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Abstract In this paper, we consider observer-based
adaptive fuzzy finite time control scheme for non-strict
feedback uncertain nonlinear systems with unmodeled
dynamics and input delay. A fuzzy state observer is
employed to estimate the unmeasurable states and the
unknownnonlinearities are identified by the fuzzy logic
systems in each step. The design difficulty caused by
the unmodeled dynamics and input delay is tackled by
a dynamic signal and a compensation signal, respec-
tively. Based on the proposed compensation signal, the
considered input delay can be unknown and time vary-
ing.Todecrease the computational burden, the dynamic
surface control (DSC) scheme is adopted in the design
process. In the framework of finite time Lyapunov the-
ory, an effective adaptive fuzzy finite time controller
has been obtained by combining the idea of back-
stepping technology with DSC scheme. The proposed
method not only solves the algebraic loop problem,
but also realizes the finite time stability performance
constraint in the presence of input delay, unmodeled
dynamics and unmeasurable states. Finally, the stabil-
ity analysis shows that all signals of the closed-loop
systems are bounded in finite time. Simulation results
show the superiority of the devised scheme.
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1 Introduction

Over the past years, the idea of approximated-based
control schemes for nonlinear systems by using fuzzy
logic systems (FLS) or neural networks (NNS) has been
considerable attention by the researchers [1–5]. The
main reason is that the unknown nonlinearity inevitably
exists in actual system, and it is difficult to get the accu-
rate information of the unknown nonlinearity, which
makes the nonlinear system control very difficult [6].
Particularly, some common phenomena, such as exter-
nal disturbance [1,7], unmodeled dynamics [8,9], time
delay [10,11], non-smooth nonlinearity [12,13] and
state constraint [14,15], make the control design of
nonlinear systemsmore complicated.Recently, to over-
come these design difficulties, dramatic adaptive neu-
ral/fuzzy backstepping control schemes have been pro-
posed in [16–18]. Nevertheless, the above-mentioned
approaches are limited to the strict feedback nonlinear
systems which cannot be extended to nonlinear sys-
tems with non-strict feedback form. Regarding non-
strict feedback nonlinear systems, the functions of the
system are related to all the states, which can cause
the algebraic loop problem for the traditional adaptive
backstepping control technique [19]. Thus, Chen et al.
proposed a variable separation approach for non-strict
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feedback systems in [20]. Furthermore, based on FLS
or NNS, many effective adaptive control schemes have
been proposed to overcome this problem (see [20–23]).
However, the aforementioned results are only provided
that the system states are all measurable.

In practice, the state variables are usually diffi-
cult to be measured, due to the technique difficulty
and/or costly expense of measuring [24]. Thus, it
is hard to obtain all the information of the system
states, which limits the application of the aforemen-
tioned approaches. In this case, the idea of output
feedback control approach is an alternative effective
approach, which is more in line with the actual demand
[25,26]. Considering the non-strict feedback nonlin-
ear systems with unmeasurable states and time delay,
Chen et al. proposed a linear state observer-based out-
put feedback control scheme in [27]. Furthermore, by
using a linear state observer to estimate the unmea-
surable states in non-strict feedback stochastic nonlin-
ear systems, the authors in [28,29] considered adaptive
fuzzy/neural output-feedback control schemes, respec-
tively. Recently, in [30] Wang et al. proposed an event-
triggered fuzzy output-feedback control approach via
linear observer. Nevertheless, the linear observer is
independent on the controlled systems, it cannot get
the effective estimations of the unmeasurable state
variables for practical systems. Thus, Tong et al. pro-
posed a fuzzy state observer-based control approach
for stochastic nonlinear strict feedback systems in
[31], which is constructed according to the system
and the unknown nonlinear functions are identified
by the FLS. In [32], the authors considered adaptive
fuzzy backstepping control for nonlinear systems with
sampled and delayed measurements. In [33], regard-
ing switched strict feedback nonlinear systems with
dead-zone and unmeasurable states which is investi-
gated by using fuzzy state observer. In [24], based on
fuzzy observer, Wang considered repetitive tracking
control for strict feedback nonlinear systems. How-
ever, as mentioned above, the algebraic loop problem
for non-strict feedback nonlinear systems is inevitable
for adaptive backstepping technique. To overcome this
limitation, by using the property of the fuzzy basis func-
tions, Tong et al. proposed a fuzzy state observer-based
control approach for SISO non-strict feedback systems
in [34]. Following this study,Wang et al. considered the
actuator failures and unmeasurable states in non-strict
feedback systems and proposed a composite adaptive
fuzzy control via fuzzy state observer in [35]. How-

ever, the aforementioned research results are based on
the problem of asymptotic stability in infinite time.
Unlike the infinite time stability, finite time control
shows higher tracking performance, better disturbance-
rejection ability and faster transient response for non-
linear systems. So, it is very significant for us to con-
sider the finite time control scheme for non-strict feed-
back systems with unmeasurable states.

In recent years, the idea of finite time stability has
been widely concerned in strict or pure feedback non-
linear systems, for example, see [36–43]. Furthermore,
based on the assumption that all the state variables are
measurable in non-strict feedback nonlinear systems,
the authors proposed the approximated-based finite
time control schemes in [44–49], respectively. How-
ever, as mentioned above, the system states are usually
unmeasured and it is difficult to get the full informa-
tion about the system states. Therefore, the aforemen-
tioned finite time control schemes are not suitable to
non-strict feedback systems with unmeasured states.
To overcome this drawback, observer-based finite time
control schemes for non-strict feedback systems with
unmeasured states were discussed in [50–55]. Based
on FLS, Li et al. investigated the finite-time adap-
tive fuzzy control for MIMO non-strict feedback sys-
tems via a fuzzy observer in [50]. Furthermore, con-
sidering the actuator faults and saturations in MIMO
non-strict feedback systems, Ji et al. considered finite
time fuzzy tracking control problem in [51]. Regarding
non-strict feedback nonlinear systems with unmeasur-
able states, the authors in [52–55] studied the phenom-
ena of output constraint, state constraint, prescribed
performance constraint and input saturation for finite
time control schemes, respectively. Nevertheless, the
unmodeled dynamics problemwas unconsidered in the
aforementioned results. The unmodeled dynamics is
inevitable existing in practical systems, due to mod-
eling errors, model simplification and measurement
noises. As a result, it is difficult to obtain their accu-
rate information, and the difficulty of system control
increases sharply. However, the above-mentioned finite
time control schemes are useless for the unmodeled
dynamics. By introducing a dynamic signal or small-
gain theorem, the problem of unmodeled dynamics has
been widely considered in infinite time control of non-
linear systems, for example, in [17,56–62]. However,
from the perspective of finite time control strategy, this
problem is rarely considered in output feedback mech-
anism. Particularly, for non-strict feedback systems,
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the aforementioned results cannot be extended to this
issue. Recently, Sui et al. considered finite time con-
trol of stochastic systems with unmodeled dynamics in
[63]. Nevertheless, due to the repeated differentiations
of virtual controller, which lead to high computational
complexity. On the other hand, the input delay problem
has not been considered in above research results. It is
known that the control forces provided by the actua-
tors are limited in practice. Particularly, the output pro-
vided by the observer cannot be used when input delay
appears. Thus, the aforementioned results are invalid if
the input delay exists in practical systems.

As a kind of time delay, input delay is a common
and inevitable phenomenon in practical control sys-
tems, such as chemical processes [64], vehicle active
suspension system [65] and uncertain mechanical sys-
tems [66].When input delay occurs, the performance of
the closed-loop systemwill be damaged or even be dis-
astrous if the control signal cannot feedback the infor-
mation provided by the observer in time. To tackle lin-
ear systems with input delay, the predictor-based tech-
niques such as smith predictor and truncated predic-
tor feedback are often used. However, it is difficult
to deal with nonlinear systems with input delay, due
to the unknown nonlinearities exist in actual systems.
Thus, the authors in [67–69] extended the predictor-
based control approach to tackle nonlinear systems
with input delay. Unfortunately, most of these results
depend on the exact model information of the nonlin-
ear control plant. It should be noted that the unmod-
eled dynamics and other uncertainties often exist in
actual systems which make the aforementioned results
difficult to be applied in practice. In addition, for the
predictor-based control methods, the state variables of
system are difficult to predict. Based on Laplace trans-
form technique, the Pade approximation is employed
to deal with nonlinear systems with input delay. For
example, Li [70] investigated strict-feedback systems
with input delay and output constraint by combing FLS
and the idea of Pade approximation. Furthermore, by
combing NNS with Pade approximation, the authors
in [71] considered adaptive tracking control approach
for strict feedback systems with full state constrained
and input delay. Nevertheless, the proposed methods
are only applicable to strict feedback nonlinear sys-
tems, and the Pade approximation approach is invalid
for long input delay. Recently, by using a compensa-
tion mechanism to deal with input delay, Wang et al.
considered adaptive neural control for non-strict feed-

back systems in [72]. However, the proposed method
is only suitable to known constant delay and the state
variables are measurable, which might lead to some
design conservatism. For the unknown input delay, [73]
developed a prediction-based control method based on
the exact model assumption of the nonlinear dynam-
ics. Furthermore, [74] proposed proportional integral
differential controller for uncertain nonlinear systems.
Unfortunately, the considered system model depends
on the system model, and the approach is useless when
the system model changes. By using finite integral to
construct auxiliary signal,Wang et al. considered strict-
feedback systems with time-varying input delay and
proposed adaptive fuzzy tracking control approach in
[75]. Recently, the authors in [76] considered event-
triggered dynamic surface control for pure-feedback
systems with unknown input time delay and quan-
tized input. However, the aforementioned methods are
invalid if the state variables are not measurable or the
unmodeled dynamics exist in practice systems. From
above narrations, one can observe that no literature is
involved in discussion finite time control for non-strict
feedback nonlinear systems with unknown time vary-
ing input delay. What is more, if this issue involves
unmeasured state variables and unmodeled dynamics,
the existing results are invalid,which prompt us to carry
out this study.

Motivated by above observations, observer-based
adaptive fuzzy finite time control for non-strict feed-
back uncertain nonlinear systems with unknown time
varying input delay, unmodeled dynamics and unmea-
surable states is investigated in this paper. Fuzzy logi-
cal systems are introduced to approximate the unknown
nonlinearities and a fuzzy state observer is employed to
estimate the unmeasurable state variables. A compen-
sation signal is introduced to tackle the design difficulty
caused by the unknown time varying input delay. The
unmodeled dynamics is tackled by introduced a dynam-
ical signal and the DSC scheme is employed to tackle
the computational burden. Based on the backstepping
technique, an effective finite time adaptive fuzzy con-
troller has been obtained in the framework of finite time
Lyapunov theory. The main work of this paper is listed
as follows:

(1) In the framework of finite time stability, adap-
tive fuzzy finite time control for non-strict feed-
back nonlinear systems with unknown time vary-
ing input delay, unmodeled dynamics and unmea-
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surable states is proposed for the first time. Com-
pared with the nonlinear systems with strict feed-
back or pure feedback form in [36–43], the pro-
posed method can be applied for a more general
structure with unmeasurable states. Comparedwith
the finite time control schemes in [50–55,63], the
proposed controller takes into account the unmod-
eled dynamics and input delay so as to achieve bet-
ter control performance in practical engineering.

(2) For the unknown and time varying input delay,
a compensation signal is introduced to tackle the
design difficulty. Compared with the results in [70–
72], the restrictions of input delay to be known or
constant are removed, compared with [73,74] the
assumption of exact model limitation is eliminated,
so that the design conservatism is reduced.

(3) The structure of the non-strict feedback system is
simplified by using the FLS, and the DSC scheme
is adopted in the design process of backstepping
technique. Compared with [44–49,63], the compu-
tational burden, complexity and difficulty of finite
time controller design are reduced. The proposed
scheme not only solves the algebraic loop prob-
lem, but also realizes the finite time stability per-
formance constraint in the presence of unknown
input delay, unmodeled dynamics and unmeasur-
able states.

The paper is organized as follows: Sect. 2 presents
the problem and the preliminary results. Section 3 dis-
cusses the design process of the controller and the sta-
bility analysis. The simulation examples are considered
in Sect. 4. Finally, Sect. 5 gives a brief conclusion.

Notations The followingnotationswill be used through-
out this paper ‖ · ‖ denotes the 2-norm for a matrix or a
vector, | · | denotes the absolute value for a scalar, and
the symbol ◦ denotes the composition operator between
two functions.

2 Problem formulation

Consider the following dynamic system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ż = q(x, z)

ẋi = xi+1 + fi (x) + Δi (x, z), i = 1, 2, · · · , n − 1

ẋn = u(t − τ(t)) + fn(x) + Δn(x, z)

y = x1
(1)

where the state variable x = [x1, x2, · · · , xn]T and
all variables except x1 are not measured, z denotes
the unmodeled dynamics and Δi (x, z) represents the
unknowndynamicdisturbance, fi (·) is unknownsmooth
nonlinear function, u(t −τ(t)) ∈ R is the control input
with τ(t) being the unknown time varying delay, and
y(t) ∈ R is the system output.

Remark 1 In practice, many systems can be described
or transformed as the system (1), such as one-link
manipulator with motor [53,58], electromechanical
system [34] and so on. Compared with the existing
results [70–76]which onlywork on input delay for non-
linear systems with all state variables are measurable,
the finite time control problem is unconsidered. In addi-
tion, the considered input delay is known and constant
or the proposed method depends on the systemsmodel.
Compared with the finite time control approaches in
[50–55], the design difficulties caused by the phenom-
ena of input delay andunmodeled dynamics are ignored
by the authors.

Assumption 1 [62,63] The unknown dynamic distur-
bance Δi (x, z) satisfy

|Δi (x, z)| ≤ q∗
i ψi1(y) + q∗

i ψi2(|z|) 1 ≤ i ≤ n

(2)

where q∗
i is the unknown positive constant, and ψi1(·)

and ψi2(·) denote the known non-negative smooth
functions.

Assumption 2 [62,63] The unmodeled dynamic ż =
q(x, z) in (1) exists an input-to-state practically stable
(ISpS) Lyapunov V (z) which yields

π1(|z|) ≤ V (z) ≤ π2(|z|) (3)

∂V (z)

∂z
≤ −aV (z) + κ(|x |) + b0 (4)

where π1, π2 and κ are K∞−functions, and the con-
stants a > 0 and b0 > 0.

Lemma 1 [63] Assume that for a controlled system,
if (3) and (4) hold, then for any constant ā in (0, a0),
function κ̄(x) ≤ κ(|x |), and initial value x0= x0(0),
there exists a finite T0 = T0(ā, r0, z0), D(t) ≥ 0 for
all t ≥ 0 and a dynamical signal r which described
by
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ṙ = −ār + κ̄(x1(t)) + b0, r(0) = r0 (5)

satisfying D(t) = 0, ∀t ≥ T0

V (z(t)) ≤ r(t) + D(t, t0), ∀t ≥ 0 (6)

The smooth function κ̄(·) is selected as κ̄(s) =
s2κ0(s2). Then, (6) becomes

ṙ = −ār + x21κ0(x
2
1 ) + b0, r(0) = r0 (7)

where κ0(x21 ) > 0 is a smooth function.

Assumption 3 [34] Let x̂ = [x̂1, x̂2, · · · , x̂n]T be the
estimation of x = [x1, x2, · · · , xn]T , and li (1 ≤
i ≤ n) be a known constant which satisfying | fi (x) −
fi (x̂)| ≤ li ||x − x̂ ||, where ‖ · ‖ denotes the 2-norm of
a vector.

Remark 2 Assumption 3 is commonly adopted in the
literatures (Similar assumptions can be found in [27,
29,34,35]), which is a common basic assumption in
the design of nonlinear systems using output feedback.
In absence of Assumption 3, it would be extremely
difficult to verify the stability of the overall system.
As far as the function fi (x) in (1) which satisfies local
Lipschitz condition, Assumption 3 can be relaxed to
satisfy the local Lipschitz condition according to the
relevant theories, See [28,31,32,59]. In order to make
the description of the problem convenient, we employ
this Lemma defined in [34].

Assumption 4 [74] For the slowly varying delay τ(t),
there exists a known constant τ̂ > 0 satisfying τ(t) <

τ̂ . ∀t ∈ R, |τ̇ (t)| < η < 1, and η > 0 is the unknown
constant.

Definition 1 [45] Suppose that the equilibrium point
of nonlinear system ẋ(t) = f (x(t)) is x = 0. If for any
initial condition x(t0) = x0, there exists a settling time
T (ε, x0) < +∞ and ε > 0 which yields ∀t > t0 +
T , then ẋ(t) = f (x(t)) is called semiglobal practical
finite-time stable(SGPFS).

Lemma 2 [45] For system ẋ(t) = f (x(t)) is SGPFS,
if there exist some scalars c > 0, 0 < β < 1, d >

0 and a smooth function V (x(t)) > 0 which yields
V̇ (x(t)) ≤ −cV β(x(t)) + d, when t ≥ 0.

Lemma 3 [45] Letω be a real number and 0 ≤ ω ≤ 1,
xi(1≤i≤m) ∈ R, such that

(∑m

i=1
|xi |

)ω ≤
∑m

i=1
|xi |ω ≤ m(1−p)

(∑m

i=1
|xi |

)ω
.

(8)

Lemma 4 [45] Let x and y be real variables, for any
given positive constants ϑ1, ϑ2, and ϑ3, then

|x |ϑ1 |y|ϑ2 ≤ ϑ1

ϑ1 + ϑ2
ϑ3|x |ϑ1+ϑ2

+ ϑ1

ϑ1 + ϑ2
ϑ3

− ϑ1
ϑ2 |y|ϑ1+ϑ2 . (9)

The purpose of this paper is to design a unified
framework of observer-based adaptive fuzzy finite time
control scheme for non-strict feedback nonlinear sys-
tems with unknown input delay, unmodeled dynamics
and unmeasurable state variables such that all signals
of the closed-loop systems are SGPFS.

In the followingdesignprocess, FLScanbe employed
to identify the unknown continuous nonlinear func-
tions.

Lemma 5 [34] f (x) is continuous and defined on a
compact set Ω and can be approximated by a fuzzy
logic system θTφ(x). Then for any constant ε, which
yields

sup
x∈Ω

| f (x) − θTϕ(x)| ≤ ε (10)

where θT = [θ1, θ2, · · · , θN ]T denotes the optimal
weight vector with N > 1 being the number of the
fuzzy rules. ϕ(x) = [ϕ1(x), ϕ2(x), · · · , ϕN (x)]T is the
membership function vector with

ϕl(x) =
∏n

i=1 μFl
i (xi )

∑N
l=1

[∏n
i=1 μFl

i (xi )

]

and μFl
i (xi )

is the membership function of inference

antecedent variable of xi in IF-then rules.

3 Control design

Based on the idea of backstepping technique, the design
process of adaptive controller will be discussed in this
section.
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3.1 Fuzzy observer design

Firstly, let x̂ be the estimation of state variable x , then
system (1) can be transformed as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2 + f1(x̂) + Δ f1 + Δ1(x, z)
ẋi = xi+1 + fi (x̂) + Δ fi + Δi (x, z)
ẋn = u(t − τ(t)) + fn(x̂) + Δ fn + Δn(x, z)
y = x1

(11)

where Δ fi = fi (x) − fi (x̂), i = 1, 2, · · · , n.
For 1 ≤ i ≤ n, according to the idea of approxima-

tion in Lemma 5, the unknown function fi (x̂) in system
(1) can be modeled by a FLS f̂i (x̂) = θ̂Ti ϕi (x̂), i.e.,

fi (x̂) = εi (x̂) + f̂i (x̂) = εi (x̂) + θ∗T
i ϕi (x̂), |εi | ≤ ε∗

i
(12)

where εi (x̂) is the minimum approximation error, ε∗
i

is an unknown constant, and θ∗
i denotes the optimal

parameter vector, which defined as

θ∗
i = arg min

θ̂i∈Ωi

[sup
x̂∈U

| f̂i (x̂) − fi (x̂)|] (13)

with θ̂i being the estimation of θ∗
i , Ωi andU being the

compact regions for θ̂i and x̂ , respectively.
Substituting (12) into (11), and rewriting system (11)

as

ẋ = Ax + Ly +
n∑

i=1

Biθ
∗T
i ϕi (x̂) + ε

+ ΔF + BnU (t − τ(t)) + Δxz

y = Cx (14)

where

A =
⎡

⎢
⎣

−l1
... In−1

−ln 0 · · · 0

⎤

⎥
⎦ , L =

⎡

⎢
⎣

l1
...

ln

⎤

⎥
⎦ ,

ΔF =
⎡

⎢
⎣

Δ f1
...

Δ fn

⎤

⎥
⎦ ,C = [1, · · · , 0],

ε = [ε1, · · · , εn]T , Bi = [ 0 · · · 1 · · · 0 ]T ,

Δxz = [Δ1(x, z),Δ2(x, z), · · · ,Δn(x, z)]T .

Next, we define the fuzzy state observer as

⎧
⎪⎪⎨

⎪⎪⎩

˙̂x1 = x̂2 + θ̂T1 ϕ1(x̂) + l1(x1 − x̂1)˙̂xi = x̂i+1 + θ̂Ti ϕi (x̂) + li (x1 − x̂1)˙̂xn = u(t − τ(t)) + θ̂Tn ϕn(x̂) + ln(x1 − x̂1)
y = x̂1

(15)

Remark 3 The linear observer proposed in [27–30],
which is independent on the controlled systems. This
results in the limited information obtained by the linear
observer, especially the unmodeled dynamics phenom-
ena exist in real systems. In contrast, the fuzzy state
observer (15) uses the information of the controlled
system in the design process, which can obtain more
system information and achieve better estimations of
the unmeasurable states.

Furthermore, system (15) can be described as

˙̂x = Ax̂ + Ly +
n∑

i=1

Bi θ̂
T
i ϕi (x̂)

+ BnU (t − τ(t))y = Cx (16)

Let the estimation error e be

e = 1

q∗ [e1, e2, · · · , en]T = 1

q∗ (x − x̂) (17)

where q∗ = max{1, q∗
1 , q∗2

2 |1 ≤ i ≤ n}.
Based on (14) and (16), one can describe the dynam-

ics of the observer error as

ė = Ae + 1

q∗

(
n∑

i=1

Bi θ̃
T
i ϕi (x̂) + ε + ΔF + Δxz

)

(18)

where the estimation error θ̃i = θ∗
i − θ̂i .

According Assumption 1 and Lemma 1, we define
the transformations as

ē = Γ (r)e (19)

with

Γ (r) =
(

1 + 4
n∑

i=1

[ψi2 ◦ π−1
1 (2r)]2

)− 1
2

. (20)
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Obviously, Γ 2(r) ≤ 1, and Γ̇ (r) can be described as

Γ̇ (r) = −
(

1 + 4
n∑

i=1

[ψi2 ◦ π−1
1 (2r)]2

)− 3
2

4
n∑

i=1

[ψi2 ◦ π−1
1 (2r)]2 ∂(ψi2 ◦ π−1

1 (2r))

∂(2r)
2ṙ

= −Γ 3(r)4
n∑

i=1

[ψi2 ◦ π−1
1 (2r)]2

∂(ψi2 ◦ π−1
1 (2r))

∂(2r)
2ṙ .

(21)

From (18) and (21), one has

˙̄e = Γ (r)ė + eΓ̇ (r)

= Γ (r)ė + Γ −1(r)ēΓ̇ (r)

= Γ (r)

⎛

⎝Ae + 1

q∗

⎛

⎝
n∑

i=1

Bi θ̃
T
i ϕi (x̂) + ε + ΔF + Δxz

⎞

⎠

⎞

⎠

+ Γ −1(r)ēΓ̇ (r)

= Aē + 1

q∗ Γ (r)

⎛

⎝
n∑

i=1

Bi θ̃
T
i ϕi (x̂) + ε + ΔF + Δxz

⎞

⎠

− Γ 2(r)4
n∑

i=1

[ψi2 ◦ π−1
1 (2r)]

∂([ψi2 ◦ π−1
1 (2r)])

∂(2r)
2ṙ ē.

(22)

By selecting vector, L which yields matrix A is a
strict Hurwitz matrix. Then, for any given matrix Q =
QT > 0, there exists P = PT > 0 which yields
AT P + PA = −Q.

Consider the Lyapunov function V0 = ēT Pē , one
has

V̇0 ≤ −λmin(Q)||ē||2 + 2ēT P

q∗ Γ (r)
(

n∑

i=1

Bi θ̃
T
i ϕi (x̂) + ε + ΔF + Δxz

)

− Γ (r)24
n∑

i=1

[ψi2 ◦ π−1
1 (2r)]

∂([ψi2 ◦ π−1
1 (2r)])

∂(2r)
4ṙ ēT Pē.

(23)

By using the complete squares formula and the prop-
erty of 0 < ϕT

i (x̂)ϕi (x̂) ≤ 1, one can get the following
results

2

q∗ Γ (r)ēT P
n∑

i=1

Bi θ̃
T
i ϕi (x̂)

≤ ||P||2
n∑

i=1

θ̃Ti θ̃i + n||ē||2 (24)

2

q∗ Γ (r)ēT P(ε + ΔF)

≤ 2||ē||2 + ||P||2||ε∗||2 + ||P||2||ΔF ||2

≤ 2||ē||2 + ||P||2||ε∗||2 + ||P||2
⎛

⎝
n∑

j=1

l2j ||ē||2
⎞

⎠ .

(25)

Based on Assumption 2 and Lemma 1, one can get
|z| ≤ π−1

1 (r+D0). Furthermore, by usingAssumption
1 and the complete squares formula, one can have

2

q∗ Γ (r)ēT PΔxz

≤ 2||ē||||P||
(

n∑

i=1

ψi1(y) +
n∑

i=1

ψi2(|z|)
)

≤ n2
n∑

i=1

ψ̄2
i1(y)y

2 + 2||P||2||ē||2

+ nΓ 2(r)
n∑

i=1

(ψi2 ◦ π−1
1 (2r))2

+ nΓ 2(r)
n∑

i=1

(ψi2 ◦ π−1
1 (2D))2

≤ n2
n∑

i=1

ψ̄2
i1(y)y

2 + 2||P||2||ē||2 + n + d0

(26)

whereΓ 2(r)
n∑

i=1
(ψi2◦π−1

1 (2r))2 ≤ 1,d0 = n
n∑

i=1
(ψi2◦

π−1
1 (2D))2, ψ̄i1(y) is a smooth function and yψ̄i1(y) =

ψi1(y).
Substituting (24)–(26) into (23) and based on the

fact
∂([ψi2◦π−1

1 (2r)])
∂(2r) > 0 and ēT Pē > 0, one can get

V̇0 ≤ −λ0||ē||2 + ||P||2
n∑

j=1

θ̃Tj θ̃ j
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1424 J. Zhai et al.

+ n2
n∑

i=1

ψ̄2
i1(y)y

2 + Υ0 (27)

whereλ0=λmin(Q)−||P||2(
n∑

j=1
l2j ) − 2||P||2 − 2 − n

and Υ0 = ||P||2||ε∗||2 + n + d0.

3.2 Controller design

Firstly, the following change of coordinate is employed
in the process of backstepping designing

z1 = x1
zi = x̂i − ωi , i = 2, 3, · · · , n

(28)

where ωi is the first-order filter output signal, which is
defined as

ξi ω̇i + ωi = αi−1, ωi (0) = αi−1(0), i = 2, 3, · · · , n
(29)

with ξi being design parameter and αi being the first-
order filter input signals. The filter errors are given by

χi = ωi − αi−1 , i = 2, 3, · · · , n (30)

According to the previous change of coordinate, the
specific design steps as follows.

Step 1: Based on (28) and (29), the derivative of z1
is obtained that

ż1 = ẋ1

= x2 + f1(x̂) + Δ f1 + Δ1(x, z)

= x̂2 + q∗e2 + θ∗T
1 ϕ1(x̂)

+ ε1 + Δ f1 + Δ1(x, z).

(31)

For (31), a desired virtual input α1 can be derived
to take place of x̂2 based on z2 = x̂2 − ω2 and χ2 =
ω2 − α1, we can get

ż1 = z2 + χ2 + q∗e2 + α1 + θ∗T
1 ϕ1(x̂)

+ ε1 + Δ f1 + Δ1(x, z)

= z2 + χ2 + q∗e2 + α1 + θ∗T
1 ϕ1(x̂)

+ θ̂T1 ϕ1(x̂1) − θ∗T
1 ϕ1(x̂1) + θ̃T1 ϕ1(x̂1)

+ ε1 + Δ f1 + Δ1(x, z).

(32)

Let the Lyapunov function candidate be

Vω1 = V0 + 1

2
z21 + 1

2γ1
θ̃T1 θ̃1

+ 1

2γ̄1
Θ̃2

1 + 1

2
q̃2 + r

γ0
(33)

where Θ̃1 = Θ∗
1 − Θ̂1 and q̃ = q∗ − q̂ represent

the estimation errors, Θ̂1 and q̂ are the estimations of
Θ∗

1 = ||θ∗
1 ||2 and q∗, respectively. The design param-

eters γ1 > 0, γ̄1 > 0 and γ0 > 0.
Differentiating Vω1, then

V̇ω1 ≤ V̇0 + z1 ż1 − 1

γ1
θ̃T1

˙̂
θ1

− 1

γ̄1
Θ̃1

˙̂
Θ1 + q̃ ˙̃q + 1

γ0
ṙ

≤ −λ0||ē||2 + ||P||2
n∑

j=1

θ̃Tj θ̃ j − 1

γ1
θ̃T1

˙̂
θ1

+ n2
n∑

i=1

ψ̄2
i1(y)y

2 + Υ0 − 1

γ̄1
Θ̃1

˙̂
Θ1

+ z1(z2 + χ2 + q∗e2 + α1 + θ∗T
1 ϕ1(x̂)

+ θ̂T1 ϕ1(x̂1) + θ̃T1 ϕ1(x̂1)

− θ∗T
1 ϕ1(x̂1) + ε1 + Δ f1 + Δ1(x, z))

− q̃ ˙̂q + 1

γ0
(−ār + x21κ0(x

2
1 ) + b0).

(34)

Based on the completion of squares andAssumption
1, one can get the following results

z1(q
∗e2 + ε1 + Δ f1 + χ2)

≤ 3

2
z21 + z21q

∗

2Γ 2(r)
+

(
1

2
+ l21

2Γ 2(r)

)

||ē||2

+ 1

2
ε∗2
1 + 1

2
χ2
2 (35)

z1
(
θ∗T
1 ϕ1(x̂) − θ∗T

1 ϕ1(x̂1)
)

≤ ς1

2
z21Θ

∗
1 + 2

ς1
(36)

where ς1 > 0 is a design parameter.
From (2) and (3), one can get

z1Δ1(x, z) ≤ 1

4
[ψi2 ◦ π−1

1 (2r)]2z21q∗ + 1 + 1

4
z21q

∗

+ 4[ψi2 ◦ π−1
1 (2D)]2 + ψ̄i1(y)yz1q

∗.
(37)
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Furthermore, substituting (35)–(37) into (34), we
can have

V̇ω1 ≤ −λ1||ē||2 + θ̃T1

(

ϕ1(x̂1)z1 − 1

γ1

˙̂
θ1

)

+ Θ̃1

(
ς1

2
z21 − 1

γ̄1

˙̂
Θ1

)

+ z1

(
3

2
z1 + α1 + z2 + z1κ0(x21 )

γ0
+ ς1Θ̂1z1

2

+ n2
n∑

i=1

ψ̄2
i1(y)y + θ̂T1 ϕ1(x̂1)

+δ1q̂ ) + q̃(δ1y − ˙̂q) + 1

γ0
(−ār + b0)

+ ||P||2
n∑

j=1

θ̃Tj θ̃ j + 1

2
χ2
2 + Ῡ1

(38)

where λ1 = λ0 − ( 12 + l21
2Γ 2(r)

), δ1 = z1
2Γ 2(r)

+ 1
4 [ψi2 ◦

π−1
1 (2r)]2z1 + 1

4 z1 + ψ̄i1(y)y and Ῡ1 = Υ0 + 2
ς1

+
1
2ε

∗2
1 + 1 + 4[ψi2 ◦ π−1

1 (2D)]2.
Now, we design the virtual control signal as

α1 = −3

2
z1 − k1z

2β−1
1 − z1κ0(x21 )

γ0
− ς1Θ̂1z1

2

− n2
n∑

i=1

ψ̄2
i1(y)y − θ̂T1 ϕ1(x̂1) − δ1q̂

(39)

with the adaptive laws ˙̂
θ1 and

˙̂
Θ1 as

˙̂
θ1 = γ1φ

T
1 (x̂1)z1 − ς1θ̂1 (40)

˙̂
Θ1 = 1

2
γ̄1ς1z

2
1 − ς̄1Θ̂1 (41)

and the turning function ζ1 as

ζ1 = δ1z1 − � q̂ (42)

where the design parameters k1 > 0, ς1 > 0, ς̄1 > 0
and � > 0.

From (38)–(40), the following result can be obtained

V̇ω1 ≤ −λ1||ē||2 − k1z
2β
1 + z1z2 + ς1θ̃

T
1 θ̂1

γ1

+ ς̄1Θ̃1Θ̂1

γ̄1
+ �1q̃q̂

− q̃( ˙̂q − ζ1) + 1

γ0
(−ār + b0)

+ ||P||2
n∑

j=1

θ̃Tj θ̃ j + 1

2
χ2
2 + Ῡ1.

(43)

To deal with the problem of “explosion of complex-
ity” caused by repeatedly differentiating α1, let α1 pass
through a given low-pass filter ω2, which defined in
(29) with the filter time design parameter ξ2 and the
filter error χ2 defined in (30). Then, one can get

ω̇2 = −χ2

ξ2
(44)

and

χ̇2 = ω̇2 − α̇1 = −χ2

ξ2
− α̇1

= −χ2

ξ2
+ M2(·)

(45)

whereM2(·) is a continuous function, andM2(z1, z2, χ2,

θ̂1, Θ̂1, yd , ẏd , ÿd , μ1) = −( ∂α1
∂ x̂1

˙̂x1 + ∂α1
∂z1

ż1 + ∂α1

∂θ̂1

˙̂
θ1 +

∂α1

∂Θ̂1

˙̂
Θ1 + ∂α1

∂yd
ẏd + ∂α1

∂μ1
μ̇1). Furthermore, for any given

B0 and σ , the sets H0 := {(yd , ẏd , ÿd) : (yd)2 +
(ẏd)2 + (ÿd)2 ≤ B0} is compact in R3, and H2 :=
{∑2

j=1 z
2
j + γ −1

1 θ̃T1 θ̃1 + γ̄ −1
1 Θ̃T

1 Θ̃1 + χ2
2 ≤ 2σ } is

compact in RN1+3 with N1 being the dimension of θ̃T1 .
According [77], M2 has a maximum value B2. Thus,

χ2χ̇2 = χ2(ω̇2 − α̇1)

= χ2

(−χ2

ξ2

)

+ χ2M2(z1, z2, χ2, θ̂1, Θ̂1, yd , ẏd , ÿd , μ1)

≤ − 1

ξ2
χ2
2

+ 1

2
χ2
2

+ 1

2
B2

2
.

(46)
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Let the first Lyapunov function of the system be

V1 = V0 + Vω1 + 1

2
χ2
2 . (47)

From (43)–(47), one can get

V̇1 = V̇0 + V̇ω1 + χ2χ̇2

≤ −λ1||ē||2 − k1z
2β
1 + z1z2

+ ς1θ̃
T
1 θ̂1

γ1
+ ς̄1Θ̃1Θ̂1

γ̄1
+ � q̃q̂

− q̃( ˙̂q − ζ1) + 1

γ0
(−ār + b0)

+ ||P||2
n∑

j=1

θ̃Tj θ̃ j +
(

1 − 1

ξ2

)

χ2
2 + Υ1

(48)

where Υ1 = Ῡ0 + 1
2 B

2
2
.

Step i (2 ≤ i ≤ n−1) :Based on zi+1 = x̂i+1−ωi+1

and χi+1 = ωi+1 − αi , from (28)–(30), differentiating
zi then

żi = ˙̂xi − ω̇i

= x̂i+1 + θ̂Ti ϕi (x̂) + li q
∗(x1 − x̂1) − ω̇i

= zi+1 + χi+1 + αi + li q
∗e1 − ω̇i

− θ̃Ti ϕi (x̂) + θ̃Ti ϕi (x̂ i )

+ θ̂Ti ϕi (x̂ i ) − θ∗T
i ϕi (x̂ i ) + θ∗T

i ϕi (x̂)

(49)

where x̂ i = [x̂1, x̂2, · · · , x̂i ].
Let the following Lyapunov function candidate be

Vωi = Vi−1 + 1

2
z2i + 1

2γi
θ̃Ti θ̃i + 1

2γ̄i
Θ̃2

i (50)

where the estimation error is Θ̃i = Θ∗
i − Θ̂i and Θ̂i

represents the estimation of ||θ∗
i ||2. The design param-

eters γi > 0 and γ̄i > 0.
Thus, differentiating Vωi one has

V̇ωi ≤ −λi−1||ē||2 −
i−1∑

j=1

k j z
2β
j + zi−1zi

+
i−1∑

j=1

ς j θ̃
T
j θ̂ j

γ j
+

i−1∑

j=1

ς̄ j Θ̃ j Θ̂ j

γ̄ j
+ � q̃q̂

+ zi (zi+1 + χi+1 + αi + li q
∗e1 − ω̇i

− θ̃Ti ϕi (x̂) + θ̃Ti ϕi (x̂ i ) − θ∗T
i ϕi (x̂ i )

+ θ̂Ti ϕi (x̂ i ) + θ∗T
i ϕi (x̂)) − 1

γi
θ̃Ti

˙̂
θi

− 1

γ̄i
Θ̃i

˙̂
Θi − q̃( ˙̂q − ζi−1) +

i−1∑

j=2

θ̃Tj θ̃ j

2

+ 1

γ0
(−ār + b0) + ||P||2

n∑

j=1

θ̃Tj θ̃ j

+
i−1∑

j=1

(

1 − 1

ξ j+1

)

χ2
j+1 + Υi−1. (51)

Based on the completion of squares, one has

ziχi+1 ≤ 1

2
z2i + 1

2
χ2
i+1 (52)

ziq
∗li e1 ≤ z2i l

2
i q

∗

2Γ 2(r)
+ 1

2
||ē||2 (53)

−zi θ̃
T
i ϕi (x̂) ≤ 1

2
z2i + 1

2
θ̃Ti θ̃i (54)

zi (θ
∗T
i ϕi (x̂) − θ∗T

i ϕi (x̂ i )) ≤ ςi

2
z2i Θ

∗
i + 2

ςi
(55)

where ςi > 0 is a design parameter.
Based on (51)–(55), we can obtain that

V̇ωi ≤ −λi ||ē||2 −
i−1∑

j=1

k j z
2β
j + zi−1zi

+
i−1∑

j=1

ς j θ̃
T
j θ̂ j

γ j
+

i−1∑

j=1

ς̄ j Θ̃ j Θ̂ j

γ̄ j
+ � q̃q̂

+ zi (zi + zi+1 + αi + ςi

2
zi Θ̂i + θ̂Ti ϕi (x̂ i )

+ δi q̂ − ω̇i ) − q̃( ˙̂q − ζi )

+ θ̃Ti

(

ϕi (x̂ i )zi − 1

γi
θ̇i

)

+
i−1∑

j=1

(

1 − 1

ξ j+1

)

χ2
j+1

+ 1

2
χ2
i+1 + ||P||2

n∑

j=1

θ̃Tj θ̃ j

+ 1

γ0
(−ār + b0) + Θ̃i

(
ςi

2
z2i+1 − 1

γ̄i

˙̂
Θi

)

+
i∑

j=2

θ̃Tj θ̃ j

2
+ 2

ςi
+ Υi−1

(56)
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where λi = λi−1 + 1
2 and δi = zi l2i

2Γ 2(r)
.

Then, design the virtual control input signal as

αi = −zi−1 − zi − ki z
2β−1
i − ςi

2
zi Θ̂i

− θ̂Ti ϕi (x̂ i ) − δi q̂ + ω̇i (57)

with the adaptive laws ˙̂
θi and

˙̂
Θi as

˙̂
θi = γiφ

T
i (x̂ i )zi − ςi θ̂i (58)

˙̂
Θi = 1

2
γ̄iςi z

2
i − ς̄i Θ̂i (59)

and the turning function ζi as

ζi = ζi−1 + δi zi (60)

where the designparameters ki > 0,ςi > 0 and ς̄i > 0.
Furthermore, substituting (57)–(60) into (56), we

can have

V̇ωi ≤ −λi ||ē||2 −
i∑

j=1

k j z
2β
j + zi zi+1

+
i∑

j=1

ς j θ̃
T
j θ̂ j

γ j
+

i∑

j=1

ς̄ j Θ̃ j Θ̂ j

γ̄ j
+ � q̃q̂

+ ||P||2
n∑

j=1

θ̃Tj θ̃ j − q̃( ˙̂q − ζi )

+ 1

γ0
(−ār + b0)

+
i−1∑

j=1

(

1 − 1

ξ j+1

)

χ2
j+1 + 1

2
χ2
i+1

+ Υi−1 + 2

ςi
+

i∑

j=2

θ̃Tj θ̃ j

2
.

(61)

As in step 1, let αi pass through a given low-pass
filter ωi+1, which defined in (29) with the filter time
design parameter ξi+1 and the filter error χi+1 defined
in (30). Then, one can get

ω̇i+1 = −χi+1

ξi+1
(62)

and

χ̇i+1 = −χi+1

ξi+1
+ Mi+1(·) (63)

where Mi+1(·) is a continuous function, and Mi+1(z1,
· · · , zi+1, χ1, · · · , χi+1, θ̂1, · · · , θ̂i , Θ̂1, · · · , Θ̂i ,

yd , ẏd , ÿd , μ1, · · · , μi ) = −(
∂αi
∂ x̂i

˙̂xi + ∂αi
∂zi

żi + ∂αi

∂θ̂i

˙̂
θi +

∂αi

∂Θ̂i

˙̂
Θi + ∂αi

∂yd
ẏd + ∂αi

∂μi
μ̇i ). Furthermore, for any given

B0 and σ , the sets H0 := {(yd , ẏd , ÿd) : (yd)2 +
(ẏd)2 + (ÿd)2 ≤ B0} is compact in R3, and Hi :=
{∑i

j=1 z
2
j + γ −1

i θ̃Ti θ̃i + γ̄ −1
i Θ̃T

i Θ̃i + χ2
i ≤ 2σ } is

compact in RN1+3 with N1 being the dimension of
θ̃Ti . According [77], Mi+1 has a maximum value Bi+1.
Thus,

χi+1χ̇i+1 = χi+1(ω̇i+1 − α̇i )

= χi+1

(−χi+1

ξi+1

)

+ χi+1Mi+1(·)

≤ − 1

ξi+1
χ2
i+1 + 1

2
χ2
i+1 + 1

2
B2
i+1.

(64)

Let the i th Lyapunov function be

Vi = Vωi + 1

2
χ2
i+1. (65)

Then, from (61), (64) and (65) we have

V̇i = V̇ωi + χi+1χ̇i+1

≤ −λi ||ē||2 −
i∑

j=1

k j z
2β
j + zi zi+1

+
i∑

j=1

ς j θ̃
T
j θ̂ j

γ j
+ � q̃q̂ +

i∑

j=1

ς̄ j Θ̃ j Θ̂ j

γ̄ j

+
i∑

j=1

(1 − 1

ξ j+1
)χ2

j+1 − q̃( ˙̂q − ζi )

+ 1

γ0
(−ār + b0) + Υi

+ ||P||2
n∑

j=1

θ̃Tj θ̃ j +
i∑

j=2

θ̃Tj θ̃ j

2

(66)

where Υi = Υi−1 + 2
ςi

+ 1
2 B

2
i+1.

Step n: In this step, a compensation signal μ is
devised to tackle the effect of input delay, and the com-
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pensate signal μ is designed as

μ̇ = −hμ + u(t) − u(t − τ̂ (t)). (67)

Furthermore, we redefine the signal zn as follows

zn = x̂n − ωn + μ. (68)

Based on (67) and (68), differentiating zn

żn = ˙̂xn − ω̇n + μ̇

= u(t − τ(t)) + θ̂Tn ϕn(x̂) + lnq
∗e1

− ω̇n − hμ − u(t − τ̂ ) + u(t).

(69)

Then, let the Lyapunov function be

Vn = Vn−1 + 1

2
z2n + 1

2
μ2 + 1

2γn
θ̃Tn θ̃n

+ D1 + D2 + D3 + D4 (70)

whereD1 = 1
2(1−η)

∫ t
t−τ(t) ||u(s)||2ds,D2 = 1

1−η

∫ t
t−τ(t)∫ t

θ
||u(s)||2dsdθ , D3 = ∫ t

t−τ̂
||u(s)||2ds, and D4 =

2
∫ t
t−τ̂

∫ t
θ

||u(s)||2dsdθ . The derivatives of D1, D2, D3,
and D4 can be described as follows

Ḋ1 = 1

2(1 − η)
(
||u(t)||2 − ||u(t − τ(t))||2(1 − τ̇ (t))

)
(71)

Ḋ2 = 1

1 − η
(

||u(t)||2τ(t) − (1 − τ̇ (t))
∫ t

t−τ(t)
||u(s)||2ds

)

(72)

Ḋ3 = ||u(t)||2 − ||u(t − τ̂ )||2 (73)

Ḋ4 = 2

(

||u(t)||2τ̂ −
∫ t

t−τ̂

||u(s)||2ds
)

. (74)

Differentiating Vn as in step i , it is clearly that

V̇n = V̇n−1 + zn żn + μμ̇ + 1

γn
θ̃Tn

˙̃
θn

+ Ḋ1 + Ḋ2 + Ḋ3 + Ḋ4

≤ V̇n−1 + zn(u(t − τ(t)) + θ̂Tn ϕn(x̂) + lnq
∗e1

− ω̇n − hμ + u(t) − u(t − τ̂ ))

+ μ(−hμ + u(t) − u(t − τ̂ )) − zn θ̃
T
n ϕn(x̂)

+ θ̃Tn

(

ϕn(x̂n)zn − 1

γn

˙̂
θn

)

+
(
1 + 2τ(t)

2(1 − η)
+ 2τ̂ + 1

)

||u(t)||2

−
∫ t

t−τ(t)
||u(s)||2ds

− 2
∫ t

t−τ̂

||u(s)||2ds − ||u(t − τ̂ )||2

− 1

2
||u(t − τ(t))||2. (75)

It is easy to get the following results

znq
∗lne1 ≤ z2nl

2
nq

∗

2Γ 2(r)
+ 1

2
||ē||2 (76)

zn(u(t − τ(t)) − u(t − τ̂ ))

≤ z2n + 1

2
||u(t − τ(t))||2

+ 1

2
||u(t − τ̂ )||2 (77)

μ(u(t) − u(t − τ̂ ))

≤ μ2 + 1

2
||u(t)||2 + 1

2
||u(t − τ̂ )||2 (78)

− zn θ̃
T
n ϕn(x̂) ≤ 1

2
z2n + 1

2
θ̃Tn θ̃n . (79)

Furthermore, one has

∫ t

t−τ(t)

∫ t

θ

||u(s)||2dsdθ ≤ τ(t)
∫ t

t−τ(t)
||u(s)||2ds.

(80)

Substituting (76)–(80) into (75), one can get

V̇n ≤ −λn||ē||2 −
n−1∑

j=1

k j z
2β
j +

n−1∑

j=1

ς j θ̃
T
j θ̂ j

γ j

+
n−1∑

j=1

ς̄ j Θ̃ j Θ̂ j

γ̄ j
+ � q̃q̂

+ zn(zn−1 + 3

2
zn + θ̂Tn ϕn(x̂)

+ δnq̂ − ω̇n − hμ + u(t))

+ θ̃Tn

(

ϕn(x̂n)zn − 1

γn
θ̇n

)

− q̃( ˙̂q − ζn) + ||P||2
n∑

j=1

θ̃Tj θ̃ j
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+ 1

γ0
(−ār + b0) +

n−1∑

j=1

(

1 − 1

ξ j+1

)

χ2
j+1

− (h − 1)μ2

− (1 − η)D1 − 1

2τ̂
D2 − D3

− 1

2τ̂
D4 +

n∑

j=2

θ̃Tj θ̃ j

2

+
(
1 + 2τ(t)

2(1 − η)
+ 3

2
+ 2τ̂

)

||u(t)||2 + Υn (81)

where λn = λn−1 + 1
2 , δn = znl2n

2Γ 2(r)
and Υn = Υn−1 +

2
ςn
.
Therefore, the real controller and the adaptive laws

are designed as

u(t) = −zn−1 − 3

2
zn − knz

2β−1
n

− θ̂Tn ϕn(x̂) − δnq̂

+ ω̇n + hμ (82)

˙̂
θn = γnφ

T
n (x̂)zn − ςn θ̂n (83)

˙̂q = ζn−1 + δnzn (84)

where the design parameters kn > 0 and ςn > 0.
Consequently, from (81), (82), (83) and (84), we

have the following result

V̇n ≤ −λn||ē||2 −
n∑

j=1

k j z
2β
j +

n∑

j=1

ς j θ̃
T
j θ̂ j

γ j

+
n−1∑

j=1

ς̄ j Θ̃ j Θ̂ j

γ̄ j
+ � q̃q̂

+ ||P||2
n∑

j=1

θ̃Tj θ̃ j + 1

γ0
(−ār + b0)

+
n−1∑

j=1

(

1 − 1

ξ j+1

)

χ2
j+1 − (h − 1)μ2

− (1 − η)D1 − 1

2τ̂
D2 − D3

− 1

2τ̂
D4 +

n∑

j=2

θ̃Tj θ̃ j

2

+
(
1 + 2τ(t)

2(1 − η)
+ 3

2
+ 2τ̂

)

||u(t)||2 + Υn (85)

where λn = λn−1 + 1
2 , δn = znl2n

2Γ 2(r)
and Υn = Υn−1 +

2
ςn
.

3.3 Stability analysis

Based on the above design process, the stability and
boundedness of all signals will be discussed in this sec-
tion.

Theorem 1 Considered system (1) in the presence of
unmodeled dynamic, unknown time varying input delay
and unmeasurable states, based on Assumptions 1-3,
for the initial conditions V (0) ≤ H and the real con-
troller defined in (82), associated with the virtual sig-
nals defined in (39), (57) for1 ≤ i ≤ n−1 , the adaptive
laws defined in (40), (41), (58), (59), (83), (84) and the
turning functions (42), (60), which can ensure that all
signals of the closed-loop system are bounded in finite
time.

Proof Firstly, we design the following Lyapunov func-
tion.

V = Vn . (86)

Based on the definitions of θ̃ j , Θ̃ j and q̃ , the inequal-
ities θ̃Tj θ̂ j ≤ 1

2θ
∗T
j θ∗

j − 1
2 θ̃

T
j θ̃ j , Θ̃ j Θ̂ j ≤ 1

2Θ
∗2
j − 1

2 Θ̃
2
j ,

and q̃q̂ ≤ 1
2q

∗2 − 1
2 q̃

2 are used to deal with the terms

θ̃Tj θ̂ j , Θ̃ j Θ̂ j and q̃q̂ .
Differentiating V , one can get

V̇ ≤ −λn||ē||2 −
n∑

j=1

k j z
2β
j

−
(

ς1

2γ1
− ||P||2

)

θ̃T1 θ̃1 −
n−1∑

j=1

(
1

ξ j+1
− 1

)

χ2
j+1

−
n∑

j=2

(
ς j

2γ j
− 1

2
− ||P||2

)

θ̃Tj θ̃ j −
n−1∑

j=1

ς̄ j Θ̃
2
j

2γ̄ j

− � q̃2

2
− ār

γ0
− (h − 1)μ2

− (1 − η)D1 − 1

2τ̂
D2 − D3 − 1

2τ̂
D4

+
n∑

j=1

ς jθ
∗T
j θ∗

j

2γ j
+

n−1∑

j=1

ς̄ jΘ
∗2
j

2γ̄ j
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+ �q∗2

2
+

(
1 + 2τ(t)

2(1 − η)
+ 3

2
+ 2τ̂

)

||u(t)||2

− b0
γ0

+ Υn . (87)

Let

λ = λn

λmax (P)
> 0 (88)

γ̂1 = ς1 − 2γ1||P||2 > 0 (89)

γ̂ j = ς j − γ j − 2γ j ||P||2 > 0, j = 2, 3, · · · , n
(90)

ξ̂ j+1 = 1

ξ j+1
− 1 > 0, j = 1, 2, · · · , n − 1 (91)

Substituting (88)–(91) into (87 )

V̇ ≤ −λēT Pē −
n∑

j=1

k j z
2β
j −

n∑

j=1

γ̂ j

2γ j
θ̃Tj θ̃ j

−
n−1∑

j=1

ς̄ j Θ̃
2
j

2γ̄ j
−

n−1∑

j=1

ξ̂ j+1χ
2
j+1 − � q̃2

2

− ār

γ0
− (h − 1)μ2 − (1 − η)D1 − D2

2τ̂

− D3 − D4

2τ̂
+

n∑

j=1

ς jθ
∗T
j θ∗

j

2γ j

+
n−1∑

j=1

ς̄ jΘ
∗2
j

2γ̄ j
+ �q∗2

2

+
(
1 + 2τ(t)

2(1 − η)
+ 3

2
+ 2τ̂

)

||u(t)||2 − b0
γ0

+ Υn

≤ −cēT Pē − c
n∑

j=1

z2βj − c
n∑

j=1

1

2γ j
θ̃Tj θ̃ j

− c
n−1∑

j=1

Θ̃2
j

2γ̄ j
− c

n−1∑

j=1

1

2
χ2
j+1 − c

q̃2

2

− c
r

γ0
− c

μ2

2
− cD1 − cD2 − cD3 − cD4

+
n∑

j=1

ς jθ
∗T
j θ∗

j

2γ j
+ �q∗2

2
− b0

γ0
+

n−1∑

j=1

ς̄ jΘ
∗2
j

2γ̄ j

+
(
1 + 2τ(t)

2(1 − η)
+ 3

2
+ 2τ̂

)

||u(t)||2 + Υn (92)

where c = min{λ, 2k j , γ̂ j : 1 ≤ j ≤ n, ς̄ j , 2ξ̂ j+1 :
1 ≤ j ≤ n − 1,�, ā, 2(h − 1), 1 − η, 1

2τ̂ }.
Let x = ēT Pē, y = 1, ϑ1 = β, ϑ2 = 1 − β, ϑ3 =

β−1, from Lemma 3, one can get

(ēT Pē)β ≤ ēT Pē + (1 − β)β
β

1−β (93)

Furthermore, similar to (93), by using Lemma 3, one
can get the following results.

⎛

⎝
n∑

j=1

1

2
θ̃Tj θ̃ j

⎞

⎠

β

≤
n∑

j=1

1

2
θ̃Tj θ̃ j + (1 − β)β

β
1−β (94)

⎛

⎝
n−1∑

j=1

Θ̃2
j

2γ̄ j

⎞

⎠

β

≤
n−1∑

j=1

Θ̃2
j

2γ̄ j
+ (1 − β)β

β
1−β (95)

⎛

⎝
n−1∑

j=1

1

2
χ2
j+1

⎞

⎠

β

≤
n−1∑

j=1

1

2
χ2
j+1 + (1 − β)β

β
1−β (96)

(
q̃2

2

)β

≤
n−1∑

j=1

1

2
q̃2 + (1 − β)β

β
1−β (97)

(
r

γ0

)β

≤ r

γ0
+ (1 − β)β

β
1−β (98)

(
μ2

2

)β

≤ μ2

2
+ (1 − β)β

β
1−β (99)

Dβ
i ≤ Di + (1 − β)β

β
1−β , i = 1, 2, 3, 4.

(100)

Substituting (93)–(100) into (92) and by using Lemma
3, one can get

V̇ ≤ −c(ēT Pē)β − c

⎛

⎝
n∑

j=1

z2j

⎞

⎠

β

− c

⎛

⎝
n∑

j=1

1

2
θ̃Tj θ̃ j

⎞

⎠

β

− c

⎛

⎝
n−1∑

j=1

Θ̃2
j

2γ̄ j

⎞

⎠

β

− c

⎛

⎝
n−1∑

j=1

1

2
χ2
j+1

⎞

⎠

β

− c

(
q̃2

2

)β

− c

(
r

γ0

)β

− c

(
μ2

2

)β

− cDβ
1
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− cDβ
2 − cDβ

3 − cDβ
4 +

n∑

j=1

ς jθ
∗T
j θ∗

j

2γ j

+
n−1∑

j=1

ς̄ jΘ
∗2
j

2γ̄ j
+ �q∗2

2
− b0

γ0

+ Υn + 11(1 − β)β
β

1−β

+
(
1 + 2τ(t)

2(1 − η)
+ 3

2
+ 2τ̂

)

||u(t)||2

≤ −cV β +
n∑

j=1

ς jθ
∗T
j θ∗

j

2γ j
+

n−1∑

j=1

ς̄ jΘ
∗2
j

2γ̄ j

+ �q∗2

2
− b0

γ0
+ Υn + 11(1 − β)β

β
1−β

+
(
1 + 2τ(t)

2(1 − η)
+ 3

2
+ 2τ̂

)

||u(t)||2. (101)

If V (t) < H , then the error signals z j (t), θ̃ j (t), ē j (t),
Θ̃ j (t), χ j+1(t), and q̃(t), the dynamic signal r(t) and
the compensation signalμ(t) are all bounded. It is easy
to prove the boundedness of θ̂i (t), Θ̂ j (t), q̂(t), and ei (t)
. Furthermore, from (39), (57) and (82) one can get that
αi and u(t) are all bounded. Therefore, we can get

V̇ (t) ≤ −cV (t)β + d (102)

where d = ∑n
j=1

ς j θ
∗T
j θ∗

j
2γ j

+
n−1∑

j=1

ς̄ jΘ
∗2
j

2γ̄ j
+ �q∗2

2 − b0
γ0

+

Υn +
(
1+2τ(t)
2(1−η)

+ 3
2 + 2τ̂

)
umax + 11(1 − β)β

β
1−β and

umax is the upper bound of ||u(t)||2.
Based on Lemma 2, the trajectory of the closed-loop

system will be derived into V (t)β ≤ d
(1−ρ)c in finite

time TR , and TR can be computed by

TR =
(

1

(1 − β)cρ

)

⎡

⎣V (0)1−β −
(

d

(1 − ρ)c

) 1−β
β

⎤

⎦ (103)

where, V (0) is the initial value of V (t).
If V (t) = H , based on the boundedness of z j (t),

θ̃ j (t), ē j (t), Θ̃ j (t), χ j+1(t), and q̃(t), we also can

get V̇ (t) ≤ −cV (t)β + d with d =
n∑

j=1

ς j θ
∗T
j θ∗

j
2γ j

+

n−1∑

j=1

ς̄ jΘ
∗2
j

2γ̄ j
+�q∗2

2 − b0
γ0

+Υn+
(
1+2τ(t)
2(1−η)

+ 3
2 + 2τ̂

)
umax+

11(1− β)β
β

1−β . If we choose c > d
Hβ , then the deriva-

tive of satisfies V̇ (t) < 0. This means that the trajec-
tory of will not escape the boundedness of H . That is
to say V (t) ≤ H , ∀t ≥ 0 for V (0) ≤ H . Then, based
on (102) and Lemma 2, all signals will be derived into
V (t)β ≤ d

(1−ρ)c in finite time.
From above discussion, all signals are SGPFS for

V (0) ≤ H . The proof is completed. 
�

Remark 4 Compared with the existing results [50–55,
63,70–72] , which only work on the nonlinear system
with small input delay or ignoring input delay for finite
time control, the proposed scheme in this paper can
tackle the problem of finite time control for non-strict
feedback uncertain nonlinear systems with unknown
time-varying input delay.

Remark 5 The proposed compensation signal can be
constructed,which is independent on the systemmodel.
The compensation signal is bounded in finite time and
the design procedures have nothing to do with the input
delay. The fuzzy observer and the dynamical signal
function can be easily designed to deal with unmea-
surable states and unmodeled dynamics, respectively.
In addition, the finite time stability of the closed-loop
system can also be guaranteed by choosing the appro-
priate Lyapunov function and the setting parameters.
Thus, the proposed method is tractable for fuzzy finite
time control.

4 Examples

In this section, two examples are utilized to show
the effectiveness and characteristics of the proposed
approach.

Example 1 Consider a second-order systemwithunmod-
eled dynamics and input delay described as the follow-
ing form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż = −2z + 0.25x21

ẋ1 = x2 + x2cos(x21 )+sin(x1x2)
sin2(x1)+1

+ Δ1

ẋ2 = u(t − τ(t)) + x2
1+x21 x

2
2

+ Δ2

y = x1

(104)

123



1432 J. Zhai et al.

where Δ1 = 0.5z2, Δ2 = z2 and τ(t) = 0.4 +
0.1sin(t)s.

Let ψi1 = y, ψi2 = z2 for i = 1, 2, it can be easily
to prove Assumption 1. Choosing V (z) = z2, one has

V̇ (z) = −2z2 + 0.25z1x
2
1 ≤ −1.6z2 + 2.5x41 + 0.625.

Let a = 1.6, κ(|x |) = 2.5x41 , b0 = 0.625, π1 = 0.5z2

and π2 = 1.6z2 then Assumption 2 is true.
By selecting ā = 1.2 ∈ (0, a) and according

to Lemma 1 the dynamical signal function r can be
designed as

ṙ = −1.2r + 2.5x41 + 0.625.

The virtual control input α1 and u are designed as

(39) and (82), ˙̂
θ1,

˙̂
θ2,

˙̂
Θ1, and ˙̂q are designed as (40),

(41), (83), (84), and the turning function ζ1 is designed
as (42).

In the simulation,μ
F j
i (x̂ i )

= exp[−0.5(x̂ i +3− j)] ,
for i = 1, 2, j = 1, 2, · · · , 5. The observer parameters
are selected as l1 = 30 and l2 = 150. Selecting Q =
6I , one can get

P =
[
0.1007 0.0200
0.0200 15.7000

]

.

Let the initial conditions x1(0) = x2(0) = 0.2,
x̂1(0) = x̂2(0) = 0, r(0) = 0, μ(0) = 0, ω2(0) = 0,
θ̂1(0) = θ̂2(0) = [0, 0, 0, 0, 0], Θ̂1(0) = 0 , q̂(0) = 0
and z(0) = 0.2. The other parameters are taken as
k1 = 8, k2 = 15, γ1 = γ2 = γ̄1 = γ̄2 = 2, γ0 = 1,
ς1 = 1, ς2 = 5, ς̄1 = 5, ς̄2 = 6, � = 100, ξ1 = 0.01,
h = 2, β = 0.92 and τ̂ = 0.5. The simulation time is
10s, and the simulation results are shown in Figs. 1, 2,
3, 4 and 5.

Figures 1 and 2 draw the trajectories of the state
variables x1 and x2 and their estimated values x̂1 and
x̂2 , respectively.

From Figs. 1 and 2, one can observe that the state
trajectories of x̂1 and x̂2 can track the state variables
x1 and x2 quickly, which means that the sate observer
can effectively estimate the unmeasurable states by
using the proposed fuzzy observer. In addition, it can
be seen from Figs. 1 and 2 that the proposed adaptive
fuzzy finite-time controller can effectively stabilize the
closed-loop systems under the time varying input delay,
unmodeled dynamics and unmeasurable states.

Figure 3 depicts the trajectories of auxiliary variable
μ.

From Fig. 3, one can observe that under the time
varying input delay τ(t) = 0.4+ 0.1sin(t)s, the com-
pensation signalμ is bounded in finite time. Thismeans

Fig. 1 The trajectories of x1 and x̂1 in example 1

Fig. 2 The trajectories of x2 and x̂2 in example 1

Fig. 3 The trajectory of μ in example 1
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Fig. 4 The trajectory of unmodeled dynamics z in example 1

Fig. 5 The trajectories of u(t − τ(t)) and u(t) in example 1

that the proposed compensation signal is bounded in
finite time, although there are unmodeled dynamics in
the real system. On the other hand, Fig. 3 shows that
the proposed compensation mechanism cannot destroy
the stability of the closed-loop systems.

Figure 4 draws the trajectory of unmodeled dynam-
ics z.

From Fig. 4, one can observe that the trajectory of
unmodeled dynamics z is bounded by using the pro-
posed adaptive fuzzy finite time controller.

The control signals u(t − τ(t)) and u(t) are shown
in Fig. 5.

From the simulation results in Figs. 1, 2, 3, 4 and
5, one can obtain that for the time varying input delay,
unmodeled dynamics and unmeasurable states, all the
signals of the closed-loop systems are boundedbyusing
the proposed adaptive fuzzy finite time controller.

In what follows, two cases are considered to ver-
ify the effectiveness of the proposed scheme for the

Fig. 6 The trajectories of x1 and x̂1 in example 1(Case 1)

Fig. 7 The trajectories of x2 and x̂2 in example 1(Case 1)

unmodeled dynamics and unknown time varying input
delay.

Case 1. The unmodeled dynamics exists in the con-
sidered system (104) and without unknown time vary-
ing input delay, i.e., τ(t) = 0. If the dynamical sig-
nal r does not employed for controller design, then
finite time control scheme cannot guarantee the stabil-
ity of the system. To test this, the compensation signal
for unknown time varying input delay is omitted, i.e.,
μ = 0 and the other parameters are designed as above
for system (104), the trajectories of x1, x̂1, x2, x̂2 and
z are shown in Figs. 6, 7 and 8.

From Figs. 6, 7 and 8, it can be observed that for
the finite time control scheme, all signals of the closed-
loop system become unstable if the dynamic signal is
not used to deal with the unmodeled dynamics.

Case 2. To test the validity of the compensation mech-
anism for unknown time varying input delay, both the
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Fig. 8 The trajectory of unmodeled dynamics z in example
1(Case 1)

Fig. 9 The trajectories of x1 and x̂1 in example 1(Case 2)

unmodeled dynamics and the unknown time varying
input delay are included in the considered system (104).
Under such a condition, only the dynamical signal is
employed to tackle the unmodeled dynamics, and the
compensation signal for unknown time varying input
delay is ignored, i.e., μ = 0.

The dynamical signal r and the other parameters are
designed as above for system (104), the trajectories of
x1, x̂1, x2, x̂2 and z are shown in Figs. 9, 10 and 11.

From Figs. 9, 10 and 11, one can observe that the
finite time control scheme also cannot ensure the stabil-
ity of the closed-loop system when the compensation
mechanism for unknown time varying input delay is
ignored for the controller design. In addition, from the
trajectory of unmodeled dynamics z in Figs. 8 and 11,
one can observer that the unmodeled dynamics z does
not change sharply when the dynamical signal is used
in Fig. 11. However, due to the existence of unknown
time varying input delay, the finite time controller can-
not stabilize the closed-loop system.

Fig. 10 The trajectories of x2 and x̂2 in example 1(Case 2)

Fig. 11 The trajectory of unmodeled dynamics z in example
1(Case 2)

From the above simulation results, one can observe
that the proposed method in this paper can tackle
finite time control for non-strict feedback systems with
unmeasurable states, unknown timevarying input delay
and unmodeled dynamics.

Example 2 Consider an application example the one-
link manipulator with motor dynamics and distur-
bances used in [53,58]. The dynamics model of the
system is described as follows:

{
Dq̈ + Bq̇ + N sin(q) = I + Id
M İ + H I = −Kmq̇ + V

(105)

where q is the link position, q̇ is the velocity, and
q̈ is the acceleration. I denotes the torque produced,
Id = sin(q̇)cos(I ) denotes the torque disturbance,
and V denotes the input control electromechanical
torque. The parameters are selected as D = 1 kg m2,
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B = 1Nms/rad, N = 10Nm,M = 0.3H, H = 1.0Ω

and Km = 2 Nm/A .

It is assumed that the time varying input delay, the
disturbance and the unmodeled dynamics exist in the
system (104). Let x1 = q, x2 = q̇ , x3 = I/D and
u(t − τ(t)) = V (t − τ(t))/DM then system (105) can
be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż = −2z + 0.25x21
ẋ1 = x2 + Δ1

ẋ2 = x3 − N

D
sin(x1) − B

D
x2

+ 1

D
sin(x2)cos(Dx3) + Δ2

ẋ3 = − Km

MD
x2 − H

MD
x3 + u(t − τ(t)) + Δ3

y = x1

where Δ1 = z2x1sin(x1), Δ2 = z2x1x2, Δ3 =
zx1x2x3, and τ(t) = 0.4 + 0.1sin(t)s.

Let ψi1 = y, ψi2 = z2 for i = 1, 2, 3, then
Assumption 1 holds. Choosing V (z) = z2, one has
V̇ (z) = −2z2 + 0.5z1x21 ≤ −1.5z2 + 2.5x41 + 0.625 .
Let a = 1.5, κ(|x |) = 2.5x41 , b0 = 0.625, π1 = 0.5z2

and π2 = 1.5z2 then Assumption 2 is true.
By selecting ā = 1.2 ∈ (0, a), and from Lemma 1

the dynamical signal function r can be designed as

ṙ = −1.2r + 2.5x41 + 0.625.

The virtual control input α1, α2 and u are designed

as (39), (57) and (82), ˙̂
θ1,

˙̂
θ2,

˙̂
θ3,

˙̂
Θ1,

˙̂
Θ2, and ˙̂q are

designed as (40), (41) , (58), (59),(83) and (84), the
turning function ζ1 and ζ2 are designed as (42) and
(60).

In the simulation, μ
F j
i (x̂ i )

= exp[−0.5(x̂ i + 3− j)]
for i = 1, 2, 3, j = 1, 2, · · · , 5. The observer param-
eters are selected as l1 = 80, l2 = 2, l3 = 2. Selecting
Q = I , one can get

P =
⎡

⎣
0.1361 10.3861 0.2500
10.3861 830.908 20.2722
0.2500 20.2722 21.2722

⎤

⎦ .

Let the initial conditions x1(0) = x2(0) = 0.5,
x3(0) = −0.5, x̂1(0) = x̂2(0) = x̂3(0) = 0, θ̂1(0) =
θ̂2(0) = θ̂3(0) = [0, 0, 0, 0, 0], Θ̂1(0) = Θ̂2(0) = 0,
r(0) = 0, μ(0) = 0, ω2(0) = ω3(0) = 0, q̂(0) = 0,
z(0) = 0.5. The other parameters are taken as k1 = 15,
k2 = 15, k3 = 12, γ1 = 3, γ2 = 1, γ3 = 3,
γ̄1 = γ̄2 = γ̄3 = 3, γ0 = 2, ς1 = 2, ς2 = 4, ς3 = 3,

Fig. 12 The trajectories of x1 and x̂1 in example 2

Fig. 13 The trajectories of x2 and x̂2 in example 2

ς̄1 = 2, ς̄2 = 4, ς̄3 = 3, � = 100, ξ1 = 2, ξ2 = 0.2,
h = 4, β = 0.95, τ̂ = 0.5. The simulation time is 10s,
and the simulation results are shown in Figs. 12, 13,
14, 16, 15 and 17.

Figures 12, 13 and 14 draw the trajectories of x1, x̂1,
x2, x̂2, x3 and x̂3.

FromFigs. 12, 13 and 14, one can observe that under
the time varying input delay τ(t) = 0.4 + 0.1sin(t)s
and the unmodeled dynamics and disturbance, the pro-
posed fuzzy state observer can effectively estimate the
unmeasurable states and all state variables are bounded.

The trajectories of auxiliary variable μ are depicted
in Fig. 15, which shows that the compensation signal
μ is bounded in finite time.

From the simulation result in Fig. 15, one can con-
clude that the proposed compensation signal is bounded
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Fig. 14 The trajectories of x3 and x̂3 in example 2

Fig. 15 The trajectory of μ in example 2

in finite time, although there are unmodeled dynamics
in the real system.

Figure 16 draws the trajectory of the unmodeled
dynamics z.

From Fig. 16, one can observer that the trajectory of
unmodeled dynamics z is bounded. This means that the
unmodeled dynamics can be effectively suppressed by
introducing dynamic signal mechanism in the design
process of adaptive fuzzy finite time controller.

Figure 17 shows that the control signals u(t−τ) and
u(t) are bounded.

From the simulation results in Figs. 12, 13, 14, 16,
15 and 17, one can conclude that for time varying input
delay, unmodeled dynamic and unmeasurable states,
all signals are bounded by using the proposed adaptive
fuzzy finite time controller.

Fig. 16 The trajectory of unmodeled dynamics z in example 2

Fig. 17 The trajectories of u(t − τ(t)) and u(t) in example 2

Remark 6 We considered the one-link manipulator
withmotor dynamics, disturbances, unmodeleddynam-
ics and unknown time varying input delay. The system
model is a non-strict feedback form and the finite time
control performance includes the time varying input
delay, which will cause great difficulty to design finite
time controller. The proposed compensation mecha-
nism effectively solves the input delay problem, and
the design process does not make the controller design
complicated. The effective control performance is ver-
ified by the simulation results.

Furthermore, in order to demonstrate the effective-
ness of the proposed compensation mechanism to deal
with time input delay, a comparison with the Pade
approximation method employed in [70,71] is carried
out to test the control performance. The simulation
results are shown in Figs. 18, 19 and 20.
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Fig. 18 The trajectories of x1 and x̂1 in example 2 ( Pade approx-
imation method)

Fig. 19 The trajectories of x2 and x̂2 in example 2 ( Pade approx-
imation method)

Fig. 20 The trajectories of x3 and x̂3 in example 2 ( Pade approx-
imation method)

From Figs. 18, 19 and 20, one can observe that the
fuzzy observer cannot effectively estimate the unmea-
surable states, and all state variables of the closed-loop
systems are unstable when time varying input delay
occurs for Pade approximation method. The simula-
tion results show that the control signal is completely
invalid when the input delay occurs. This means that
the Pade approximation method is invalid for long time
varying input delay.

Comparative explanations The proposed method in
this paper gives an effective way for adaptive fuzzy
finite time control of non-strict feedback nonlinear sys-
temswith unmodeled dynamics, unknown time varying
input delay and unmeasurable states. Compared with
the existing results [17,36–43,56–63,70,71], the main
advantages of the proposed scheme can be summarized
in three aspects.

(1) The proposed compensation mechanism can effec-
tively overcome the design difficulty caused by the
unknown time varying input delay. Unlike the Pade
approximation method in [70,71], which is invalid
once the input delay is long, the proposed method
can tackle long unknown time varying input delay.
In addition, the proposed method does not depend
on the system model.

(2) The algebraic loop problem has been overcome and
the complexity of the non-strict feedback system
is reduced for finite time controller design. Spe-
cially, the proposedmethod is also suitable for non-
linear systems with strict-feedback form. Unlike
[36–43], the considered finite time control schemes
are limited to the strict feedback nonlinear systems
or all state variables are measurable, the proposed
method is more general.

(3) Compared with the results in [17,56–63], the
unmodeled dynamics and unknown input delay
problem are both considered in finite time control
schemes, which can improve the robustness of the
closed-loop system in practical applications. Most
of the existing general finite time control schemes
are invalid for this issue. In addition, the compu-
tational burden for finite time controller design is
reduced by using the idea of DSC scheme.

5 Conclusions

In this paper, observer-based adaptive fuzzy finite time
control for non-strict feedback uncertain nonlinear sys-
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tems has been addressed. A novel compensation mech-
anism and dynamical signal function are introduced to
solve the challenges caused by unknown time vary-
ing input delay and unmodeled dynamics, respectively.
A fuzzy state observer is designed to estimate the
unknown state variables based on the approximation
ability of FLS. The non-strict feedback structure is sim-
plifiedbyusing the property of FLS.Moreover, the rela-
tionship between input delay τ(t) and the convergence
time TR will be further studied in future work.
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