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Abstract This paper studies an epidemic model with
heterogeneous susceptibility which generalizes the SIS
(susceptible–infected–susceptible), SIR (susceptible–
infected–recovered) and SIRI (susceptible–infected–
recovered–infected) models. The proposed model con-
siders the case that some infected people are suscepti-
ble again after recovery, some infected people develop
immunity after infection, and some infected people are
reinfected after recovery. We perform a comprehensive
theoretical analysis of the model, showing that under
appropriate initial conditions, delayed outbreak phe-
nomenon occurs that can give people false impressions.
Moreover, comparedwith theSIRImodel, the proposed
model exists the delayed outbreak phenomenon under
more probable conditions. Finally, we present a numer-
ical example to illustrate the effectiveness of the theo-
retical results.

Keywords Epidemic model · Heterogeneous suscep-
tibility · Reinfection · Delayed outbreak

1 Introduction

As the COVID-19 continues to spread in various coun-
tries, it has a huge impact on society and economy.

S. Zhai (B) · M. Du · Y. Wang · P. Liu
School of Automation, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China
e-mail: zhaisd@cqupt.edu.cn

Because this virus is very contagious and can con-
tinue to be infected after the infection is recovered, the
traditional virus transmission model cannot describe
the transmission law of this virus well, and many
scholars have carried out research on the transmission
of COVID-19 [1–11]. The most important feature of
COVID-19 is its rapid spread, which places very high
requirements on epidemic prevention measures.

The spread of the virus is generally can be described
by the compartment model, and the basic models
include SIS and SIR [12–15]. The SIS model describes
the situation that all recovered individuals are not
immune and cannot avoid becoming susceptible again.
Comparedwith the SISmodel, the SIRmodel describes
the situation that all recovered individuals gain perma-
nent immunity. For many viruses, such as COVID-19
[16,17] and influenza [18], many people have antibod-
ies after infection, but the antibodies only last for a
certain period of time. Reinfection models can be used
to describe the situation that some population obtain
partial immunity [19–21].

Due to the repeated infection of the virus, many
new phenomena will appear; for example, the basic
reproduction coefficient cannot be used to judge the
pandemic of the virus or the resurgent epidemic phe-
nomenon [20,22–24]. By analyzing a Markovian SIRI
model, the authors in [22] found that whether the virus
is a pandemic depends on the initial number of peo-
ple infected. For a SIRI model which describes the
situation that it is impossible for a person to become
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susceptible again after first exposure to infection, the
authors found a bistable phenomenon when the rein-
fection rate was high [23]. For some appropriate ini-
tial conditions, the proposed SIRI model existed the
resurgent epidemic phenomenon [23]. The reference
[24] extended the results of reference [23] to the net-
work case and obtained parameter areas for different
dynamic phenomena.

In above references about SIRImodel, assuming that
everyone cannot become susceptible again after first
exposure to infection. This assumption does not take
into account the situation inwhich somepeople become
susceptible and then become infected again. Moreover,
generally speaking, the susceptibility of different indi-
viduals after recovery from infection varies from per-
son to person [25,26]. Although there were some ref-
erences about heterogeneous susceptibility [25–29], to
the best of our knowledge, there is no research on the
impact of heterogeneous susceptibility to SIRI model
with partial immunity.

In this paper, we study a SSIRI model with het-
erogeneous susceptibility which generalizes the SIS,
SIR and SIRI models. In the proposed model, some
infected people are susceptible again after recovery,
some infected people develop immunity after infection,
and some infected people are reinfected after recov-
ery. Compared with the SIRI model in [23], we con-
sider the case that some infected people are suscepti-
ble again after recovery and heterogeneous suscepti-
bility due to partial immunity. We analyze the stability
of equilibria and the dynamic process of virus spread.
Under appropriate initial conditions, the delayed out-
break phenomenon will occur, giving people an illu-
sion. Comparedwith the SIRImodel [23], the proposed
model exists the delayed outbreak phenomenon under
more probable conditions.

This paper is organized as follows. In Sect. 2, we
introduce the SSIRI model. In Sect. 3, we give a com-
prehensive theoretical analysis of the model (1) and
classify the disease transmission dynamics. In Sect. 4,
a numerical example about COVID-19 is proposed to
illustrate the effectiveness of the theoretical results.
Section 5 summarizes our conclusions and describes
future work.

2 Model description

Consider the population can be divided into three
classes: susceptible (S), infected (I), or recovered (R).

Fig. 1 The flow diagram for model

Suppose that the total population remains the same over
time, and the recovered population can be divided into
three parts, that is, a part will become susceptible again,
a part will develop immunity, and a part will reinfect
again. The density of susceptible part can be partitioned
into two parts due to repeated infection, that is, S1 and
S2. Moreover, the infected people acquires susceptibil-
ityβ1 andβ2 after recovering from infection,with prob-
abilities θ1 ∈ [0, 1] and 1 − θ1, respectively . Suppose
that the recovered individuals become infected through
contact with already infected individuals at rate ε, and
the recovery rate is γ . Fig. 1 depicts the flow diagram
of the model, and we call it SSIRI model. Based on the
above assumptions, we get the following equation:

Ṡ1 = −β1S1 I + θμI,

Ṡ2 = −β2S2 I + (1 − θ)μI,

İ = β1S1 I + β2S2 I − (μ + γ )I + εRI,

Ṙ = γ I − εRI.

(1)

We consider the following initial condition

0 < β2, ε < β1 ≤ 1,

Si (0) = Si0 > 0, i ∈ {1, 2},
I (0) = I0 > 0,

R(0) = R0 > 0,

and
∑2

i=1 Si0 + I0 + R0 = 1.
Frommodel (1), one can easily see that

∑2
i=1 Si (t)+

I (t) + R(t) = 1 for all t ≥ 0. Let

Δ =
⎧
⎨

⎩
[S1, S2, I, R] ∈ R

4+|
2∑

i=1

Si (t) + I (t) + R(t) = 1

⎫
⎬

⎭
.

(2)

Hence, Δ is the invariant set for the model (1).
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3 Model analysis

This sectionwill give a comprehensive theoretical anal-
ysis of the model (1). The model (1) will show various
behaviors under appropriate conditions. We first prove
the stability of equilibria in model (1) and then we will
present a detail dynamic process analysis themodel (1).

3.1 Stability of equilibria

This section will analyze the equilibria of model (1),
and prove the stability of equilibria. For the model (1),
since S1 + S2 + I + R = 1, one can obtain

Ṡ1 = −β1S1 I + θμI,

Ṡ2 = −β2S2 I + (1 − θ)μI,

İ = β1S1 I + β2S2 I − (μ + γ )I

+ ε(1 − S1 − S2 − I )I.

(3)

Let [S̄1, S̄2, Ī ] be the equilibrium of the model (3).
If Ī = 0, then we call it infection-free equilibrium
(IFE). When Ī �= 0, we call it the endemic equilib-
rium (EE). It is easy to see that the model (3) exists a
set of infection-free equilibriums which forms a mani-
fold. The IFE setM = {[S̄1, S̄2, 0]|S̄1 + S̄2 ≤ 1

}
. The

endemic equilibrium (EE) satisfies Ī > 0 and

Ī = 1 − θμ

β1
− (1 − θ)μ

β2
− γ

ε
. (4)

Theorem 1 Consider the model (3). If μ + γ ≥ β1,
then the IFE set is global asymptotically stable.

Proof Let V (t) = I (t) be a Lyapunov candidate. Since
β2, ε < β1, then one can obtain from system (3) that

V̇ = β1S1 I + β2S2 I

− (μ + γ )I + ε(1 − S1 − S2 − I )I

< [−(μ + γ ) + β1(1 − I )]I.
(5)

Hence, when I >
β1−μ−γ

β1
, V̇ < 0 for all I > 0. If

μ + γ ≥ β1, then V̇ < 0 for all I > 0, and IFE set is
global asymptotically stable. The proof of this theorem
is complete. ��
Theorem 2 Consider themodel (3). Themodel (3) has
a unique EE if and only if

1 − θμ

β1
− (1 − θ)μ

β2
− γ

ε
> 0. (6)

When the EE exists, then the EE is local asymptotically
stable.

Proof By the analysis of above, the model (3) has a
unique EE if and only if Ī in (4) satisfies Ī > 0.

In order to prove the local stability of the EE, we
compute the Jacobian of model (3) at EE

JEE =
⎡

⎣
−β1 Ī 0 0
0 −β2 Ī 0

(β1 − ε) Ī (β2 − ε) Ī Φ

⎤

⎦ ,

where

Φ =
2∑

i=1

βi S̄i − (μ + γ ) + ε(1 −
2∑

i=1

S̄i ) − 2ε Ī ,

Ī = 1 − θμ

β1
− (1 − θ)μ

β2
− γ

ε
.

Since

2∑

i=1

βi S̄i − (μ + γ ) + ε(1 −
2∑

i=1

S̄i ) − 2ε Ī

= ε − γ − ε

2∑

i=1

S̄i − 2ε Ī

= γ − ε + εθμ

β1
+ ε(1 − θ)μ

β2

= −ε Ī

< 0,

all eigenvalues of Jacobian JEE are negative, and the
EE is local asymptotically stable. The proof of this the-
orem is complete. ��

Remark 1 Note that the IFE is not an isolated equi-
librium, but a manifold. We just obtain the sufficient
condition such that the IFE set is global asymptotically
stable. The EE does not necessarily exist. Moreover,
we only get the locally stable condition for EE.

As pointed out in above theorem that the model (3)
has a unique EE if and only if the inequality (6) holds.
If we set

R1 = β1

μ
, R2 = β2

μ
, R3 = ε

γ
, (7)

then the inequality (6) can be presented as

θ

R1
+ 1 − θ

R2
+ 1

R3
< 1. (8)
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3.2 Dynamic process analysis

In this section, we will analyze the dynamic process
behavior of model (1). One can calculate the basic
reproduction number by the next generation matrix
method

R0 = 1

μ + γ
(β1S10 + β2S20 + εR0). (9)

Based on (9), we can obtain from (1) that

İ (0+) = (μ + γ )I (0)(R0 − 1). (10)

Hence, it is easy to obtain the following result.

Lemma 1 Consider the model (1). Then

(1) R0 is greater than 1 if and only if İ (0+) is greater
than 0.

(2) R0 equals 1 if and only if İ (0+) equals 0.
(3) R0 is less than 1 if and only if İ (0+) is less than

0. Therefore, I (t) initially increases when R0 is
greater than 1 and decreases whenR0 is less than
1.

Let

S̄1 = θμ

β1
, S̄2 = (1 − θ)μ

β2
, R̄ = γ

ε
. (11)

Define

xi (t) = Si (t) − S̄i
Si0 − S̄i

, i ∈ {1, 2}

y(t) = R(t) − R̄

R0 − R̄
.

(12)

Since S̄1, S̄2, R̄ is the equilibrium of the model (1), if
S10 = S̄1 and S20 = S̄2, then I (t) = Ī ,∀t ≥ 0. It is
easy to see that xi (0) = 1, i ∈ {1, 2}, y(0) = 1.We can
obtain the following equations from (12) andmodel (1)

ẋi (t) = −βi xi (t)I (t), i ∈ {1, 2},
ẏ(t) = −εy(t)I (t),

İ (t) = I (t)

(
2∑

i=1

βi ai xi + εby

)

.

(13)

where

ai = Si0 − S̄i , i ∈ {1, 2},
b = R0 − R̄,

(14)

In this paper, we assume that R0 < R̄, that is b < 0.
Next we will introduce the lemma about I (t) as time
goes to infinity.

Lemma 2 Consider the model (1). If Ī equals 0, then
I (t) tends to 0 as time tends to infinity. If Ī is greater
than 0, then I (t) either tends to 0 or Ī as time tends to
infinity.

Proof From (13), it is obvious that xi (t) (i ∈ {1, 2})
and y(t) are both positive and decreasing function.
Hence, limt→∞ xi (t), limt→∞ y(t) exist. One can
know from the equation about I (t) in (13) that
limt→∞ I (t) exists. From (13), it holds that either
limt→∞ xi (t) = 0 and limt→∞ y(t) = 0 or limt→∞
I (t) = 0. Since I (t) +

2∑

i=1
Si (t) + R(t) ≡ 1,

Ī = I (t) +
2∑

i=1

ai xi (t) + by(t). (15)

Then limt→∞ I (t) = Ī when limt→∞ xi (t) = 0 and
limt→∞ y(t) = 0. Thus, we can obtain that either
limt→∞ I (t) = 0 or limt→∞ I (t) = Ī . When Ī = 0,
if limt→∞ I (t) �= 0, then one can obtain from the
third equation in (13) that I (t) is unbounded. Hence,
limt→∞ I (t) = 0.When Ī > 0, then limt→∞ I (t) = 0
or limt→∞ I (t) = Ī . The proof of this lemma is com-
plete. ��

We define

ξ = β2

β1
, ζ = ε

β1
. (16)

where ξ ∈ (0, 1), ζ ∈ (0, 1). One can obtain from (13)
that
dx1
dx2

= x1
ξ x2

,
dx1
dy

= x1
ζ y

. (17)

Hence, it is easy to see that

x2(t) = x1(t)
ξ , y(t) = x1(t)

ζ . (18)

Define

Ĩ (x1) = Ī − a1x1 − a2x2(x1) − by(x1)

= Ī − a1x1 − a2x
ξ
1 − bxζ

1 .
(19)

It follows that Ĩ (x1(t)) = I (t), t ≥ 0. Then we can get

d Ĩ (x1)

dx1
= −

(
a1 + ξa2x

ξ−1
1 + ζbxζ−1

1

)
. (20)

From (19) and (20), it is easy to obtain that

Ĩ (0) = Ī , Ĩ (1) = I0,
d Ĩ

dx1
(1) = −(a1 + ξa2 + ζb).

By a simple computation, we can get

a1 + ξa2 + ζb = μ + γ

β1
(R0 − 1) . (21)
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Thus, we can obtain from Lemma 1 that

a1 + ξa2 + ζb > 0 ⇔ İ (0+) > 0,

a1 + ξa2 + ζb = 0 ⇔ İ (0+) = 0,

a1 + ξa2 + ζb < 0 ⇔ İ (0+) < 0.

(22)

Next we will analysis the value of d Ĩ (x1)
dx1

at t → 0+
in different case. Since the conclusion and proof of ξ >

ζ is similar to ξ < ζ , thus without loss of generality,
we consider the cases ξ = ζ and ξ < ζ , respectively.
It is easy to obtain the following lemma.

Lemma 3 (1) If ξ = ζ then

d Ĩ

dx1
(0+) =

⎧
⎨

⎩

+∞, a2 + b < 0,
−a1, a2 + b = 0,
−∞, a2 + b > 0.

(2) If ξ < ζ , then

d Ĩ

dx1
(0+) =

{+∞, a2 ≤ 0,
−∞, a2 > 0.

From (20) we can compute that

d2 Ĩ

dx21
= −

[
(ξ − 1)ξa2x

ξ−2
1 + (ζ − 1)ζbxζ−2

1

]
. (23)

It is easy to get

d2 Ĩ

dx21
(1) = − [(ξ − 1)ξa2 + (ζ − 1)ζb] .

Define

x∗
1 =

[

− (ξ − 1)ξa2
(ζ − 1)ζb

] 1
ζ−ξ

. (24)

Then we can get the following lemma.

Lemma 4 (1) If ξ = ζ , then
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2 Ĩ (x1)
dx21

< 0, a2 + b < 0,

d2 Ĩ (x1)
dx21

= 0, a2 + b = 0,

d2 Ĩ (x1)
dx21

> 0, a2 + b > 0,

for t ≥ 0. (2) If ξ < ζ then

(a) If a2 > 0, then
⎧
⎨

⎩

d2 Ĩ (x1)
dx21

≥ 0, 0 < x1 ≤ x∗
1 ,

d2 Ĩ (x1)
dx21

< 0, x1 > x∗
1 .

(b) If a2 ≤ 0, then d2 Ĩ (x1)
dx21

< 0, for all t ≥ 0.

Proof (1) If ξ = ζ , from (23), we can get

d2 Ĩ (x1)

dx21
= −(a2 + b)(ξ − 1)ξ xξ−2

1 .

Note that ξ ∈ (0, 1), thus we can obtain the conclusion.
(2) If ξ < ζ , we can rewrite the equation (23) as

d2 Ĩ (x1)

dx21
= −xξ−2

1

[
(ξ − 1)ξa2 + (ζ − 1)ζbxζ−ξ

1

]
.

Let b �= 0, d2 Ĩ (x1)
dx21

= 0 has a solution of nonzero x∗
1 , it

is defined by (24). Since

d[(ξ − 1)ξa2 + (ζ − 1)ζbxζ−ξ
1 ]

dx1
= (ζ − ξ)(ζ − 1)ζbxζ−ξ−1

1 < 0,

where x1 ∈ (0, 1); thus, we get d2 Ĩ (x1)
dx21

≥ 0 when

0 < x1 ≤ x∗
1 and d2 Ĩ (x1)

dx21
< 0 when x1 > x∗

1 . If

a2 < 0, then x∗
1 < 0, and d2 Ĩ (x1)

dx21
< 0. The proof of

this lemma is complete. ��

The followingproposition shows thedynamicbehav-
ior of I (t).

Proposition 1 Assume that a2 ≤ 0. (1) When a1 +
ξa2 + ζb > 0, the infected population density I (t) has
a unique maximum value.
(2) When a1 + ξa2 + ζb ≤ 0, the infected population
density I (t) decreases monotonically.

Proof (1) From Lemma 3, we can get d Ĩ
dx1

(0+) = +∞
when a2 ≤ 0 and d Ĩ

dx1
(1) < 0 when a1+ξa2+ζb > 0.

From Lemma 4, it is easy to obtain d2 Ĩ (x1)
dx21

< 0 when

a2 ≤ 0. Hence, d Ĩ (x1)
dx1

is monotonically decreasing on

x1 ∈ (0, 1), and d Ĩ (x1)
dx1

has a unique zero on (0, 1).
Hence, the infected population density I has a unique
maximum value on t ∈ R+.

(2) Since a1 + ξa2 + ζb ≤ 0, then we get d Ĩ (x1)
dx1

>

0 on x1 ∈ (0, 1), thus Ĩ does not have an extremum
on (0, 1). Hence, the infected population density I is
decreases monotonically on t ∈ R+. The proof of this
proposition is complete. ��

The following theorem presents the asymptotic
behavior of I (t) when a2 ≤ 0.
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Theorem 3 Assume that a2 ≤ 0. If Ī is greater than
0, then the infected population density I (t) tends to Ī
as time tends to infinity. If Ī equals 0, then the infected
population density I (t) tends to 0 as time tends to infin-
ity.

Proof From Lemma 2 and Proposition 1, and the fact
that Ĩ (0) = Ī , it is easy to obtain that limt→∞ I (t) = Ī
when Ĩ (0) > 0. Based on Lemma 2, limt→∞ I (t) = 0
when Ī ≤ 0. The proof of this theorem is complete. ��

From (24) it is easy to see that the condition for the
existence of x∗

1 ∈ (0, 1) if and only if a2 > 0 and

(ξ − 1)ξa2 + (ζ − 1)ζb < 0. From (20), if d Ĩ (x1)
dx1

= 0,
then we can get

a1 + ξa2x
ξ−1
1 + ζbxζ−1

1 = 0. (25)

We define x∗∗
1 is a solution of above equation at (0, 1),

that is

d Ĩ

dx1
(x∗∗

1 ) = 0.

Define

Ĩ ∗ = d Ĩ

dx1
(x∗∗

1 ). (26)

In the following, we analyze the extremum of Ĩ ∗.

Lemma 5 Ĩ ∗ exists and is a minimum value if the fol-
lowing conditions hold. (1) ξ = ζ , a2 + b > 0 and
a1 + ξ(a2 + b) < 0. (2) ξ < ζ , a2 > 0.

(a) a1 + ξa2 + ζb < 0.
(b) a1 + ξa2 + ζb = 0 and x∗

1 < 1.

(c) a1 + ξa2 + ζb > 0, x∗
1 < 1 and d Ĩ

dx1
(x∗

1 ) > 0.

Proof (1) Based on Lemmas 3 and 4, if ξ = ζ and

a2 + b > 0, then we get d2 Ĩ (x1)
dx21

> 0 and d Ĩ
dx1

(0+) =
−∞. Since a1+ξ(a2+b) < 0, thus d Ĩ

dx1
(1) > 0. From

(25), if ξ = ζ , we can get

a1 + ξ(a2 + b)xξ−1
1 = 0,

and

x∗∗
1 =

(

− a1
ξ(a2 + b)

) 1
ξ−1

,

Since a1 + ξ(a2 + b) < 0, we get x∗∗
1 < 1 and

d Ĩ (x1)
dx1

< 0 if x1 < x∗∗
1 , d Ĩ (x1)

dx1
> 0 if x1 > x∗∗

1 .

Then it is easy to see Ĩ ∗ is a minimum value.

(2) If ξ < ζ and a2 > 0, we get d2 Ĩ (x1)
dx21

≥ 0 on 0 <

x1 ≤ x∗
1 ,

d2 Ĩ (x1)
dx21

< 0 on x1 > x∗
1 and d Ĩ

dx1
(0+) = −∞.

(a) Since a1 + ξa2 + ζb < 0, thus d Ĩ
dx1

(1) > 0. It is
easy to see whatever x∗

1 < 1 or x∗
1 ≥ 0, x∗∗

1 exists and
Ĩ ∗ is a minimum value. (b) Since a1 + ξa2 + ζb = 0,
d Ĩ
dx1

(1) = 0. If x∗
1 < 1, notes d2 Ĩ (x1)

dx21
< 0 at x1 > x∗

1 ,

then it is easy to obtain d Ĩ
dx1

(x∗
1 ) > 0. Hence, x∗∗

1 exists

and Ĩ ∗ is aminimumvalue. (c) Since a1+ξa2+ζb > 0,
d Ĩ
dx1

(1) < 0. If d Ĩ (x1)
dx1

> 0 and x∗
1 < 1, then it is

easy to obtain that there is a solution x∗∗
1 on (0, 1) for

d Ĩ (x1)
dx1

= 0. Meanwhile, since d Ĩ (x1)
dx1

< 0 on x1 <

x∗∗
1 and d Ĩ (x1)

dx1
> 0 on x1 > x∗∗

1 , we can get Ĩ ∗ is a
minimum value. The proof of this lemma is complete.

��
In the sequel, we consider the case that a2 > 0.

Firstly, we analyze the situation ξ = ζ .

Proposition 2 Assume that ξ = ζ and a2 > 0.

(1) Suppose that a2 + b < 0.

(a) If a1+ξ(a2+b) > 0, then the infected popula-
tion density I (t) has a unique maximum value.

(b) If a1 + ξ(a2 + b) ≤ 0, then the infected popu-
lation density I (t) decreases monotonically.

(2) If a2 + b = 0, then the infected population density
I (t) is monotonically increasing when a1 > 0, but
decreasing when a1 < 0.

(3) Suppose that a2 + b > 0.

(a) Suppose that a1 + ξ(a2 + b) < 0.
(i) If Ī = 0 holds, then the infected popula-

tion density I (t) decreases monotonically.
(ii) If Ī > 0 holds, then the infected popula-

tion density I (t) decreases monotonically
when Ĩ ∗ ≤ 0, and I (t) has a unique min-
imum value when Ĩ ∗ > 0.

(b) If a1 + ξ(a2 + b) ≥ 0, then I (t) is increases
monotonically.

Proof (1) Based on Lemmas 3 and 4, if a2 + b < 0,

then d2 Ĩ (x1)
dx21

< 0 and d Ĩ
dx1

(0+) > 0. Therefore, d Ĩ (x1)dx1
is

monotonically decreasing. (a) If a1 + ξ(a2 + b) ≤ 0,

then d Ĩ
dx1

(1) ≥ 0. Hence, d Ĩ (x1)
dx1

> 0 on x1 ∈ (0, 1),
and I is monotonically decreasing for all t ≥ 0. (b) If

a1 + ξ(a2 + b) > 0 then d Ĩ
dx1

(1) < 0, then there is a
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unique solution of d Ĩ (x1)
dx1

= 0 on (0, 1). Hence, I has a
unique maximum value for all t ≥ 0.

(2) If a2 + b = 0, then d2 Ĩ (x1)
dx21

= 0 and d Ĩ (x1)
dx1

=
−a1. Thus, the infected population density I increases
monotonically when a1 > 0 and I decreases monoton-
ically when a1 < 0.

(3) If a1 + b > 0, then d2 Ĩ (x1)
dx21

> 0 and d Ĩ
dx1

(0+) <

0. Therefore, d Ĩ (x1)
dx1

increases monotonically. (a) If

a1 + ξ(a2 + b) < 0, then d Ĩ
dx1

(1) > 0. (i) Suppose

that Ī = 0 holds. Notes that I is a positive function,
therefore the infected population density I decreases
monotonically for all t ≥ 0. (ii) Suppose that Ī > 0
holds. If Ĩ ∗ ≤ 0, it is easy to see that the infected pop-
ulation density I decreases monotonically for all t ≥ 0
similar to the proof (i). If Ĩ ∗ > 0, then the infected
population density I has a unique minimum value for

all t ≥ 0. (b) If a1 + ξ(a2 + b) ≥ 0, then d Ĩ
dx1

(1) ≤ 0.

Hence, d Ĩ (x1)dx1
< 0 on x1 ∈ (0, 1), and the infected pop-

ulation density I increases monotonically for all t ≥ 0.
The proof of this proposition is complete. ��

For ξ = ζ , based on Proposition 2, we have the
following theorem.

Theorem 4 Assume that ξ = ζ and a2 > 0.

(1) Suppose that a2+b < 0. If Ī > 0, then the infected
population density I (t) tends to Ī as time tends to
infinity. If Ī equals 0, then the infected population
density I (t) tends to 0 as time tends to infinity.

(2) Suppose that a2 + b = 0.

(a) If a1 > 0, then the infected population density
I (t) tends to Ī as time tends to infinity.

(b) If a1 < 0, then the infected population density
I (t) tends to Ī (0) as time tends to infinity when
Ī > 0 (Ī = 0).

(3) Suppose that a2 + b > 0.

(a) Suppose that a1 + ξ(a2 + b) < 0.
(i) If Ī = 0, then the infected population den-

sity I (t) tends to 0 as time tends to infinity.
(ii) If Ī > 0, then the infected population den-

sity I (t) tends to 0 (Ī ) as time tends to
infinity when Ĩ ∗ ≤ 0 (Ĩ ∗ > 0).

(b) If a1 + ξ(a2 + b) ≥ 0, then the infected pop-
ulation density I (t) tends to Ī as time tends to
infinity.

Proof Note that 0 < ξ < 1, then
2∑

i=1
ai + b > a1 +

ξ(a2 + b). Hence, Ī > 0 when a1 + ξ(a2 + b) ≥ 0.
From the analysis of Proposition 2, it is easy to obtain
the conclusion. The proof of this theorem is complete.

��
In the following, we will analyze the other situation.

Proposition 3 Assume that ξ < ζ and a2 > 0.

(1) Suppose that a1 + ξa2 + ζb < 0.

(a) If Ī ≤ 0, then the infected population density
I (t) is decreases monotonically.

(b) If Ī > 0, then the infected population density
I (t) decreases monotonically when Ĩ ∗ ≤ 0
and has a uniqueminimum value when Ĩ ∗ > 0.

(2) Suppose that a1 + ξa2 + ζb = 0.

(a) Suppose that x∗
1 < 1.

(i) If Ī ≤ 0, then the infected population den-
sity I (t) decreases monotonically.

(ii) If Ī > 0, then the infected population den-
sity I (t) decreases monotonically when
Ĩ ∗ ≤ 0 and has a unique minimum value
when Ĩ ∗ > 0.

(b) Suppose that x∗
1 ≥ 1 holds. Then the infected

population density I (t) increases monotoni-
cally.

(3) Suppose that a1 + ξa2 + ζb > 0.

(a) If d Ĩ
dx1

(x∗
1 ) ≤ 0 or x∗

1 ≥ 1, then the infected
population density I (t) increases monotoni-
cally.

(b) If d Ĩ
dx1

(x∗
1 ) > 0 and x∗

1 < 1, then the infected
population density I (t) has a uniquemaximum
value when Ĩ ∗ = 0, and has a uniqueminimum
and maximum value when Ĩ ∗ > 0.

Proof If ξ < ζ and a2 > 0, based on Lemmas 3 and

4, then d Ĩ
dx1

(0+) = −∞, d2 Ĩ (x1)
dx21

> 0 on (0, x∗
1 ) and

d2 Ĩ (x1)
dx21

< 0 on x1 > x∗
1 . Thus,

d Ĩ (x1)
dx1

increases mono-

tonically on (0, x∗
1 ) and decreases monotonically on

x1 > x∗
1 .

(1) This proof is similar to Proposition 2 (3) (a), here
we omit.

(2) If a1+ξa2+ζb = 0, then d Ĩ
dx1

(1) = 0. (a) Suppose

that x∗
1 < 1 holds. Then Ĩ has a unique minimum
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value, and Ī ≥ Ĩ ∗. Note that I is a positive func-
tion. Thus, (i) if Ī ≤ 0, then I decreases monoton-
ically for all t ≥ 0 and (ii) if Ĩ ∗ > 0, then I has
a unique minimum value on t ∈ R+. (b) Suppose
that x∗

1 > 1 holds. Then d Ĩ (x1)
dx1

< 0 on (0, 1), and
I increases monotonically for all t ≥ 0.

(3) If a1+ξa2+ζb > 0, then d Ĩ
dx1

(1) < 0. (a) Suppose

that d Ĩ
dx1

(x∗
1 ) ≤ 0 or x∗

1 ≥ 1 holds, then d Ĩ (x1)
dx1

< 0
on (0, 1), and I increases monotonically for all

t ≥ 0. (b) Suppose that d Ĩ (x1)
dx1

> 0 and x∗
1 < 1.

Note that ξ < ζ , then a1 + a2 + b > 0 when
a1 + ξa2 + ζb > 0. If Ĩ ∗ = 0, I has a unique
maximum value. If Ĩ ∗ > 0, then we get that I has
a minimum and maximum value for all t ≥ 0. The
proof of this proposition is complete.

��
For ξ < ζ and a2 > 0, based on Proposition 3,

we have the following theorem about the asymptotic
behavior of I (t).

Theorem 5 Assume that ξ < ζ and a2 > 0.

(1) If a1 + ξa2 + ζb < 0, then the infected population
density I (t) tends to 0 (Ī ) as time tends to infinity
when Ĩ ∗ ≤ 0 (Ĩ ∗ > 0).

(2) Suppose that a1 + ξa2 + ζb = 0.

(a) If x∗
1 < 1, then the infected population density

I (t) tends to 0 (Ī ) as time tends to infinity when
Ī ≤ 0 (Ĩ ∗ > 0).

(b) If x∗
1 ≥ 1, then the infected population density

I (t) tends to Ī as time tends to infinity.

(3) Suppose that a1 + ξa2 + ζb > 0.

(a) If d Ĩ
dx1

(x∗
1 ) ≤ 0 or x∗

1 ≥ 1, then the infected

population density I (t) tends to Ī as time tends
to infinity.

(b) If d Ĩ
dx1

(x∗
1 ) > 0 and x∗

1 < 1, then the infected

population density I (t) tends to 0 (Ī ) as time
tends to infinity when Ĩ ∗ = 0 (Ĩ ∗ > 0).

Proof From the analysis of Proposition 3, it is easy
to obtain the conclusion. Note that Ĩ ∗ is a minimum
value of Ĩ , thus Ī > 0 when Ĩ ∗ > 0. The proof of this
theorem is complete. ��

Summarizing the above results, Fig. 2 depicts the
parameter area considered in Propositions 1, 2 and 3 at
different cases. Note that b is fixed in Fig. 2.

Precisely, when ξ = ζ , the parameter area can
be classified into four areas: areas (A1), (A2), (A3)
and (A4). The parameter area (A1) represents endemic
case, including the following two parts

area (A11) = {[a1, a2, b] : a2 + b

≥ 0, a1 + ξ(a2 + b) ≥ 0},
area (A12) = {[a1, a2, b] : a2 + b < 0, Ī > 0}.
In the area (A1), one has limt→∞ I (t) = Ī . I (t)
increases monotonically in area (A11) and I (t) has a
peak in area (A12).

The parameter area (A2) represents epidemic case
and is defined as follows:

area (A2) =
{

[a1, a2, b] : a2 + b < 0, Ī ≤ 0,

a1 + ξ(a2 + b) > 0

}

.

It is shown that I (t) has a unique peak and limt→∞
I (t) = 0. Here R0 > 1 holds and no EE exists.

The parameter area (A3) represents the demise of
the disease and contains the following two parts:

area (A31) = {[a1, a2, b] : a1 + ξ(a2 + b) < 0, Ī ≤ 0},

area (A32) =

⎧
⎪⎨

⎪⎩
[a1, a2, b] :

a2 + b > 0,

a1 + ξ(a2 + b) < 0,

Ī > 0, Ĩ ∗ ≤ 0

⎫
⎪⎬

⎪⎭
.

In the area (A3), limt→∞ I (t) = 0 and I (t) decreases
monotonically. Note that in the area (A32) the EE exists
andR0 < 1 holds. From Theorem 4, since Ĩ ∗ ≤ 0, the
disease is extinct.

The disease delayed outbreak phenomenon occurs
in area (A4). In this area, I has a unique minimum
value and I eventually tends to the EE. Note that in the
area (A4) the EE exists and R0 ≤ 1 holds. The area
(A4) is presented as

area (A4) =

⎧
⎪⎨

⎪⎩
[a1, a2, b] :

a2 + b > 0,

a1 + ξ(a2 + b) < 0,

Ī > 0, Ĩ ∗ > 0

⎫
⎪⎬

⎪⎭
.

When ξ < ζ , parameter area can also be classified
into four areas: areas (B1), (B2), (B3) and (B4). The
area (B1) is defined as follows:

area (B11) =

⎧
⎪⎨

⎪⎩
[a1, a2, b] : a2 > 0,

d Ĩ

dx1
(x∗

1 ) ≤ 0,

a1 + ξa2 + ζb > 0

⎫
⎪⎬

⎪⎭
,

area (B12) =
{

[a1, a2, b] : a2 > 0, x∗
1 ≥ 1,

a1 + ξa2 + ζb ≥ 0

}

,

area (B13) = {[a1, a2, b] : a2 ≤ 0, Ī > 0}.
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Fig. 2 a Parameter areas at
the case that ξ = ζ . b
Parameter areas at the case
that ξ < ζ

(a) (b)

In the area (B1), limt→∞ I (t) = Ī . I (t) increases
monotonically in the areas (B11) and (B12). I (t) has a
peak in the area (B13).

In area (B2), I (t)has auniquepeak and limt→∞ I (t) =
0. HereR0 > 1 and no EE exists; it is corresponding to
the epidemic case. The parameter area (B2) is defined
as follows.

area (B21) =
{

[a1, a2, b] : a2 ≤ 0, Ī ≤ 0,

a1 + ξa2 + ζb > 0

}

,

area (B22) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[a1, a2, b] :
a2 > 0, Ī ≤ 0,

a1 + ξa2 + ζb > 0,

d Ĩ

dx1
(x∗

1 ) > 0, x∗
1 < 1, Ĩ ∗ ≤ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Similar to the area (A3), the parameter area (B3)
depicts the extinct of disease and contains the following
three parts:

area (B31) =
{

[a1, a2, b] : a2 ≤ 0, Ī ≤ 0,

a1 + ξa2 + ζb ≤ 0

}

,

area (B32) =
{

[a1, a2, b] : a2 > 0, Ĩ ∗ ≤ 0,

a1 + ξa2 + ζb < 0

}

,

area (B33) =

⎧
⎪⎨

⎪⎩
[a1, a2, b] :

a2 > 0,

a1 + ξa2 + ζb = 0,

x∗
1 < 1, Ĩ ∗ ≤ 0

⎫
⎪⎬

⎪⎭
.

Similar to the area (A4), in the parameter area (B4)
the disease delayed outbreak phenomenon occurs. It is
defined as follows.

area (B41) =

⎧
⎪⎨

⎪⎩
[a1, a2, b] :

a2 > 0,

a1 + ξa2 + ζb ≤ 0,

Ī > 0, Ĩ ∗ > 0

⎫
⎪⎬

⎪⎭
,

area (B42) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[a1, a2, b] :
a2 > 0,

a1 + ξa2 + ζb > 0,

d Ĩ

dx1
(x∗

1 ) > 0, x∗
1 < 1, Ĩ ∗ > 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

In this area, I (t) has a uniqueminimumvalue and even-
tually tends to the EE. Note that I (t) has a minimum
and maximum value in the area (B42).

Since ai = Si0 − S̄i , i ∈ {1, 2} and b = R0 − R̄, it
is easy to get from (11) that

a1 = S10 − θ

R1
, a2 = S20 − 1 − θ

R2
, b = R0 − 1

R3
.

Hence, the areas (A1),(A2),(A3), (A4) and areas (B1),
(B2), (B3), (B4) can be transformed in areas about
parameters R1,R2,R3. When the parameter R3 is
fixed, Fig. 3 depicts the areas about [R1,R2]. θ = 0.8,
R3 = 20, S10 = 0.5, S20 = 0.4 and I0 = 0.1. The red
and green areas present areas (A1) and (A2), respec-
tively. The blue and yellow areas present areas (A3)
and (A4), respectively.

4 Simulation

In this section, based on UK COVID-19 data and the
proposed model in this paper, we will discuss how the
number of infections varies with different parameter
values. Various phenomena illustrate the validity of the
obtained results. We divide the British population into
two parts. One part S1 consists of young children (0-14
years old) and seniors (> 65 years old). The another

123



1900 S. Zhai et al.

Fig. 3 Classification of disease transmission dynamics in
[R1,R2] parameter plane when the parameter R3 is fixed

part S2 consists of people aged 15-65. The COVID-
19 data come from the Office for National Statistics
[30]. According to the Office for National Statistics,
there are 3.14 million infected. We assume 0.868 mil-
lion people recovered among infected people. The S1
part accounts for 36.2% of the total population and the
S2 part accounts for 63.8% of the total population. As
pointed out in [31], there is a basic value for infectious
disease b = 0.05249 (the probability of transmission).

When an infected person comes into contact with a sus-
ceptible person, the probability of who will be infected
is βi = kib. In this paper, we consider the initial popu-
lation density distribution [S10, S20, I0, R0]=[2.09e07,
3.79e07, 2.28e06, 8.68e05]/6.66e07. We assume k1 =
10 for S1 part, and k2 = 7 for S2 part. In addition, we
assume that the relapse rate ε = k3b, where k3 = 8.

We consider the situation that ξ < ζ . Fig. 4 dis-
plays the densities of infected people in different con-
ditions. In Fig. 4a, we choose θ = 0.2, μ = 0.01 and
γ = 0.35, the parameters lie in the area (B1). Hence,
the conditions of Theorem 3 hold, and the endemic
case occurs. In Fig. 4b, we choose θ = 0.01, μ = 0.28
and γ = 0.12, the parameters lie in the area (B2).
As shown in above, the disease has a unique peak and
limt→∞ I = 0. We choose θ = 0.1, μ = 0.3 and
γ = 0.12 in Fig. 4c, the parameters lie in the area
(B3). It is shown that the disease is extinct. We choose
θ = 0.3, μ = 0.1 and γ = 0.3 in Fig. 4d, the param-
eters lie in the area (B4). In this case, the conditions
of Theorem 5(3)(b) hold and Ī > 0. It is shown that
disease has a unique minimum and maximum value,
and limt→∞ I = Ī . As shown in Fig. 4d, the disease
will outbreak after a certain time delay.

Fig. 4 The densities of
infected people in different
conditions

(a) (b)

(c) (d)
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5 Conclusion

In this paper,we investigated an epidemiologicalmodel
with heterogeneous susceptibility that recapitulates
SIS, SIR and SIRI models. We analyzed the stabil-
ity and dynamic process of proposed model. With
the change of parameter values and initial conditions,
the dynamic process of the model may show four
situations, that is, endemic, extinction, epidemic and
delayed outbreak cases. We obtained the parameter
value area corresponding to each situation. For the
delayed outbreak situation, the epidemic curve initially
increases and decreases after a certain time delay, but
eventually increases and tends to EE. The delayed out-
break phenomenon may occur even though the basic
reproduction number is less than one. Finally, we used
theUKCOVID-19 data to illustrate the effectiveness of
the obtained results. Future research directions include
multi-virus competition scenarios or multi-group net-
work models.
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