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Abstract In the present paper, a spatially discretized
diffusive Brusselator model with zero-flux boundary
conditions is considered. Firstly, the global existence
and uniqueness of the positive solution are proved.
Then the local stability of the unique spatially homoge-
neous steady state is considered by analyzing the rel-
evant eigenvalue problem with the aid of decoupling
method. Hence, the occurrence conditions of Turing
bifurcation and Hopf bifurcation for the model at this
steady state are obtained. Meanwhile, the comparative
simulations on the stability regions of the steady state
between the spatially discretized diffusive Brusselator
model and its counterpart in continuous space are given.
Furthermore, the approximate expressions of the bifur-
cating periodic solutions are derived according to Hopf
bifurcation theorem. The bifurcating spatially nonho-
mogeneous periodic solutions show the formation of
a special kind of periodic structures for this model.
Finally, numerical simulations are given to demonstrate
the theoretical results.
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1 Introduction

The Brusselator reaction-diffusion model, which was
introduced by Prigogine and Lefever in 1968 as
the first reaction-diffusion model to study chemical
instabilities, became the classical paradigm used in
many researches devoted to dissipative structures [1–
3]. Actually, the theory of oscillating reactions was
accepted in chemically mechanism until the named
“Brusselator” was proposed [4]. And further, the Brus-
selator model can describe the chemical morphogene-
sis and pattern formation, the studies of which receive
more and more attentions nowadays. The modeling of
the Brusselator was based on the assumption of a sim-
ple reaction scheme, which consists of the following
steps:

A → X,

2X + Y → 3X,
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B + X → Y + F,

X → E,

wherein the overall reaction is A + B → E + F.

In this process, X and Y represent the two interme-
diate components, A and B denote the two reactants,
and E and F denote the two final products, respec-
tively. In addition, the concentrations of the initial and
final products A, B, E, F are maintained constant. In
the following kinetic equations, A, B also denote the
concentrations of the two reactants, respectively.Hence
A, B are positive constants as follows.

For simplification, Prigogine and Lefever [5]
assumed a one-dimensional medium and derived the
following kinetic equations

⎧
⎪⎨

⎪⎩

Xt = DX
∂2X

∂r2
+ k1A + k2X2Y − k3B X − k4X,

Yt = DY
∂2Y

∂r2
+ k3B X − k2X2Y.

(1.1)

(see, e.g., [5–7] for more details). Here X (r, t) and
Y (r, t) denote the concentrations of the two intermedi-
ate components X and Y at space location r and time
t , respectively. The parameters DX and DY denote the
Fickian molecular diffusion coefficients of X and Y ,
respectively. Moreover, k1, k2, k3, k4 denote the reac-
tion coefficients of every step, respectively.

Due to the abundant dynamics, the Brusselator
model has been widely studied in the literature. For
examples, the existence andglobal behavior of spatially
nonhomogeneous steady state were investigated in [8–
15]. The existence of a global attractor was discussed
in [6,16,17]. The existence of Turing instability and
Turing patterns was established in [7,12,18,19]. The
existence of Hopf bifurcation was studied in [12,19–
25]. The spatiotemporal Turing–Hopf pinning solu-
tionswas found in [26].Very recently, Turing instability
and spatially homogeneous Hopf bifurcation subject to
Neumann boundary condition was studied in [27].

By scaling of the variables as that in [7], we can
assume all of k1, k2, k3, k4 equal to 1. Without loss of
generality, we further assume r belongs to [0, 1] as that
in [25], then model (1.1) becomes

⎧
⎪⎨

⎪⎩

Xt = d
∂2X

∂r2
− (B + 1)X + X2Y + A,

Yt = θd
∂2Y

∂r2
+ B X − X2Y,

(1.2)

where d = DX , θ = DY /DX , r ∈ [0, 1]. Model (1.2)
has a unique stationary solution given by (A, B/A). To
shift this stationary solution to the origin, let

x(r, t) = X (r, t) − A, y(r, t) = Y (r, t) − B/A,

then model (1.2) becomes

⎧
⎪⎨

⎪⎩

xt = d
∂2x

∂r2
+ (B − 1)x + A2y + h(x, y),

yt = θd
∂2y

∂r2
− Bx − A2y − h(x, y),

(1.3)

where h(x, y) = (B/A)x2 + 2Axy + x2y, and r
belongs to [0, 1].

As mentioned above, the existence of Hopf bifur-
cations of model (1.3) was considered, respectively,
in [25], where both zero-flux boundary conditions and
fixed boundary conditions were considered. In order to
perform the numerical calculations of Hopf bifurcation
formulae, the spatially discretized counterpart ofmodel
(1.3) was also derived by using a simple finite differ-
ence scheme therein. Actually, for some integer n ≥ 1
and k ∈ Sn � {1, 2, · · · , n}, let Δr = 1/(n − 1) and
rk = kΔr , then x(rk, t) and y(rk, t) can be approx-
imated by xk(t) and yk(t), respectively. Further, by
using 3-point centered difference approximations for
∂2x
∂r2

and ∂2 y
∂r2

, they derived the spatially discretized dif-
fusive Brusselator model:

⎧
⎪⎨

⎪⎩

dxk

dt
= D∇2xk + (B − 1)xk + A2yk + h(xk, yk),

dyk

dt
= θ D∇2yk − Bxk − A2yk − h(xk, yk),

(1.4)

where k ∈ Sn, D = d/(Δr)2 = (n − 1)2d and ∇2

denotes the discrete diffusion ∇2uk = uk−1 − 2uk +
uk+1.

The spatially discretized equations had been studied
a lot. To name a few, the spatially discretizedFitzHugh–
Nagumo equations was studied in [28] and the spa-
tially discretized Ginzburg–Landau–BBM equations
was studied in [29]. The spatially discretized equa-
tions are essentially coupled ordinary differential ones,
which also arises from mathematical models in many
scientific disciplines, such as CY-CNN models [30–
33], epidemic models on patches [34–36]. In Turing’s
famous paper [37], he exactly used this kind of differ-
ential equations to show his striking idea of “diffusion-
driven instability”.
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To ensure the positivities of X (rk, t) and Y (rk, t),
we consider system (1.4) subject to the following initial
conditions

xk(0) ≥ −A, yk(0) ≥ −B/A, ∀k ∈ Sn . (1.5)

Furthermore, we consider the zero-flux boundary con-
ditions

x0(t) = x1(t), xn+1(t) = xn(t),

y0(t) = y1(t), yn+1(t) = yn(t), t ≥ 0. (1.6)

The boundary conditions (1.6) correspond to the spa-
tially discretized Neumann boundary conditions for
reaction-diffusion equations.

In [25],model (1.4)was studied numerically to show
that the Hopf bifurcating parameters agree quite well
with its counterpart in continuous space, i.e., model
(1.3), without theoretical analyses. In the present paper,
we provide the rigorous theoretical analyses on Turing
instability and Hopf bifurcation for model (1.4). The
theoretical analyses suggest that the dynamical behav-
iors of model (1.4) may be different from that of the
diffusive Brusselator model (1.3), when n is small. On
the contrary, some of the dynamical behaviors ofmodel
(1.4) approximate that of (1.3) when n is large enough.

The remaining parts of this paper are organized as
follows. In Sect. 2, the global existence and unique-
ness of the positive solution to the initial-boundary
value problem (1.4)–(1.6) are considered. In Sect. 3,
the local stability of the unique spatially homogeneous
steady state of (1.4)–(1.6) is studied. Then the condi-
tions, which induce Turing bifurcation and Hopf bifur-
cation at the steady state, are derived. In Sect. 4, by
choosing B as the bifurcation parameter, the existence
of Hopf bifurcation for (1.4) -(1.6) at the steady state
is considered. Furthermore, we derive the approximate
expressions of the bifurcating periodic solutions,which
show the formation of temporal periodic structureswith
spatially nonhomogeneous features. In Sect. 5, numer-
ical simulations are carried out to illustrate the derived
theoretical results.

2 Global existence and uniqueness of the positive
solution

In this section, we prove the solution of the initial-
boundary value problem (1.4)–(1.6) satisfies

xk(t) + A ≥ 0, yk(t) + B/A ≥ 0, ∀k ∈ Sn .

Furthermore,wederive theglobal existence andunique-
ness of the solution.

Obviously, the initial-boundaryvalueproblem (1.4)–
(1.6) has a unique spatially homogeneous steady state

E∗ = (0, 0, 0, 0, · · · , 0, 0) ∈ R
2n .

Firstly, we have

Theorem 1 The initial-boundary value problem (1.4)–
(1.6) has a locally unique solution xk(t), yk(t) for all
k ∈ Sn. Furthermore, the solution admits

xk(t) + A ≥ 0, yk(t) + B/A ≥ 0, ∀k ∈ Sn .

Proof The local existence and uniqueness of the solu-
tion of (1.4)–(1.6) can be derived from the theories of
ODEs. Hence, we only need to prove xk(t) > −A and
yk(t) > −B/A, ∀k ∈ Sn . There are four steps.

Step I:We prove that the solution xk(t) > −A in the
right neighborhood of t = 0, ∀k ∈ Sn . That is, there
exists a t i

0 such that xk(t) > −A for any 0 < t < t i
0.

Actually, if xk(0) > −A, then the result can be derived
from the continuity of solutions. If xk(0) = −A, then
the result can be derived by the following observation
that
dx+

k (0)

dt
= D(xk−1(0) + xk+1(0) + 2A) + A ≥ A > 0.

Step II: We then show xk(t) > −A, t > 0 for all
k ∈ Sn by contradiction. For this, we assume there
exist some i1, i2, · · · , in ∈ Sn and t i1, t i2 , · · · , t in >

0 such that xik (t
ik ) = 0. Here t ik denote the first

t > 0 such that xik (t) = −A. Hence,
dxik (t ik )

dt ≤
0,∀k = 1, 2 · · · , n. Denoting t i∗ = min{t ik | k =
1, 2 · · · , n} > 0, by the first equation of (1.4) , we
have
dxi∗(t

i∗)

dt
= D(xi∗−1(t

i∗) + xi∗+1(t
i∗) + 2A)

+A ≥ A > 0.

It is a contradiction. From the continuity of xk(t), we
have xk(t) > −A.

Step III: We prove that the solution yk(t) > −B/A
in the right neighborhood of t = 0, ∀k ∈ Sn . That
is, there exists a t i

0 such that yk(t) > −B/A for any
0 < t < t i

0. Actually, if yk(0) > −B/A, then the
result can be derived from the continuity of solutions.
If yk(0) = −B/A, then the result can be derived by the
following observation that

dy+
k (0)

dt
= θ D(yk−1(0) + yk+1(0)

+2B/A) + B(xk(0) + A) > 0.
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Step IV: We then show yk(t) > −B/A, t > 0 for all
k ∈ Sn by contradiction. For this, we assume there
exist some i1, i2, · · · , in ∈ Sn and t i1, t i2 , · · · , t in > 0
such that yik (t

ik ) = −B/A. Here, t ik denote the first

t > 0 such that yik (t) = −B/A. Hence,
dyik (t ik )

dt ≤
0,∀k = 1, 2 · · · , n. Denoting t i∗ = min{t ik | k =
1, 2 · · · , n} > 0, by the second equation of system
(1.4) and step II, we have

dyi∗(t
i∗)

dt
= θ D(yi∗−1(t

i∗) + yi∗+1(t
i∗) + 2B/A)

+B(xk(t
i∗) + A) > 0.

It is a contradiction. From the continuity of yk(t), we
have yk(t) > −B/A. 	


Secondly, we prove the global existence of the solu-
tion. For this, we denote

X (t) =
n∑

k=1

xk(t), Y (t) =
n∑

k=1

yk(t).

According to system (1.4) and the boundaryvalue (1.6),
we have
d(X (t) + Y (t))

dt
= −X (t),

which further satisfy the initial value

X (0) ≥ −n A, Y (0) ≥ −nB/A,

due to the initial value (1.5).
Hence, we have

X (t) + Y (t) = X (0) + Y (0) −
∫ t

0
X (s)ds.

On the other hand, we have

−
∫ t

0
X (s)ds ≤ n At,

based on the result of Theorem 1. Hence, xk(t), yk(t)
are bounded for any given time t . This fact suggests the
global existence of the solution. Combining with The-
orem 1, we derive the global existence and uniqueness
of the positive solution to the initial-boundary value
problem (1.4)–(1.6).

3 Local stability of the spatially homogeneous
steady state

In this section, we discuss the local stability of the
steady state E∗ of the initial-boundary value problem

(1.4)–(1.6). For this, we need to consider the following
linearized system of (1.4)–(1.6) at E∗ :

⎧
⎪⎨

⎪⎩

dxk

dt
= D∇2xk + (B − 1)xk + A2yk,

dyk

dt
= θ D∇2yk − Bxk − A2yk .

(3.1)

Wefirstly use the decouplingmethod to derive the char-
acteristic equation of (3.1). Then we derive the results
on the local stability of E∗ by analyzing the distribu-
tion of the roots of the characteristic equation. These
results show the occurrence conditions of Hopf bifur-
cation and Turing bifurcation for model (1.4). Further-
more, we make some comparisons on the differences
between the spatially discretized diffusive Brusselator
model (1.4) and its counterpart in continuous space,
i.e., model (1.3).

3.1 Decoupling method

In order to analyze (3.1), we use the decoupling
method, which goes back at least as far as 1971 with
the work of Othmer and Scrivens [38]. Nevertheless,
we only need a simplified form of this method as that
in [32,39] here. For more details of this method, we
also refer to [40]. The main idea of this technique is
to look for the general solution of system (3.1) in the
form

⎧
⎪⎪⎨

⎪⎪⎩

xk(t) =
n∑

m=1
φ(m, k)x̂m(t), k ∈ Sn, t ≥ 0,

yk(t) =
n∑

m=1
φ(m, k)ŷm(t), k ∈ Sn, t ≥ 0.

(3.2)

Here x̂m(t), ŷm(t), m ∈ Sn denote theweighting coeffi-
cients, while φ(m, k), m ∈ Sn denote the spatial eigen-
functions of the operator ∇2 corresponding to eigen-
values −μ2

m . For the zero-flux boundary conditions
(1.6), we choose the eigenvalues and their correspond-
ing eigenfunctions to be

−μ2
m = −4 sin2

(m − 1)π

2n
, m ∈ Sn, (3.3)
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and

φ(m, k) =

⎧
⎪⎪⎨

⎪⎪⎩

√
1

n
cos

(2k − 1)(m − 1)π

2n
, m = 1, k ∈ Sn,

√
2

n
cos

(2k − 1)(m − 1)π

2n
, m �= 1, k ∈ Sn,

(3.4)

respectively. That is

∇2φ(m, k) = φ(m, k − 1) − 2φ(m, k) + φ(m, k + 1)

= −μ2
mφ(m, k), (3.5)

for any m, k ∈ Sn, and

〈φ(m1, ·), φ(m2, ·)〉 =
{
1, m1 = m2,

0, m1 �= m2,
(3.6)

for any m1, m2 ∈ Sn . Here 〈·, ·〉 denotes the scalar
product in R

n, i.e.,

〈φ(m1, ·), φ(m2, ·)〉 =
∑

k∈Sn

φ(m1, k)φ(m2, k).

We note that the eigenfunctions chosen here are
orthonormal as those in [39], which are slightly dif-
ferent from those in [32]. The choice of the normal
eigenfunctions do not affect the analyses of the local
stability, whereas it is important for the analyses of the
Hopf bifurcation in the next section.

By the decoupling method similar to that in [32,39],
we can derive the following characteristic equation of
(3.1):

λ2m − Tmλm + Dm = 0, m ∈ Sn, (3.7)

where

⎧
⎪⎪⎨

⎪⎪⎩

Tm = Tm(A, B, D, θ) = −(θ + 1)Dμ2
m

+B − 1 − A2,

Dm = Dm(A, B, D, θ) = θ D2μ4
m

+(A2 − θ(B − 1))Dμ2
m + A2,

(3.8)

and λm denote the characteristic roots of the linearized
system (3.1).

3.2 Local stability analysis

To analyze the local stability of the steady state E∗, we
need to consider the signs of the real parts of the char-
acteristic roots λm . For this purpose, we solve Tm = 0

and Dm = 0 for the parameter B, respectively. Then
we have

B = 1 + A2 + (θ + 1)Dμ2
m,

and

B = 1

θ

(

1 + 1

Dμ2
m

)

A2 + 1 + Dμ2
m, m ≥ 2.

For fixed θ and m ∈ Sn , define the set of curves Hm

and Lm in the A − B plane by

Hm : B = B H
m (A) � 1+ A2 + (θ + 1)Dμ2

m, m ≥ 1,

(3.9)

and

Lm : B = BT
m (A) � 1

θ

(

1 + 1

Dμ2
m

)

A2 + 1 + Dμ2
m ,

m ≥ 2, (3.10)

respectively.
Then it is easy to verify that

Tm

{
< 0, B < B H

m (A),

≥ 0, B ≥ B H
m (A),

Dm

{
> 0, B < BT

m (A),

≤ 0, B ≥ BT
m (A).

(3.11)

For fixed D, define

θc = 1 + 1

Dμ2
n
. (3.12)

Then we have

Theorem 2 Assume that θc is defined by (3.12). When
0 < θ ≤ θc, we have the following results for the steady
state E∗ of (1.4)–(1.6) .

(i) E∗ is unstable when B > B H
1 (A);

(ii) E∗ is locally asymptotically stable when 0 < B <

B H
1 (A);

(iii) Hopf bifurcation occurs at E∗ when B = B H
1 (A).

Proof By (3.3), it is easy to see thatμ2
m is strictlymono-

tone increasing with respect to m. This, together with
(3.9), implies that

B H
m (A) < B H

m+1(A), for m ∈ {1, 2, · · · , n − 1}.
Hence, by (3.11), Tm < 0 for all m ∈ Sn and 0 < B <

B H
1 (A), whereas T1 > 0 for B > B H

1 (A). Thus, when
m = 1, (3.7) has at least one root with positive real
parts. Conclusion (i) follows immediately.
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Meanwhile, it follows from (3.9) and (3.10) that the
curves Lm interacts with H1 at

Am =
√

θ D2μ4
m

(θ − 1)Dμ2
m − 1

, (3.13)

if and only if

θ > 1 + 1

Dμ2
m

for m = 2, · · · , n.

Noticing again that μ2
m is monotone increasing with

respect to m, we have θ ≤ 1 + 1
Dμ2

m
when θ ≤ θc

for m = 2, · · · , n. Therefore, the curve Lm cannot
interact with H1 for m = 2, · · · , n. Hence, all of the
curves Lm, m = 2, · · · , n are above the curve H1. This
implies that when 0 < B < B H

1 (A), Tm < 0 and
Dm > 0. Hence, all roots of (3.7) have negative real
parts. Conclusion (i i) is confirmed.

In addition, noticing that μ1 = 0, we can conclude
that if B = B H

1 (A), then Eq.(3.7) admits a unique
pair of purely imaginary roots ±i A. Furthermore, if
we denote ξ(B) ± iη(B) to be the pair of conjugate
complex eigenvalues admitting ξ(B H

1 (A)) = 0, then
we have ξ ′(B H

1 (A)) = 1
2 > 0. This completes the

proof of (i i i). 	

For fixed D and θ > θc, define the index

m̃ = min

{

m ∈ {2, · · · , n}
∣
∣
∣
∣ 1 + 1

Dμ2
m

< θ

}

. (3.14)

Then by the proof of Theorem 2, the curve Lm interacts
with H1 at A = Am for m ∈ {m̃, · · · , n}. Let

Am∗ = min
m∈{m̃,··· ,n} {Am} . (3.15)

Then Lm∗ is the first Turing bifurcation curve that
interacts with the Hopf bifurcation curve H1 when the
parameter A changes from zero to infinity.

By (3.10), it is easy to verify that Lm and Lm+1

interact at

AL
m = Dμmμm+1

√
θ. (3.16)

which is monotonously increasing with respect to m.
Define the piecewise function B = Bc(A) by the fol-
lowing

Bc(A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B H
1 (A), 0 < A ≤ Am∗ ,

BT
m∗ (A), Am∗ < A ≤ AL

m∗ ,

BT
m (A), AL

m < A ≤ AL
m+1, m = m∗, · · · , n − 2,

BT
n (A), A > AL

n−1.

(3.17)

Then we have the following results on the stability
of the steady state E∗ and bifurcation when θ > θc.

Theorem 3 Assume that θc is defined by (3.12). When
θ > θc, we have the following results for the steady
state E∗ of (1.4)–(1.6).

(i) E∗ is unstable when B > Bc(A);
(ii) E∗ is locally asymptotically stable when 0 < B <

Bc(A);
(iii) System (1.4) undergoes Hopf bifurcation at B =

Bc(A) for 0 < A < Am∗ , while it undergoes Turing
bifurcation at B = Bc(A) for Am∗ < A ≤ AL

m∗ ,
or AL

m < A < AL
m+1, m = m∗, · · · , n − 2, or

A > AL
n−1;

(iv) System (1.4) undergoes Turing–Hopf bifurcation
at (A, B) = (Am∗ , Bc (Am∗)), and Turing–Turing
bifurcation at (A, B) = (

AL
m, Bc

(
AL

m

))
for m =

m∗, m∗ + 1, · · · , n − 1.

From Theorems 2 and 3, we see that the dynamical
behaviors of (1.4)–(1.6) become more abundant when
the parameter θ exceeds the Turing bifurcation criti-
cal value θc. In what follows, we numerically illustrate
the results described in Theorems 2 and 3. Choosing
n = 10, d = 0.1, it then follows from (3.3) and (3.12)
that θc = 1.0316. Then we have the following two sim-
ulations,whichfiguratively illustrate the “shrinkage” of
the stability regionwhen θ becomes larger than θc. This
result coincides with Turing’s arguments that different
diffusion rates could lead to nonhomogeneous distri-
butions of reactants in a system of equations modeling
two interactive substances. For more details, we refer
to [37,41,42].

(1) Taking θ = 0.5 < θc, the condition of Theorems 2
is satisfied. The stability region of E∗ and bifur-
cation curves in the A − B plane are shown in
Fig. 1a. The steady state E∗ loses its stability when
the parameter B changes from small to large and
crosses the Hopf bifurcation curve H1.

(2) Taking θ = 4 > θc, the condition of Theorems 3
is satisfied. Furthermore, we have m̃ = 2, Am∗ =
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Fig. 1 Stability region and bifurcation curves for the spatially
homogeneous steady state E∗ of model (1.4) in the A − B plane
for the parameters n = 10 and d = 0.1. a For θ = 0.5 < θc,
the upper boundary of the stability region consists of Hopf bifur-
cation curve H1 only; b For θ = 4 > θc, the upper boundary

of the stability region consists of both Hopf bifurcation and Tur-
ing bifurcation curves. These results show the importance of the
choice of the parameter θ in determining the stability region for
E∗

A2
.= 1.3506 by (3.14), (3.13) and (3.15), respec-

tively. For this case, the stability region of E∗ and
bifurcation curves in the A − B plane are shown
in Fig. 1b. The steady state E∗ loses its stabil-
ity when the parameter B changes from small to
large and crosses the Hopf bifurcation curve H1

for small parameter A, while E∗ loses its stabil-
ity when the parameter B changes from small to
large and crosses Turing bifurcation curves L2 or
L3 for larger parameter A. The Hopf bifurcation
curve H1 interacts with the Turing bifurcation L2

at the point P1(1.3506, 2.8240), which is called
Turing–Hopf bifurcation point. Furthermore, the
Turing bifurcation curve L2 interacts with L3 at the
point P2(3.1325, 7.3399), which is called Turing–
Turing bifurcation point.

3.3 Comparisons on the differences between model
(1.4) and model (1.3)

It can be shown that there are similarities and differ-
ences of the dynamical behaviors between model (1.4)
and that of model (1.3). We take the Turing bifurcation
critical value θc for example.

For the Laplace operator Δ, the corresponding
eigenvalues are −((m − 1)π)2 for m ∈ N. Thus, for
model (1.3), the critical value for the occurrence of Tur-
ing bifurcation is θc = DY /DX = 1. For model (1.4),
the critical value θc is always greater than 1 since the
maximum μ2

k is μ2
n . Hence, the critical value θc for

model (1.4) is different from that for model (1.3). On
the other hand, for model (1.4), it is seen that θc goes to
1, the critical value for model (1.3), as n approaches to
∞. It is seen that there are similarities and differences
of the critical value θc between model (1.4) and that of
model (1.3).

Hence, it is interesting to compare the theoretical
results for model (1.4)with that for model (1.3). In this
subsection, we firstly show the relations of the char-
acteristic equations between the linearized equation of
model (1.4) and model (1.3).

Remark 1 For the linearized equation of diffusive
Brusselator model (1.3), the corresponding character-
istic equation has the same form as the equations (3.7),
but different expressions

{
Tm = −(θ + 1)dμ̃2

m + B − 1 − A2,

Dm = θd2μ̃4
m + (A2 − θ(B − 1))dμ̃2

m + A2,

(3.18)
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where μ̃2
m = ((m − 1)π)2 are the eigenvalues of the

Laplace operator Δ for x ∈ (0, 1) and m ∈ N =
{1, 2, · · · }. Comparing (3.18) with (3.8), it can be ver-
ified that (3.8) approximates (3.18) when n is large
enough. Actually, we have

Dμ2
m = 4d(n + 1)2 sin2

(m − 1)π

2n
→ dμ̃2

m, n → ∞,

since sin (m−1)π
2n ∼

(m−1)π
2n , n → ∞.

Secondly, we compare the eigenfunctions between
the Laplace operator Δ and the difference operator
D2

Δr , where

D2
Δr uk = uk−1 − 2uk + uk+1

Δr2
= (n − 1)2∇2uk

denote 3-point centered difference operator. Further-
more, we compare the stability regions for the steady
state E∗ ofmodel (1.4)with that ofmodel (1.3) in theA-
B plane numerically. Actually, if we denote the eigen-
functions of the Laplace operator Δ corresponding to
μ̃2

m as φ̃(m, x), then it is seen φ̃(m, x) are actually the
continuous corresponding forms of the multiples for
φ(m, k) in (3.4), since φ̃(m, x) = cos((m − 1)πx). To
illustrate this result, we choose n = 10 and simulate
the eigenfunctions for m = 2 and 3, respectively. See
the following Fig. 2 for details.

Thirdly, we compare the eigenvalues between the
Laplace operator Δ and the difference operator D2

Δr .
To illustrate their differences, we choose n = 10 and
derive the following Fig. 3. From this figure, it is seen
that the eigenvalues of the Laplace operator differ from
that of the difference operator when n is small.

The last point of interest for this subsection is to
compare the stability regions of E∗ of the spatially dis-
cretized diffusive Brusselator model (1.4) with that of
its counterpart in continuous space, i.e., model (1.3).
With the parameters n = 10, d = 0.1, θ = 4, we sim-
ulate the stability regions of the steady state E∗ both
for model (1.4) and (1.3), then derive Fig. 4.

4 Hopf bifurcation

According to Theorem 2 and 3, there may exist bifur-
cating periodic solutions of the initial-boundary value
problem (1.4)–(1.6) when B cross through B H

1 (A).
Hence in this section, by choosing B as the bifurcating
parameter, we consider the occurrence of Hopf bifurca-
tion of (1.4)–(1.6) at the spatially homogeneous steady
state E∗. By using the summarized recipe in [25], we
further calculate several quantities to determine the
properties of the bifurcating periodic solutions, such as

Fig. 2 Eigenfunctions for
the Laplace operator Δ and
the difference operator D2

Δr .
a and b are the cases when
m = 2, while c and d are
the cases when m = 3
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Fig. 3 Eigenvalues for the
Laplace operator Δ and the
difference operator D2

Δr

the period, stability, bifurcation direction and approxi-
mate expressions of the bifurcating periodic solutions.

Locating the steady state E∗,we rewrite system (1.4)
subject to the boundary value (1.6) as the abstract form

dU
dt = L(B)U + F(U, B), (4.1)

where the Jacobian matrix L(B) is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−D + B − 1 A2 D 0 0 0 0 . . . 0 0 0
−B −θ D − A2 0 θ D 0 0 0 . . . 0 0 0
D 0 −2D + B − 1 A2 D 0 0 . . . 0 0 0
0 θ D −B −2θ D − A2 0 θ D 0 . . . 0 0 0
...

. . .
...

0 0 0 0 0 0 0 . . . 0 −D + B − 1 A2

0 0 0 0 0 0 0 . . . θ D −B −θ D − A2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

U = (x1, y1, x2, y2, · · · , xn, yn)T is the solution vec-
tor of system (1.4) , and

F(U, B) = (h(x1, y1),−h(x1, y1), h(x2, y2),

−h(x2, y2), · · · , h(xn, yn),−h(xn, yn))

contains the higher order terms. Hence, the abstract
form of the linearization equation of system (1.4) at
E∗ is

dU
dt = L(B)U. (4.2)

In order to verify the conditions for the existence of
Hopf bifurcation, we need to compute the eigenvalues
and eigenvectors of matrix L(B). By a proof similar to
that of Lemma 8 in [39], we can show that the eigenval-

ues of the Jacobian matrix L(B) are exactly the roots
of (3.7). That is,

Proposition 1 The eigenvalues of matrix L(B) are
exactly λm, m ∈ Sn, i.e., the roots of Eq.(3.7) for all
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Fig. 4 Comparison of the stability regions for the steady state
E∗ of model (1.4) with that of model (1.3) in the A − B plane.
For the light green region D1, E∗ is stable both for model (1.4)
and (1.3). For the pink region D2, E∗ is stable for model (1.4)
but unstable for (1.3), while the result is just the opposite for the
green region D3

m ∈ Sn. Furthermore, suppose X̂ is the eigenvec-
tor corresponding to the eigenvalue λ of M(B), then
X = ΦT X̂ is the eigenvector corresponding to the
eigenvalue λ of Jacobian matrix L(B), where

Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ(1, 1) 0 φ(1, 2) 0 . . . φ(1, n) 0
0 φ(1, 1) 0 φ(1, 2) . . . 0 φ(1, n)

φ(2, 1) 0 φ(2, 2) 0 . . . φ(2, n) 0
0 φ(2, 1) 0 φ(2, 2) . . . 0 φ(2, n)

.

.

.
. . .

.

.

.

φ(n, 1) 0 φ(n, 2) 0 . . . φ(n, n) 0
0 φ(n, 1) 0 φ(n, 2) . . . 0 φ(n, n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

M(B) =

⎛

⎜
⎜
⎜
⎝

L1

L2
. . .

Ln

⎞

⎟
⎟
⎟
⎠

with

Lm =
(−Dμ2

m + B − 1 A2

−B −θ Dμ2
m − A2

)

.

Proof Under the transformation X = ΦT X , i.e., X̂ =
Φ X , system (4.2) becomes

d X̂
dt = ΦL(B)Φ−1 X̂ � M(B)X̂ , (4.3)

based on the decoupling transformation (3.2) in Sect. 3.
Since Φ is an invertible matrix, L(B) is real similar to
M(B). Hence, L(B) has the same eigenvalues as that
of M(B). Furthermore, it is easy to see that the eigen-
values of M(B) are the roots of Eq.(3.7). Furthermore,
supposing X̂ is the eigenvector corresponding to the
eigenvalue λ of M(B), then X = ΦT X̂ is the eigenvec-
tor corresponding to the eigenvalue λ of L(B). Hence,
the proof is completed. 	


By Proposition 1 and Hopf bifurcation theorem, we
next need to derive the conditions which ensure the
positivity of Dm for all m ∈ Sn when B locates in
the neighborhood of B H

1 (A). For this, we define the
following quadratic function of the variable μ as

F(μ) � θ D2μ2 + (A2 − θ(B − 1))Dμ + A2.

It is easy to see that F(μ2
m) = Dm . Furthermore, when

B = B H
1 (A), F(μ) becomes

F(μ, B H
1 (A)) = θ D2μ2 + A2(1 − θ)Dμ + A2.

The discriminant function of F(μ, B H
1 (A)) = 0 is

Γ = A4(1 − θ)2D2 − 4θ D2A2 = A2D2(A2(1 − θ)2 − 4θ).

If 0 < θ ≤ 1, then it is easy to see that
F(μ, B H

1 (A)) > 0. Hence, Dm > 0 for all m ∈ Sn . If
θ > 1, we define

A0 = 2
√

θ

θ − 1
,

then we have

Γ

⎧
⎨

⎩

< 0, for 0 < A < A0,

= 0, for A = A0,

> 0, for A > A0.

(4.4)

In the following, we denote the two real roots of
F(μ, B H

1 (A)) = 0 as

μ± = (θ − 1)A2 ± √
(θ − 1)2A4 − 4θ A2

2θ D
,

when Γ > 0, while we denote the multiple root of
F(μ) = 0 as

μ∗ = (θ − 1)A2

2θ D
when Γ = 0.

According to the above discussions, we have

Theorem 4 Assume the following conditions (C):

1. 0 < θ ≤ 1; or
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2. θ > 1, and 0 < A < A0; or
3. θ > 1, A = A0 and μ2

m �= μ∗,∀m ∈ Sn; or
4. θ > 1, A > A0 and μ2

m /∈ (μ−, μ+),∀m ∈ Sn .

Then Eq.(3.7) has periodic solutions bifurcating from
E∗ when B locates in the neighbor of B H

1 (A).

Proof It is easy to see that the conditions (C) equals
to Dm > 0 for any m ∈ Sn . Furthermore, T1 = 0
and Tm < 0 for any m ≥ 2 under the condition
B = B H

1 (A). Hence, Eq.(3.7) admits a pair of purely
imaginary roots

±iω0 = ±i A

when m = 1, while all the other eigenvalues λm1, λm2 ,

∀m ≥ 2 have negative real part. Hence, there exist peri-
odic solutions bifurcating from E∗ according to Hopf
bifurcation theorem [25]. 	


In the rest of this section, we mainly focus on the
computations of the bifurcating parameters. In fact, we
have the following result.

Theorem 5 Assuming (C), the Hopf bifurcation of the
initial-boundary value problem (1.4)–(1.6) occurs at
E∗ when the parameter B increasingly cross through
B H
1 (A), i.e., the Hopf bifurcation is supercritical. Fur-

thermore, the bifurcating periodic solution is orbitally
asymptotically stable with period

T = 2π

A
(1 + τ2ε

2 + o(ε4)),

where ε2 = B−B H
1 (A)

μ2
+ o(B − B H

1 (A)).

Proof According to the summarized recipe in [25], the
first quantity to be computed is the eigenvector ν0 cor-
responding to the eigenvalue i A of L(B H

1 (A)). Further,
by Proposition 1, the eigenvector ν̂0 of M(B H

1 (A)) cor-
responding to the eigenvalue i A should be computed
in advance. It is easy to show that we can choose

ν̂0 = (1,−1 + i
1

A
, 0, · · · , 0)T .

Then we have

ν̃0 = ΦT ν̂0 = (φ(1, 1),−φ(1, 1), φ(1, 2),−φ(1, 2),
× · · · , φ(1, n),−φ(1, n))T

−i
1

A
(0, φ(1, 1), 0, φ(1, 2), · · · , 0, φ(1, n))T

to be an eigenvector corresponding to the eigenvalues
i A of L(B H

1 (A)). Hence,

ν0 = √
nν̃0 = (1,−1, 1,−1, · · · , 1,−1)T

+i
1

A
(0, 1, 0, 1, · · · , 0, 1)T

is the eigenvector corresponding to the eigenvalues i A
of L(B H

1 (A)), such that the first nonvanishing compo-
nent is normalized to be 1.

Let P be the block matrix

(Reν0,−I mν0, ε3, ε4, · · · , ε2n−1, ε2n),

where εk ∈ R
2n denote the standard unit vectors,whose

k-th component is 1 and the other components are 0.
By the change of variables

U = PV,

where V = (x̂1, ŷ1, x̂2, ŷ2, · · · , x̂n, ŷn)T ∈ R
2n is a

vector function of t , system (4.1) becomes

dV

dt
= P−1 dU

dt
= P−1[L(B)U + F(U, B)]

= P−1L(B)PV + P−1F(PV, B). (4.5)

where P−1L(B)PV is the linear part and P−1F(PV, B)

is the higher-order terms.
To proceed with the summarized recipe in [25], we

further need the concrete expressions of system (4.5).
For the matrix P−1L(B H

1 (A))P , we know it has the
real canonical form

⎛

⎝
0 −A
A 0

L̃

⎞

⎠ ,

where

L̃ =

⎛

⎜
⎜
⎜
⎝

L2

L3
. . .

Ln

⎞

⎟
⎟
⎟
⎠

.

For the higher-order terms, denoting

P−1F(PV, B) = (F1, F2, · · · , F2n)T ,

we have

F1 = h(x1, y1),

F2 = 0,

and

Fk =
{ −h(x1, y1) + h(x k+1

2
, y k+1

2
), for k odd,

h(x1, y1) + h(x k
2
, y k

2
), for k even,

3 ≤ k ≤ 2n,
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where x1 = x̂1, y1 = −x̂1 − 1
A ŷ1, xk = x̂1 + x̂k, yk =

−x̂1 − 1
A ŷ1 + ŷk for k ≥ 2, according to the transfor-

mation U = PV .
With the above expressions and through tedious

computations, we have

∂2F1

∂ x̂21
= 2

A
− 2A,

∂2F1

∂ x̂1 ŷ1
= −2,

∂3F1

∂ x̂31
= −6,

∂3F1

∂ x̂21 ŷ1
= − 2

A
,

∂2F1

∂ ŷ21
= ∂2F2

∂ x̂21
= ∂2F2

∂ ŷ21
= ∂2F2

∂ x̂1 ŷ1
= 0,

∂3F1

∂ x̂1 ŷ21
= ∂3F1

∂ ŷ31
= ∂3F2

∂ x̂1 ŷ21
= ∂3F2

∂ x̂21 ŷ1
= ∂3F2

∂ x̂31
= ∂3F2

∂ ŷ31
= 0

at B = B H
1 (A), V = 0.

Thenwe derive the following quantities by using the
formulae in [25]:

2g11 = 1

A
− A, 2g02 = 1

A
− A − 2i = 2ḡ20,

4G21 = −3 + i
1

A
.

Meanwhile, we have

∂2F1

∂ x̂1 x̂k
= ∂2F1

∂ x̂1 ŷk
= ∂2F1

∂ ŷ1 x̂k
= ∂2F1

∂ ŷ1 ŷk
= 0

for k = 3, 4, · · · , 2n. Hence, Gk−2
110 = Gk−2

101 = 0,
which suggest that

g21 = G21 = −3

4
+ i

1

4A
.

Let

c1(0) = i

2A

[

g20g11 − 2 | g11 |2 −1

3
| g02 |2

]

+ g21
2

= −
{

1

4A2 + 1

8
+ i

[
1

6A

(
1

A
− A

)2
+ 1

24A

]}

,

then we have

Re(c1(0)) = − 1

4A2 − 1

8
< 0,

μ2 = −Re(c1(0))/ξ
′(B H

1 (A))

= 1

2A2 + 1

4
> 0,

τ2 = −[I m(c1(0)) + μ2η
′(B H

1 (A))]/η(B H
1 (A))

= 1

6A2

[(
1

A
− A

)2

+ 1

4

]

> 0,

and

β2 = −2ξ ′(B H
1 (A))μ2 < 0.

	


Wenote that these bifurcatingparametersRe(c1(0)),
μ2, τ2, β2 for the initial-boundary value problem (1.4)–
(1.6) are the same as that for the system (1.3) in the
absence of diffusion in [25]. But the expressions of the
bifurcating periodic solutions for the initial-boundary
value problem (1.4)–(1.6) are different from that for
the system (1.3) in the absence of diffusion. Actually,
we have the following result.

Theorem 6 The bifurcating periodic solutions in The-
orem 5 are spatially nonhomogeneous, which have the
following approximate expressions:

x1(t) = x̂1, y1(t) = −x̂1 − 1

A
ŷ1,

xk(t) = x̂1 + x̂k, yk(t) = −x̂1 − 1

A
ŷ1 + ŷk,

(4.6)

where k = 2, · · · , n.

Proof In order to show the difference, we compute
the approximate expressions of the bifurcating periodic
solution in the variables of U . For this, we compute
the approximate expressions in the variables of V in
advance.

According to the results in [25], it is easy to see that

x̂1 = ε cos
2π t

T

+ ε2

6A

[

4 cos
4π t

T
+

(
2

A
− 2A

)

sin
4π t

T

]

+ o(ε2),

ŷ1 = ε sin
2π t

T

+ ε2

6A

[(

A − 1

A

)

cos
4π t

T

+2 sin
4π t

T
+

(
3

A
− 3A

)]

+ o(ε2).

To compute x̂2, ŷ2, · · · , x̂n, ŷn,we need to compute
w11 and w20 in advance. They are the solutions of the
following linear systems

L̃w11 = −h11, (L̃ − 2i AI )w20 = −h20,

where h11 and h20 aren−2-dimensional vectors,whose
components are

hk−2
11 = 1

4

[
∂2Fk

∂ x̂21
+ ∂2Fk

∂ ŷ21

]

,

hk−2
20 = 1

4

[
∂2Fk

∂ x̂21
− ∂2Fk

∂ ŷ21
− 2i

∂2Fk

∂ x̂1 ŷ1

]

, k = 3, · · · , n.

respectively.
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After performing some computations, we have

hk−2
11 =

{
0, for k odd,
1

A
− A, for k even,

(4.7)

and

hk−2
20 =

{
0, for k odd,
1

A
− A + 2i, for k even,

(4.8)

respectively.
We denotewk

11 = (w
k1
11, w

k2
11)

T as the solution of the
linear system

Lkw
k
11 = (0, A − 1

A
)T , (4.9)

and denote wk
20 = (w

k1
20, w

k2
20)

T as the solution of the
linear system

(Lk − 2i AI )wk
20 = (0, A − 1

A
− 2i)T . (4.10)

Hence, we have

x̂k = w
k1
11ε

2 + Re(wk1
20e4π i t/T )ε2 + o(ε2),

ŷk = w
k2
11ε

2 + Re(wk2
20e4π i t/T )ε2 + o(ε2),

(4.11)

for k = 2, · · · , n.

Due to the above results, Hopf bifurcation theorem
in [25] and the transformation U = PV , we derive the
result. 	


We note that the bifurcating periodic solutions in
Theorem 6 are in essence different from the bifurcat-
ing periodic solutions derived for the cellular neural
networks in [39], where the derived bifurcating peri-
odic solutions are spatially homogeneous. The differ-
ences come from the different ”reactions” between the
cellular neural networks and theBrusselatormodel. For
the cellular neural networks, its ”reaction” is actually
linear in the neighborhood of its steady state, while the
”reaction” is mild nonlinear for the Brusselator model.
In the next section,we give somenumerical simulations
to illustrate the bifurcating periodic solutions.

5 Numerical simulations

In this section, some numerical simulations are carried
out to demonstrate the theoretical analyses in Sect. 3
and 4. In all the following figures, interpolation has
been used for the display as that in [32,33] for better
visual effects.

5.1 Numerical simulations on the results of Theorem
2 and Theorem 6

As the system parameters used in Fig. 1a, we choose

d = 0.1, n = 10, θ = 0.5 < θc = 1.0316.

Then for A = 1, we derive the Hopf bifurcation value
B H
1 (A) = 2 by (3.9). According to Theorem 2, the

steady state E∗ of the initial-boundary value problem
(1.4)–(1.6) is locally asymptotically stable when 0 <

B < B H
1 (A) = 2, while it undergoes Hopf bifurcation

at B = B H
1 (A) = 2.

To show that the steady state E∗ is locally asymp-
totically stable, we choose B = 0.6. For the spatially
homogeneous initial values xk(0) = 0.02, yk(0) =
0.01, k = 1, 2, · · · , 10, we derive Fig. 5, while for
the spatially nonhomogeneous initial values xk(0) =
0.02k/10, yk(0) = 0.01k/10, k = 1, 2, · · · , 10, we
derive Fig. 6. The simulation results show that the
steady state E∗ is locally asymptotically stable, nomat-
ter the initial values are spatially homogeneous or not.

Next, we show model (1.4) undergoes Hopf bifur-
cation at B = B H

1 (A) = 2. For this, we choose
B = 2.05 > B H

1 (A) = 2. According to Theorem 5,we
know the Hopf bifurcation is supercritical and orbitally
asymptotically stable. Furthermore, according to The-
orem 6, we know the bifurcating periodic solutions are
spatially nonhomogeneous.

For the spatially homogeneous initial values xk(0) =
0.02, yk(0) = 0.01, k = 1, 2, · · · , 10, we derive
Fig. 7, which show the existence of the supercriti-
cal orbitally asymptotically stable bifurcating periodic
solutions. However, it is seen that the bifurcating peri-
odic solutions are spatially homogeneous, which vio-
late Theorem 6. The reason of this misunderstand-
ing is due to the choice of the spatially homogeneous
initial values, which actually eliminate the diffusion
effect. Hence, we next choose the spatially nonhomo-
geneous initial values xk(0) = 0.02k/10, yk(0) =
0.01k/10, k = 1, 2, · · · , 10, then we derive Fig. 8.
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Fig. 5 E∗ is locally asymptotically stable for B = 0.6 < B H
1 (A) with the spatially homogeneous initial values xk(0) = 0.02, yk(0) =

0.01, k = 1, 2, · · · , 10

Fig. 6 E∗ is locally asymptotically stable for B = 0.6 < B H
1 (A) with the spatially nonhomogeneous initial values xk(0) = 0.02k/10,

yk(0) = 0.01k/10, k = 1, 2, · · · , 10

It is seen obviously that the bifurcating periodic solu-
tions are spatially nonhomogeneous. The results coin-
cide with the results of Theorem 6.

5.2 Numerical simulations on the results of
Theorem 3

As the system parameters used in Fig. 1b, we choose

d = 0.1, n = 10, θ = 4 > θc = 1.0316.

Then for A = 2 > Am∗ = 1.3506, we derive the Hopf
bifurcationvalue B H

1 (A) = 5by (3.9) andTuringbifur-
cation value BT

2 (A) = 4.0541 by (3.10). According to

Theorem 3, the steady state E∗ of the initial-boundary
value problem (1.4)–(1.6) is locally asymptotically sta-
blewhen 0 < B < BT

2 (A) = 4.0541, while it becomes
unstable when B > BT

2 (A) = 4.0541.
As it is explained in the previous subsection, we

always choose the spatially nonhomogeneous initial
values for the following simulations.

To show that the steady state E∗ is locally asymptoti-
cally stablewhen0 < B < BT

2 (A),we choose B = 0.6
and the initial values xk(0) = 0.02k/10, yk(0) =
0.01k/10, k = 1, 2, · · · , 10. Then we derive the fol-
lowing Fig. 9.
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Fig. 7 Orbitally asymptotically stable spatially homogeneous bifurcating periodic solutions for B = 2.05 > B H
1 (A) with the spatially

homogeneous initial values xk(0) = 0.02, yk(0) = 0.01, k = 1, 2, · · · , 10

Fig. 8 Orbitally asymptotically stable spatially nonhomoge-
neous bifurcating periodic solutions with large amplitude for
B = 2.05 > B H

1 (A) with the same system parameters as that in

Fig.7 but different initial values, i.e., the spatially nonhomoge-
neous xk(0) = 0.02k/10, yk(0) = 0.01k/10, k = 1, 2, · · · , 10

To show that the steady state E∗ is unstable when
B > BT

2 (A), we choose B = 4.1 and the initial
values xk(0) = 0.02k/10, yk(0) = 0.01k/10, k =
1, 2, · · · , 10. Then we derive the following Fig. 10.

By Fig. 10, it is seen that the instability of E∗ is
unlike that in Figs. 7 and 8, where the instability is
caused by the occurrence of Hopf bifurcation. Here we
note that it is impossible to simulate Hopf bifurcation
with this group of parameters, since the conditions (C)

are not satisfied.Actually,we canderive that A > A0 =
4
3 , μ− = 0.0472, μ+ = 0.3232 and μ2

1 = 0.0979

with this group of parameters. Hence, μ2
1 ∈ (μ−, μ+),

which violates the conditions (C).

6 Discussion and conclusion

In this paper, we consider a spatially discretized dif-
fusive Brusselator model, which is derived from the
reaction-diffusion Brusselator model by using 3-point
centered difference approximations. The dynamical
behaviors, such as the global existence and uniqueness
of the positive solution, the local stability of the unique
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Fig. 9 E∗ is locally asymptotically stable for B = 0.6 < BT
2 (A) with the spatially nonhomogeneous initial values xk(0) =

0.02k/10, yk(0) = 0.01k/10, k = 1, 2, · · · , 10

Fig. 10 E∗ is unstable for B = 4.1 > BT
2 (A) with the spatially nonhomogeneous initial values xk(0) = 0.02k/10, yk(0) =

0.01k/10, k = 1, 2, · · · , 10

spatially homogeneous steady state, Turing bifurcation
and Hopf bifurcation, are discussed. The following are
some of our considerations based on this paper.

Turing patterns and Hopf bifurcation for reaction-
diffusion equations have been studied a lot. See [41–
51] for examples. Of foremost interest regarding the
diffusive Brusselator model is the formation of spa-
tially periodic structures, such as hexagons or stripes
and transitions between them. Based on the decou-
pling method and Hopf bifurcation theorem, we show
the occurrence conditions of Turing bifurcation and
Hopf bifurcation at the spatially homogeneous steady

state for the spatially discretized diffusive Brusselator
model. Although the Turing instability alone is not suf-
ficient to explain the formation of Turing pattern, the
bifurcating periodic solutions can be seen as a kind of
patterns [51]. Generally, the existing studies on the pat-
tern formations of the diffusive Brusselator model are
investigated by numerical analysis. Here we supply the
theoretical analyses on the occurrence of bifurcating
periodic solutions for the spatially discretized diffusive
Brusselator model (1.4). We further show the bifurcat-
ing periodic solutions are nonhomogeneous, which is
a interesting result corresponding to the derived spa-
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tially homogeneous bifurcating periodic solutions for
the diffusive Brusselator model in [27]. At the mean-
time, the bifurcating spatially nonhomogeneous peri-
odic solutions provide a special kind of spatial patterns
for model (1.4). We also believe that this method can
be extended to study the spatially discretized diffusive
Brusselator model on a disk in [25] and the Brusselator
model with delayed feedback in [2,3].

Furthermore, the spatially discretized reaction-
diffusion equations can also be seen as a kind of sys-
tems on complex networks. Recently, the study of Tur-
ing patterns and Hopf bifurcation for systems on com-
plex networks attracts many attentions. See [52–59]
for examples. Among these literatures, Hopf bifurca-
tion in an activator-inhibitor system with network was
considered in [57], wherein the stable Hopf bifurca-
tionwith backward directionwas derived. Turing insta-
bility of Brusselator in the reaction-diffusion network
was studied in [58], wherein the approximate instabil-
ity region about the diffusion coefficient and the con-
nection probability was obtained. A ring of nonlocally
coupled Brusselators was studied in [59], wherein a
two-frequency chimera state with mixed phase regu-
larities was found.

The present paper offers some references on the
dynamical behaviors among the three kinds of equa-
tions, namely, the reaction-diffusion equations, the spa-
tially discretized reaction-diffusion equations and sys-
tems on complex networks.
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