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Abstract Parametric derivatives of statistics are highly
desired quantities in prediction, design optimization
anduncertainty quantification. In the presence of chaos,
the rigorous computation of these quantities is certainly
possible, but mathematically complicated and com-
putationally expensive. Based on Ruelle’s formalism,
this paper shows that the sophisticated linear response
algorithm can be dramatically simplified in higher-
dimensional systems featuring statistical homogeneity
in the physical space. We argue that the contribution
of the SRB (Sinai–Ruelle–Bowen) measure gradient,
which is an integral yet the most cumbersome part of
the full algorithm, is negligible if the objective func-
tion is appropriately aligned with unstable manifolds.
This abstract condition could potentially be satisfied
by a vast family of real-world chaotic systems, regard-
less of the physical meaning and mathematical form
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of the objective function and perturbed parameter. We
demonstrate several numerical examples that support
these conclusions and that present the use and perfor-
mance of a simplified linear response algorithm. In the
numerical experiments, we consider physical models
described by differential equations, including Lorenz
96 and Kuramoto–Sivashinsky.
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1 Introduction

Linear response theory (LRT) [12] provides an array
of mathematical methods for analysis of system’s reac-
tion to small perturbations of imposed forces or con-
trol parameters. In particular, the linear response of a
dynamical system should be understood as the deriva-
tive of its output with respect to an input parameter. The
name “linear response” is a direct consequence of the
Taylor series expansion, which indicates that the sys-
tem’s reaction can be approximated by a linear function
involving two terms: the unperturbed term and para-
metric derivative re-scaled by the imposed perturba-
tion. Indeed, the use of Taylor series reveals one fun-
damental aspect of LRT. Namely, based only on infor-
mation about the system in the unperturbed state, its
response can be predicted for any small perturbation.
Consequently, LRT is applicable to systems that vary
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differentiably with respect to its input. Efficient numer-
ical algorithms for approximating the linear response
are fundamental in design optimization, uncertainty
quantification, control engineering and inverse prob-
lems. These LRT-based computational tools are used
in several fields of physics: electromagnetism [18],
plasma physics and fusion [16], statistical physics [26],
turbulent flows [23], climate dynamics [34], and many
more.

In the presence of chaos, the classical formulation
of LRT is modified. The reaction of a chaotic system is
measured in terms of certain statistical quantities, e.g.,
long-time averages. Under the assumption of ergodic-
ity, the statistics do not depend on initial conditions.
Therefore, for a given chaotic model, the long-time
statistics can be manipulated only by varying the input
parameters. A prominent result in the field of LRT is
the work of Ruelle [35,36], who rigorously derived a
closed-formexpression for the linear response of chaos.
The major assumption of Ruelle’s derivation is uni-
form hyperbolicity, which is a mathematical idealiza-
tion of chaotic behavior. We postpone the description
and explanation of this property for the following sec-
tion of the paper. Solid numerical evidence found in
the literature clearly indicates that uniform hyperbol-
icity is a sufficient, but not necessary, condition for the
differentiability of statistics [5,7]. Indeed, these empiri-
cal results are consistent with hyperbolic hypothesis of
Galavotti and Cohen [14]. This hypothesis presumes
that several high-dimensional chaotic systems behave
as though they were uniformly hyperbolic. It does not
mean, however, that all properties of uniform hyperbol-
icity are satisfied by those systems, but several conse-
quences following from this fundamental assumption
could still be valid. This was clearly demonstrated in
[28], where the author argued that the long-time aver-
ages computed for a 3D turbulence model are smooth
despite local non-hyperbolic behavior.

While Ruelle’s theory is regarded as one of the
cornerstones in the field, its original expression for
the linear response is impractical due to the butter-
fly effect, i.e., exponential growth of tangent solutions
in time. The ensemble method proposed in [10] cir-
cumvented this problem by computing ergodic aver-
ages along several truncated trajectories. Despite its
simplicity, that approach suffers from prohibitive com-
putational costs induced by large variances of partial
sensitivities. Shadowing methods [31,47] depart from
the direct evaluation of Ruelle’s expression by approx-

imating the shadowing trajectories [33], which lie in
close proximity to the original orbit for a long period
of time. Methods of this type have successfully been
applied to high-dimensional fluid mechanics systems
[5,28]. However, a recent study [8] demonstrated that
shadowing trajectories may be nonphysical and that
their statistical behavior could be dramatically differ-
ent than that of the reference trajectory. This unwanted
behavior had also been observed in earlier studies, e.g.,
in [5], which demonstrated large errors in shadowing-
based approximations in spite of the apparently smooth
behavior of the statistics. To the best of our knowl-
edge, no rigorous studies that quantify or bound shad-
owing errors due to the problem of nonphysicality are
available. An alternative way of computing the lin-
ear response involves the fluctuation–dissipation the-
orem (FDT) [19], which provides a time-convolution
expression for the parametric derivative of statistics.
FDT-basedmethods, such as the blended algorithm [1],
require some physics-informed assumptions to accu-
rately reconstruct the linear response operator.

Recent algorithmic developments rely on the regu-
larized variant of Ruelle’s expression. Indeed, as origi-
nally proposed byRuelle in [35], one can apply integra-
tion by parts to the original formula in order to elimi-
nate the product of Jacobians whose norm grows expo-
nentially fast. However, since that formula involves
Lebesgue integrals with respect to the Sinai–Ruelle–
Bowen (SRB) measure [49] that is absolutely continu-
ous only onunstablemanifolds, an extra step is required
before partial integration is applied. Namely, the input
perturbation should be decomposed into two terms
arranged in line with unstable and stable manifolds
of the underlying dynamical system [35]. In the case
of flows (continuous-time systems), the center mani-
fold should also be taken into account in the perturba-
tion splitting [37]. Based on this idea of regularization
of Ruelle’s closed-form expression, two conceptually
similar methods for the linear response emerged in the
past two years. Those are the fast linear response algo-
rithm [29] and space-split sensitivity (S3) algorithm
[9,40]. Neither of them introduces engineered approx-
imations except for the ergodic-averaging required for
the evaluation of Lebesgue integrals inherited from the
original formula. They rigorously converge as a typi-
cal Monte Carlo procedure for any uniformly hyper-
bolic system. Methods of this type can be summarized
as follows. Split linear response into two terms (or
three terms if considering a flow), such that one uses
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solutions of a regularized tangent equation (immune
to the butterfly effect), while the second term requires
computing the divergence on unstable manifolds. The
unstable divergence directly follows from the partial
integration on the expansive tangent subspace. One of
the by-products is the SRB density gradient represent-
ing the divergence of SRB measure. This quantity is
obtained by differentiating the measure preservation
law, which effectively requires solving a series of reg-
ularized second-order tangent equations [29,39,41].
Differentiation of SRB measures, either explicit or
implicit, is by far the most complicated and expensive
part of both algorithms.

In this paper, we investigate whether and under what
circumstances the complex numerical procedures for
the linear response could be simplified. In particular,we
attempt to answer the fundamental question about the
significance of the SRBmeasure change. Rich numeri-
cal evidence found in the literate suggests that the com-
putation of the SRB density gradient is not necessary to
accurately approximate the linear response in a number
of popular physical systems. For example, the afore-
mentioned shadowing methods, which in fact regular-
ize the tangent equation and do not compute the curva-
ture of unstablemanifolds, have been proven successful
in 3D turbulencemodels [5,28].Moreover, a recent the-
oretical study in [30] concludes that if both the input
perturbation and objective function follow the multi-
variate normal distribution, the effect of the measure
change is expected to decay proportionally to

√
m/n,

wherem is the number of positive Lyapunov exponents
(LEs), while n denotes the system’s dimension. That
work, however, does not provide any numerical exam-
ples.Here,we show that the contribution of the unstable
divergence could potentially be negligible if the objec-
tive function is specifically aligned with the unstable
manifold. The meaning of alignment in this context
is rigorously explained later in this work. Our numer-
ical examples indicate that it is not uncommon that
the SRB measure change is large and even has infinite
variance, while its contribution to the linear response
might be negligible at the same time. This paradoxmay
have huge implications for approximating sensitivities
in large physical systems. The only obstacle is an addi-
tional requirement for the objective function, which
typically has a concrete physical meaning. Our argu-
ment is based on the fact that a vast family of practica-
ble systems are statistically homogeneous in physical
space. They include popular models governing climate

dynamics [17], turbulence [23], population dynamics
[46], and several other phenomena. For such systems,
we have freedom in representing any spatially aver-
aged objective function, which effectively increases the
probability of its alignment with a tangent subspace.

Our reasoning also relies on the specific orthog-
onal representation of the perturbation splitting pro-
posed and numerically tested in [40]. In particular, we
use orthogonal Lyapunov vectors to represent unsta-
ble manifolds everywhere on the attractor. Although
they provide limited information on the geometry of the
tangent space, there are three major reasons we favor
orthogonal basis vectors over their covariant counter-
parts (CLVs). First, when ordered consistently with the
decreasing set of LEs, both the Lyapunov basis sets
have the same linear span [4]. This cascade property
was used in [40] to stabilize the stable contribution of
theS3algorithm, as it enables us to orthogonally project
out the unstable, unstable-center, or unstable-center-
stable component of a tangent solution in a recursive
manner. We also highlight the fact that S3 does not
need stable directions alone. Second, the SRB mea-
sure change computed in the direction corresponding
to the largest LE tends to be statistically smaller, even
by orders of magnitude, compared to the other orthog-
onal directions. SRB measure slopes computed along
the consecutive orthogonal directions are strongly cor-
related with the Lyapunov spectrum. We numerically
verify this property and show that, when combinedwith
the concept of alignment of the objective function, it
may have a huge impact in controlling the magnitude
of the unstable contribution. Finally, orthogonal Lya-
punov bases are computationally cheaper compared to
CLVs, as they require only a forward tangent solver
with step-by-step QR factorization.

The structure of this paper is the following. In Sect.
2, we thoroughly review the space-split sensitivity (S3)
algorithm for the linear response with an emphasis on
potential problems. Subsequently, inSect. 3,we explain
the concept of alignment of the objective function and
analyze its major implications in the context of the
unstable contribution. A numerical experiment demon-
strating a negligible effect of SRB measure change is
presented. In Sect. 4, we conjecture that the alignment
constraint is not anobstacle for higher-dimensional sys-
tems with statistical homogeneity. Based on our anal-
ysis, we propose a reduced variant of the S3 method
and apply it to approximate the linear response of the
Lorenz 96 and Kuramoto–Sivashinsky models. Sec-
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tion 5 concludes this paper. Appendices A and B pro-
vide further technical details of S3: algorithm mechan-
ics, implementation and cost analysis.

2 Space-split sensitivity (S3) method for chaotic
flows

The purpose of this section is twofold. First, we
review the main results of the linear response the-
ory, i.e., Ruelle’s closed-form expression and its com-
putable realization, known as the space-split sensitiv-
ity. Second, we present an extension of S3 to gen-
eral hyperbolic flows and critically analyze its prop-
erties and major implications in the context of higher-
dimensional systems.

Throughout this paper, we consider a parameterized
n-dimensional ergodic flow,

dx

dt
= f (x; s), x(0) = x0, (1)

with m ≥ 1 positive Lyapunov exponents, where s is a
real-valued scalar parameter. The value of m approxi-
mates the dimension of the unstable (expanding) sub-
space, while particular LE values indicate the rate
of exponential expansion/contraction [3]. Due to the
assumed ergodicity, the statistical behavior of the sys-
tem does not depend on the initial condition x0.

For a given smooth objective function J : M → R,
our ultimate goal is to approximate the parametric
derivative of the long-time average of J , defined as

d〈J 〉
ds

:= d

ds
lim

T→∞
1

T

∫ T

0
J (x(t; s)) dt, (2)

where M denotes the n-dimensional manifold defined
by Eq. 1. We assume J does not depend on s.

2.1 Ruelle’s formalism and S3

Under the assumption of uniform hyperbolicity, Ruelle
derived a closed-formexpression for the linear response.
Before we review the formula itself, we first focus on
the assumption. A chaotic system is uniformly hyper-
bolic if its tangent space can be split into three invariant
subspaces: unstable, stable and neutral. The first one
and second ones are spanned by expanding and con-
tracting directions of the tangent space, and they corre-
spond to positive and negative LEs, respectively. These
two subspaces, respectively, involve all tangent vectors

that exponentially increase and decay in norm along a
trajectory. In this paper, we focus on autonomous flows,
and thus, the tangent space also involves a neutral sub-
space that is parallel to the flow vector f and corre-
sponds to the zero LE. In certain cases, a PDE-related
dynamical system may involve more than one zero
LE. For example, consider the Kuramoto–Sivashinsky
equation with periodic boundary conditions. In this
case, the neutral subspace is geometrically represented
by a two-dimensional manifold (surface) that is tan-
gent to f and spatial derivative of the solution at every
point on the attractor. The key aspect of hyperbolicity is
that the three subspaces are clearly separated from each
other, which means that the smallest angle between
them is far from zero everywhere on the attractor.
Hyperbolic systems are structurally stable and admit
the SRB measure μ [49], which contains the statistical
description of the dynamics.

Assuming the system defined by Eq. 1 is uniformly
hyperbolic, Ruelle’s linear response formula applies
and can be expressed as follows [35,36],

d〈J 〉
ds

=
∞∑
t=0

∫
M
D(J ◦ ϕt ) · χ dμ, (3)

where g ◦ h := g(h), χ = ∂sϕ ◦ ϕ−1, ϕt = ϕ(ϕt−1),
ϕ0(x) = x , while D denotes the gradient operator
(first derivative) in phase space.Thediffeomorphicmap
ϕ : M → M can be interpreted as a time integrator
of Eq. 1. For example, using the second-order explicit
Runge–Kuttamethod (midpoint rule)with step size�t ,
ϕ is related to f through the following relation,

xk+1 = ϕ(xk) = xk + �t f (xk + �t

2
f (xk)). (4)

Since the system is assumed to be ergodic, theLebesgue
integral with respect tomeasureμ can be approximated
as,∫
M
h(x) dμ = lim

T→∞
1

T

∫ T

0
h(x(t)) dt

≈ 1

N

N−1∑
k=0

h(xk)

(5)

for any observable h ∈ L1(μ) and a sufficiently large
sample size N . Thus, the right-hand side (RHS) of
Eq. 3 could potentially be approximated by comput-
ing a sufficiently long trajectory, ergodic-averaging the
integrand per Eq. 5, and truncating the infinite series.
However, note that

D(J ◦ ϕt ) · χ = (DJ )t · (Dϕ)t−1...Dϕ χ. (6)
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(DJ )t denotes the phase-space gradient of J evaluated
t time steps into the future. To facilitate the notation, we
will drop the parentheses, i.e., (DJ )t := DJt . There-
fore, unless χ is orthogonal to the unstable subspaces,
the norm of that product grows exponentially fast
with t ,

‖Dϕt−1 Dϕt−2...Dϕ χ‖ ∼ O(exp(λ1t)) (7)

with λ1 > 0, which means the direct evaluation of the
RHS of Eq. 3 is computationally infeasible. The rate
of exponential growth is determined by the leading LE
denoted by λ1. Indeed, due to the butterfly effect, the
derivative of the composite function J ◦ ϕt is the most
problematic aspect of Ruelle’s original expression.
Moreover, integration by parts is prohibited in this case,
because one would also need to differentiate the SRB
measure μ in the direction of χ . In general, the mea-
sure is absolutely continuous only on the expanding
subspace [49]. Therefore, integration by parts would
be possible only if χ belongs to unstable manifolds
everywhere in M , which is generally not the case.

Motivated by thework of Ruelle [35,36], the authors
of [7,9] proposed a new method, called the space-
split sensitivity (S3), which regularizes Ruelle’s series
for systems with one-dimensional unstable subspaces
(m = 1). Based on its extension to general hyper-
bolic maps in [40], we derive and describe a space-split
approach for chaotic flows with unstable manifolds of
arbitrary dimension (m ≥ 1). Themain idea of S3, pro-
posed in the aforementioned studies, is to decompose
the perturbation vector χ into three terms,

χ = χu + χc + χ s =(
m∑
i=0

ci qi
)

+
(
c0 f

)
+

(
χ −

m∑
i=0

ci qi − c0 f

)
,
(8)

such that χu and χc strictly belong to the unstable and
neutral/center subspaces, respectively. In this splitting,
ci , i = 0, ...,m are some scalars that are differentiable
on the unstable subspace defined by a local orthonor-
mal basisqi , i = 1, ...,m. Fromnowon, the superscript
shall indicate the index of an array’s component. This
notation does not imply exponentiation, unless explic-
itly stated otherwise. There are two major benefits of
the perturbation splitting defined by Eq. 8:

• the unstable part of the linear response, i.e., the
one involving χu , can now be integrated by parts,
because it involves directional derivatives only
along unstable subspaces,

• we can always find ci , i = 0, ...,m through orthog-
onal projection such that the stable part (the one
involving χ s) of the linear response can be approx-
imated by solving a regularized tangent equation
that is bounded in norm.

We begin from exploring the second benefit of the
splitting. Using the chain rule, one can rigorously
show that the linear response defined by Ruelle’s series
equals the ergodic average of DJ ·v, where v is a solu-
tion to the inhomogeneous tangent equation with χ as
the source term. Thus, by replacing χ with χ s in Eq. 3,
we conclude that
∞∑
t=0

∫
M
D(J ◦ ϕt ) · χ s dμ =

∫
M
DJ · v dμ, (9)

where

vk+1 = Dϕk vk

+
(

χk+1 −
m∑
i=0

cik+1 q
i
k+1 − c0k+1 fk+1

)
.
(10)

The subscript notation indicates the time step, i.e.,
f (x(k�t)) := fk , assuming uniform time discretiza-
tion. To solveEq. 10,weneed to project out the unstable
component of v, otherwise its norm will grow expo-
nentially in time at the rate proportional to the largest
LE. Moreover, we should also project out the compo-
nent tangent to the center manifold to eliminate the
increase of sample variances, which we illustrate later
in Sect. 2.3. Therefore, we enforce v to be orthogonal
to the unstable-center subspace by imposing a set of
m + 1 constraints at every point on the manifold. Let
rk+1 =: Dϕk vk + χk+1 and, therefore,

( fk+1 · fk+1) c
0
k+1

= fk+1 ·
(
rk+1 −

m∑
i=1

cik+1 q
i
k+1

)
, (11)

cik+1 = qik+1 ·
(
rk+1 − c0k+1 fk+1

)
,

i = 1, ...,m. (12)

Equation11–12defines a linear systemwithm+1equa-
tions andm+1 unknowns (ci , i = 0, 1, ...,m). The sys-
tem’s matrix involves anm×m identity block I , while
its Schur complement can be expressed as follows:

Sk+1 = I − QT
k+1 fk+1(QT

k+1 fk+1)
T

fk+1 · fk+1
, (13)

where Q is a an n×mmatrix containing an orthonormal
basis of the unstable manifold, qi , i = 1, ...,m. Thus,
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the coefficients ci , i = 1, ...,m, stored in the array c,
are obtained by solving the following reduced system,

Sk+1 ck+1 = QT
k+1

(
rk+1 − fk+1 · rk+1

fk+1 · fk+1
fk+1

)
, (14)

while c0 is computed directly from Eq. 11. We con-
clude that the stable part of the linear response can be
evaluated through the ergodic average of DJ · v (see
Eq. 5), where v satisfies Eq. 10–12.

The next step is the neutral contribution, which
involves the perturbation component that is parallel to
f . Analogously to Eq. 6, we can expand

D(J ◦ ϕt ) · χc = D(J ◦ ϕt ) · (c0 f )

= c0 DJt · (Dϕt−1...Dϕ f ) .
(15)

Applying the Taylor series expansion, we note that

f (ϕ(x)) = f (x) + Df (x) (ϕ(x) − x)

+O((ϕ(x) − x)2), (16)

and, analogously,

ϕ(x) = x + �t D f (x) + O(�t2). (17)

By differentiating Eq. 17 and plugging it to Eq. 16, we
notice that in the limit �t → 0 we retrieve the covari-
ance property, which reads

f (ϕ(x)) = Dϕ(x) f (x). (18)

This implies that the neutral part can be simplified to
∞∑
t=0

∫
M
D(J ◦ ϕt ) · χc dμ =

∞∑
t=0

∫
M
c0DJt · ft dμ

=
∞∑
t=0

∫
M
c0−t DJ · f dμ.

(19)

Equation 19 means that the neutral part of the linear
response equals the infinite series of k-time correla-
tions between c0, which is computed for the stable part,
and DJ · f . Under the assumption of uniform hyper-
bolicity, for any two Hölder-continuous observables J
and h, k-time correlations exponentially converge to
the product of expected values as t → ∞ [11,49], i.e.,

|
∫
M

(J ◦ ϕt ) h dμ −
∫
M

J dμ

∫
M
h dμ| ≤ Cδt (20)

for some C > 0 and δ ∈ (0, 1). In the context of the
linear response theory, at least one of the observables
has zero expectation with respect toμ. Using this prop-
erty, we approximate the neutral part by truncating the
infinite series and computing each Lebesgue integral
through Eq. 5.

The final missing contribution of the total linear
response is the unstable term. Indeed, this is the only
term we can apply integration by parts to, which yields
[40]

∞∑
t=0

∫
M
D(J ◦ ϕt ) · χu dμ

=
∞∑
t=0

m∑
i=0

∫
M
ci∂qi (J ◦ ϕt ) dμ

= −
∞∑
t=0

m∑
i=1

∫
M

(J ◦ ϕt )
(
ci gi + bi,i

)
dμ,

(21)

where

bi, j := ∂q j ci , gi := ∂qi ρ

ρ
, (22)

the operator ∂qi (·) := D(·) · qi denotes the directional
derivative along qi in phase space, while ρ denotes the
density of the SRBmeasureμ conditioned on an unsta-
ble manifold. Several intermediate steps are required
to derive the RHS of Eq. 21. First, the SRB measure
is disintegrated across parameterized unstable mani-
folds. Second, partial integration is applied within each
parameterized subspace. The resulting boundary terms
vanish as proven in [35], which implies that in all inte-
gral transformations of this type, the boundary integrals
can be neglected. The reader is also referred to [41]
for a detailed description of every step of this process
and relevant numerical examples. The major implica-
tion of Eq. 21 is that the composite function J ◦ ϕt is
no longer differentiated, but there are two new quanti-
ties that must be computed instead. A rigorously con-
vergent recursive algorithm for b and g has recently
been proposed in [40]. That algorithm requires solving
a collection of first- and second-order tangent equa-
tions, and was developed for discrete chaotic systems.
In Appendix A, we extend it to hyperbolic flows and
analyze its cost. Notice that if g and b are available,
then, analogously to the neutral part, the unstable term
is expressed in terms of infinite series of k-time corre-
lations.

To summarize, the space-split method regularizes
Ruelle’s original expression by splitting it into three
major parts: stable, neutral and unstable. Each of them
can be approximated through ergodic-averaging of a
single (in stable part) or many (in neutral and unstable
parts) ingredients. Recent rigorous [9] and computa-
tional [40] studies have shown that the rate of con-
vergence of all linear response parts is approximately
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proportional to 1/
√
N , where N denotes the trajec-

tory length. We highlight the fact that these studies
were restricted to hyperbolic systems only. Thus, the
S3method is in fact aMonte Carlo procedure that relies
on recursive formulas in the form of tangent equations
that are executed to find g, b, v and other necessary
quantities.

2.2 Numerical example: Lorenz 63

To test the space-split algorithm (see Algorithm 2), we
shall consider the three-dimensional Lorenz 63 system,

dx

dt
= σ(y − x),

dy

dt
= x(ρ − z) − y,

dz

dt
= xy − βz, (23)

which is one of the simplest chaotic flows. This ODE
system models thermal convection of a fluid cell that is
warmed from the one side and cooled from the oppo-
site side. The original study of this model [24] demon-
strated chaotic behavior at σ = 10, β = 8/3, ρ � 24.
For this choice of parameters, the strange attractor has
a characteristic butterfly-shaped structure. The purpose
of our experiment is to approximate the derivative of
the long-time average of J = J (z) with respect to
the Rayleigh parameter ρ using S3. In this section, ρ

should not be confused with the SRB measure density.
Figure 1 illustrates the behavior of the statistics of two
different objective functions, as well as the three Lya-
punov exponents for ρ ∈ [20, 40]. We observe that λ1
becomes positive for ρ � 24, which is consistent with
the original study. The presence of a zero LE indicates
there exists a tangent subspace that is parallel to the
flow, which is typical for autonomous chaos. Note that,
in the chaotic regime, both long-time averages seem to
be differentiable in the considered parametric space.

To integrate Eq. 23 in time, we used the second-
order explicit Runge–Kutta with step size�t = 0.005.
As described in Appendix A, the space-split algorithm
requires a few evaluations of first- and second-order
differentiation operators of ϕ every time step. For this
particular time integrator, the computation of D2ϕ(·, ·)
involves three evaluations of the Hessian of f , per our
derivations in Appendix B. Fortunately, in the case of
the Lorenz 63 system, D2 f (·, ·) is constant, which sig-
nificantly reduces the cost.

The S3 algorithm relies on several recursive formu-
las in the form of tangent equations. Earlier studies

Fig. 1 Long-time averages of two different objective functions
(upper) and Lyapunov exponents (lower) versus the Rayleigh
parameter ρ. Ergodic averages have been taken over N�t =
50, 000, 000 and N�t = 5, 000 time units, respectively

[9,40] proved both analytically and numerically that
these recursions converge exponentially fast in dis-
crete hyperbolic systems. We numerically investigate
whether these results still apply to the Lorenz 63 flow.
The upper plot of Fig. 2 illustrates a convergence test
for three different quantities: SRB density gradient g,
tangent solution v and its directional derivative (along
q) w. These are three major ingredients that contribute
to the total linear response. Along a single trajectory,
we impose twodifferent initial conditions forv,w anda
(note g = −q ·a) and compute the norm/absolute value
of the two solutions. The semi-logarithmic plot clearly
indicates that all the norms decrease exponentially in
time with a short transition at the beginning of simula-
tion. To obtain a machine-precision approximation of
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Fig. 2 Upper: Relation of the norm/absolute value of the dif-
ference between quantities obtained along two different random
orbits, labelled as 1 and 2, and time-averaging window k�t .
Lower: Relative error of the linear response approximation ver-
sus time-averaging window, computed for J = z at ρ = 28. 200
independent simulations were run at a logarithmically uniform
grid of N�t . The dashed line represents a function C/

√
N�t ,

C > 0

these quantities, we need only 50 time units. A simi-
lar behavior has been observed in the case of discrete
systems [40]. We use this result to set the truncation
parameter to T�t = 100 in our simulations to guar-
antee all ergodic-averaged quantities are very close to
their true values. Another property of the S3 algorithm
is the convergence rate of its final output, 〈J 〉/dρ, with
respect to the time-averaging window N�t . Indeed, a
truncation of the trajectory by choosing a finite N is
the only non-negligible source of error of the entire
numerical procedure. The lower plot of Fig. 2 shows
the decay of the relative error of the linear response

Fig. 3 Output of Algorithm 2 generated for J = z (upper) and
J = exp(x/4)/10000 (lower) at 144 values of ρ distributed uni-
formly. Each simulation was run for N�t = 1, 000, 000 time
units. The reference solution (dashed curve) was obtained using
central finite differences and data shown in Fig. 1. Before dif-
ferentiation, we interpolated the data using first- and sixth-order
polynomial fits, respectively

approximation, which is computed with respect to the
finite difference approximation of the slope of statis-
tics generated in Fig. 1. We observe that the error trend
confirms theoretical predictions, which means that S3
behaves as a typical Monte Carlo simulation.

In our simulations, we truncate the infinite series by
setting K�t = 50, where K represents the number of
series terms contributing to the numerical approxima-
tion. The optimal value of K�t should be relatively
small, given the exponential decay of correlations. In
[40], the reader will find a more detailed study about
the impact of K on the error. Based on the convergence
study and our discussion above, we run Algorithm 2
for Lorenz 63 (n = 3, m = 1) to compute paramet-
ric derivatives of the long-time averages illustrated in
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Fig. 4 Discrete values of the stable integrand DJ · v computed
using the S3 version described in Sect. 2.1 (red) and its “discrete”
counterpart from [40] (blue). This simulation was performed for
Lorenz 63 at ρ = 28. The solid lines represent the standard devi-
ations of DJ · v collected from the beginning of the simulation
until kth step. The dashed line represents a linear function. (Color
figure online)

Fig. 1 at ρ ∈ [25, 40]. Figure 3 shows the behavior
of the obtained linear response approximations. For a
wide range of Rayleigh constant values, S3 provides
accurate estimations of the sensitivities. Indeed, for
ρ ∈ [25, 32.3]weobserve good agreement between the
total sensitivity, denoted by “sum”, and corresponding
reference values. At ρ ≈ 32.3, the S3 approximation
diverges due to the collapse of the unstable part. Note
that, in both cases, the stable contribution is small com-
pared to the two other terms. In the following section,
we further explore the encountered problem and sum-
marize critical aspects of the presented algorithm.

2.3 Critical view on S3

In the context of approximating linear response of
higher-dimensional chaos, we shall investigate poten-
tial problems of the S3 algorithm. In particular, we
focus on dynamical properties of chaotic flows that
might lead to numerical difficulties. Some algorithmic
challenges, including the computational cost, are also
discussed.

2.3.1 Special treatment of the neutral component

In Sect. 2.1, we derived a numerical scheme based on
the three-term linear splitting in Eq. 8. Indeed, there is

a subtle difference between this splitting and the one
proposed for discrete systems. In the former, the neu-
tral term is treated separately thanks to which the stable
term includes only tangent solutions that are parallel to
the unstable-center subspace. In Fig. 4, we plot discrete
values of the stable integrand DJ ·v obtained forLorenz
63 at ρ = 28 using both versions of S3. We notice that
if the neutral direction is not projected out from the
tangent solution, then the standard deviation of DJ · v
grows linearly with time. The extra projection against
f guarantees the standard deviation is approximately
constant.

While the convergence of the Monte Carlo proce-
dure is now guaranteed, the extra projection requires
assembling, inverting, and differentiating the Schur
complement. As described in Appendix A, that minor
conceptual adjustment requires major modifications of
the “discrete” version of S3.

2.3.2 Problem with hyperbolicity and SRB measure
gradient

Recall that the fundamental assumption of Ruelle’s for-
malism is hyperbolicity. Any form of linearly separated
perturbation splitting that enables partial integration
and that guarantees boundedness of the stable part, e.g.,
the one presented in this paper or the shadowing-based
variant proposed in [29], is sufficient to construct stable
numerical schemes. However, the dynamical structure
of many chaotic flows, including the simple Lorenz 63
system, does not satisfy all basic properties of hyper-
bolicity.

In Fig. 5, we illustrate the distribution of tangency
measures 0 ≤ α ≤ 1 between two pairs of subspaces:
(1) unstable and center, (2) unstable-center and stable,
along a random trajectory of Lorenz 63 at different val-
ues of the Rayleigh parameter. To generate these plots,
we used the fast algorithm for hyperbolicity verifica-
tion proposed byKuptsov in [20]. The twomeasureswe
compute, respectively, represent d1, and 2 d2, which are
rigorously defined by Eq. 7 in that work. The parame-
ter α is closely related to the minimum angle between
two subspaces normalized by π/2 as pointed out and
tested in [44]. If the statistical distribution of α is not
strictly separated from the origin, i.e., the correspond-
ing PDF has nonzero values at α ≈ 0, then several
tangencies of a given subspace pair are highly likely
to occur. We observe that, regardless of the choice of
ρ, there exist tangencies between the unstable and cen-
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Fig. 5 Distribution of the normalized measure α between unsta-
ble/center subspaces (blue PDF) and unstable-center/stable sub-
spaces (orange PDF). They have been computed along a ran-
dom trajectory of the Lorenz 63 system for 5000 time units. To
increase the accuracy of PDFs, we used the fourth-order Runge–
Kutta time integrator with �t = 0.005

ter subspaces. Several numerical examples presented in
[20] imply that the absence of unstable-center separa-
tion is a common property of several physical systems.
However, for some ρ, the Lorenz 63 system admits
splitting of the tangent space into unstable-center and
stable subspaces. This behavior has been known in the
literature [27] under the name of singular hyperbolic-
ity. Note that the Lorenz 63 oscillator loses this prop-
erty at ρ between 30 and 35, which coincides with the
collapse of the S3 algorithm. In particular, the unsta-
ble term blows up within this parameter regime, which
indicates that μ becomes rough along expansive direc-
tions. From the study on differentiability of statistics of
the Lorenz 63 system [43], we learn that the SRB den-
sity gradient g is Lebesgue integrable, i.e., g ∈ L1(μ),
only if ρ < 32. If ρ is close to the value of 28, then
g is even square-integrable. The authors of the same
paper argue that the integrability of g is both necessary
and sufficient condition for differentiability of statis-
tics. We conclude that even if Eq. 3 holds, one still
needs to handle the by-products of partial integration,
which might pose a serious challenge for Monte Carlo
algorithms requiring pointwise values of derivatives of
μ and other observables.

The smoothness of the SRB measure is not guaran-
teed in non-hyperbolic systems,whichmeans that some
components of gmight not exist at all at some points on
the attractor. Indeed, numerical experiments presented
in [20,44] indicate that some higher-dimensional phys-
ical systems, e.g., the Ginzburg–Landau equation, are
clearly non-hyperbolic. Similar numerical results were
provided for a 3D turbulent flow in [28]. Since g is an
integral part of the S3 procedure and its value is com-
puted everywhere along a random trajectory, we expect
that the unstable contribution might blow up in the case
of such systems.

2.3.3 Implementation and cost

We shall now comment on practical aspects of the
full linear response algorithm, which is described in
Appendix A. In terms of the implementation, both
the stable and neutral parts do not require significant
changes of the existing tangent/adjoint solvers. The
former is obtained by solving a collection of first-
order tangent equations. They are stabilized by step-
by-step elimination of unstable-center tangent compo-
nents through QR factorization that is needed to find
a new basis of the subspace (matrix Q) and the Jaco-
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bian of coordinate transformation (matrix R). The R
factor can also be used to approximate m largest LEs,
which is indeed a very useful by-product of the pro-
posed algorithm [4]. The unstable contribution requires
the implementationof the second-order derivative oper-
ator, which is necessary for g and b. While this is gen-
erally not a problem for simple systems, the need for a
second-order tangent solver might require extra tools,
such as automatic differentiation packages, for compli-
cated higher-dimensional models.

It turns out that the presence of the Hessian is not the
major burden of the full S3 algorithm.The typical struc-
ture of large physical systems is sparse due to the local-
ized stencils of the most popular spatial discretization
schemes. Therefore, the computational cost of matrix-
vector or tensor-vector products is typically linear in n.
Two other factors that determine the total cost are the
trajectory length N and the number of positive LEs m.
The former defines the accuracy of ergodic-averaging
and indicates the number of primal and tangent solu-
tion updates and thus contributes linearly to the total
cost. Based on our estimate in Appendix A, the final
cost is proportional to the third power of m. The most
expensive chunk of the algorithm is associated with the
SRB density gradient g, which requires solvingO(m2)

second-order tangent equations that is followed by a
stabilizing normalization procedure consuming extra
O(n m3) flops. This might pose a serious challenge for
systems with hundreds of unstable modes, such as 3D
turbulence models.

2.3.4 Future prospects

The non-approximative methods for computing linear
response of chaotic systems, such as the S3 algorithm,
provide a rich collection of numerical tools for analysis
of the underlying dynamics. Its major drawback is that
the derivation of its components relies on the assump-
tion of hyperbolicity and smooth SRB measure. These
properties might be violated leading to the collapse
of some parts of the full S3 algorithm. Nevertheless,
we acknowledge the growing popularity and interest in
hyperbolic systems among physicists and engineers. In
a comprehensive review book of Kuznetsov [22], the
author justifies this trend and provides several exam-
ples of hyperbolic attractors describing physical phe-
nomena.

Despite the problems with hyperbolicity and large
costs, can we still use some parts of the S3 algorithm

to find accurate estimates of linear response for higher-
dimensional systems? As argued in [43], the collapse
of the algorithm for g does not necessarilymean the lin-
ear response does not exist. Indeed, several aforemen-
tioned studies involving sensitivity analysis of large
systems numerically demonstrate that their statistics
are indeed differentiable. Figure 3 indicates that both
the neutral and stable contributions ofLorenz63 remain
“stable” over the entire parametric regime. Removal of
the unstable contribution would dramatically reduce
the cost of S3, as the expensive and potentially incom-
putable g would no longer be needed. In the case of
Lorenz 63, however, the unstable contribution accounts
for approximately 40% of the total sensitivity. There-
fore, omission of the unstable contribution of this sys-
tem would give rise to significant errors. This obser-
vation leads to a fundamental question. Are there sys-
tems whose unstable contribution is small and can be
neglected? If so, are they relevant for practitioners?We
try to answer those questions in the remainder of this
paper.

3 Unstable contribution: Can we neglect that term?

As we pointed out in Sect. 2.3, the computation of the
unstable part of the linear response might be cumber-
some due to several reasons. The purpose of this sec-
tion is to provoke a discussion about the significance of
that term. In particular, we shall present some evidence,
indicating that the unstable termcould benegligible and
thus completely neglected if certain conditions aremet.

Let us consider the leading term of Eq. 21, i.e., the
one corresponding to t = 0,

U :=
∫
M

J d dμ, d := dcg + db :=
m∑
i=1

ci gi + bi,i .

(24)

Assuming the exponential decay of correlations holds,
it is clear that the whole infinite series is small if U
is small. Applying the Cauchy–Schwarz and triangle
inequalities, we upper bound the magnitude of U ,

|U | ≤ ‖J‖2 ‖d‖2 ≤ ‖J‖2
(‖dcg‖2 + ‖db‖2

)
, (25)

where ‖ · ‖2 denotes the L2 norm with respect to μ

defined as

‖h‖2 :=
√∫

M
h2 dμ (26)
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for any scalar function h ∈ L2(μ). According to
Inequality 25, we see that a small L2 norm of the
unstable divergence d implies that the entire unsta-
ble contribution is negligible as well. Recall that the
vector c represents projections of the tangent solution
v onto the unstable subspace, which depends on both
χ , i.e., the parametric perturbation of the system, and
geometry of the unstable manifold. The final term con-
tributing to ‖d‖2 is the SRB density gradient, which
represents measure change in m orthogonal directions
of the unstable subspace. These directions, stored in
the Q matrix, indicate how the unperturbed trajectory
deforms in time. The rate of geometric expansion in the
i-th direction is reflected by the i-th Lyapunov expo-
nent λi , whose value can be expressed in terms of the
following ergodic average [13],

λi =
∫
M
log |qi (ϕ(x)) · Dϕ(x) qi (x)| dμ. (27)

We also acknowledge that the computation of Q is an
integral part of the S3 procedure (see Appendix A). In
that algorithm, the columns of Q are sorted from the
most expansive (i = 1) to the least expansive (i = m)
direction. Equation 27 implies that a bunch of infinites-
imally close points will scatter very fast along the qi

direction ifλi is large, resulting in a small localmeasure
change. In other words, larger expansion rates lead to
the dilution of measure, which consequently decreases
the measure gradient. Therefore, assuming the positive
LEs are separated from each other, we conjecture that
the measure change along q1 and qm is expected to be
the smallest and largest, respectively. In particular, if
λ1 > λ2... > λm , then

‖g1‖2 < ‖g2‖2 < ... < ‖gm‖2.

We verify this presumption later in a numerical exper-
iment. Its major consequence is that we can poten-
tially find two different directions on unstable mani-
folds along which the rates of change of μ are signifi-
cantly different.

As a side note, we bring up the fact that the two
unstable contributions, associated with dcg and db, are
the same in magnitude if J ≡ 1. Indeed, using the defi-
nition of b, we observe that

∑m
i=1 b

i,i := ∇ξ · c, where
∇ξ denotes the Nabla operator (gradient) on unstable
subspace. Thus, we can use Green’s first identity to

rewrite the latter term to∫
M

J db dμ =
∫
M

J ∇ξ · c dμ

= −
∫
M
c · ∇ξ (ρ J )

ρ
dμ

J≡1= −
∫

c · g dμ,

(28)

where ρ denotes the measure density conditioned on a
local unstable manifold. It is now evident that the two
ingredients of U , dcg and db, involve both the array
of v–Q projections and a vector representing a local
relative measure change. The only difference between
them is that, in the latter term, the measure change
is weighted by the value of J . If J is not strongly
oscillatory nor has large gradients in phase space, then
∇ξ (ρ J )/ρ behaves similarly to its non-weighted coun-
terpart, g.

This analysis indicates that there are two possible
ways of reducing the norm of U , either by manipulat-
ing c or g. According to the definition of c, reducing
its norm would restrict our analysis only to a certain
parameter. Note that c directly depends on χ , which
represents the parametric perturbation of the trajectory.
On the other hand, g contains information on the statis-
tics of the unperturbed system. Therefore, neutraliza-
tion of the effect of g might allow us to dramatically
decrease |U |, regardless of the choice of a parameter
with respect to which the linear response is computed.
In the remainder of this section, the concept of “neu-
tralization” will be explained in more detail.

Let us now consider a well-behaved objective func-
tion J : M → R, where M is an orientable compact
manifold. Let the tangent bundle of M be expansive
in all possible directions, which implies that all LEs
are positive. Without loss of generality, we assume the
volume integral of J over M is zero. Notice we can
always add a constant number to J to ensure the zero
mean condition, as the constant shift does not affect the
linear response. Thus, J can be expressed in terms of
the divergence of a vector field Z , i.e.,

J = ∇ξ · Z . (29)

After plugging Eq. 29 to the expression for U , we
can apply Green’s first identity analogously to Eq. 28,
which yields

U = −
∫
M
Z · ∇ξ (ρ d)

ρ
dμ. (30)

Note that Eq. 30 contains all combinations of mixed
second derivatives of the SRB measure. To minimize
the effect of the measure change, we want to eliminate
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possibly as many components of g as possible, espe-
cially those corresponding to the least expansive direc-
tions. In an ideal scenario,we alsowant to neutralize the
effect of those components of g that remain. This could
be achieved by choosing a J that is aligned with q1,
whichmeans that the statistics of∇ξ ·Z = ∑m

i=1 ∂qi Z
i

is dominated by its first term (i = 1), i.e.,

‖∂q1 Z1‖2 � ‖∂qi Z i‖2, i = 2, ...,m.

In this special case, we could approximate U by keep-
ing only the first term of∇·Z . For the truncated expres-
sion, we apply integration by parts, which yields

U ≈ U 1 : =
∫
M

∂q1 Z
1 d dμ

= −
∫
M
Z1

(
d g1 + ∂q1d

)
dμ. (31)

The first benefit of the alignment is that we automat-
ically eliminate second differentiation with respect to
the directions indicated by q2, ..., qm that correspond
to the largest slopes ofμ. Therefore, the leading term of
the unstable contribution is upperbounded as follows,

|U 1| ≤ ‖Z1‖2
(
‖d g1‖2 + ‖∂q1d‖2

)
. (32)

The first term of the new inequality is proportional to
‖d g1‖2. If ‖g1‖∞ � 1, which is true if the measure
is almost constant along q1, then ‖d g1‖2 � ‖d‖2.
This scenario is very likely in systems with a broad
Lyapunov spectrum. In the second term of Ineq. 32, d
is differentiated in the most expansive direction q1. It
means that all components of the SRB density gradient
weighted by c are differentiated once more. This time,
however, we differentiate in the direction of themildest
descent/ascent ofμ. One could visualize this process by
considering the lateral boundary of a cylindrical solid.
In this case, the tangent line computed along the solid’s
height is always parallel to the solid and has zero slope.
In any other direction, the slope is larger than zero.
Differentiation of the nonzero slopes along the solid’s
height effectively kills them all.We can apply this anal-
ogy to our case, in which we differentiate once more
in the direction of the smallest slope. Therefore, the
effect of the largest components of g corresponding to
the least expansive directions could be neutralized, in
which case ‖∂q1d‖2 is expected to be negligible.

Through the above analysis, we conjecture that if
J is aligned with the most expansive direction of the
unstable manifold, as defined above, and the positive
part of the Lyapunov spectrum is not clustered around

a certain value, it is possible to significantly reduce the
magnitude of the unstable contribution. While the sec-
ond condition is satisfied bymany physical systems, the
specific requirement for the objective functionmight be
very restrictive. We now present a numerical example
illustrating our argument.

In our investigation, we will focus on the following
n-dimensional chaotic map ϕ : [0, 2π ]n → [0, 2π ]n
defined as

xik+1 =2 xik + s sin(xi+1
k − xik)

+ t sin(xik) mod 2π, i = 1, .., n,

(33)

where n ∈ Z
+, s ∈ R, t ∈ R and xn+1 = x1. This is an

extension of the one-dimensional sawtooth map [42],
and therefore, we shall refer to ϕ defined by Eq. 33 as
the coupled sawtooth map. The first term on the RHS
introduces constant expansion that does not involve
any parameters. Thus, if we set the coupling param-
eter to zero (s = 0), we obtain n independent maps
with the same statistical behavior. If both the coupling
and distorting terms are small, i.e., respectively, s and
t are small, then all Lyapunov exponents are clustered
around the value of log 2, which means that the attrac-
tor is expansive in all directions. By increasing |s|,
we strengthen the coupling between the neighboring
degrees of freedom. For n = 2, the phase space gradi-
ent of the coupling term is parallel to the diagonal of
the square manifold, [0, 2π ]2. Thus, the larger |s|, the
stronger variations of the measure are expected along
[1,−1]T . In the case of a weak distortion, i.e., when
t ≈ 0, the SRB measure is expected to be approxi-
mately constant in the direction parallel to [1, 1]T .

To verify these suppositions, we directly compute
g for n = 2 at three different parameter sets: (1)
[s, t] = [0.05, 0] (weak coupling, no distortion), (2)
[s, t] = [−0.75, 0] (strong coupling, no distortion),
(3) [s, t] = [−0.75, 0.5] (strong coupling combined
with distortion). For this purpose, we use a part of
the full S3 algorithm to compute g along a trajec-
tory (Lines 12–20 of Algorithm 2 in Appendix A) and
plot both |g1| and |g2| on [0, 2π ]2. These results are
illustrated in Fig. 6. In all three cases, the first com-
ponent of g is statistically smaller in magnitude and
features milder variations compared to the second one.
They also confirm that the larger component of the
relative measure change is approximately parallel to
[1,−1]T . Even in the presence of the distortion term
(Case 3), the majority of white arrows, which indicate
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Fig. 6 Magnitude of both components of the SRB density gra-
dient g of the two-dimensional coupled sawtooth map with two
positive LEs. White arrows, respectively, represent q1 and q2,

which indicate local directions of differentiation. They are plot-
ted every 5000 time steps. For each case, a trajectory of length
N = 3 · 105 was generated
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local orthonormal directions q1 and q2, tend to be ori-
ented diagonal-wise. Notice that the larger coupling |s|,
the larger rate of measure change in the least expan-
sive direction represented by q2. If there is no distor-
tion and coupling is significant (Case 2), then the first
component of g is approximately zero everywhere in
phase space. The largestmeasure gradients appear to be
located around the [1, 1]T diagonal. Furthermore, if the
coupling weakens, then the rates of expansion along q1

and q2 become similar. In Case 1, the distribution of g1

has geometric features similar to its counterpart. This is
consistentwith our analysis, suggesting that both distri-
butions are expected to have the same limits as |s| → 0.

In Fig. 7, we plot the L2 norms of selected compo-
nents of g and corresponding Lyapunov exponents at
different values of s and t . They were computed for the
2D (n = 2), 4D (n = 4), and 8D (n = 8) variants of the
coupled sawtooth. In agreement with our conjecture,
the norms of all components of g are equal and very
small in the absence of the coupling term, i.e., when s =
0. We observe the norm ratio between g1 and gm = gn

rapidly decreases as the coupling strengthens. This is
also true between g1 and other components correspond-
ing to less expansive directions, as clearly indicated by
the 4D and 8D examples. Figure 7 confirms the conjec-
ture that the separation of Lyapunov exponents implies
monotonic increase of the measure gradient norms as
sorted from the most to the least expansive directions.
Our results also indicate that if LEs are clustered around
a single value, then the norm degradation is insignif-
icant. Note that the converse is not necessarily true.
Namely, there might be significant differences between
particular components of g even if LEs are clustered,
which is true for the 2D sawtooth map at s ∈ [−1, 0].
This usually happens when at least one of the compo-
nents of g is no longer integrable with respect toμ [43].
We also acknowledge the fact that square-integrability
of g with respect to μ is not required for the existence
of the linear response, as we discussed in Sect. 2.3.

In light of the specific behavior of the SRB density
gradient and our main conjecture presented above, we
shall numerically investigate the impact of the objec-
tive function J on the statistics and their change with
respect to parameters. The purpose of this experiment
is to visualize long-time averages computed at differ-
ent parameter values for the 2D coupled sawtooth map.
A fundamental question we need to raise concerns the
alignment requirement. How can we say that a chosen
J is in fact aligned with q1? Indeed, the two compo-

nents of the corresponding vector Z generally depend
on both phase space coordinates. In the 2D setting, it is
relatively straightforward to find a vector field Z that
satisfies that requirement. If q1 is approximately par-
allel to [1, 1]T and both components of Z depend on
x1 + x2 only, i.e., Z = Z(x1 + x2), the correspond-
ing J is automatically aligned with q1. However, if
Z1 = Z1(x1 + x2) and Z2 = Z2(x1 − x2), then their
respective L2 norms are expected to be similar. Finally,
if Z = Z(x1 − x2), then Z2 becomes dominant giving
more weight to the second component of g, which is in
fact the least desired scenario.

Thus, we shall consider three wave-like objective
functions that depend on x1−x2, x1, and x1+x2. These
waves have zero gradients in the phase space directions
parallel to [1, 1]T , [0, 1]T and [1,−1]T . They, respec-
tively, represent functions that are weakly, moderately,
and strongly aligned with the most expansive direction
of the 2D hyperchaotic map. The statistics correspond-
ing to these objective functions evaluated at a fine para-
metric grid are plotted in Fig. 8. We observe that the
variation of statistics of J = J (x1−x2) is quite large in
the regions that coincide with the parametric regime of
a large measure change. Within this parametric sub-
set, the value of the second LE evidently decreases
and approaches the value of zero. Indeed, the largest
sensitivity of the system is observed as s increases
from s ≈ 0.35 to s ≈ 0.5 for all t ∈ [−0.5, 0.5].
Thus, for this parametric regime, the maximum value
of |d〈J 〉/ds| isO(1). In themoderate case, variations of
〈J 〉 are significantly smaller compared to the previous
example.However,we still observe non-negligible sen-
sitivities of order O(10−1) if s < −0.75 and |t | > 0.
The third plot of Fig. 8 shows the statistics of a function
that is aligned with the most expansive direction, i.e.,
it depends on x1 + x2. The computed long-time aver-
ages nowoscillate between twovalues that areO(10−3)

apart, across the entire parametric space. These oscilla-
tions are distributed uniformly, even around the regions
of large measure gradients and distortions. In this case,
〈J 〉 is approximately independent of both parameters,
which implies negligible linear response.

The major conclusion that follows from the above
analysis and numerical examples is that the unstable
part of the linear response might be negligible for a
particular class of objective functions J . This is true
for any system’s parameter with respect to which the
sensitivity is computed. We observed that a scattered
distribution of the positive part of theLE spectrum leads
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Fig. 7 L2 normof the SRBdensity gradient andLyapunov expo-
nents of the 2D (n = 2; top row), 4D (n = 4; middle row), and
8D (n = 8; bottom row) variant of the coupled sawtooth map.

All quantities were computed on a uniform grid of 100 values
of the coupling parameter s. For each parameter, a trajectory of
length N = 3 · 104 was generated
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Fig. 8 Long-time averages of the wave-like objective function
J = exp(sin(z)) sin(z), where z = x1 − x2 (upper plot), z = x1

(middle plot) and z = x1 + x2 (lower plot). The time averages
were computed for a uniform parametric grid consisting of 225
and 100 points along s and t , respectively. For each set of parame-
ters, a trajectory of length N = 5·106 was generated. The dashed
lines represent isolines corresponding to two different values of
the second (i.e., smaller) LE: 0.5 (dark blue) and 0 (violet)

to the norm increase of consecutive components of the
SRB measure gradient, represented by g. This usually
causes significant variations of the statistics in the para-
metric space and, simultaneously, enables finding the
optimal alignment of J . In this section, we demon-
strated that the elimination/neutralization of the largest
components of the SRB measure gradient might dra-
matically reduce the unstable contribution. This can be
achieved by choosing a J that is aligned with the most
expansive direction, which is reflected by the partial
integration in Eq. 31. In high-dimensional systems, we
expect substantial reductions of the unstable contribu-
tion as long as J is aligned with any subspace spanned
by the most expansive directions. Note also that our
argument applies only to systems with at least two pos-
itive LEs. If m = 1, there is only one expansive direc-
tion, which means there are no degrees of freedom for
choosing an appropriate J .

How can these results and analysis be used in the
context of practicable high-dimensional systems? In
a standard engineering design process, the quantity of
interest is a well-defined function with a concrete phys-
ical meaning, e.g., temperature, kinetic energy, drag
force, that is generally not aligned with some abstract
subspace of the chaotic attractor. In the following sec-
tion, we argue that the specific condition imposed on J
is not an obstacle for a vast family of dynamical systems
encountered in many fields such as climate science and
turbulence theory. We show that the stable part alone
can approximate the total linear response sufficiently
well.

4 Sensitivity analysis of higher-dimensional
flows with statistical homogeneity

We presented an argument supporting the concept of
small unstable contributions. This promising obser-
vation may lead to a significant simplification of the
S3 algorithm for the linear response. As described in
Sect. 3, the major requirement for the leading unstable
termU to be small is a concrete alignment of the objec-
tive function J . In an ideal setting, the slope (variation)
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of J in the least expansive directions should be rela-
tively low compared to the most expansive one repre-
sented by q1. This requirement seems to be very restric-
tive given complicated dynamical behavior of general
high-dimensional chaos. In the simple example intro-
duced in Sect. 3, the most expansive direction was pre-
dictable, thanks to which one could easily choose a
suitable J . In this section, we will focus on a common
feature of a vast group of spatially extended chaotic
systems: statistical homogeneity in space. Relying on
this property, we argue that the system’s dimension
n increases the probability of the desired alignment,
regardless of the physical meaning and form of J .

Statistical homogeneity in thephysical space implies
that the long-time behavior of all system coordinates is
approximately the same. For such systems, the objec-
tive function is usually defined in terms of the spatial
average of a physical quantity. For 1D-in-space contin-
uous systems bounded by a ∈ R and b ∈ R, b > a ,
for example, J is usually expressed as follows,

J = 1

b − a

∫ b

a
J̃ (x) dx ≈ 1

n

n∑
i=1

J̃ (xi )

:= 1

n

n∑
i=1

J̃ i (34)

where J̃ : R → R is a function with a concrete phys-
ical meaning. In the case of the Navier–Stokes model,
J̃ is linear if the velocity is the quantity of interest. For
energy-like quantities, such as the kinetic energy, J̃
could be a quadratic function. Note that if the property
of statistical homogeneity holds, then

〈J 〉 = 〈 J̃ 1〉 = 〈 J̃ 2〉 = ... = 〈 J̃ n〉,
where 〈·〉 denotes the long-time average. This implies
that for any time-dependent weight vector w(t) ∈ W,
where

W =
{
w ∈ R

n |
n∑

i=1

wi (t) = 1 ∀t ≥ 0

}
,

the following is true

〈Jw〉 := 〈
n∑

i=1

wi J̃ i 〉 =
n∑

i=1

〈wi J̃ i 〉

indep.= 〈 J̃ 1〉〈
n∑

i=1

wi 〉 = 〈J 〉.
(35)

Equation 35 assumes J̃ i and its corresponding weight
are statistically independent. Therefore, the original

objective function J can be replaced by any member
from the class of spatially weighted functions without
affecting the long-time behavior. This critical observa-
tion implies that for any smooth J , the feasible space of
Jw increases with the system’s dimension n. It means
that for a large n, theremight be a lot of candidateswell-
aligned with q1. Note that w should primarily depend
on q1, i.e., an inherent topological property of the tan-
gent space, which justifies the assumption of statistical
independence of w and a single phase space coordi-
nate and, consequently, independence of J̃ i and w in
the limit n → ∞.

We highlight yet another common property of larger
physical systems. As reported by several publications
(see [32] and references therein), one can distinguish
spatially localized structures of the expansive part of
the covariant Lyapunov basis. For example, in a 3D
turbulent flow past a cylinder studied in [28], the most
expansive directions tend to be localized in the areas
of primary instability. These include the boundary lay-
ers and near-wake regions. In far-wake regions and in
the free steam, the most expansive (leading) covariant
Lyapunov vector (CLV) was reported to be inactive,
i.e., approximately zero.Moving away from the regions
of primary instability, less expansive and contracting
CLVs tend to be dominant. However, as pointed out in
[32], in homogeneous systems with periodic boundary
conditions, the clustered activity regions of the leading
CLV may move across the entire physical domain. In
their analysis of Rayleigh–Bénard convection [48], the
authors notice that, for the most expansive CLVs, the
energy spectral density is concentrated around a spe-
cificwave number, which turns out to be approximately
the same as the one of the primal solution. The same
work demonstrates that the energy spectrum density
gradually becomes uniformas theCLV index increases.
Based on the rich numerical evidence, we expect that
any time instance q1 is expected to involve local activ-
ity patterns that are restricted to a sub-region or wobble
around the entire domain. Recall that q1 and the lead-
ing CLV are the same up to a multiplicative prefactor.
This is no longer true for qi , i = 2, ..., n, due to the
orthonormalization procedure.

Given these specificproperties of higher-dimensional
chaos, the problem of alignment of J and q1 could be
easily circumvented. Notice that we have freedom in
choosing time-dependent weights, which can poten-
tially favor only those coordinates that correspond to
the regions of “activity” of q1. As these “activity” clus-
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ters move around in time, the corresponding weights
can be adjusted accordingly keeping the remaining
components of w close to zero. If J̃ i = xi , then the
optimal choice of weights is strictly determined by
the components of q1. For higher-order polynomial
objective functions, the relative values of state com-
ponents would also affect the corresponding weights.
Their individual contributions, however, are negligi-
ble if n is large. A high density of spatial coordinates
facilitates search of the optimal set of weights favor-
ing the active components of J in the right proportion,
regardless of the form of J̃ i . For a dynamical system
with arbitrary statistical behavior and complex tangent
topology, it is generally difficult to analytically estimate
how large n should be to ensure the satisfactory align-
ment of Jw leading to the neutralization of the unstable
term. Therefore, in this section, we resort to numeri-
cal studies of systems with statistical homogeneity to
guarantee that Eq. 35 holds.

Before we discuss the numerical results, we first
focus on algorithmic consequences of neglecting the
effect of the SRB measure change. Indeed, a complete
omission of the unstable part in the computation of
linear response dramatically simplifies the space-split
algorithm. That term, obtained through partial inte-
gration, requires computing the SRB density gradient
and derivatives of projections of tangent solutions onto
the unstable-center subspace. These two ingredients
require solvingO(m2) second-order tangent equations,
which is by far themost expensive section ofAlgorithm
2. Assuming n is large, further simplifications can be
introduced. Note that the neutral contribution involves
an infinite series of k-time correlations of c0 and DJ · f
with the leading term

C =
∫
M
c0 DJ · f dμ :=

∫
M

(c0 | f |) DJ · q f dμ,

(36)

where c0 is the projection of a center-stable component
of the tangent solution onto the center subspace nor-
malized by the length of f as derived in Eq. 11. Notice
that the form of C is in fact identical to its unstable
counterpart in its original form. Therefore, if our con-
jecture of small unstable contributions applies, then C
is also small and can be neglected in the linear response
algorithm. Indeed, the L2 norms of DJ · q f , DJ · qu
are expected to be similar, where qu is some unsta-
ble direction, unless the positive Lyapunov spectrum is
clearly bounded away from zero. Recall also that the

projection coefficients ci , i = 0, 1, ..., n represent dot
products of a component of v and their corresponding
tangent vectors. The direction of parametric deforma-
tion is generally independent of Lyapunov vectors. We
later demonstrate that these coefficients become sim-
ilar in value as n → ∞. Based on this analysis, we
conclude that if our conjecture of a smallU holds, then
the computation of C could also be neglected.

Exclusion of both unstable and neutral terms from
the full S3 algorithm leaves us with the stable term
alone. The remaining part requires computing the reg-
ularized tangent solution through step-by-step orthogo-
nal projection of the unstable-center component. Since
f is generally not orthogonal to the column space
of Q, the original stabilizing procedure involves an
assembly and inversion of the Schur complement S.
We have directly used f because it is always given at
no cost and it allows for a straightforward derivation
of a computable formula for the neutral part of the lin-
ear response. However, since we neglect that part as
well, the process of regularizing the tangent solution
can be simplified even further. Instead of using f and
then orthogonalizing the (Q, f ) tuple, we can solve
one more first-order tangent equation and perform QR
factorization of the extended tangent solution matrix.
Thanks to this modification, we recursively generate
the orthogonal basis of the unstable-center subspace
and compute projections of v onto that basis, which
is equivalent to the original algorithm. This can be
achieved by executing Lines 9–10 of Algorithm 2 by
changingm tomext , wheremext should ideally be equal
to m + 1. In practice, however, setting mext = m + 1
may lead to instabilities due to the potentially non-
hyperbolic behavior of the system. Moreover, if n is
large, we rarely know the exact value ofm. If our afore-
mentioned conjecture of a small C is valid for large
systems, then we could project out a few additional
components of the tangent space from v. Therefore, as
long asmext is close tom+1, the penalty of these extra
projections, in the context of sensitivity approximation,
is expected to decrease as n → ∞. The only practical
consequence is that a few extra tangent equations will
have to be solved, which barely influences the overall
cost of the reduced algorithm assumingmext−m � m.
Algorithm 1 summarizes all steps required to approx-
imate the sensitivity. This procedure was obtained by
eliminating the unstable and neutral contributions from
the full S3 algorithm. By-products of the S3 algorithm
areLyapunov exponents, included in the le array,which
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we compute to supplement our discussion. Benettin in
[4] originally proposed this approach for approximat-
ing LEs.

4.1 Lorenz 96

In light of the above conclusions, we shall consider
the Lorenz 96 model, which was proposed by E.
Lorenz in [25], to study spatiotemporal dynamics of the
atmosphere. Mathematically, this is an n-dimensional
chaotic flow defined as follows,

dxi

dt
= (xi+1 − xi−2) xi−1 − xi + F, i = 1, ..., n,

xi+n = xi ,

(37)

where the superscript indicates the component index, in
compliance with our notation convention. Each degree
of freedom xi represents a value of a physical quan-
tity, e.g., temperature or pressure, on a uniformly dis-
cretized parallel of the Earth. Analogously to semi-
discretized PDEs describing advection, this system
involves spatially coupled variables with a quadratic
nonlinearity. Equation 37 involves two constant param-
eters: the number of sectors n ≥ 4, each correspond-
ing to a different meridian of the Earth, and imposed
forcing F ∈ R

+. If F < 8/9, then the solution
quickly decays to the constant value of F , i.e., xi = F ,
i = 1, ..., n for all t > t∗ ≈ 0 [17]. We solve Eq.
37 using the explicit fourth-order Runge–Kutta with
�t = 0.005. That ODE solver will be used throughout
this section, unless stated otherwise. In Fig. 9, we plot
the solutions for n = 80 and three different values of
F . For F = 3, the periodic dynamics involves waves
travelling to the west, i.e., in the direction of decreasing
sector index i . The distortion that appears at the begin-
ning of the simulation quickly decays leading to a pre-
dictable behavior. While some regularity is still main-
tained at F = 6, the alignment of waves seems random,
which implies that some unstable modes might be acti-
vated. If we further increase F to the value of 9, the
spatiotemporal structure of the solution clearly reflects
chaotic behavior without any distinguishable patterns.

To obtain more insights into the dynamics of the
Lorenz 96 model, we analyze its Lyapunov spectrum
for the most common values of the system’s parame-
ters [45]. In Fig. 10, we illustrate a half of the Lyapunov
spectrum for F ∈ [0, 25] at n = 10, 20, 40, 80. For any

n and F < 0.9, all LEs are negative, which means that,
for any random initial condition, the solution exponen-
tially decays to a constant value. Within the interval
F ∈ [0.9, 4.5], the dynamics is no longer stationary,
but still non-chaotic, because λ1 = 0. We observe the
presence of at least one positive LE if F > 4.5. In the
chaotic regime, the dimension of the expansive mani-
fold gradually increases with F to about m = n/2 at
F = 25. Notice also that the higher F , the smaller the
angle between the lines representingλi (F), i = 1, 2, ...
and the x-axis. Indeed, the authors of [17] computed a
curve fit for λ−1

1 (F) at N = 35, whose close-form for-
mula is the following: λ−1

1 (F) = 0.158+123.8 F−2.6.
Consequently, given the self-similar behavior of the
plotted spectrum, all LEs seemingly converge to fixed
values as the forcing F increases.

We shall consider the spatially averaged kinetic
energy of the system as the objective function J , which
can be expressed using Eq. 34 with J̃ i = (xi )2.
The long-time averages 〈J 〉 for F ∈ [0, 25] at n =
10, 20, 40, 80 are plotted in Fig. 11. We observe that
all four curves 〈J 〉(F) collapse into a single curve due
to spatial averaging. The only misalignment occurs
at the non-chaotic/chaotic transition region close to
F = 5. Thus, in the extensive chaos regime of Lorenz
96, the spatially averaged statistics is generally inde-
pendent on n, which was previously observed in [17].
We shall restrict our attention to that regime, i.e.,
when F ≥ 5, and compute sensitivities with respect
to F using our reduced S3 algorithm. The slope of
〈J 〉(F) seems to be constant and is approximately 2 for
F ∈ [5, 25]. We will use a higher-order interpolation
of the statistics curve and differentiate it using the cen-
tral finite-difference scheme. This estimate will serve
as a reference solution to evaluate the performance of
Algorithm 4.

Figure 12 illustrates approximations of the linear
response obtained with Algorithm 1. In particular, we
used our reduced algorithm to approximate d〈J 〉/dF
for F ∈ [5, 25]. For mext = m + 1, the algorithm gen-
erates satisfactory approximations for F ≥ 6. How-
ever, the standard deviation is quite large, and it very
often exceeds the value of one across the entire para-
metric domain. These statistical fluctuations are elim-
inated by increasing mext . Indeed, the mext = m + 2
case has dramatically smaller sigmas everywhere. This
result indicates that ifmext is too small, the regularized
tangent solution may still have rapidly growing com-
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Algorithm 1 Reduced space-split sensitivity algorithm for higher-dimensional chaotic flows
Input: N , K , T , n, mext
Output: d〈J 〉/ds ≈ s/N , mext largest LEs := le/N

1: Randomly generate: x0, v0, Q0 such that size(x0) = size(v0) = (n, 1), size(Q0) = (n,mext )

2: Set s = 0 and le = zeros(mext )

3: for k = 0, ..., N − 1 do
4: if k ≥ T then
5: s := s + DJk · vk
6: le := le + diag(log(abs(Rk)))

7: end if
8: Pk+1 = Dϕk Qk
9: QR-factorize Pk+1: Qk+1 Rk+1 = Pk+1
10: rk+1 = Dϕk vk + χk+1
11: ck+1 = QT

k+1 rk+1
12: vk+1 = rk+1 − Qk+1 ck+1
13: Advance the iteration: xk+1 = ϕ(xk)
14: end for

Fig. 9 Solutions to the
Lorenz 96 system (Eq. 37)
for n = 80 stacked
horizontally

ponents in some parts of the attractor leading to large
variances. The smooth behavior of the linear response
in the mext = m + 2 case suggests that these fluctua-
tions are not caused by the ergodic-averaging error. As
expected, there is always an extra penalty for increas-
ingmext . However, the higher n, the smaller price must
be paid for extra stabilizing projections. This observa-
tion is consistent with our conjecture, suggesting that
the relative contribution of a single component of v

decreases as n gets larger.
Figure 12 reveals two other critical features of the

reduced algorithm. First, if n is sufficiently large, then
the obtained sensitivity approximation might be very
accurate, i.e., the relative error is no larger than a few

percent. This result confirms our major conjecture of
negligible unstable (and neutral) contributions to the
total linear response. For Lorenz 96, the impact of the
SRB measure change is apparently insignificant. The
only exception is the region around F = 5. Indeed, the
error is large in this parametric regime, regardless of the
value of mext and system’s dimension n. Although the
property of spatial homogeneity is unaffected and some
unstable modes are still active, we observe the sensitiv-
ity approximation clearly deviates from the reference
solution. Note that this parametric region coincides
with the rapid decrease of positive LEs. Many of them
are still positive, but they are clustered. Our discussion
in Sect. 3 suggests that in this case there might be no
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Fig. 10 Larger half of the Lyapunov spectrum of Eq. 37. LEs
were computed at 240 distinct values of F distributed uniformly
between 0 and 25. For each value of F , we run 10 independent
simulations over 5000 time units. The barely visible shaded area
represents the 2-sigma range (95% confidence) of the 10-element
data set at each value of F

Fig. 11 Long-time means of spatially averaged kinetic energies
of the Lorenz 96 system. The statistics were computed on a uni-
form grid of 240 values of F ∈ [0, 25]. For each value of F , the
objective function was time-averaged over 5 · 106 time units

gain due to the alignment of J and q1. All components
of g are expected to have similar distributions across the
phase space. Therefore, even if J andq1 are aligned, the
unstable contribution could be significant in this case.

For completeness, in Fig. 13, we also plot the L2

norms of the projection scalars ci , i = 1, ...,mext =
m + 2. This result confirms that all scalars contribute
almost equally to the linear response, suggesting that
their relative significance is degraded as n increases.
These results also indicate that if n is small, the scalars
corresponding to the lowest indices tend to be statis-
tically larger compared to their counterparts. In other
words, the Lorenz 96 system with few degrees of free-
dom tends to favor the contributions of ‖ci‖2 corre-
sponding to the most expansive directions.

4.2 Kuramoto–Sivashinsky

Finally, we shall consider the Kuramoto–Sivashinsky
(KS) equation, one of the simplest partial differen-
tial equations modeling chaos. Similarly to Lorenz
96, KS is a spatiotemporal description of complex
dynamics driven by instabilities far from an equilib-
rium.This equationwas proposeddecades ago tomodel
wave propagation in reaction-diffusion systems [21]
and hydrodynamic instabilities of laminar flames [38].
A number of other applications of the KS equation can
be found in the literature. In this work, we analyze a
modified version of KS, which includes an extra advec-
tion term proportional to a constant scalar c ∈ R. The
modified equation,whichwas previously studied in [6],
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Fig. 12 Linear response approximations of the Lorenz 96model
with respect to F computed usingAlgorithm 1. The top plot illus-
trates approximated sensitivities for mext = m + 1, the middle
plot for mext = m + 2, while the bottom plot depicts the mean
relative error of the mext = m + 2 case computed with respect
to the reference finite-difference solution (respective colors indi-
cate n). Sensitivities were computed on a uniform 240-point grid
between F = 5 and F = 25. For each value of F , we run 10
independent ergodic-averaging simulations over N�t = 5000
time units. Vertical lines represent sigma intervals, while the bul-
lets indicate the corresponding averages. Lack of a bullet (in the
upper plot) means the standard deviation is larger than 1. The
solid orange line is a finite difference approximation of the 11-th
degree polynomial fit of 〈J 〉

Fig. 13 L2 norms of ci , i = 1, ...,mext = m + 2, which were
computed as by-products of Algorithm 1. All simulation param-
eters are the same as those reported in the caption of Fig. 12

has the following form,

∂u

∂t
= −(u + c)

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
,

u(0, t) = u(L , t) = 0,

∂u

∂x
(0, t) = ∂u

∂x
(L , t) = 0,

(38)

where x ∈ [0, L], L = 128, t ≥ 0, u(x, t) ∈ R.
We discretize this system in space using the finite dif-
ference method with second-order accuracy. The grid
is uniform and involves 513 nodes, which gives us
a constant spacing �x = 128/(513 − 1) = 0.25.
A combination of center and one-sided schemes is
applied to approximate all spatial derivatives as sug-
gested in [6]. The number of ODEs, i.e., the system’s
dimension, is reduced to n = 511 by incorporating all
boundary conditions using the ghost node technique.
While this is a stiff system, we apply the fully-explicit
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fourth-order Runge–Kutta scheme with a small time
step �t = 0.0006. In Appendix B, we discuss how
the linear response algorithm could be integrated with
implicit schemes.

Figure 14 illustrates solutions to the KS equation,
u(x, t), for different values of c. In the spatiotem-
poral space, u(x, t) involves a collection of irregular
branches that switch between positive and negative val-
ues. The sign of c determines the inclination of these
branches. If c is positive, they tend to move in the pos-
itive direction of x and vice versa. By increasing the
magnitude of c, the advection term starts to dominate
pushing the lightly turbulent region out of the domain.
Indeed, for c = 2, we observe that u(x, t) quickly
becomes steady suggesting that all unstable modes are
killed due to the strong advection. Regardless of the
value of c, one can distinguish a transitional period at
the beginning of each simulation during which the spa-
tiotemporal branches develop their shapes. At c = 1.4,
the spatial sub-region x < 20 is dominated by the con-
vection, which results in an almost stable behavior of
u(x, t) in that part of the domain. This leads to violation
of statistical homogeneity along x .

Figure 15 depicts the 18 largest Lyapunov exponents
of the KS equations for c ∈ [−1, 2]. The LE spec-
trum is independent of c as long as −1 ≤ c ≤ 1.3.
At 1.3 ≤ c ≤ 1.7, we observe a rapid decrease of
all positive LEs. This coincides with the increasing
strength of the advection term. Intuitively, the dominat-
ing advection term gradually kills the unstable modes,
which consequently leads to a more predictable behav-
ior of u(x, t). The KS system is clearly non-chaotic if
c > 1.7, which is reflected by the stable behavior of
u(x, t) at c = 2 illustrated in Fig. 14.

We also acknowledge similarities in the behavior of
LE spectra corresponding to the Lorenz 96 and KS sys-
tem. In the former, we observed an analogous collapse
of the values of positive LEs around the laminar-to-
turbulence transition close to F = 5. Another analogy
is the parametric independence of the LE spectrum at
large values of F . Note, however, that the ratio m/n
may reach the value of 1/2 in the case of Lorenz 96,
which is significantly larger compared to this case.

Selected Lyapunov vectors are plotted for t ∈
[0, 1200] in Fig. 16.As expected, the leadingLyapunov
vector q1 consists of relatively large structures with
local support. The region of activity of q1, which cor-
responds to non-small components, is limited to a thin
sub-region, which moves around the entire x-space. It

periodically bounces back and forth between the two
walls. We observe that the structural behavior of qi

visibly changes as i increases. The support of q20 is
rather global with occasional small inactivity regions.
The same is true for q40, which also featuresmuch finer
structures compared to the previous two. The q60 vec-
tor, on the other hand, seems to be periodic and highly
oscillatory in x , and almost constant (stationary) in t
across the entire spatiotemporal domain. The tangent
vectors corresponding to moderate indices are placed
in the bottom row of Fig. 16. They consist of finer struc-
tures compared to the ones of q1 and have occasional
small inactivity regions throughout the entire domain.
All vectors in the bottom row are visibly similar except
when t is small. Recall that all Lyapunov vectors qi

were obtained in an iterative procedure involving a set
of forward tangents that is initiated at a random initial
condition. We observe that this iteration persistently
requires at least 50 time units for a convergence run-up.

We also highlight the fact that, due to the recursive
orthonormalization procedure, several physical fea-
tures are lost. While the orthogonal Lyapunov vectors
are sufficient to determine a basis of unstable or center-
unstable subspaces required for our linear response
algorithms [4,40], they cannot be directly used to com-
pute the individual contractive or center directions of
the tangent space, nor can they be used to approxi-
mate the angles between different tangent subbundles.
Hence,more information is required to study the hyper-
bolicity of a system [20,22,44].

Given these preliminary results, we applyAlgorithm
1 to compute linear response with respect to the param-
eter c. This time we shall consider three different spa-
tially averaged objective functions: linear, quadratic
and cubic, i.e., J̃ i = u p, p = 1, 2, 3, respectively.
The corresponding long-time averages are plotted in
Fig. 17 at c ∈ [−1, 2]. We observe that, in all of
these cases, the mean curve can be divided into three
smooth sections connected at c ≈ 1.25 and c ≈ 1.7.
The shape of the left part resembles a polynomial func-
tion of the same order as the objective function itself.
The middle one resembles the tangent function, while
the right-hand side piece is constant in all three cases.
These three pieces coincide with three different behav-
ior types of u(x, t) that we observed in Fig. 14: tur-
bulent (c ≤ 1.25), transitional (1.25 ≤ c ≤ 1.7), and
advection-dominated (c ≥ 1.7) regime.

We apply our reduced linear response algorithm
(Algorithm 1) to approximate sensitivities for these
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Fig. 14 Solutions to the KS
equation (Eq. 38) for
different advection
intensities

Fig. 15 18 largest
Lyapunov exponents of the
KS equation. The spectrum
was computed at the
uniform grid between
c = −1 and c = 2. For each
value of c, 10 independent
simulations were run. The
sought-after quantities were
obtained through
ergodic-averaging over
12, 000 time units per
simulation. The solid lines
represent the mean values
obtained in 10 simulations,
while the shaded area
represents the 2-sigma
range

three objective functions. Analogously to the previ-
ous plots, we compare our approximations against the
finite-difference reference solutions. Figure 18 illus-
trates the linear response results for different values
of mext . One can easily observe a lot of similarities
between these results and the ones generated for Lorenz
96. First of all, if mext = m + 1, the mean solu-
tion is quite close to the reference line, but the vari-
ance is likely to be large. The variance is significantly
reduced by increasingmext and, in most cases, the new

mean approximations are still very accurate. Indeed,
the accuracy can be within the reference line width in
the turbulent and stable regimes. Huge disparities occur
in the transitional regime, i.e., at c ∈ [1.25, 1.7]. Sim-
ilarly to the Lorenz 96 case, this region corresponds
to the sudden decrease of positive LEs. The approxi-
mation errors here are generally smaller compared to
those computed for the Lorenz 96 system. Recall that,
in Fig. 12, we observed that the approximation error
decreases as n → ∞. Indeed, the dimension of the
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Fig. 16 Orthonormal
Lyapunov vectors qi of the
KS system (Eq. 38) without
the extra advection term
(c = 0). The vector q f
represents the normalized
time derivative of u(x, t).
The colorbar has linearly
been re-scaled between
−0.15 and 0.15 keeping the
same color for all values
from beyond this interval

discretized KS system is an order of magnitude larger
than that of Lorenz 96.

Our numerical results presented in this section indi-
cate that the linear response of a higher-dimensional
system can be accurately approximated by the reduced
S3 method. That algorithm, which was obtained by
eliminating the unstable and neutral contributions,
solves a regularized tangent equation by projecting out
all expansive and, if necessary, a fewother tangent com-
ponents. This process can be in fact formulated as an
optimization problem in which we minimize the L2

norm of the sum of the standard tangent solution and a
linear combination of expansive orthogonal Lyapunov
vectors. A similar concept was previously utilized in a
variant of shadowing methods known as NILSS [31],
which relies on covariant Lyapunov vectors. While
there are some algorithmic differences between the
reduced S3 and NILSS, this work also sheds light on
the reliability of relatively simple methods using some
form of a regularized tangent equation.

We also note that there is potential in applying the
reduced version of the linear response algorithm to the
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Fig. 17 Long-time averages 〈J 〉 computed on a uniform 240-
point grid of c ∈ [−1, 2]. The operator 〈·〉x indicates the spatial
average. For each value of c, we run an ergodic-averaging simu-
lation over 600,000 time units

Fig. 18 Linear response computed for the same objective func-
tions as those presented in Fig. 17 using Algorithm 1. For each
value of c, we run 10 independent simulations over 3,000 time
units each. Bullets and vertical lines represent the mean and stan-
dard deviation, respectively. The results with a large standard
deviation were removed from the plot. The reference line was
computed through central finite-differencing of polynomial fits

broad family of time-delayed dynamical systems. The
spatiotemporal structure of the laser dynamics with
delayed feedback presented in [2,15] clearly features
a statistically homogeneous behavior. The user would
need to represent such a system using an appropriate
diffeomorphic map ϕ : M → M and compute relevant
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phase-space and parametric derivatives, following the
recipe described in this paper. For systems with delay
τ and constant time step �t , one can consider intro-
ducing approximately τ/�t extra degrees of freedom
to eliminate the time delay term as described by Eq.
1–3 in [2]. In an analogous way, one can easily derive
ϕ for any non-autonomous system.

5 Conclusions

Sensitivity analysis of chaotic dynamical flows is full
of mathematical and algorithmic challenges. The linear
response theory, especially Ruelle’s formalism, allows
us to better understand how different dynamical fea-
tures of a system affect its sensitivity. In particular,
we can rigorously decompose the linear response for-
mula into three separate ingredients: unstable, neutral,
and stable. This concept has been utilized in recently
developed algorithms such as the space-split sensitiv-
ity (S3). The unstable part represents the effect of the
SRB measure gradient, which requires computing sec-
ondderivatives of coordinate charts describing unstable
manifolds and differentiating Lyapunov vectors in all
unstable directions.Theneutral and stable parts, as their
names suggest, reflect the contributions of the paramet-
ric perturbation along the center (tangent to the flow)
and stable manifolds, respectively. In general, any of
these three terms might significantly contribute to the
total linear response. The example of Lorenz 63 clearly
indicates that neglecting the unstable or neutral term
leads to large errors.

Despite their elegance, rigor and accuracy, direct
linear response algorithms have certain flaws. First of
all, they are expensive. The leading flop count may
be proportional even to the cube of the number of
positive Lyapunov exponents. In addition to that, the
non-hyperbolic behavior of larger systems could cause
numerical instabilitiesmaking the computation ofmea-
sure gradients difficult. We observed that the most
expansive components of the measure gradient tend
to be significantly smaller in norm compared to the
other ones. This critical observation led us to the con-
jecture that the unstable contribution could potentially
be reduced if the effect of the larger components of
the measure gradient is eliminated. To make the unsta-
ble part small, regardless of the choice of a parameter
with respect to which linear response is computed, one
could choose an aligned objective function J .We show

that if J is represented by the unstable divergence of a
smooth vector field such that the directional derivative
in the most expansive direction is dominant, the major-
ity of themeasure gradient components could be killed.
Our experiment on the hyperchaotic coupled sawtooth
map confirms that the unstable part can be significantly
reduced through an appropriate selection of J .

While the idea of finding an aligned J may seem
to be a purely theoretical concept, we argue that this
result could be critical for practitioners as well. Indeed,
spatially extended high-dimensional chaotic systems
with statistical homogeneity in space do allow for dif-
ferent representations of J . In particular, the objective
function, which typically equals the spatial average of
system coordinates or higher-order moments, can be
represented by an arbitrary linear combination of indi-
vidual coordinate terms. Consequently, this gives us
freedom in choosing J and increases the probability of
finding an aligned J as the system’s dimension grows.
This conjecture is verified by eliminating the unsta-
ble and, consequently, the neutral part from the full S3
algorithm. Leaving the stable contribution alone, we
accurately approximate sensitivities in both the Lorenz
96 and Kuramoto–Sivashinsky models.

Two primary goals were achieved in this work. First,
we presented the full linear response algorithm with
critical analysis of its major parts and potential appli-
cations. Second, based on our analysis, we proposed a
reduced variant of S3 that has been shown to be suffi-
cient for some higher-dimensional systems. Our results
indicate that, in systems with statistical homogeneity,
sensitivities could be accurately approximated by pro-
jecting out the unstable components from the tangent
solution. Hence, the effect of the SRB measure change
can be negligible for a wide range of parameters. We
showed that when the Lyapunov spectrum collapses,
which typically happens when the system moves from
a non-chaotic to chaotic regime, the stable term alone
is not enough. Our future work shall investigate how
likely this scenario is in real-world engineering appli-
cations. If this is a rare event, further developments of
well-established shadowingmethodswould not be nec-
essary. Otherwise, one could consider extracting some
parts of the unstable contribution to correct the reduced
algorithm.
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Appendix A Full space-split algorithm—description,
pseudocode and complexity analysis

The purpose of this section is to extend the discrete
version of S3 [40] to continuous chaos and present the
structure of the full linear response algorithm. We rely
on the three-term splitting defined by Eq. 8. The major
difference between the discrete and continuous vari-
ants of S3 is that, in the latter, we additionally project
out the neutral component from the regularized tangent
solution v. The computation of the stable part involves
solving a linear system for ci , i = 0, 1, ...,m, because
the vector tangent to the center subspace, f , is generally
not orthogonal to the basis of the expanding subspace.
That linear system is derived in Sect. 2.1. Another con-
sequence of the three-term splitting is the emergence
of the neutral contribution of the linear response. For-

tunately, as shown in Eqs. 15–19, this part of the algo-
rithm re-uses some ingredients of the stable contribu-
tion andonly requires computing K ∈ Z

+ k-time corre-
lations through ergodic-averaging. Finally, the evalua-
tion of the unstable part also requires someadjustments.
Equation 21 indicates that we need ci , i = 0, 1, ...,m,
their unstable derivatives b, and derivatives of the SRB
measure represented by g. We acknowledge that the
computation of the SRB measure gradient is agnostic
to the presence of the center manifold. Using the mea-
sure preservation property and chain rule on smooth
manifolds, one can derive exponentially converging
recursive formulas for g. The reader is referred to the
authors’ previous work published in [41] for a detailed
derivation and analysis of a trajectory-driven algorithm
for g. Therefore, we only need to modify the way b is
computed in the presence of the neutral subspace. Once
b is found, the unstable part is computed similarly to
its neutral counterpart, by summing up K k-time cor-
relations.

Note that bi, j is defined as the directional derivative
of ci computed along the j-th basis vector q j . While
the regularized form of the unstable contribution (RHS
of Eq. 21) involves only self-derivatives of ci , i.e., bi, j

with i = j , we show that in order to find a trajectory-
following recursion, we also need all possible cross-
derivatives of ci . The main tool used in the derivation
of these formulas is the measure-based parameteriza-
tion of local unstable manifolds with orthonormal gra-
dients [41]. It means that the m-dimensional unstable
manifold Uk including xk , i.e., the point of M crossed
by the trajectory at the k-th time step, is parameter-
ized as follows: xk(ξ) : [0, 1]m → Uk ⊂ M such that
xk(ξ) is the multivariate inverse cumulative distribu-
tion (quantile function) and ∇ξk xk = Qk . In this con-
text, the marginal SRB density ρk defined on Uk can
be viewed as the probability density function (PDF)
of the uniform measure nonlinearly re-distributed by
xk(ξ). The chart coordinates ξk are updated step by step
to ensure the orthogonality of the gradient ∇ξk xk =
[∂ξ1k

xk, ..., ∂ξmk
xk]. A more rigorous description and

analysis of this coordinate transformation can be found
in [41].

To obtain bi, j , i = 0, 1, ...,m, j = 1, ...,m, we
simply differentiate Eq. 10, Eq. 12 and the constraint
v · f = 0 with respect to all components of ξ , apply
the chain rule, and solve a linear system withm(m+1)
equations and the same number of unknowns. Notice
that, assuming ∇ξk xk = Qk , the directional derivatives
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along qi are the same as parametric derivatives with
respect to ξ i .

Differentiation of Eq. 10 with respect to ξ
j
k+1 yields

∂
ξ
j
k+1

vk+1 := w
j
k+1 =

∂
ξ
j
k+1

rk+1 −
m∑
l=1

bl, jk+1 q
l
k+1 + clk+1 p

l, j

− b0, jk+1 fk+1 − c0k+1 Dfk+1 q
j
k+1,

(A1)

where pi, j := ∂ξ j qi . In the above equation, we used
the following identity,

∂
ξ
j
k+1

fk+1 = Dfk+1 ∂
ξ
j
k+1

xk+1 = Dfk+1 q
j
k+1.

Consequently, differentiating Eq. 12, i.e., constraint
enforcing v · q = 0, with respect to ξ

j
k+1 gives

bi, jk+1 = pi, jk+1 ·
(
rk+1 − c0k+1 fk+1

)
+ qik+1 · ∂

ξ
j
k+1

rk+1

− b0, jk+1q
i
k+1 · fk+1 − c0k+1 q

i
k+1 · Dfk+1 q

j
k+1.

(A2)

To eliminatew from the linear system, we differentiate
the constraint v · f = 0 with respect to ξ

j
k+1 and plug

Eq. A1 to obtain

− vk+1 · Dfk+1 q
j
k+1 = w

j
k+1 · fk+1 =

∂
ξ
j
k+1

rk+1 · fk+1

−
m∑
l=1

bl, jk+1 q
l
k+1 · fk+1 + clk+1 p

l, j · fk+1

− b0, jk+1 fk+1 · fk+1 − c0k+1 Dfk+1 q
j
k+1 · fk+1.

(A3)

Finally, by combining Eq. A2–A3, we derive the fol-
lowing linear system for bi, j , i = 0, 1, ...,m, j =
1, ...,m,

( fk+1 · fk+1)b
0, j
k+1 +

m∑
l=1

(qlk+1 · fk+1) b
l, j
k+1 = d0, jk+1,

(qik+1 · fk+1)b
0, j
k+1 + bi, jk+1 = di, jk+1, i, j = 1, ...,m,

(A4)

where

d0, jk+1 := vk+1 · Dfk+1 q
j
k+1 + ∂

ξ
j
k+1

rk+1 · fk+1

−
m∑
l=1

clk+1 pl, jk+1 · fk+1 − c0k+1 Dfk+1 q
j
k+1 · fk+1,

di, jk+1 := pi, jk+1 ·
(
rk+1 − c0k+1 fk+1

)
+ qik+1 · ∂

ξ
j
k+1

rk+1

− c0k+1 q
i
k+1 · Dfk+1 q

j
k+1, i, j = 1, ...,m.

(A5)

The Schur complement of System A4–A5 con-
sists of m2 constant-diagonal blocks. Their values are
exactly the same as the corresponding entries of S.
Therefore, if the inverse S−1 is available, we can
directly compute the sought-after quantities,

bi, jk+1 = (S−1
k+1)

i : · d1:m, j
k+1 −

m∑
l=1

(S−1
k+1)

il q
l
k+1 · fk+1

fk+1 · fk+1
d0, jk+1

= (S−1
k+1)

i : ·
⎛
⎝d1:m, j

k+1 − d0, jk+1

fk+1 · fk+1
QT
k+1 fk+1

⎞
⎠ ,

i, j = 1, ...,m,

(A6)

where (S−1)i j indicates the entry of S−1 correspond-
ing to its i-th row and j-th column. Analogously,
d1:m, j denotes the m-dimensional array including all
di, j for all i = 1, ...,m and a fixed j . Once bi, j for all
i, j = 1, ...,m is computed, b0, j and w j , j = 1, ...,m
can be evaluated directly using Eq. A1 and Eq. A4.

Based on Eq. A1–A6, we can now construct a
trajectory-following iteration to compute b. These
equations involve some ingredients previously derived
for the stable and neutral parts. The new quantities
are the parametric derivatives of the basis vectors p,
i.e., derivatives of Lyapunov vectors, and ∂

ξ
j
k+1

rk+1.

The former are computed using the procedure for g
extended by an extra low-cost projection [40]. Using
the definition of rk+1 and all underlying quantities, we
apply the chain rule to expand ∂

ξ
j
k+1

rk+1,

∂
ξ
j
k
rk+1 = D2ϕ(vk, q

j
k ) + Dϕk w

j
k + D∂sϕk q

j
k , (A7)

where D2ϕ(a, b) denotes the second-order bilinear
form whose i-th component equals (D2ϕ(a, b))i =
∂xk∂xlϕ

i ak bl (per Einstein’s summation convention),
while D∂sϕ denotes the phase-space Jacobian of para-
metric derivative of ϕ. Note also that Eq. A7 needs to
be further re-scaled by the Jacobian of the coordinate
transformation from ξk to ξk+1. Without loss of gener-
ality, we can choose ξ = 0 and show that the Jacobian
of coordinate transformation is a by-product of the iter-
ative algorithm for the basis vectors q [41]. Based on
the above derivations, Sects. 2.1 and [40], Algorithm
2 summarizes all the steps required to approximate the
full linear response of a hyperbolic flow.While themost
important aspects are covered in this work, the reader is
referred to these two external references for a rigorous
justification of all other parts.
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Algorithm 2 Space-split sensitivity algorithm for hyperbolic flows
Input: N , K , T , n, m
Output: d〈J 〉/ds ≈ (s + c + u)/N

1: Randomly generate: x0, v0, Q0, a
i, j
0 , wi

0 for all i, j = 1, ...,m
2: Set s = c = u = 0
3: for k = 0, ..., N − 1 do
4: if k ≥ T then
5: s := s + DJk · vk
6: u := u − Jk (uk + uk−1 + ... + uk−K+1)

⎫⎪⎪⎬
⎪⎪⎭

Update stable (s), neutral (c)
and unstable (u) contributions [7,40].

7: c := c+DJk · fk (c0k +c0k−1+... + c0k−K+1)

8: end if
9: Pk+1 = Dϕk Qk
10: QR-factorize Pk+1: Qk+1 Rk+1 = Pk+1

⎫⎬
⎭

Update basis vectors Q and transformation
Jacobian R. See [13] for derivation
and convergence analysis of Lyapunov basis.11: Find the inverse of Rk+1

12: for i = 1, ...,m, j = 1, ..., i do ãi, jk+1 = D2ϕk(qik , q
j
k ) + Dϕk a

i, j
k

13: end for
14: for i = 1, ...,m, j = 1, ..., i do ai, jk+1 = ã p,q

k+1 (R−1)
pi
k+1 (R−1)

q j
k+1

15: end for
16: for i = 1, ...,m do

17: for p, q = 1, ...,m do (∂ξ ik+1
Rk+1)

pq =

⎧⎪⎨
⎪⎩
q p
k+1 · a p,i

k+1, if p = q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Compute all m

components of g.

This part requires

solving m2 2nd -order

tangent equations.

Run once per time step,

regardless of dim(J )

and dim(s). See [41]

for original derivation.

q p
k+1 · aq,i

k+1 + qqk+1 · a p,i
k+1, if p < q

0, otherwise
18: end for
19: gik+1 = −tr(∂ξ ik+1

Rk+1)

20: end for
21: for i, j = 1, ...,m do pi, jk+1 = ai, jk+1 − qlk+1(∂ξ

j
k+1

Rk+1)
li

⎫⎬
⎭

Compute derivatives of
Lyapunov vectors [40].

22: end for
23: Sk+1 = I − QT

k+1 fk+1(QT
k+1 fk+1)

T / fk+1 · fk+1
24: Find the inverse of Sk+1
25: rk+1 = Dϕk vk + χk+1
26: zk+1 = QT

k+1 (rk+1 − ( fk+1 · rk+1)/( fk+1 · fk+1) fk+1)

27: for i = 1, ...,m do cik+1 = (S−1
k+1)

i j z jk+1
28: end for
29: c0k+1 = fk+1 · (rk+1 − cik+1 q

i
k+1)/ fk+1 · fk+1

30: vk+1 = rk+1 − cik+1 q
i
k+1 − c0k+1 fk+1

31: for i = 1, ...,m do ∂ξ ik
rk+1 = D2ϕk(vk , qik) + Dϕk wi

k + D∂sϕk qik
32: end for
33: ∇ξk+1rk+1 = ∇ξk rk+1 R

−1
k+1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Modification
of the general
discrete S3
from [40].
This part
computes
c, b, w,
according to
the derivation
presented in
this section
and Section 2.1.

34: for i = 1, ...,m do
35: d0,ik+1=vk+1 ·Dfk+1 qik+1+∂ξ ik+1

rk+1 · fk+1−clk+1 p
l,i
k+1 · fk+1 − c0k+1 Dfk+1 qik+1 · fk+1

36: end for
37: for i, j = 1, ...,m do
38: di, jk+1 = pi, jk+1 · (rk+1 − c0k+1 fk+1) + qik+1 · ∂

ξ
j
k+1

rk+1 − c0k+1 q
i
k+1 · Dfk+1 q

j
k+1

39: end for
40: for i, j = 1, ...,m do bi, jk+1 = (S−1

k+1)
i : · (d1:m, j

k+1 − d0, jk+1/( fk+1 · fk+1)QT
k+1 fk+1)

41: end for
42: for i = 1, ...,m do b0,ik+1 = 1/( fk+1 · fk+1) (d0,ik+1 − (qlk+1 · fk+1)b

l,i
k+1)

43: end for
44: for i = 1, ...,m do wi

k+1=∂ξ ik+1
rk−bl,ik+1 q

l
k+1−clk+1 p

l,i
k+1−b0,ik+1 fk+1−c0k+1 Dfk+1qik+1

45: end for
46: Save the two scalars: uk+1 = bi,ik+1 + cik+1 g

i
k+1 and c0k+1

47: Advance the iteration: xk+1 = ϕ(xk)
48: end for
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The input parameter T is to allow all the recursions
to converge before the linear response contributions are
collected. Note that Algorithm 2 is agnostic to the time
integration method, which directly affects ϕ and hence
the cost of computing its derivatives. In Appendix B,
we derive relevant differentiation operators for themid-
point scheme.

Assuming both the objective function J and param-
eter s are scalars, the computational cost of Algo-
rithm 2 depends on three parameters: the trajectory
length N , dimension of both the system n and unsta-
ble subspace m. In this case, the most expensive
part is the computation of the SRB density gradient
(Lines 12-20). This chunk of the algorithm solves m2

second-order tangent equations (Line 12) and performs
double contraction against the transformation Jaco-
bian (Line 13) to stabilize the iteration, which costs
O(n3 m2 + n m3) floating point operations (flops) per
time step. If s is an ns-dimensional vector, then the
majority of the modified part of Algorithm 2 (Lines
23-45) will need to be repeated ns times, which costs
O(ns (n3 m+m2 n)) flops per time step. Finally, Lines
4–8 would need to be repeated nJ times if J was an
nJ -dimensional vector. This would incur an extra cost
proportional to O(nJ ns n) flops. Therefore, assuming
max(m, ns, nJ ) � n, the leading flop count term of
the total cost of Algorithm 2 is

O
(
N n3 (m2 + ns m)

)
. (A8)

Note that the most important factor in determining the
total cost is the system’s dimension n. This number is
cubed because of the contraction of the second-order
operator with two different vectors (Line 12). In prac-
tice, however, the linear differentiation operators (Jaco-
bians, Hessians) have sparse/banded structure. This
usually happens in case of PDE-related dynamical sys-
tems that have been derived using standard discretiza-
tion methods such as the finite element method. The
major consequence of the local structure is that the cost
of evaluating first- and second-order operator-vector
contractions is in fact linear to the dimension of the
system. Therefore, the leading term of the flop count
dramatically decreases to

O
(
N n (m3 + ns m

2 + ns nJ )
)

. (A9)

Appendix B Computing derivatives of the time inte-
grator and implicit schemes

Both Algorithm 1 and Algorithm 2 require computing
first-order derivatives in phase space as well as para-
metric derivatives of ϕ. The latter also requires second-
order derivatives to compute g and w. They are prod-
ucts of the chain rule applied to the discrete version of
the time-continuous system. The computational cost of
evaluating these quantities heavily depends on the time
integrator. For the Euler method, for example, differ-
entiation of ϕ is equally expensive as differentiation of
f . In this paper, we use second- and fourth-order fully-
explicit Runge–Kutta schemes, which involve nested
functions. If the system is sparse and its dimension n
is large, it is efficient to compute all the tensor-vector
contractions as we go rather than evaluating and stor-
ing large Jacobians and Hessians. Therefore, our aim
is to use the chain rule to express all contraction types
appearing in both algorithms such as Dϕ v in terms
of similar tensor-vector products involving derivatives
of f only. In this section, we present derivations for
the second-order Runge–Kutta map defined by Eq. 4.
Analogous expressions for the fourth-order scheme can
be found in the attached Python code.

For the midpoint method, ϕ(xk) is defined as

ϕ(xk) = xk + �t f

(
xk + �t

2
f (xk)

)

:= xk + �t f (xp) = xk + �t f p,

(B10)

where xp := xk +�t/2 f (xk). Therefore, for any vec-
tor v ∈ R

n ,

Dϕk v = v + �t D f p v + �t2

2
Dfp D fk v, (B11)

with Dfk = Df (xk) and Dfp = Df (xp), in com-
pliance with our notation convention. Differentiating
Eq. B11 once more and contracting it against yet
another vector a ∈ R

n , we obtain the following rela-
tion,

D2ϕk(v, a) =�t D2 f p

(
v + �t

2
Dfk v, a

)
+

�t2

2
D2 f p

(
v + �t

2
Dfk v, Dfk a

)
+

�t2

2
Dfp D

2 fk(v, a).

(B12)

Recall that D2ϕk(v, a) ∈ R
n . Assuming f also

depends on a scalar parameter s, the parametric deriva-
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tive of Eq. B10 expands as follows,

∂sϕk = χk+1 = �t ∂s f p + �t2

2
Dfp ∂s fk, (B13)

where ∂s fk = ∂ f/∂s (xk). The final relevant contrac-
tion, D∂sϕk v, involves mixed parametric and phase-
space derivatives and is obtained by differentiating
Eq. B13,

D∂sϕk v =�t D∂s f p

(
v + �t

2
Dfk v

)
+

�t2

2
D2 f p

(
v + �t

2
Dfk v, ∂s fk

)
+

�t2

2
Dfp D∂s f v.

(B14)

We highlight the fact that, for the midpoint method,
each tensor-vector product involving ϕ requires the
evaluation ofO(1) similar products containing f . The
fourth-order Runge–Kutta scheme is in fact a four-level
nested map from xk to xk+1. In this case, the Hessian-
vector contraction requires about 20 such evaluations.
For sparse systems, however, the cost of a single eval-
uation of Df v, D2 f (a, v), D∂s f v is linear in n.

An implicit scheme is a common choice for stiff sys-
tems. That choice does not affect our linear response
algorithms. The only part that needs to be modified is
the way the products appearing in Eq. B10–B14 are
computed. Let us consider a generic implicit scheme,

h(xk, xk+1) = 0, (B15)

where xk+1 = ϕ(xk). Assuming xk is known, the n-
dimensional nonlinear system defined by Eq. B15 is
typically solved for xk+1 using a standard solver such as
the Newton–Raphson method. Differentiating Eq. B15
with respect to xk and multiplying both sides by a vec-
tor v, we obtain the following system,

∂h

∂xk+1
Dϕk v = − ∂h

∂xk
v, (B16)

where ∂h/∂xk and ∂h/∂xk+1 are the n × n Jacobian
matrices of h with respect to xk and xk+1, respectively,
both evaluated at (xk, xk+1). If both xk and xk+1 are
known, the linear system defined by Eq. B16 can be
solved for Dϕk v, which is a necessary ingredient of our
linear response algorithms. To compute other tensor-
vector products, we further differentiate Eq. B16, apply
the chain rule as presented above, and formulate anal-
ogous linear systems.
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