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Abstract A simplified wheelset model with a nonlin-
ear smooth equivalent conicity function is taken into
account. The goal is to investigate the influence of
the different nonlinear equivalent conicity functions on
the bifurcation characteristics. The equivalent conicity
functions of different types are fitted smoothly by the
measured data, especially when the lateral displace-
ment of the wheelset is less than 3 mm. In addition to
qualitative analysis of the stability and Hopf bifurca-
tion of the equilibrium, the mechanism that the type
of the nonlinear equivalent conicity affects the Hopf
bifurcation characteristics is explained using the nor-
mal form theory. Analytical studies reveal that if the
second-order derivative of the equivalent conicity func-
tion with respect to the lateral displacement of the
wheelset at the equilibrium is positive (negative), the
Hopf bifurcation of the wheelset system is subcritical
(supercritical). The limit cycle motion caused by the
Hopf bifurcation is analyzed, such as the fold bifurca-
tion, the period-doubling bifurcation, the cusp bifurca-
tion, and the fold-flip bifurcation. It is noted that the
concept of equivalent conicity applied in this paper is
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a purely heuristic engineering concept, which has been
applied by many railway engineers, while it is still short
of a strict mathematical basis.
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1 Introduction

Vehicle system dynamics is an interesting topic in rail-
way engineering, since Klingel [1] performed a purely
kinematic analysis of the hunting motion of a single
wheelset on a tangential track in 1883. There are many
works on the nonlinear stability of vehicle systems in
the early stages. Carter [2] constructed a theoretical
model of wheel-rail contact force, which is crucial for
deriving the dynamic behavior of railway wheelsets.
Wickens [3] analyzed the nonlinear stability of rail-
way bogie with profiled wheels instead of pure conical
wheels. Huilgol [4] introduced the bifurcation analysis
in nonlinear dynamics to the problem of railway vehi-
cle dynamics, creating a new trend in railway engi-
neering research. True and Kaas-Petersen [S] found
that the bifurcation of periodic motion is subcritical
and the critical speed must be found by an investiga-
tion of the existence of multiple attractors. Yabuno et
al. [6] investigated the influence of lateral linear stiff-
ness on the nonlinear characteristics of the hunting phe-
nomenon of railway wheelsets. Zhang et al. [7] consid-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-022-07934-1&domain=pdf

2080

Y. Lietal.

ered the nonlinear relationship between creepage and
creep force when studying the lateral dynamics of a rail-
way wheelset suspended under a moving vehicle with
linear springs and dry friction dampers. They also ana-
lyzed the effect of the wheel tread conicity on the Hopf
bifurcation through numerical simulations. Gao et al.
[8] studied the symmetric/asymmetric bifurcations and
chaos of a bogie system under a nonlinear wheel-rail
contact relation.

In the practical problem, the wheel-rail contact
geometry has an important influence on the running
dynamics and operating safety of railway vehicles [9].
It directly affects the wheelset performance of the curve
passing and the running stability of high-speed vehicles
[10]. The equivalent conicity is an indicator for charac-
terizing the wheel-rail contact geometry, and it is one
of the important parameters in the wheel-rail contact
geometry relationship [11]. Cooperrider et al. [12] pro-
posed a kind of computation method for determining
the nonlinear contact restraint condition of wheel-rail,
after that the equivalent conicity has been widely used
as a key index in the railway industry. In [13], many
scholars discussed the equivalent conicity method for
the stability evaluation of rail vehicles, and this kind
of method is very useful to many railway engineers in
practical application, while it has to be noted that the
equivalent conicity concept is a purely heuristic engi-
neering concept because it still lacks a strict mathemat-
ical basis. Internationally, the equivalent conicity value
at 3 mm of the wheelset lateral displacement is used to
evaluate the wheel-rail contact relationship, which is
called the nominal equivalent conicity [14].

With the in-depth works of the equivalent conic-
ity, scholars found that the nominal equivalent conicity
value cannot fully describe the nonlinear characteristics
of the wheel-rail contact geometry relationship in the
railway [15-18]. Polach [15] pointed out that the same
nominal equivalent conicity corresponds to several dif-
ferent equivalent conicity curves. Even if the wheel-
rail contact geometry has the same nominal equivalent
conicity, the dynamic behavior of the vehicle systems is
different. Therefore, Polach [16, 17] put forward a new
nonlinearity parameter (NP) to describe the geomet-
ric contact nonlinearity with the slope of the equivalent
conicity curve. In further work, Polach [19] pointed out
that as the vehicle travel distance increases, the equiva-
lent conicity increases and the NP of the wheel and rail
decreases. Since the NP only represents the equivalent
conicity slope between the two points around 3 mm

@ Springer

of the wheelset lateral displacement, a nonlinear fac-
tor for evaluating the nonlinearity of equivalent conic-
ity is proposed in [20]. It is calculated by multiply-
ing the standard deviation of the equivalent conicity
between 1-6 mm of the wheelset lateral displacement
by the direction of the slope of the equivalent conicity
curve. Moreover, the stability of the vehicle systems
is evaluated in more detail through the Hopf bifurca-
tion analysis in [16,17,20]. If the slope of the equiv-
alent conicity curve is negative (positive) at 3 mm of
the wheelset lateral displacement, the Hopf bifurca-
tion is supercritical (subcritical) [16,17]. Similarly, if
the nonlinear factor presented in [20] is positive (nega-
tive), the Hopf bifurcation is supercritical (subcritical).
However, neither of these two papers [16,17,20] deter-
mined the relationship between equivalent conicity and
the Hopf bifurcation type through bifurcation theory
and rigorous mathematical proof. This paper intends to
deduce the expression of the first Lyapunov coefficient
by calculating the normal form of the Hopf bifurcation,
so as to judge whether the Hopf bifurcation is super-
critical or subcritical.

In this paper, different types of equivalent conicity
are fitted smoothly to analyze the influence of equiva-
lent conicity difference on the vehicle dynamic behav-
ior when the lateral displacement of the wheelset is
less than 3 mm. To study the mechanism of equivalent
conicity type affecting the Hopf bifurcation character-
istics, the expression of the first Lyapunov coefficient
is calculated by the bifurcation theory. If the second-
order derivative of the equivalent conicity function with
respect to the lateral displacement of the wheelset at
the equilibrium is positive (negative), the Hopf bifurca-
tion of the wheelset system is subcritical (supercritical).
The conclusion is consistent with the existing simula-
tion results of the real wheel-rail relationship in ref-
erences [16,17,20]. Moreover, the codimension-1 and
codimension-2 bifurcations of limit cycles produced
by the Hopf bifurcation are analyzed, such as the fold
bifurcation, the period-doubling bifurcation, the cusp
bifurcation and the fold-flip bifurcation. The effect of
these bifurcations on the hunting motion of the wheelset
system is discussed, which provides a theoretical ref-
erence for improving the running stability of vehicles.

This paper is arranged as follows. Section 1 is an
introduction of previous work done by other researchers,
and a presentation of the aim of this work. In Sect. 2,
a simplified wheelset model with a nonlinear smooth
equivalent conicity function is established. Taking the
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running speed as a single bifurcation parameter, the
stability and Hopf bifurcation of the trivial equilibrium
are investigated in Sect. 3. Moreover, the first Lyapunov
coefficient of the Hopf bifurcation is calculated by the
normal form theory. Two different types of the equiv-
alent conicity curves are introduced in Sect. 4, and the
effects of their differences on bifurcation speed and
Hopf bifurcation characteristics are studied, respec-
tively. In Sect. 5, the codimension- 1 and codimension-2
bifurcations of the limit cycles are investigated simulta-
neously. The numerical simulations are mainly carried
out by the software package MATCONT [21]. A con-
clusion section comes at the end.

2 Wheelset model
Consider the following linear wheelset model [22]:
Wi 2
mi + (kly 4 7) + 225 gy =0

TP+ zf‘(l) v+ (kL = Woi) v + f“bzw =0, (1)
where y and v denote the lateral displacement and the
yaw motion of the wheelset, m and J represent the mass
and the moment of inertia of the wheelset, k1, and k1,
represent the primary longitudinal stiffness and lateral
stiffness, respectively. b and L are the half distance
of wheel rolling cycles, half of the lateral spacing of
primary suspension, respectively. W, A, rg, v, f11 and
Jf22 denote the axle load, equivalent conicity, wheel
rolling radius, running speed, and the longitudinal and
lateral creep force coefficients, respectively. Figure 1
is a schematic diagram of the wheelset model [22].
Because the value of the equivalent conicity A is
affected by the lateral displacement of the wheelset y,
a nonlinear function A(y) is introduced to represent
the equivalent conicity curve. The equivalent conicity
curves in this paper are smoothly fitted by the measured
data of the equivalent conicity varying with the lateral
displacement of the wheelset, which is to qualitatively
study the bifurcation at the trivial equilibrium and limit

cycles.

Replacing the equivalent conicity A in Eq. (1) with
the nonlinear equivalent conicity function A(y), Eq. (1)
becomes

W 2
mi—i—(lqy-i- b(y))y—i-ﬁy 2fnY =
J¢+%0My)y+(k1xﬁ be(y)>w+ 2/ S o,

2

2081
With the change of variables
Xi=y.x=y,x3=1v,x4=1,
the Eq. (2) turns into
X1 = x2,
WA 2
b= —<k1yx1 n (x1)x; n fzzx2
b v
- 2f22X3>/m,
X3 = X4,
2 fl11bA
g = — < JubAi(x)xi kL
ro
— WhA(x)x3 + f“ ) /J. 3)

3 Hopf bifurcation of the equilibrium

In this section, the parameter v is chosen as a single
bifurcation parameter.

3.1 Stability of the trivial equilibrium O

The Jacobian matrix of the Eq. (3) evaluated at the
trivial equilibrium O is

0 1 0 0
—a; — a7 (0) = as 0
Ao = 0 0 0 .
—agh(0) 0 —as+agh(0) — L
4)
where
kiy w 2f»n 2fub
a) = —,d) = —,ad3 = —,d4 = )
m mb m roJ
ki L? Wb 2fuib?
a5=—,06=_’a7=—'
J J J

The characteristic polynomial corresponding to the
Jacobian matrix Ag is

P() = cop* + c1p® + cop® + e3p + ca, )

where
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Fig. 1 Wheelset model
diagram [22]
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The stability of the equilibrium O can be described by
the following proposition.

Proposition 1 If the characteristic polynomial P(u)
has two pairs of complex roots 11 2 = a1 tiwy, 3 4 =
oy Xiwy, andoy < oy, w; > 0,0;,w; € RI =1,2),
then there are the following results:

Case 1: Ifay < 0, the equilibrium O of the wheelset
system (3) is asymptotically stable;

Case2: Ifay = 0, the equilibrium O of the wheelset
system (3) is at a critical condition between stability
and instability;

Case 3: Ifay > 0, the equilibrium O of the wheelset
system (3) is unstable.
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3.2 Hopf bifurcation of the equilibrium O

If the wheelset system (3) undergoes a Hopf bifurcation
atthe equilibrium O, the Jacobian matrix Ap will have a
simple pair of conjugated purely imaginary eigenvalues
and the other eigenvalues have negative real parts. The
conditions that there is a pair of pure imaginary roots
in the four eigenvalues of the Eq. (5) and the real parts
of the other two roots are negative are as follows:
¢ >000=1,2,3,4),
{ A3 =0,
where Ajz is the Hurwitz determinant.
Because every coefficient of the polynomial P (u)
is a positive real number, the first condition of Eq. (6)
is satisfied. Let Az = 0, the bifurcation speed of the
wheelset system satisfies the following equation:

(6)

crco O 1
c3 ca c1 | = — ((((a2 + a6)*[L(0)
0 c4c3 v

+ 210 (a2 + ag) (a1 — as)

— azas) + (a1 — as)?)a7 — 1(0)ajay

— agr(0)ad)azv? + ((as — agh(0))as
+ a7(a2A(0) + ay)) (a3 + a7)azaz) = 0.

Az

(N
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So the equation for the bifurcation speed v, of the
wheelset system is

F(x) = %B(x,x) + %C(x, x, x)+ o(x|Y, (10

((as — agA(0))az + a7(axA(0) + ar)) (a3 + a7)azas

®)

= \/ (@2 + a6)"[HO) P + 22(0) (a2 + ag) (a1 — a5) — azaz) + (a1 — as)Da7 — A(O)adas — ash(0)adyas’

When the running speed v reaches the bifurcation
speed vp, the wheelset system (3) undergoes Hopf
bifurcation and there are a pair of pure imaginary roots

+iwg, where wg = o v
Furthermore, it is easy to find that the bifurcation speed
vp is only related to A(0) when other parameters are
fixed.

To determine whether the Hopf bifurcation is sub-
critical or supercritical, the normal form of the Hopf
bifurcation is deduced and the expression of the first
Lyapunov coefficient /] is computed.

At the bifurcation point v = vy, the wheelset sys-
tem (3) is Taylor expanded at the equilibrium O and

the Eq. (3) can be written as
X = Aog(vp)x + F(x). 9)

The nonlinear term of the system is represented as the
following form:

0

—2a261m (ﬁk (Xl)) _0>
B(§.m) = 0 "

aa _ [las=i0)ag)az+(a1+1(0)az)az )

where B(x, x) and C(x, x, x) are multilinear func-
tions of x = (x1, x2, x3, x4)7 € R*, respectively. The
expressions can be described as follows

4 2
0°F;
Be,m= Y THON g

k=1 3xj3xk —
(i=1,2,3,4), (1)
4 3
97 Fi(x)
C. s 1y = N A A j )
i(6.n,¢) Z D, 90 §jnks
J.k, =1 =0
(i=1,2,3,4). (12)

According to Egs. (11) and (12), the following expres-
sions can be obtained:

. 13)

(=2as81m + a6 €13 + E311) (d%k (xl)‘nz())

0

2
—3a2é11m161 (5712/\ (x1)

Cn.5) = 0

2
(—3asé1mic1 +asE1nigz +&1nzst +E3n161)) (;712?» (x1)

xl:O) . (14)

x1=0)
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Suppose that the eigenvectors gg and pg satisfy Ag(vp)go = The transversality condition coefficient of the Hopf

iwpqo and Ag (vp) po = —iwg po, respectively, where
1
Lwo
r(0)ar—w5+a i
w=| Ta—tT | (15)

v
2 2

_ oy . A(O)a27w0+al
o T iwo (7113

—)»(0)06—(1)%"—(15 X(O)a6+w(2)—a5 _a

2
_ G L @
v vas j_ le( az vz)
—+O)as—wp+as  iwgaz

aa vajz
G .
L —iwp

(16)

Let k = (po. qo), ¢ = qo and p = 1 po, then p and ¢
satisfy the normalization (p, q) = 1.

Introducing complex variables z, the system (9) can
be written as

2= p(p)z + 8z, Z, vp), a7)

where g = O(|z|2) is a smooth function of (z, z, vp), X
and z satisfy the following relationship

x=zq9+22q (18)

After a series of complicated deductions [23], the sys-
tem (17) can be transformed into an equation containing
only three terms of resonance, which can be written as
follows:

t=iwz+c1(vp)?Z+ O <|Z|4) , (19)
where
cr (vp) = %(p, Cg.q.9)

~2(p. B(q. 45" (%) (4. D))

+(p. B@. Qicols = A0 )™ B(q. ), (20)
and /4 is a 4 x 4 identity matrix.

The first Lyapunov coefficient /| has the representa-
tion:

1
l (vp) = —Re (c1 (vc))
1
= 3-Re((p.C(g.4.9))
w
~2(p. B (4. 45' 0 B@. D))
+(p. BG. Ciools = Ao w) ™ B, 9))))

ey
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bifurcation has the form:

a
di(vp) = aRe(lB(Uh))- (22)

According to the Hopf bifurcation theory in [23,24],
the following result is obtained.

Proposition 2 If [1(vy) # 0 and di(vp) # O, the
wheelset system (3) undergoes a Hopf bifurcation at
v = vp. When l1(vp) > O, the subcritical Hopf bifur-
cation occurs in the system (3) and produces a series of
unstable limit cycles. Conversely, when 11 (vp) < 0, the
Hopf bifurcation is supercritical and a series of stable
limit cycles appear.

4 Influence of the nonlinear equivalent conicity on
the dynamic behavior

The same nominal equivalent conicity corresponds to
different equivalent conicity curves, which show dif-
ferent dynamic behavior and bifurcation characteris-
tics. These equivalent conicity curves are generally
divided into two types, called “Type A” and “Type B”
[15]. Especially when the lateral displacement of the
wheelset is less than 3 mm, these two types have signif-
icant differences. According to the raw data of the two
types of equivalent conicity, the nonlinear functions of
the equivalent conicity with respect to the lateral dis-
placement of the wheelset are fitted using the Gaussian
function in the software package Curve Fitting Tool of
MATLAB.

For “Type A”:
x1 — 0.003387\2
)\.AI(XI) = 03378€Xp — W
x1 +0.003387\ 2

(23)

The raw data (black dots) and the nonlinear equiva-
lent conicity function curve (black dash line) of the
“Type A” are shown in Fig. 2a. The nonlinear function
A4 (x1) fits very well with the measured data. The sum
of squares of error is SSE = 0.001076, the coefficient
of determination is R-square = 0.9968, the adjusted R-
square = 0.9965, and the root mean squared error is
RMSE = 0.004423.
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Fig. 2 Nonlinear 0.35
equivalent conicity function (a)
curves of different types. a 03 °
Equivalent conicity curves
of “Type A”. b Equivalent =02
conicity curves of “Type B” <

~ 02

0.15F
0.1

-3 -2 -1 0

Lateral displacement of wheelset x1/(m) %103

Table 1 Values of the parameters in this paper [22]

1 P 3 -3 2 -1 0 1 2 3
Lateral displacement of wheelset x1/(m) x107

Parameter Comment Value

m Mass of the wheelset 1627 kg

J Yaw moment of the wheelset 830 kg m?

fu Longitudinal creep coefficient 1.5232 x 10N

f2 Lateral creep coefficient 1.4019 x 10°N

kix Primary longitudinal stiffness 1.5 MN/m

kiy Primary lateral stiffness 1.96 MN/m
Half of lateral spacing of primary suspension 1.02m

b Half distance of wheel rolling cycles 0.7465 m

w Axle load 56.1 kN

ro Wheel rolling radius 0.46 m

v Running speed —km/h

AC) Equivalent conicity -

For “Type B”: 4.1 Influence of the nonlinear equivalent conicity on

X1 2
Ap,(x1) = 0.4982 exp (—(m) )

X 2
+0.3153exp <_(W91965> ) (24)

The raw data (black dots) and the nonlinear equiva-
lent conicity function curve (black dash line) of the
“Type B’ are shown in Fig. 2b. The nonlinear function
Ap(x1) fits very well with the measured data. The sum
of squares of error is SSE = 0.005135, the coefficient
of determination is R-square = 0.9974, the adjusted
R-square = 0.9971, and the root mean squared error is
RMSE = 0.009663.

As can be clearly seen from Fig. 2, the change
of the equivalent conicity of “Type A” is monotoni-
cally increasing when the lateral displacement of the
wheelset is between 1-3 mm, while the “Type B” is
monotonically decreasing.

the bifurcation speed

Although with the equal nominal equivalent conicity,
the bifurcation speed is not necessarily the same. How
different nonlinear equivalent conicity curves affect
bifurcation speed is explained in this subsection.

From Eq. (8), it can be known that the value of the
bifurcation speed vj, is only related to the value of A(0)
when the other parameters are fixed as the values in
Table 1. Several equivalent conicity functions of “Type
A” and “Type B” with the same nominal equivalent
conicity and different values of A(0) are established,
which are presented in Fig. 2. These equivalent conic-
ity functions are substituted into Eq. (3), and the cor-
responding bifurcation speeds are calculated, respec-
tively. The numerical results are shown in Table 2, and
the following conclusions can be drawn:

(1) Thelarger value of A(0), the smaller the bifurcation
speed vp. That is to say, for the equivalent conicity
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curve of “Type A”, the smaller the change rate of
the curve with the lateral displacement of wheelset
x1, the smaller the bifurcation speed. While for
“Type B”, the greater the change rate, the larger
the bifurcation speed. Hence, the running speed
can be safely increased by controlling the change
rate of the equivalent conicity A with the lateral
displacement of the wheelset x.

(2) The bifurcation speed corresponding to the equiv-
alent conicity curve of “Type A” is larger than that
of “Type B”. Since the equivalent conicity curve
of “Type A” is monotonically increasing and the
curve of “Type B” is monotonically decreasing as
the lateral displacement of the wheelset is less than
3 mm, and the nominal equivalent conicity of “Type
A” and “Type B” is equal, the value of A (0) of “Type

1
li(ve) = 2—Re(<p, Cg.q,9)))
o

_ g @’ A) |
= ——Re [ X -
) 0 x12 1) [x1=0

1 _ _
Z(—3612p2 —3as + ae(q3 + 26]3)))

= ! ’ Ax1) } R
e — JE— _ e
2w dx12 =0

1
(z(—302132 —3as + ae(g3 + 243))) . (25)

Let Re (%(—3@ P2 — 3aa + as(ds + 2q3))) in the
Eq. (25) be Re (). Substitute the basic parameters of
wheelset parameters in Table 1 to Re (o) and obtain
that

Re(a) =

—0.003486(1(0) — 96.829302) (1(0) — 4902.748623)(%.(0) — 0.011)(A(0) — 4442.058)
(A(0) + 1.002252) (% (0) — 0.008106)([1(0)]* — 8471.38741(0) + 17949181.25)

A” must be less than that of “Type B”. Therefore,
the bifurcation speed corresponding to the equiva-
lent conicity curve of “Type A” must be larger than
that of “Type B”.

4.2 Influence of the equivalent conicity type on the
Hopf Bifurcation type

In this subsection, the bifurcation mechanism of the
effect of equivalent conicity curve on Hopf bifurcation
type is studied by calculating the expression of the first
Lyapunov coefficient.

When the lateral displacement of the wheelset is
less than 3 mm, according to the corresponding nonlin-
ear equivalent conicity functions, the first-order deriva-
tive of the equivalent conicity function with respect to
the lateral displacement of the wheelset A(xy) at the
wheelset lateral displacement of 0 is equal to 0, i.e.,

<dd71/\(x1) O) = 0. Thus, B(§, n) in the Eq. (14)
X1=

becomes zero. It should be noted that this condition
only holds for wheel profiles with symmetric wear.

Through the above calculation and analysis, the
expression of the first Lyapunov coefficient in the
Eq. (21) becomes

@ Springer

As is well known, the value of the equivalent conicity is
generally greater than 0, then Re(«) in Eq. (25) is pos-
itive. Hence, the sign of the first Lyapunov coefficient

[1(v.) is determined by the sign of <§A(x1) |X1=0>
1

and the following proposition is obtained:

Proposition 3 The sign of the first Lyapunov coeffi-

cientl(v.) is determined by the sign of %K(xl ) ’x, -0 )
1

The value of <%)\A(x1) |X1—0) of the equivalent
1
conicity function of “Type A” is positive. On the con-
trary, for “Type B”, <%)\B(x1) |X1:0) < 0. There-
1

fore, if the nonlinear equivalent conicity curve belongs
to “Type A” (or “Type B”), the wheelset system (3)
will occur a subcritical (or supercritical) Hopf bifur-
cation and produces a series of unstable (or stable)
limit cycles.

Proposition 3 is consistent with the simulation
results of the real wheel-rail relationship presented in
[16,17,20]. The conclusion can also be verified by
numerical simulations. Fixing the values of parameters
as those in Table 1 and selecting two different types
of equivalent conicity functions, the Hopf bifurcation
types are compared. Substituting the function A4, (x1)
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Table 2 The variation of v, with different A(0)
A(x) 1(0) vy, (km/h)
110003387\ 2140003387 ) >
Type A (er) = 0.3378exp ( —(S5505535 ) ) +0.3378 exp  — (2550527 ) 0.1125490704  257.1674614
1-0.003387 ) > 140003387 ) >
hay (1) = 03378 exp ( — (1550957 ) ) + 03378 exp ( — (1155055 ) 0.1205641248  247.5839620
2 2
hoay (1) = 0.3378 exp ( (2550ee3e ) ) +0.3378exp ( (epgo0aer) ) 0.1286490458  238.9269914
x1—0.003387 2 x1+0.003387 2
hag() = 03378 exp ( — (M550 ) ) + 03378 exp (- (155050 ) 0.1367829899  231.0740627
Type B (1) = 0.1982exp (—(sgebrs)”) + 03153 exp (—(gidons)’) 0.5135 115.6433090
o (x1) = 0.2982exp (— (qambrs) ) + 03153 exp (— (s 0.6135 105.6193602
A (x1) = 0.3982exp (— (qapbrs)” ) + 03153 exp (— (doss)) 0.7135 97.82106865
Ay (x1) = 0.4982exp (— (qambrs) ) + 03153 exp (— (dos)) 0.8135 91.53065099

Fig. 3 The limit cycles
produced from the Hopf
bifurcations of the wheelset
system (3). a A subcritical
Hopf bifurcation point H ™~
and the unstable limit cycles
marked by red dotted lines.
b A supercritical Hopf
bifurcation point H* and
the stable limit cycles
marked by blue dash lines.
(Color figure online)

into the wheelset system (3), the subcritical Hopf bifur-
cation occurs at v = 257.1674614 km /h with the first
Lyapunov coefficient [ = 3852.916 > 0. As is seen
from Fig. 3a, a family of unstable limit cycles arises
from the subcritical Hopf bifurcation point H~. Sim-
ilarly, taking the function Apg,(x1) into the Eq. (3),
the supercritical Hopf bifurcation with the first Lya-
punov coefficient /; = —3979.408 < 0 undergoes at
v = 91.53065099 km/h and produces a series of stable
limit cycles, which is shown in Fig. 3b.

5 Bifurcations of the limit cycles

In the previous sections, the nonlinear equivalent conic-
ity functions are fitted within 3 mm of the lateral dis-
placement of the wheelset. And the wheel-rail con-
tact force is not considered for eliminating the influ-
ence of other nonlinear factors on the dynamic behav-

ior of the wheelset. In this section, the high codimen-
sion bifurcations of the limit cycles are analyzed as
the lateral displacement of the wheelset is extended to
8 mm. Meanwhile, the lateral wheel-rail contact force
Fr = 81x}+8x7 (81 = —1.6x10', 8, = 1.6x 109)
[22,25] is also taken into account in the wheelset sys-
tem (3). Here, the lateral displacement of the wheel set
Om < |y| < 0.008 m is considered to avoid of flange
contact. Then, Eq. (3) becomes:

)'61=X2

WA (xp)x1  2f»
+ X2
b v

—2fx3 + 817 + 82Xf) /m

Xo = — (klyxl +

X3 = X4

) (2f11bk(x1)x1

y=—-—
ro

+ ki L%x3
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2 fu1b? 1
—WbA (x1) x3 + x4 )/J (26) - Avs.x,
v
—AL(x,)
0.8 B!
Taking the equivalent conicity curve of “Type B” (cor- .
responding to a certain type of high-spe'ed train.in 5&3 06
China) as an example and the corresponding nonlin- ~<
ear function is as follows:
0.4F
—0.01299 )\
Ap (x1) = 1010exp _<x1—) 0.2 . - :
0.001849 -8 4 0 4 8

x1 4+ 0.01006\ >
10.92 (AT
+ exP( ( 0.00141 ) )
—0.0001089 >
£0.138exp [ - (2
0.0009091
0.000173
+0.08916exp( x1+ 9> )

0.001229

©0.0004752

03839 X1 + 14.08
. €X - —
P 16.76
x1 — 0.00253\2
1 _ (2=
+0 076""( ( 0.005892 >>

0.004705\ >
+0.07366 exp (— (“—) ) .

x1 — 0.0006772
— 0.01263 exp

0.003604
27)

The raw data (black dots) and the nonlinear equiv-
alent conicity curve (blue dash line) are shown in
Fig. 4. The nonlinear function Ap(x1) fits very well
with the measured data. The sum of squares of error
is SSE = 0.004308, the coefficient of determination is
R-square = 0.9977, the adjusted R-square = 0.9972,
and the root mean squared error is RMSE = 0.006017.

Substituting Eq. (27) into Eq. (26). When the run-
ning speed v is the single bifurcation parameter and
the other parameters are fixed to the values in Table 1,
the wheelset system undergoes a supercritical Hopf
bifurcation with the first Lyapunov coefficient /1 =
—3217.91052 < 0 at v = 115.62088 km/h. The Hopf
bifurcation produces a family of stable limit cycles,
which is represented by the solid blue lines in Fig. Sa.
The codimension-1 and codimension-2 bifurcations of
the limit cycles will be analyzed separately in the fol-

@ Springer

Lateral displacement of wheelset x1/(m) %102

Fig. 4 The nonlinear function of the equivalent conicity as the
lateral displacement of the wheelset is extended to 8§ mm. (Color
figure online)

lowing subsections. The critical normal form coeffi-
cients of the bifurcations are uniformly represented by
¢ [23], which is computed by the bifurcation software
package MATCONT.

5.1 Codimension-1 bifurcations

In this subsection, the codimension-1 bifurcations of
the limit cycles are studied by applying the continua-
tion method in the bifurcation software package MAT-
CONT. The initial stepsize is set as 0.01, the mini-
mum stepsize to compute the next point on the curve is
le—05, and the maximum stepsize is 1. The tolerance
of coordinates is set as 1e—06, the tolerance of function
values is 1e—006, and the tolerance of test functions is
le—05.

The bifurcation route of the stable limit cycle is:

src S e % see 22 vre P2 sie. which

is shown in Fig. 5a. SLC and ULC denote the stable and
unstable limit cycles, respectively. When the running
speed reaches 143.04812 km/h, the stable limit cycles
(blue dash lines) undergo a fold (limit point) bifurcation
(labeled by LPCp) with the normal form coefficient:
¢ = 21.4342652 > 0. From the Hopf bifurcation point
H™ to the fold bifurcation LPCy, the elapsed time is
14.8s. Then, the stable limit cycles become unstable
(red dotted lines) and the bifurcation direction becomes
opposite. As the running speed decreases, another fold
bifurcation of the limit cycles (labeled by LPC,) with
the normal form coefficient: ¢ = —16.3026378 < 0
occurs at v = 135.36798 km/h, which changes the
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x10°3 : '
(@) LPC |PP2
5 |
LRCL: !
) |
.
120180 140 180
v/(km/h)

Fig. 5 The bifurcation process of the limit cycles produced
from the Hopf bifurcation of the wheelset system (3). a Two-
dimensional bifurcation diagram. b Three-dimensional bifurca-
tion diagram. The lines labeled by LPC (red) and PD (green),

stability and bifurcation direction of the limit cycles
once again. The elapsed time of this process is 7.7s.
At the fold bifurcation point, the limit cycle has the
Floquet multipliers ;1 = 1. After the fold bifurca-
tion LPC;, the limit cycles become stable and the
running speed continues to increase. Then, the limit
cycles occur period-doubling (flip) bifurcations, which
labeled by PD; at v = 143.57394 km /h with the nor-
mal form coefficient: ¢ = —1.52566855 < 0 and PD;
at v = 147.79299 km/h with the normal form coeffi-
cient: c = —2.78736433 < 0. The time elapsed for the
occurrence of these two period-doubling bifurcations
is 11.7s and 2s, respectively. At the period-doubling
bifurcation point, the limit cycle has the Floquet mul-
tipliers 1 = —1. To represent the bifurcation route
stereoscopically, the bifurcation diagram on the three-
dimensional plane is given in Fig. 5b.

5.2 Codimension-2 bifurcations

To study the codimension-2 bifurcations of the limit
cycles, the bifurcation curves of limit cycles about the
parameters v and f7; are drawn in Fig. 6. The compu-
tation in this subsection also uses the bifurcation soft-
ware package MATCONT. The initial stepsize is set to
0.01, the minimum stepsize to compute the next point
on the curve is 1e—05, the maximum stepsize is 0.1.
The stepsize displayed as 0.1 during curve drawing.
The tolerance of coordinates is set as 1e—06, the toler-

v/(km/h)

155

Wl(rad)

respectively, denote the fold bifurcation and period-doubling
bifurcation of the cycles. The solid blue lines represent the stable
limit cycles, and the dashed red lines represent the unstable limit
cycles. (Color figure online)

1.8
14r
=
= 1 . .
= Hopf bifurcation of
— equilibrium O
0.6 1
PP Period-doubling
of cycles
0.2 : * *
110 135 160 185 210
v/(km/h)

Fig. 6 Two-parameter bifurcation curves of limit cycles about
the parameters v and fj;. The blue curve is the Hopf bifur-
cation curve of the equilibrium O. The red curve is the fold
bifurcation curve of the limit cycles, and the green curve is the
period-doubling bifurcation curve of the limit cycles. (Color fig-
ure online)

ance of function values is 1e—06, the tolerance of test
functions is 1e—05.

The red curve denotes the fold bifurcation curve of
limit cycles, on which there exist two cusp bifurcation
points: CPCy at (v, f11) = (148.2688, 1.2313122)
with the normal form coefficient ¢ = —39.9195291
and CPC; at (v, f11) = (123.62071, 1.6752247) with
the normal form coefficient ¢ = 115.854142. From the
bifurcation point CPC; to CPC,, the elapsed time is
102.4s. These two cusp bifurcation points divide the
fold bifurcation curve into three parts: the supercritical

@ Springer
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Fig. 7 a Phase diagram of the limit cycles at (v, f11) =
(140, 1.5) in the region surrounded by the curves Tﬁ, T, and
T3+. b Phase diagram of the period-2 limit cycle at (v, f11) =

fold bifurcation curve T1+, the subcritical fold bifurca-
tion 7, and the supercritical fold bifurcation T3+. The
phase diagram of the limit cycles in the area surrounded
by the three curves (T1+, T, T;) is given in Fig. 7a.
There exist two stable limit cycles and an unstable limit
cycle. The amplitudes of these limit cycles are shown in
Fig. 7c. Since the limit cycle with the maximum ampli-
tude is stable, the lateral displacement of the wheelset
will not exceed 6 mm.

The green line represents the period-doubling bifur-
cation curve of limit cycles, on which there are two
fold-flip bifurcation points: LPPD; at (v, f11) =
(187.72301, 0.67217205) and LPPD> at (v, f11) =
(111.68838, 0.29160552). The elapsed time between
these two fold-flip bifurcation points is 314s. At the
fold-flip bifurcation point, the limit cycle has the Flo-
quet multipliers @12 = =£1. In addition, the limit
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(143.574, 1.5232) on the period-doubling bifurcation curve. ¢
Waveform corresponding to a. d Waveform corresponding to b.
(Color figure online)

cycle of period-2 at (v, f11) = (143.574,1.5232)
on the period-doubling bifurcation curve is presented
in Fig. 7b and the corresponding waveform is given
in Fig. 7d.

6 Conclusions

This paper investigates the bifurcations in a simplified
and smoothed model of a rolling wheelset. It mainly
focuses on the influence of different nonlinear smooth
equivalent conicity functions on the bifurcation char-
acteristics. The stability and the Hopf bifurcation of
the trivial equilibrium O are analyzed qualitatively.
The normal form of the Hopf bifurcation is calculated,
and the expression for the first Lyapunov coefficient is
obtained by the normal form theory.
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When the lateral displacement of the wheelset is less
than 3 mm, two different types of nonlinear smooth
equivalent conicity curves “Type A” and “Type B” are
considered to study the effect of their differences on
the bifurcation speed and the Hopf bifurcation charac-
teristics. The analytical results show that the bifurca-
tion speed corresponding to the equivalent conicity of
“Type B” is lower than that of “Type A”. In addition,
the sign of the first Lyapunov coefficient is determined
by the sign of the second-order derivative of the non-
linear equivalent conicity function with respect to the
lateral displacement of the wheelset at the equilibrium
O. The equivalent conicity of “Type A” corresponds to
the subcritical Hopf bifurcation, and “Type B” corre-
sponds to the supercritical Hopf bifurcation. These the-
oretical analysis results are consistent with the existing
simulation results of the real wheel-rail relationship.

The bifurcations of the limit cycles produced by the
Hopf bifurcation are studied when the lateral displace-
ment of the wheelset is extended to 8 mm. Choosing
the running speed v as the single bifurcation parame-
ter, fold bifurcations and period-doubling bifurcations
of the limit cycles are found. If the running speed v
and the longitudinal creep coefficient f1; are consid-
ered as two bifurcation parameters, cusp bifurcations
and fold-flip bifurcations will occur. These bifurcations
affect the stability and the amplitude variation of the
limit cycles, which affects the amplitude of the hunting
motion and the safety of train operation.

There are still many problems unsolved. The period-
doubling bifurcation process is a typical route leading
to chaos, that is, it can be considered a way to enter
chaos from the period window. However, the period-
doubling bifurcation in this paper does not induce
chaos, and there is no symmetry breaking phenomenon,
which may be because the lateral displacement of the
wheelset is so small. Moreover, this paper only consid-
ers the equivalent conicity curves of the wheel profiles
with symmetric wear, what will happen for wheel pro-
files with asymmetric wear? These problems will be
studied theoretically in future work.
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