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Abstract Anovel observer-based control policybased
on an interval type-3 fuzzy logic system is developed to
tackle themain limitations of fuzzy-based controllers in
sense of approximation of uncertainties and analyzing
nonlinear complex systems without detailed dynamics
model information. For this purpose, a novel scheme is
proposed that includes online optimized tuning rules,
a simple type reduction method, and adaptive mecha-
nisms. Also, an adaptive compensator is implemented
to enhance the robust performance of the closed-loop
system and reduce the effect of approximation errors.
For the stability analysis, appropriate Lyapunov func-
tions and Barbalat’s lemma are employed. By both
simulations and experimentally implementation, it is
shown that the suggested approach results in a more
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accurate approximation of unknown models and com-
plicated nonlinearities, and good resistance against
uncertainties and parameter variations.
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Abbreviations

IT3FLS Interval type-3 fuzzy logic system
SM Sliding mode
TS Takagi-Sugeno
IT2FLS Interval type-2 fuzzy logic system
T1FLS Type-1 fuzzy logic system
T2F Type-2 fuzzy
PI Proportional–Integral
FS Fuzzy set
MPU6050 Angle acceleration sensor
PCB Printed circuit board
GFSK Gaussian frequency shift keying
MF Membership function

1 Introduction

The dynamical model of a substantial number of prac-
tical systems such as power, transportation, robotic,
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and aerospace systems is affected by unknown uncer-
tainties and external disturbances. In view of these
undesirable and unpredictable variations, some stud-
ies have been carried out to investigate the stability
and robust performance analysis of systems over the
past few years. Among them, the concept of sliding
mode (SM) control that enforces the system states onto
a sliding surface by a discontinuous control law and
stays on it during the whole succeeding time is a useful
strategy that has been proposed [1,2]. For instance, a
higher-order SM observer-based control scheme was
suggested for nonlinear systems with unknown inputs
[3]. Themethodwas thendeveloped and combinedwith
interval observer in [4] to analyze linear parameter-
varying systems composed of strongly observable sub-
systems. For bounded and derivative bounded uncer-
tainties and tomitigate chattering phenomena, an adap-
tive high-order SM control policy has been used in [5].
Moreover, a dynamic SM algorithm, incorporating a
disturbance observer, was suggested to investigate a
mismatched disturbance in [6]. For linear and Lipschitz
nonlinear systems, polytopic type and norm bounded
uncertainties have been extensively discussed in the
researchworks [7]. It is worthmentioning that the para-
metric uncertainty has been addressed recently to over-
come the computational burden and conservatism of
analyzing uncertain systems subject to Lipschitz non-
linearities [8–10].

However, the aforementioned results require exact
model information for the control problem. Note that
the considered uncertainties are bounded and we have
access to the information of the upper bounds or belong
to specific intervals. With the restrictions imposed
on the robust stability analysis, a great number of
physical systems with unknown and complex dynam-
ics or unknown parameter variations cannot be fully
addressed. Learning mechanisms and neuro-fuzzy-
based controllers were employed to deal with unknown
dynamics [11].

For a Takagi-Sugeno (TS) fuzzy model-based sys-
tem, the boundary/regional information of the mem-
bership functions was used and the framework of mul-
tidimensional fuzzy summation has been achieved in
[12,13]. Moreover, a distributed compensator and con-
straints on themembership functions have been consid-
ered to reduce the conservativeness of the stabilization
conditions for a TS fuzzy control system [14,15]. The
event-triggered scheme for TS fuzzy systems is devel-
oped in [16–18].

Another learning-based control involves the inter-
val type-2 fuzzy logic system (IT2FLS) which has
been implemented via type-2 fuzzy (T2F) sets [19].
Moreover, the Lyapunov stability analysis has been
employed as an stability analysis tool for T2F-based
control policies [20]. Optimization algorithms such as
genetic and ant colony have been extended to design
an optimal T2F controller [21]. By selecting the bee
colony optimization technique, a T2F control approach
was proposed in [22]. This concept with the backtrack-
ing search algorithm is implemented for the control
traffic signal issues [23]. Moreover, utilizing a non-
singleton T2F-based and invasive weed optimization
algorithm, unknown dynamics were approximated in
[24] to synchronize fractional-order chaotic systems.
A T2F PI control method was designed to enhance
the robust performance of a system and reduce com-
putational complexities in [25]. Solving an iterative
optimization algorithm and employing the SM control
approach result in an T2F controller [26]. Moreover, a
self-triggered mechanism was developed for applying
an T2F control method [27]. A predictive T2F con-
troller was proposed to regulate the glucose level in
type-1 diabetes subject to completely unknown dynam-
ics [28]. The tracking control problemwas investigated
via an IT2 fuzzy [29]. An T2F set was also used for
nonlinear networked systems to design a fuzzy filter
[30]. An observer-based T2F strategy was employed
in [31] to study chaotic systems. For AC-microgrids,
the frequency regulation problem was analyzed via a
T2FLSwith adaptive optimization rules [32]. A T2FLS
incorporating a restricted Boltzmannmachine has been
extended for fractional-order multi-agent systems [33].
Such strategies have been combined with square-root-
cubature Kalman filter to reduce the voltage oscilla-
tion of active/reactive power regulation problem [34].
Note that T2F-based control law has been developed to
reduce the effect of noisy measurement [35].

Recently, the concept of an interval type-3 fuzzy
logic system (IT3FLS) has been suggested for the effi-
ciency and accuracy improvement of previous fuzzy
control results. From the approximation ability per-
spective, an IT3FLS is able to approximate more com-
plex nonlinearities and uncertainties of nonlinear sys-
tems compared to the other learning approaches. Fur-
thermore, compared to the T1FLS and T2FLS in which
the memberships are crisp value and type-1 fuzzy set,
in an IT3FLS the membership has been defined as an
T2F set [36]. While reducing the approximation and
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tracking error signals, IT3FLS-based strategies provide
more degrees of freedom in designing a robust con-
troller for unknown systems. Inspired by this concept,
an accurate approximation of unknown micro-electro-
mechanical system gyroscopes models was employed
for the control synthesis strategy in [37]. Consider-
ing an adaptive IT3FLS, the robust stabilization of
the 5G telecom power system has been analyzed [38].
Recently, an adaptive fuzzy kernel size was employed
for optimizing rule and antecedent parameters in [39].

In this work, an improved nonlinear observer-based
control scheme is designed to study the robust stabi-
lization of nonlinear systems via developing a novel
IT3FLS. The suggested learning scheme outperforms
conventional robust control policies and neuro-fuzzy
control policies demanding the known information
about the system models, the structure of uncertain-
ties, and upper bounds of external disturbances. As a
consequence, the learning-based control method with
fast tuning parameters proposed in this paper enables
us to analyze general types of uncertainties, unknown
models, and external disturbances while reconstructing
unmeasurable states through a novel learning observer.
Therefore, the stability and robustness of a wide and
general class of complex nonlinear systems can be stud-
ied via the method of this paper. In the novel learning
IT3FLS, new membership functions and online opti-
mized tuning rules are designed. Furthermore, apply-
ing a novel adaptive compensator to the system boosts
the robustness of the closed-loop system and weakens
the effects of approximation error signals. The stabil-
ity of the closed-loop system is then ensured via the
Lyapunov tool and Barbalat’s lemma. The suggested
method is tested ondifferent cases to highlight an excel-
lent robust performance.

The remaining is organized as follows. In Sect. 2, the
problem is described. In Sect. 3, the suggested FLS is
explained. The observer scheme is designed in Sect. 4.
The stability is studied in Sect. 5. The implementation
and computer simulations are investigated in Sects. 6–
7. Finally, the conclusions are given in Sect. 8.

2 System representation

Consider a nonlinear system as follows:
⎧
⎪⎨

⎪⎩

ẋi = xi+1, i = 1, ..., n − 1

ẋn = a(x) + b(x)u + δ(t)

y = x1

(1)

where x = [x1, x2, ..., xn]T =
[
x1, ẋ1, ..., x

(n−1)
1

]T

expresses state vector. In addition, nonlinear vector-
valued functionsa(.) andb(.) are unknownbut bounded,
u, y ∈ Rdenote the control signal and output of the sys-
tem. For the unknown exogenous disturbance δ(t), it
is supposed that there exists an upper bound. The sug-
gested control diagram is depicted in Fig. 1. To study
the tracking control problem by defining reference sig-
nal, the following tracking errors are considered

r = [
r, ṙ , ..., r (n−1)

]T

e = x − r =
[
e1, ė1, ..., e

(n−1)
1

]T

ê = x̂ − r =
[
ê1, ˙̂e1, ..., ê(n−1)

1

]T
(2)

where the estimations of x and e are expressed as x̂ and
ê. Moreover, one can rewrite the system dynamic as:
{
ẋ = �x + � [a(x) + b(x)u + δ(t)] ,

y = �T x
(3)

in which

� =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, � =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
0
...

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4)

Assumption 1 It is supposed that 0 < b(x) < ∞;
therefore, (3) is controllable in region Uc ⊂ R

n , des-
ignated as certain controllability [40,41], also 0 <

b(x) < ∞ represents a fixed control direction.

In the case of known system functions a(x) and b(x)

and when disturbance δ(t) = 0, the control law u∗ is
applied as follows to the system:

u∗ = b−1(x)
[
−a(x) + r (n) − KT

c x
]

(5)

Note that we design Kc = [kc1, kc2, ..., kcn]T ∈ R
n

such that sn+kcnsn−1+· · ·+kc1 is Hurwitz stable [42].
However, the controller (5) cannot be applied to the sys-
tem. Based on the following procedure, the improved
nonlinear robust control policy is designed.

• A novel adaptive IT3FLS is utilized for approxi-
mating unknown dynamic and nonlinear terms.
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• Based on the approximation information of a novel
IT3FLS, an observer is designed to improve the
robust stabilization.

• Theadaptive compensator is implemented todimin-
ish the undesirable effects of the approximation
error signals.

3 Type-3 FLS

This section is allocated for the structure of IT3FLSs
(see Fig. 2) explained as:

• The inputs are x1, ..., xn .
• Consider ϕ̃

j
i as the j − th fuzzy set (FS) for xi ,

the memberships at secondary levels σ i and σ̄i are
obtained as [43]:

ξ̄
ϕ̃
j
i |σ̄i

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
⎛

⎝

∣
∣
∣
∣xi−C

ϕ̃
j
i

∣
∣
∣
∣

ϑ
ϕ̃
j
i

⎞

⎠

σ̄i

ifC
ϕ̃
j
i

− ϑ
ϕ̃
j
i

< xi ≤ C
ϕ̃
j
i

1 −
⎛

⎝

∣
∣
∣
∣xi−C

ϕ̃
j
i

∣
∣
∣
∣

ϑ̄
ϕ̃
j
i

⎞

⎠

σ̄i

ifC
ϕ̃
j
i

< xi ≤ C
ϕ̃
j
i

+ ϑ̄
ϕ̃
j
i

0 if xi > C
ϕ̃
j
i

+ ϑ̄
ϕ̃
j
i
or xi ≤ C

ϕ̃
j
i

− ϑ
ϕ̃
j
i

(6)

ξ̄
ϕ̃
j
i |σ i

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
⎛

⎝

∣
∣
∣
∣xi−C

ϕ̃
j
i

∣
∣
∣
∣

ϑ
ϕ̃
j
i

⎞

⎠

σ i

ifC
ϕ̃
j
i

− ϑ
ϕ̃
j
i

< xi ≤ C
ϕ̃
j
i

1 −
⎛

⎝

∣
∣
∣
∣xi−C

ϕ̃
j
i

∣
∣
∣
∣

ϑ̄
ϕ̃
j
i

⎞

⎠

σ i

ifC
ϕ̃
j
i

< xi ≤ C
ϕ̃
j
i

+ ϑ̄
ϕ̃
j
i

0 if xi > C
ϕ̃
j
i

+ ϑ̄
ϕ̃
j
i
or xi ≤ C

ϕ̃
j
i

− ϑ
ϕ̃
j
i

(7)

ξ
ϕ̃
j
i |σ̄i

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
⎛

⎝

∣
∣
∣
∣xi−C

ϕ̃
j
i

∣
∣
∣
∣

ϑ
ϕ̃
j
i

⎞

⎠

1
σ̄i

ifC
ϕ̃
j
i

− ϑ
ϕ̃
j
i

< xi ≤ C
ϕ̃
j
i

1 −
⎛

⎝

∣
∣
∣
∣xi−C

ϕ̃
j
i

∣
∣
∣
∣

ϑ̄
ϕ̃
j
i

⎞

⎠

1
σ̄i

ifC
ϕ̃
j
i

< xi ≤ C
ϕ̃
j
i

+ ϑ̄
ϕ̃
j
i

0 if xi > C
ϕ̃
j
i

+ ϑ̄
ϕ̃
j
i
or xi ≤ C

ϕ̃
j
i

− ϑ
ϕ̃
j
i

(8)

ξ
ϕ̃
j
i |σ i

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
⎛

⎝

∣
∣
∣
∣xi−C

ϕ̃
j
i

∣
∣
∣
∣

ϑ
ϕ̃
j
i

⎞

⎠

1
σ i

ifC
ϕ̃
j
i

− ϑ
ϕ̃
j
i

< xi ≤ C
ϕ̃
j
i

1 −
⎛

⎝

∣
∣
∣
∣xi−C

ϕ̃
j
i

∣
∣
∣
∣

ϑ̄
ϕ̃
j
i

⎞

⎠

1
σ i

ifC
ϕ̃
j
i

< xi ≤ C
ϕ̃
j
i

+ ϑ̄
ϕ̃
j
i

0 if xi > C
ϕ̃
j
i

+ ϑ̄
ϕ̃
j
i
or xi ≤ C

ϕ̃
j
i

− ϑ
ϕ̃
j
i

(9)

where ξ̄
ϕ̃
j
i |σ̄i

/ξ̄
ϕ̃
j
i |σ i

and ξ
ϕ̃
j
i |σ̄i

/ξ
ϕ̃
j
i |σ i

denote the

upper/lower memberships for ϕ̃
j
i at σ i and σ̄i . Cϕ̃

j
i

denote the center of C
ϕ̃
j
i
and ϑ

ϕ̃
j
i
and ϑ̄

ϕ̃
j
i
are the

distances of C
ϕ̃
j
i
to the start/end points of ϕ̃

j
i (see

Fig. 3).
• The rule firings are obtained as:


̄l
σ̄i

=
∏n

j=1
ξ̄
ϕ̃
p j
j | σ̄i

(10)


̄l
σ i

=
∏n

j=1
ξ̄
ϕ̃
p j
j | σ i

(11)


l
σ̄i

=
∏n

j=1
ξ

ϕ̃
p j
j | σ̄i

(12)


l
σ i

=
∏n

j=1
ξ

ϕ̃
p j
j | σ i

(13)

where l − th rule is:

l − th Rule :
i f x1 is ϕ̃

p1
1 and x2 is ϕ̃

p2
2 and · · · xn is ϕ̃

pn
n

T hen μ ∈ [
θ l , θ̄l

]
, l = 1, ..., M

(14)

where ϕ̃
p j
i is the p j − th FS for xi and θ l and θ̄l

are consequent trainable parameters.
• The output is written as:

μ =
∑nσ

i=1

(
σ iμi

+ σ̄i μ̄i

)

∑nσ

i=1

(
σ i + σ̄i

) (15)

where

μ̄i =
∑nr

l=1

(

̄l

σ̄i
θ̄l + 
l

σ̄i
θ l

)

∑nr
l=1

(

̄l

σ̄i
+ 
l

σ̄i

) (16)

μ
i
=
∑nr

l=1

(

̄l

σ i
θ̄l + 
l

σ i
θ l

)

∑nr
l=1

(

̄l

σ i
+ 
l

σ i

) (17)

The output (15) is rewritten as:

ŷ (x |θ) = θT ζ (18)

where

ζ T =
[
ζ
1
, ..., ζ

nr
, ζ̄1, ..., ζ̄nr

]
(19)

θT = [
θ1, ..., θnr , θ̄1, ..., θ̄nr

]
(20)

ζ
l
=

∑nσ
i=1 σ i


l
σ i

∑nσ
i=1 (σ i+σ̄i)

∑nr
l=1

(

̄l

σ i
+
l

σ i

)+
∑nσ

i=1 σ̄i

l
σ̄i

∑nσ
i=1 (σ i+σ̄i)

∑nr
l=1

(

̄l

σ̄i
+
l

σ̄i

)

(21)

ζ̄l =
∑nσ

i=1 σ i 
̄
l
σ i

nσ∑

i=1
(σ i+σ̄i)

∑nr
l=1

(

̄l

σ i
+
l

σ i

)+
∑nσ

i=1 σ̄i 
̄
l
σ̄i

∑nσ
i=1 (σ i+σ̄i)

∑nr
l=1

(

̄l

σ̄i
+
l

σ̄i

)

(22)
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Fig. 1 Diagram of the
suggested controller

Fig. 2 Type-3 FLS

Fig. 3 Type-3 FS
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4 Observer-based control policy

To tackle the complexities of the problem, the control
signal (5) is modified and rewritten as follows:

u =
(
b̂(x̂) + εsign

(
b̂
(
x̂
)))−1

×
[
−â(x̂) + r (n) − KT

c ê + us
]

(23)

where x̂/â(x̂)/b̂(x̂)/ê denote the estimates of x/a(x)

/b(x)/e. Furthermore, a small positive constant ε in

the term εsign
(
b̂
(
x̂
))

in (23) provides us the abil-

ity to solve the singularity of the control signal u and

sign
(
b̂
(
x̂
))

denotes a signum function described as

follows:

sign
(
b̂
(
x̂
)) =

{
1 b̂

(
x̂
) ≥ 0

0 b̂
(
x̂
)

< 0
(24)

The adaptation law us is designed to diminish the
undesirable effects of the errors and disturbances
preserving the robustness of the suggested control
method. Through adding and subtracting the term(
b̂(x̂) + εsign

(
b̂
(
x̂
)))

u, Eq. (3) will be written as

follows:
⎧
⎪⎪⎨

⎪⎪⎩

.
x = �x + �

⎛

⎝
a(x) +

[
b(x) − b̂(̂x) − εsign

(
b̂ (̂x)

)]
u

+
[
b̂(̂x) + εsign

(
b̂ (̂x)

)]
u + δ(t)

⎞

⎠

y = �T x

(25)

Moreover, employing (23) for (25) results in

ė = �e − �KT
c ê + �

(
a(x) − â(x̂)

+
[
b(x) − b̂(x̂) − εsign

(
b̂
(
x̂
))]

u

+ us + δ(t))

e1 = �T e (26)

where e1 = y−r = x1−r . Regarding (26), to estimate
the vector e, the observer is utilized in the form of the
following

˙̂e = (
� − �KT

c

)
ê + L0�

T ẽ
ê1 = �T ẽs

(27)

where the gains L0 = [lo1, lo2, ..., lon]T ∈ R
n is

designed to make the characteristic polynomial � −
L0�

T Hurwitz. By subtracting Eq. (27) from (26), the
estimation error dynamic ˙̃e is acquired as follows:

˙̃e =
(
� − L0�

T
)
ẽ

+�
(
a(x) − â(̂x)

[
b(x) − b̂(̂x) − εsign

(
b̂ (̂x)

)]
u

+ us + δ(t))

ẽ1 = �T ẽ (28)

5 Stability analysis

This section deals with the stability analysis and con-
vergence of the error signals via the Lyapunov tools and
Barbalat’s approach. To analyze the stability, adding
and subtracting â∗(x̂) and b̂∗(x̂)u in (28) leads to

˙̃e =
(
� − L0�

T
)
ẽ + �

(
a(x) − â∗(x̂)

+
[
b(x) − b̂∗(x̂) − εsign

(
b̂
(
x̂
))]

u

+
[
b̂∗(x̂) − b̂(x̂)

]
u

+â∗(x̂) − â(x̂) + us + δ(t)
)

ẽ1 = �T ẽ (29)

From (18),
[
â∗(x̂) − â(x̂)

]
and

[
b̂∗(x̂) − b̂(x̂)

]
are

expressed as:
[
â∗(x̂) − â(x̂)

] = (
θ∗
a − θa

)T
ζa = θ̃Ta ζa[

b̂∗(x̂) − b̂(x̂)
]

= (
θ∗
b − θb

)T
ζb = θ̃Tb ζb

(30)

The approximation errors Ja and Jb are defined as:

Ja
�= a(x) − â∗(x̂)

Jb
�= b(x) − b̂∗(x̂)

(31)

Note that a(x) and b(x) are bounded which leads to
the boundedness of Ja and Jb in (31) with the upper
bounds J̄a and J̄b. Now, regarding (30) and (31), one
has

˙̃e =
(
� − L0�

T
)
ẽ

+ �
(
Ja +

[
Jb − εsign

(
b̂
(
x̂
))]

u

+ θ̃Tb ζbu + θ̃Ta ζa + us + δ(t)
)

ẽ1 = �T ẽ (32)

Select the Lyapunov function as:

V (t) = 1

2
êTPc ê
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+1

2
ẽTPo ẽ + 1

2γa
θ̃Ta θ̃a + 1

2γb
θ̃Tb θ̃b

+ 1

2γ ˆ̄Ja

(
J̄a − ˆ̄Ja

)2 + 1

2γ ˆ̄Jb

(
J̄b − ˆ̄Jb

)2

+ 1

2γ ˆ̄δ

(
δ̄ − ˆ̄δ

)2
(33)

where ˆ̄Ja/ ˆ̄Jb/ ˆ̄δ, are estimations of J̄a/ J̄b/δ̄ which are
the upper bounds of Ja/Jb/δ. Moreover, defining θ̃a =
θ∗
a − θa and θ̃b = θ∗

b − θb, γ ˆ̄Ja , γ ˆ̄Jb , γa and γb are

the adaptation rate of ˆ̄Ja , ˆ̄Jb , θa and θb, respectively.
Pc,Po ∈ R

n×n are positive definite matrices satisfying
the following

�c
TPc + Pc�c = −Qc

�o
TPo + Po�o = −Qo

(34)

where�c = �−�KT
c ,�o = �−Lo�

T , and Qc/Qo

are the arbitrary n × n positive definite matrices. Uti-
lizing (32), the time derivative of V is in the form of
the following

V̇ (t) = 1

2
êT
(
�c

TPc + Pc�c

)
ê

+1

2
ẽT
(
�c

TPo + Po�c

)
ẽ + êTPcLo ẽ1

+ẽTPo�
{
Ja +

[
Jb − εsign

(
b̂(x̂)

)]
u +θ̃Tb ζbu

+ θ̃Ta ζa + us + δ
}

− 1

γa
θ̃Ta θ̇a − 1

γb
θ̃Tb θ̇b − 1

γ ˆ̄Ja

(
J̄a − ˆ̄Ja

) ˙̄̂
Ja

− 1

γ ˆ̄Jb

(
J̄b − ˆ̄Jb

) ˙̄̂
Jb

− 1

γ ˆ̄δ

(
δ̄ − ˆ̄δ

) ˙̄̂
δ (35)

Considering the terms θ̃Ta ζa ẽ
TPo� − 1

γa
θ̃Ta θ̇a and

θ̃Tb ζb ẽ
TPo�u − 1

γb
θ̃Tb θ̇b, the adaptation laws of θa/θb

can be obtained as follows:

θ̇a
�= γa ẽ

TPo�ζa

θ̇b
�= γb ẽ

TPo�ζbu
(36)

Note that ẽTPo� is scalar. Regarding (34), (36), and
V̇ (t), and after some calculations, it can be deduced
that

V̇ (t) ≤ −1

2
êTQc ê − 1

2
ẽTQo ẽ + êTPcLo ẽ1

+
(
J̄a − ˆ̄Ja

)
[
∣
∣
∣ẽTPo�

∣
∣
∣− 1

γ ˆ̄Ja

˙̄̂
Ja

]

+
(
J̄b − ˆ̄Jb

)
[
∣
∣
∣ẽTPo�

∣
∣
∣ |u| − 1

γ ˆ̄Jb

˙̄̂
Jb

]

+
(
δ̄ − ˆ̄δ

)
[
∣
∣
∣ẽTPo�

∣
∣
∣− 1

γ ˆ̄δ

˙̄̂
δ

]

+
∣
∣
∣ẽTPo�

∣
∣
∣

ˆ̄Ja +
∣
∣
∣ẽTPo�

∣
∣
∣ |u| ˆ̄Jb

− ẽTPo�εsign
(
b̂(x̂)

)
u + ẽTPo�us

+
∣
∣
∣ẽTPo�

∣
∣
∣
ˆ̄δ (37)

According to (37), the adaptation laws of ˆ̄Ja , ˆ̄Jb and ˆ̄δ
can be defined as:

˙̄̂
Ja

�= γ ˆ̄Ja

∣
∣
∣ẽTPo�

∣
∣
∣

˙̄̂
Jb

�= γ ˆ̄Jb

∣
∣
∣ẽTPo�

∣
∣
∣ |u|

˙̄̂
δ

�= γ ˆ̄δ
∣
∣
∣ẽTPo�

∣
∣
∣

(38)

Using adaptation laws (38), Eq. (37) can be rewritten
as follows:

V̇ (t) ≤ −1

2
êTQc ê − 1

2
ẽTQo ẽ + êTPcLo ẽ1

+
∣
∣
∣ẽTPo�

∣
∣
∣

ˆ̄Ja +
∣
∣
∣ẽTPo�

∣
∣
∣ |u| ˆ̄Jb

− ẽTPo�εsign
(
b̂(x̂)

)
u

+ ẽTPo�us +
∣
∣
∣ẽTPo�

∣
∣
∣
ˆ̄δ (39)

Considering (39), the compensator us is designed as

us = −sign
(
ẽT Po�

)
⎧
⎨

⎩
ˆ̄Ja + ˆ̄Jb |u| + ˆ̄δ

+ êT PcLo ẽ1
∣
∣
∣ẽT Po�

∣
∣
∣+ ε

+ εsign
(
b̂(̂x)

)
u

⎫
⎬

⎭
(40)

From (39) and (40), and considering:

sign
(
ẽT Po�

)
·
(
ẽT Po�

)
=
∣
∣
∣ẽT Po�

∣
∣
∣ (41)

and

sign
(
ẽT Po�

)
·
(
ẽT Po�

)

∣
∣
∣ẽT Po�

∣
∣
∣+ ε

≈ 1 (42)
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one achieves that

V̇ (t) ≤ −1

2
êTQc ê − 1

2
ẽTQo ẽ (43)

To prove lim
t→∞ ê = 0 and lim

t→∞ ẽ = 0, one has to

demonstrate ê ∈ �2 , ẽ ∈ �2 and the boundedness of
˙̂e/ ˙̃e. Moreover, we have
∫ t

0
V̇ (τ )dτ = V (t) − V (0) (44)

Regarding the properties of the Lyapunov function, it
is crystal clear that

−
∫ t

0
V̇ (τ )dτ = V (0) − V (t) ≤ V (0) < ∞ (45)

Moreover, it is evident that

−1

2
êTQc ê ≤ −1

2
λmin (Qc)

∥
∥ê
∥
∥2, −1

2
ẽTQo ẽ ≤

−1

2
λmin (Qo) ‖ẽ‖2, (46)

in which λmin (Qc) and λmin (Qo) denote the minimum
eigenvalues of Qc and Qo respectively, then

1
2

∫ t
0

[
λmin (Qc)

∥
∥ê(τ )

∥
∥2 + λmin (Qo) ‖ẽ(τ )‖2

]
dτ < ∞

⇒
√
∫ t
0

[∥
∥ê(τ )

∥
∥2 + ‖ẽ(τ )‖2

]
dτ < ∞

⇒
⎧
⎨

⎩

√
∫ t
0

∥
∥ê(τ )

∥
∥2 dτ < ∞

√∫ t
0 ‖ẽ(τ )‖2 dτ < ∞

(47)

Therefore, one can get that ê ∈ �2 , ẽ ∈ �2. Moreover,
regarding (27), (32), and assuming that the control sig-
nal and approximation errors Ja/Jb are bounded, one
has ˙̂e ∈ �∞ , ˙̃e ∈ �∞. As a sequence, utilizing the Bar-
balat’s lemma results in

lim
t→∞ ê(t) = 0

lim
t→∞ ẽ(t) = 0

(48)

Remark 1 The IT3FLSs have a better ability to esti-
mate the uncertainties. So, instead of considering upper
bounds for uncertainties in a conservative approach,
IT3FLSs by giving a better estimation efficiency, help
in the reduction of conservatism.

6 Practical implementation

Example 1 In this section, the capability of the designed
control strategy is experimentally scrutinized. The
setup is depicted in Fig. 4. The robot has two conven-
tionalwheelswith a diameter of 7 cm that are coupled to

Fig. 4 Example 1: Experimental setup

two high-precision motor steppers and two idle pins to
keep it balanced. The robot contains eight sharp sensors
on each of its four sides, as well as an MPU6050 angle
acceleration sensor at its center of gravity. The motors
are mounted on a 1.5 mm aluminum chassis that serves
as the robot’s bottom plate. Two-phase stepper motors
provide a step precision of 1.8 degrees per step. The
surface of the chassis is lifted using four 7 cm spacers
in order to install the PCB on it. The NRF24L01 radio
transmitter module is used to communicate between
the robot and the laptop. This module’s communica-
tion modulation is GFSK, and the chip’s communica-
tion frequency is 2.4 GHz. The objective is to design a
control law to ensure that the robot follows the desired
path.

The desired path is considered to be the first state of
following chaotic system:
⎧
⎪⎪⎨

⎪⎪⎩

D0.97
t y11 = 35 (y12 − y11) + 35y12y13

D0.97
t y12 = 25y11 − 5y11y13 + y12 + y14

D0.97
t y13 = y11y12 − 4y13

D0.97
t y14 = −35y12

(49)

The path following performance is depicted in Fig. 5.
It is perceptible that the robot tracks the prescribed
chaotic path by implementing the suggested controller
(23).

One of the applications of the suggested approach is
to design a secure path for patrol robots. As the robots
follow the designed chaotic reference signal, the pre-
diction of their path gets harder. In this way, the vertical
coordinate represents displacement. In anotherway, the
chaotic reference can be used for the speed of the robot.
In other words, the robot moves in a straight line at a
chaotic variable speed.
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Fig. 5 Example 1: The
path-following response
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7 Computer simulations

Three computer simulations will be performed in this
section to analyze the satisfaction of both observer and
control objectives with unknown models/states, uncer-
tainties, and external disturbances. The designing pro-
cess is illustrated in detail for the first example. For the
other examples, the process is similar. In all examples,
the range of input space is normalized into − 1 and 1,
and for each input, 3 MFs are considered. The centers
of MFs are considered to be − 1, 0, and 1, to cover the
input range.

Example 2 Based on the Euler-Lagrange equations,
the flexible joint robot subject to unknown models is
studied (see [44,45] for more details)
{
I r̈1 + �gℵ sin(r1) + ρ(r1 − r2) = 0
μr̈2 − ρ(r1 − r2) = u

(50)

The system dynamic is converted to the form of:

ẋ1 = x2
ẋ2 = −�gℵ

I sin(x1) − ρ
I (x1 − x3)

ẋ3 = x4
ẋ4 = ρ

μ
(x1 − x3) + 1

μ
u

(51)

Utilizing a transformation results in

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = −
(

�gℵ
I

cos(z1) + ρ

I
+ ρ

J

)

z3

+�gℵ
I

(

z22 − ρ

μ

)

sin(z1) + ρ

Iμ
u (52)

in which,

z1 = x1
z2 = x2
z3 = −�gℵ

I sin(x1) − ρ
I (x1 − x3)

z4 = −�gℵ
I x2 cos(x1) − ρ

I (x2 − x4)

(53)

Now, (52) is expressed as:

żi = zi+1 , i = 1, 2, 3
ż4 = a(z) + u + δ

z = [
z1 z2 z3 z4

]T
(54)

The system parameters are declared as:
g = 9.80m/s2, � = 2kg, ρ = 2N/m, I = 2Kgm2

and ℵ = 1m. Moreover, δ denotes white noise with
the static characteristic (N ∼ (0, 0.1), affecting the
performance of the system.To implement the suggested
observer-based, one has the following

1. The gainsKc and Lo should adjust the roots of s4 +
kc4s3 + kc3s2 + kc2s + kc1 and s4 + lo1s3 + lo2s2 +
lo3s + lo4 as −10 and −20, respectively.

2. Solving (34), matrices Pc and Po are selected as:

Qc = Qo = 10−3

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

Pc =

⎡

⎢
⎢
⎣

1.3881 0.6549 0.0955 0
0.6549 0.3297 0.0542 0.0003
0.0955 0.0542 0.0120 0.0001

0 0.0003 0.0001 0

⎤

⎥
⎥
⎦

Po =

⎡

⎢
⎢
⎣

313.5117 −0.0005 −0.5047 0.0005
−0.0005 0.5047 −0.0005 −0.0040
−0.5047 −0.0005 0.0040 −0.0005
0.0005 −0.0040 −0.0005 0.0001

⎤

⎥
⎥
⎦

(55)

3. Given y = z1 = x1 and r(s) = 1
s

10
s+10 , solving (27)

to obtain ẑ = [
ẑ1 ẑ2 ẑ3 ẑ4

]T
.

4. The proposed IT3FLS â(ẑ) is implemented for the
approximation of a(z) in (54). Note that 3 MFs are
employed for inputs.

5. The adaptation rates areγ ˆ̄Ja = 0.5, γ ˆ̄δ = 0.5, γθa =
0.1

6. Regarding (23), one can design

us = − tanh
(
ẽTPo�

) { ˆ̄Ja + ˆ̄δ + ε tanh
(
b̂(̂x)

)
u

+ êTPcLo ẽ1
∣
∣
∣ẽTPo�

∣
∣
∣+ 0.001

⎫
⎬

⎭
(56)
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Fig. 6 Example 2: The
tracking response
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Fig. 7 Example 2: Control
signal
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Simulation results on a flexible joint robot are
demonstrated in Figs. 6 and 7, while Fig. 6 portrays the
tracking performance/errors. It is obvious that apply-
ing the suggested procedure results in stable tracking
errors and robust stability of the closed-loop system.
Furthermore, Fig. 7 verifies that the variation of the
control signal is appropriate.

Example 3 The suggested IT3FLS-based control law
is employed to control the two-link robot manipulator.
The system dynamic is represented as [46]:

H11q̈1 + H12q̈2 − hq̇2q̇1 − h (q̇2 + q̇2) q̇2 = τ1
H21q̈1 + H22q̈2 + hq̇1q̇1 = τ2

(57)

with

H11 = α1 + 2α3 cos q2 + 2α4 sin q2ϕ
H12 = H21 = α2 + α3 cos q2 + α4 sin q2
H22 = α2

h = α3 sin q2 − α4 cos q2
α1 = I1 + m1l2c1 + Ie + mel2ce + mel21
α2 = Ie + mel2ce
α3 = mel1lce cos δe
α4 = mel1lce sin δe

(58)

Moreover, it is easy to acquire that

ẋ11 = x12

ẋ12 = a1(x11, x12, x21, x22, u2)

+b1(x11, x12, x21, x22) u1

ẋ21 = x22

ẋ22 = a2(x11, x12, x21, x22, u1)

+ b2(x11, x12, x21, x22) u2

y1 = x12 , y2 = x22 (59)

where

x11 = q1, x12 = q̇1, x21 = q2, x22 = q̇2 , u1 = τ1, u2 = τ2
[
a1
a2

]

=
[
H11 H12

H21 H22

]−1 [−hx22 −h (x22 + x12)
hx12 0

] [
x12
x22

]

b1 = H22
H22H11−H12H21

, b2 = H11
H22H11−H12H21

(60)

Simulation parameters are m1 = 1 , l1 = 1,me =
2, δe = 30◦, I1 = 0.12, lc1 = 0.5, Ie = 0.25, lce =
0.6 and r = sin(t). Utilizing the suggested method
of this paper, a1, a2, b1 and b2 in (59) are estimated
using the proposed IT3FLS â1, â2, b̂1 and b̂2. Note that
functions â1 and â2 have five inputs. Moreover, one has
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Fig. 8 Example 3:
Tracking performance
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Fig. 9 Example 3: Control
signals
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the following:

Qc =
[
1 0
0 1

]

, Pc =
[
3.3462 0.003
0.003 0.0193

]

,

Kc = [
169 26

]T

Lo =
[
1 0
0 1

]

, Po =
[
10.0062 −0.5
−0.5 0.0313

]

,

Lo = [
80 1600

]T

γ ˆ̄Ja = 0.1, γ ˆ̄δ = 0.1, γθa = 10, γθb

= 10, γ ˆ̄wb
= 0.1, ε = 0.001 (61)

The time evolutions of errors and the controller are
sketched in Figs. 8 and 9, respectively. Regarding sim-
ulation analysis, it is vividly clear that the suggested
IT3FLS control strategy is able to estimate and stabilize
the state variables of unknown dynamics with signifi-
cant performance and without chattering phenomenon.

Example 4 The control law is implemented for the two
inverted pendulums. The dynamics are as follows: (see
[47] for detailed discussion)

ẋ11 = x12
ẋ12 = a1(x11, x12, x21, x22) + b1u1
ẋ21 = x22
ẋ22 = a2(x11, x12, x21, x22) + b2u2
y1 = x12 , y2 = x22

(62)

with

a1(x11, x12, x21, x22)

= g

cl
x11 − m

M
x212 sin(x11) + k [ϕ(t) − cl]

cml2

(−ϕ(t)x11 + ϕ(t)x21 − x1 + x2)

a2(x11, x12, x21, x22) = g

cl
x21 − m

M
x222 sin(x21)

+k [ϕ(t) − cl]

cml2

× (−ϕ(t)x21 + ϕ(t)x11 + x1 − x2)
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Fig. 10 Example 4:
Tracking performance
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Fig. 11 Example 4:
Controls signals
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b1 = b2 = 1

cml2

= sin(wt), x1 = sin(w1t),

x2 = sin(w2t) + L (63)

For simulations, the parameters are M = m =
0.98 0, l = 1.1, c = 0.50, w = 4, w1 = 2, w1 =
3, L = 2, and r = 0.
From the proposed method, a1 and a2 in (62) are
unknown and will be approximated via the proposed
IT3FLS.

(
x̂11, x̂12

)
and

(
x̂21, x̂22

)
are selected for input

of membership functions where
[−1 0 1

]
denote cen-

ters and upper/lower width are selected as 0.8/0.4. To
design the control strategy, the parameters are:

Qc =
[
1 0
0 1

]

, Pc =
[
25.01 0
0 0.0025

]

,

Kc = [
10000 200

]T

Qo =
[
1 0
0 1

]

, Po =
[
137.5 −0.5
−0.5 0.0023

]

,

Lo = [
1100 302500

]T

γ ˆ̄Ja1 = 0.05, γ ˆ̄Ja2 = 0.05,

γθa1 = 5, γθa2 = 5, ε = 0.001 (64)

The tracking trajectory is sketched in Fig. 10, while
controllers are in Fig. 11. Comparingwith the results of
[47], the tunable parameters of this paper are less than
that of [47] and the tracking errors are considerably less
which confirm the superiority of the IT3FLS observer-
based control policy of this paper.

Example 5 To have a comparison, Table 1 provides
previous results of type-1/type-2 fuzzy-based strate-
gies. In this regard, ei = yi − r i = 1, 2 and
ei j = xi j − x̂i j , i, j = 1, 2 stand for the error signals.
Note that T represents the final time and the sampling
time specified by ts = 0.001. It is obvious that utiliz-
ing IT3FLS leads to the better performance compared
with employing type-2/type-1. Moreover, the number
MFs is decreased which is another advantage of apply-
ing IT3FLS of this paper. Therefore, wide ranges of
complexities and uncertainties can be studied via the
suggested method of this paper.

8 Conclusion

Based on an online approximation of nonlinear func-
tions via designing novel IT3FLS, an observer-based
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Table 1 Example 5: The comparison of results

Example 3 Example 4

Type-1 Type-2 Type-3 Type-1 Type-2 Type-3

√
T/ts∑

t=1
e12(t) 8.9794 6.5043 4.1074 3.9922 3.9118 2.0147

√
T/ts∑

t=1
e22(t) 11.4152 9.2876 5.4501 3.9633 3.9456 3.9840

√
T/ts∑

t=1
ê211(t) 0.6345 0.0970 0.0140 6.5331 4.7794 4.8014

√
T/ts∑

t=1
ê212(t) 537.1854 514.1561 414.0144 904.7340 803.7724 541.1040

√
T/ts∑

t=1
ê221(t) 10.2552 14.1018 12.2114 2.5352 0.8003 0.2547

√
T/ts∑

t=1
ê222(t) 96.8741 53.8202 34.5704 363.0379 468.0687 314.9457

√
T/ts∑

t=1
u12(t) 30824 18573 18602 14101 13940 13871

√
T/ts∑

t=1
u22(t) 905.1204 977.7816 980.7014 18171 18332 19041

No. of MFs 3 2 2 5 2 2

control law was developed to study uncertain non-
linear systems in this paper. The proposed method
removed the restrictions of previous results of model-
based control strategies and type-1/type-2 fuzzy-based
control approaches and also improved the performance
of a system and robustness against unknown dynam-
ics, uncertainties, and unknown disturbances without
detailed dynamics model information. Utilizing the
proposed adaptive laws, approximation errors con-
verged to zero and the upper bounds of exogenous
disturbances were estimated online. Moreover, the sta-
bility of all error dynamics was guaranteed via using
an appropriate Lyapunov function. Several simulations
and a practical implementation have been provided to
highlight the capabilities of our method in reducing
computational burden, acquiring appropriate transient
response, solving the robust tracking control problem,
and ensuring robustness against unknown exogenous
disturbances and uncertainties.
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