analysis is carried out
for the three images of “Boat,” “Peppers,” “Baboon”
and “House,” respectively. To illustrate the algorithm’s
key sensitivity during the decryption process, Table 3
compares the NPCR and UACI [46] values obtained
after decrypting images using the correct and wrong

decryption keys. The introduction of NPCI and UACI
is detailed in Sect. 7.6.Moreover, theNPCR,UACI val-
ues are calculated between different encrypted images
obtained using the same plaintext image but also with
different encryption keys. The calculation results are
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Fig. 17 a Plaintext image; b encrypted image C; c encrypted image C1; d encrypted image C2

Table 3 Key sensitivity analysis result of the difference between decryption keys 10−15(NPCR/UACI) (unit:%)

Image size Image NPCR(D, W1) UACI(D, W1) NPCR(D, W2) UACI(D, W2)

512×512 Boat 99.5117 27.1434 99.5079 27.1695

512×512 Peppers 99.5018 28.2322 99.4732 28.1669

512×512 Baboon 99.5785 26.8459 99.5533 26.8630

256×256 House 99.3668 27.5692 99.3835 27.5201

Table 4 Key sensitivity analysis results of the difference between encryption keys 10−15(NPCR/UACI) (unit:%)

Image size Image NPCR(C, C1) UACI(C, C1) NPCR(C, C2) UACI(C, C2)

512×512 Boat 99.6154 33.5592 99.6028 33.3755

512×512 Peppers 99.6048 33.5099 99.5949 33.5059

512×512 Baboon 99.6098 33.5075 99.6113 33.5270

256×256 House 99.5743 33.5851 99.5972 33.4524

listed in Table 4. The results show that the encryption
scheme proposed in this paper is very sensitive to keys.

7.3 Histogram analysis

Histogram is a common tool that can be used to evaluate
the uniformity of ciphertext images. Figure 18 shows
the histograms for the plaintext and encrypted images
of the three images tested in this paper. We can find
that the histogram of the plaintext image is quite dif-
ferent from that of the encrypted image, which is rather
uniform.

The Chi-square test is an important method to quan-
titatively analyze the uniform distribution of pixels in
the encrypted image [47]. The calculation formula of
the x2 test is shown in Eq. (30):

x2 =
255∑
i=0

(vi − v0)
2

v0
, v0 = M × N

256
(30)

Table 5 shows the results of the x2 test. The test
result of the encrypted image is lower than 293.24783,
and the test is all passed. Through histogram analysis
and the x2 test, it is proven that the algorithm can resist
statistical attacks.

7.4 Correlation of adjacent pixels

In general, images present information with specific
and specific meanings, and the pixel contents are con-
tinuous, so the correlation between two neighboring
pixels is very high. Attackers can crack encryption
algorithms by analyzing the correlation between pix-
els in encrypted images. A good encryption algorithm
should attempt to minimize the correlation between
adjacent pixels in the encrypted image.

We randomly select 5000 pairs of adjacent pixels
in horizontal, vertical and diagonal directions from the
plaintext and encrypted images of the “Boat,” respec-
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Fig. 18 a, c, e Histograms
of plaintext images “Boat,”
“Peppers,” “Lung”; b, d, f
histograms of encrypted
images “Boat,” “Peppers,”
“Lung”

Table 5 x2 test

Image size Image x2 value Pass or fail

512×512 Boat 274.4766 Pass

512×512 Peppers 249.8965 Pass

512×512 Baboon 247.1309 Pass

256×256 Lung 274.6510 Pass

256×256 House 233.7188 Pass

256×256 Butterfly 245.3906 Pass
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Fig. 19 a–c are the correlations between adjacent pixels in the
horizontal, vertical and diagonal directions of the plaintext image
“Boat,” respectively;d–f are the correlations of adjacent pixels in

the horizontal, vertical and diagonal directions of the encrypted
image “Boat,” respectively

tively, to calculate and compare the correlation and
correlation coefficients of the plaintext/ciphertext, as
shown in Fig. 19. The correlation coefficient is calcu-
lated as follows [48]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rxy = cov(x,y)√
D(x)D(y)

cov(x, y) = 1
N

N∑
i=1

(xi − E(x))(yi − E(y))

D(x) = 1
N

N∑
i=1

(xi − E(x))2

E(x) = 1
N

N∑
i=1

xi

(31)

where x and y represent adjacent pixels in two
grayscale images and N is the total number of pixels
in the image.

As seen in Fig. 19, the correlations in all directions
of the encrypted images are very small and uniformly
distributed in the figure. Table 6 lists the calculation
results of the correlation coefficients of this algorithm.
As shown, the correlation coefficients between adjacent
pixels in the encrypted image are extremely close to
0, indicating that the encryption method is sufficiently
secure.

7.5 Information entropy

The information entropy of an image may be used
to determine the average amount of information con-
tained within it, is another important factor in evaluat-
ing the resistance of a cryptographic system. Informa-
tion entropy is defined as [50]:
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Table 6 Correlation analysis

Image size Image Horizontal Vertical Diagonal

512×512 Boat 0.9721 0.9425 0.9248

Encrypted boat 0.0008 −0.0074 −0.0060

512×512 Peppers 0.9813 0.9759 0.9623

Encrypted peppers 0.0002 −0.0021 −0.0083

512×512 Baboon 0.7687 0.8642 0.8642

Encrypted baboon −0.0026 −0.0002 −0.0021

256×256 LungR 0.9386 0.9639 0.9049

LungG 0.9677 0.9820 0.9589

LungB 0.9315 0.9575 0.9072

Encrypted lungR 0.0021 −0.0004 0.0073

Encrypted lungG −0.0005 −0.0060 0.0097

Encrypted lungB −0.0030 −0.0001 −0.0011

256×256 House 0.9116 0.8602 0.7933

Encrypted house 0.0002 −0.0079 −0.0086

256×256 Butterfly 0.9277 0.9372 0.9162

Encrypted butterfly −0.0021 0.0039 −0.0009

256×256 [33] 0.0153 0.0191 0.0055

512×512 [36] 0.0295 0.0187 0.0393

512×512 [49] −0.0072 0.0258 −0.0098

H(s) = −
2L−1∑
i=0

p(si ) log2 p(si ) (32)

where L is the total number of pixels in the encrypted
image, and p(si ) represents the probability of si .

According to Eq. (32), the higher the randomness of
the pixel is, the larger the image’s information entropy.
The greater the entropy is, the higher the security. The
ideal value of the information entropy of an 8-bit image
is 8. Table 7 shows the information entropy of the
encrypted images. Compared to other algorithms, our
encryption algorithm’s entropy is quite near the ideal
value and can effectively resist an entropy attack.

7.6 Differential attack

A good algorithm for image encryption should be
sensitive to plaintext images; even if the pixels in
the plaintext image are slightly changed, two com-
pletely different encrypted images can be obtained.
Two important indicators to evaluate the effect of dif-
ferential attack analysis are the number of pixel change
rates (NPCR) and the unified average change intensity

Table 7 Information entropy

Image size Image Entropy value

512×512 Boat 7.9992

512×512 Peppers 7.9993

512×512 Baboon 7.9993

256×256 LungR 7.9968

LungG 7.9967

LungB 7.9971

256×256 House 7.9974

256×256 Butterfly 7.9973

256×256 [51] 7.9115

512×512 [52] 7.9289

512×512 [53] 7.9985

(UACI). NPCR and UACI are defined as follows:

N PCR =
∑

i, j D(i, j)
M×N × 100% (33)

U AC I = 1
M×N

[∑
i, j

|C1(i, j)−C2(i, j)|
255

]
× 100%

(34)
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Table 8 NPCR and UACI results

Image size Image NPCR(%) UACI(%)

512×512 Boat 99.6067 33.4875

512×512 Peppers 99.6056 33.4593

512×512 Baboon 99.6040 33.4720

256×256 LungR 99.5972 33.4784

LungG 99.6109 33.4082

LungB 99.6033 33.4672

256×256 House 99.6155 33.4689

256×256 Butterfly 99.6078 33.4650

256×256 [54] 99.58 27.31

512×512 [55] 99.68 33.93

512×512 [56] 99.6273 32.4228

where C1(i, j) and C2(i, j) are, respectively, the
encrypted images before and after changing one pixel
of the plaintext image, and D(i, j) is defined as
Eq. (35).

D(i, j) =
{
0, C1(i, j) = C2(i, j)

1, C1(i, j) �= C2(i, j)
(35)

We randomly change a pixel value for the grayscale
images “Boat,” “Peppers,” “Baboon,” “House,” “But-
terfly” and color image “Lung” and perform NPCR
and UACI tests. It can be seen in Table 8 that compared
with the literature algorithm, the proposed algorithm’s
NPCR and UACI values are quite near the theoretical
values, and the scheme performs well against differen-
tial attacks.

7.7 Cutting attack

During image transmission and storage, it is necessary
to consider the possibility that a portion of the data may
be corrupted or intercepted. To evaluate the ability of
the encryption scheme to recover the plaintext image
after losing part of the ciphertext data, that is, the algo-
rithm’s resistance to cutting attacks, the areas of size
128× 128, 256× 256 and 512× 256 are deleted from
the encrypted image “Boat,” as shown in Fig. 20a–d.

In Fig. 20e–h, it can be seen that, even after the
loss of 1/2 of the data, decrypted images recover
information about plaintext images well. Experiments
show that this algorithm can effectively resist cutting
attacks.

Fig. 20 “Boat” cutting attack: a Cut loss 128×128; b, c cut loss 256×256 in different positions; d cut loss 512×256; e–h correspond
to the decrypted images of (a)–(d), respectively
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Fig. 21 “Boat” noise attack: a–d cipher images with 0.01, 0.05, 0.1 and 0.3 salt and pepper noise; e–h correspond to the decrypted
images of (a)–(d), respectively

7.8 Noise attack

Interference noise from the transmission or storage pro-
cess can have an impact on the decryption process of
the algorithm. As a result, a secure encryption scheme
should be resistant to noise attacks.

We use 0.01, 0.05, 0.1 and 0.3 salt and pepper noise
to attack the encrypted image “Boat,” as shown in
Fig. 21a–d. The corresponding decryption results after
these noise attacks are shown in Fig. 21e–h. Experi-
ments show that the algorithm can resist noise attacks
well and has good robustness.

8 Conclusion

This paper proposes a qubit-level selective scrambling
and overlapping feedback diffusion method based on a
new 2D cross Sine2 − Logistic chaotic map. A new
type of 2Dcross Sine2−Logistic hyperchaotic system
is proposed, which greatly improves the key space and
has higher chaotic behavior. Therefore, the chaoticmap
proposed in this paper is more suitable for the image
encryption field. In the quantum encryption algorithm,
the SHA-256 function is used to calculate the hash

value of the plaintext image to obtain the key,which can
effectively resist the chosen plaintext attack. A quan-
tum selective scrambling method based on the NEQR
model is proposed. Changing the position of the bit
level can effectively change the pixel value and achieve
the effect of confusion diffusion. In order to improve
the security of the algorithm, a quantum overlapping
feedback diffusion method is proposed to improve the
avalanche effect of the encryption scheme. A chaos-
based row/column cyclic shift method is designed to
reduce the correlation between adjacent pixels. The
simulation and performance analysis results indicate
that the quantum image encryption scheme is both safe
and reliable. In future work, we will conduct more in-
depth research on asymmetric cryptography to improve
and refine our algorithm.The key transmission problem
in symmetric cryptography is better solved to achieve
a more secure encryption algorithm. Additionally, we
will conduct more in-depth research on new chaotic
systems, quantum chaotic systems and more complex
chaotic systems, expecting better results.
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