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Abstract Objects with time factor are important rep-
resentations of data, such as time series, sequences
generated by chaotic systems, and dynamic networks.
This paper focuses on characterizing the topological
similarity of such objects. First, we introduce time-
dependent object (T DO), which is time-dependent
datasets with metric structures. Second, we extend the
concept of topological correlation coefficient so that
it can analyze time-dependent objects. The general-
ized topological correlation coefficient (GTCC) can be
well defined on T DO and characterize the topological
similarity between datasets. Third, we analyze exam-
ples constructed from chaotic systems and temporal
networks. Calculations show that there are non-trivial
topological similarities in both datasets, where surro-
gate T DOs provide benchmark values for comparison.
In particular, GTCC can identify patterns in the tem-
poral network arising from human behavior. The ana-
lytical framework presented in this paper has the poten-
tial to be widely used in time series analysis, nonlinear
dynamical systems, and dynamic networks.
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1 Introduction

Detecting correlation and causality between time series
is a long-standing topic. A large number of detection
tools have been proposed to analyze the relationship
between observations. For example, the classical Pear-
son correlation coefficient can detect a linear relation-
ship between observations [1]. Since data sets extracted
from complex systems often include nonlinear depen-
dence and causality, previous studies have developed a
large number of nonlinear detection tools. For exam-
ple, DCCA (Detrended Cross-Correlation Analysis)
provides a powerful analytical tool for analyzing non-
linear relationships between time series [2]. In addition,
some studies have extended some important indica-
tors based on DFA (Detrended Fluctuation Analysis)
and DCCA, such as detrended cross-correlation coef-
ficient, multifractal cross-correlation analysis and so
on [3,4]. For high-dimensional data, Székely et al. pro-
posed distance correlation to characterize the depen-
dencies between random vectors in Euclidean space
[5]. In recent years, some tools based on information
theory focus on detecting nonlinear information flow
and nonlinear relationship between variables [6–8]. In
addition to classical statistical methods and methods
based on information theory, some emerging methods
have been proposed in recent years. For example, some
studies have shown that complex network theory can
be effectively applied to analyze time series. We can
represent time series through a network and study the
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characteristics of the original series. Commonmethods
for connecting time series and networks include visi-
bility graphs [9], recurrence networks [10], etc [11].
Furthermore, Nie constructed TCC (Topological Cor-
relation Coefficient) to detect nonlinear dependencies
between time series [12]. This method identifies non-
linear dependence by detecting structural similarities
between k-nearest neighbor networks of time series,
where the network sequence extracts the multi-scale
structure of the distance matrix. Since TCC is essen-
tially defined on the distance matrix, it can be gener-
alized to a wider range of objects, not just time series.
One of the topics of this study is to define TCC on
time-dependent objects with distance matrices.

Time-dependent objects includenot only time series,
but also some other forms of datasets, such as dynamic
networks or temporal networks. As a powerful tool
for characterizing the dynamics of complex systems,
dynamic networks usually consist of a series of net-
work snapshots that describe the system [13]. In empir-
ical analysis, such networks with dynamic features
are often represented as some labeled static networks,
thus formally represented as some network snapshots.
Some researchers name such networks as snapshot net-
works [13], which are commonly used representations
of temporal networks [14,15]. Both snapshot networks
and time series label data series based on timestamps,
the difference being that the former has a more com-
plex structure than the latter. For example, network
structures exhibit multi-scale features, resulting in rich
micro-, meso-, and macro-structures [16]. The multi-
scale structure makes it a difficult task to study the
time-varying features of dynamic networks.

Similar to analyzing time series, an important topic
is to detect correlations or dependencies in dynamic
networks. In recent years, some researchers have tried
to construct detection tools from different perspec-
tives. For example, Tang et al. [17] introduced the
temporal-correlation coefficient of the dynamic net-
work. Sugishita et al. [18] established the autocorrela-
tion function on the dynamic network and introduced
the corresponding Fourier transform. Valdano et al.
[19] used Jaccard similarity to characterize the similar-
ity between adjacent snapshots. Recently, Nie defined
the Hurst exponent of dynamic networks through the
distance matrix of snapshot networks [20]. These tools
characterize persistence in dynamic networks from dif-
ferent perspectives, and thus are part of the broader
topic, persistence of complex systems [21].

Both time series and dynamic networks include time
factors, making it possible to study them from a general
perspective. In this paper, we introduce a new concept,
time-dependent object (T DO), to include these impor-
tant special cases, and extend the topological correla-
tion coefficient to be defined on T DO [12]. We orga-
nize this article as follows. First, we introduce the defi-
nition of time-dependent object and give several impor-
tant examples. Second, we defineGTCC on T DO and
construct surrogate T DO . Third, in the results section,
we analyze the data generated by the Hénon map and
a temporal network dataset.

2 Method

2.1 Time-dependent object

Data sets with time factors include some objects
with complex structure or high nonlinearity, such as
dynamic networks and chaotic time series. In particu-
lar, these data are often equipped with suitable metrics
so that the structure can be analyzed from the distance
matrix of the dataset. This leads us to introduce the
following definition.

We define a time-dependent object (T DO) as a col-
lection of time-tagged sets O(�, ddef) (� = {�t }),
and it is equipped with distance ddef . The relationship
between these sets can be represented by a distance
matrix D� = [ddef(�t1,�t2)]. It should be noted that
different T DOs can be defined on the same set by
adjusting the definition of ddef . We will see later that
on some complex objects, the definition of distance can
lead to significant changes in the properties of T DO .

We can directly give the following three special
cases. First, if�t ∈ R, andddef (�t1,�t2) = abs(�t1−
�t2), then O is a time series with classical Euclidean
distance.Here, the symbol “abs” represents an absolute
value function. Second, if � is a sequence of vectors
generated by a nonlinear discrete system, and the vec-
tors are equipped with Euclidean distances, then O is
the orbit generated by the nonlinear system. For exam-
ple, for the phase space generated by the Hénon map
[22], O is a two-dimensional vector set with Euclidean
distance. Third, T DO can also be used to analyze some
complex discrete objects. For example, snapshot net-
works are often used as representations of dynamic net-
works. A snapshot network is a sequence of static net-
works with time stamps. Network distance can char-
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acterize the structural similarity between these static
networks [23]. To sum up, a snapshot network with
network distance is naturally a T DO .

2.2 Graph distance

We choose two special graph distances here, Jac-
card distance and Laplace spectral distance [23]. The
two distances characterize the difference between the
two networks from the local structure and the global
structure, respectively. Below, we consider networks
W1(V, e1) and W2(V, e2), where the networks share a
set of nodes (V = {vi , i = 1, 2, . . . , n}). The edge sets
are e1 and e2 respectively, then the Jaccard distance is
as in Eq. (1) [24]. Here, the symbol “Card” represents
the cardinality. The part Card(e1∩e1)

Card(e1∪e2) in this definition is
the Jaccard similarity, and the value is in the interval
[0, 1].
dJaccard(W1,W2) = 1 − Card(e1 ∩ e1)

Card(e1 ∪ e2)
(1)

If the normal Laplace spectrum of W1 and W2 are
λ1 = {λ1(1) ≥ λ1(2) ≥ · · · ≥ λ1(n)} and λ2 =
{λ2(1) ≥ λ2(2) ≥ · · · ≥ λ2(n)}, respectively, the
l p spectral distance is defined as Eq. (2) [23]. Here,
the symbol p is a parameter for adjusting the distance.
In this study, we define p = 2 and the spectral dis-
tance is the classical Euclideandistance. Since the spec-
trum of the network is an isomorphic invariant, the dis-
tance between isomorphic networks is 0. In particular,
it is not necessary to consider whether there is a cor-
respondence between the node sets of W1(V, e1) and
W2(V, e2) when defining the spectral distance.

dLaplace(W1,W2) =
[

n∑
k=1

abs(λ1(k) − λ2(k))p
] 1

p

(2)

2.3 kN N filtering

Below, we extend the steps proposed by previous stud-
ies and define a kN N (k-nearest neighbour) filtering
sequence for T DO [12]. For a specified k, we can cal-
culate the k-nearest neighbor network of T DO via the
distance matrix [25]. Here, each set �t corresponds to
a node vt . From the distance ddef , the set of neigh-
bors of each node vt can be calculated. We denote
the neighbor set of node vt as Nk

t . First, we construct
a network including n nodes. Then, if vi ∈ Nk

t , a

directed link vt → vi is added between vt and vi .
Finally, for each node, directed links are added between
it and its neighbors. We adjust k to generate a net-
work sequence {W�(V, E j ), j = 1, 2, . . . , n − 1}
(V = {vi , i = 1, 2, . . . , n}). As k increases, the set
Nk
t includes more neighbors, resulting in Eq. (3).

E1 ⊆ E2 ⊆ · · · E j · · · ⊆ En−1 (3)

The kN N network is constructed by the relationship
between the neighbors, making it have an important
invariance. For ddef1 and ddef2, if the elements of the
distance matrix D2

� = [ddef2(�t1,�t2)] can be gener-
ated by the elements of D1

� = [ddef1(�t1,�t2)] and a
monotonically increasing function f (ddef2(�t1 ,�t2)

= f (ddef1(�t1 ,�t2))), then the two distance defini-
tions correspond to the same filtering sequence.

2.4 GTCC

Similar to time series analysis, an important topic is to
study the relationship between a pair of T DOs. In lin-
ear time series analysis, patterns in the data can be well
captured by models such as ARMA, so that theoretical
relationships between model-driven series can be well
analyzed. If the set � is represented by a sequence of
sparse matrices or high-dimensional vectors, such as a
snapshot network, it is difficult to construct a model to
capture the dynamics in T DO . In particular, it is also
difficult to construct a suitable model for general T DO
as in linear time series analysis. However, by extract-
ing the neighbor relations in the distancematrix, we can
characterize the topological similarity between T DOs.

Below, we define general topological correlation
coefficient (GTCC) between T DOs by kN N fil-
tering sequences [12]. Except that a ddef needs to
be specified, the steps of GTCC are the same as
those of calculating TCC of time series. We assume
there are two T DOs (O(�1, ddef,1), O(�2, ddef,2))
and card(�1) = card(�2) = n. If kN N filtering is
implemented for each T DO , two network sequences
are generated, denoted as W�1 = {W�1

k (V1, E
�1
k )}

and W�2 = {W�2
k (V2, E

�2
k )}, respectively. For each

pair of networks W�1
k (V1, E

�1
k ) and W�2

k (V2, E
�2
k ),

we can calculate the Jaccard similarity J (k) =
Card(E

�1
k ∩E

�2
k )

Card(E
�1
k ∪E

�2
k )

to characterize the structural similar-

ity between them. In this way, there are n − 1 Jaccard
similarity values between a pair of filtered sequences.
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The TCC of T DO is defined as themean of the Jaccard
similarity between two sequences: 1

n−1

∑n−1
k=1 J (k).

Since the kN N filtering sequence extracts the nearest
neighbors of � from multiple scales, it represents the
topological structure of the dataset. In this way,GTCC
characterizes the topological similarity between two
T DOs.

For large values of n, we can set ρk = k
n−1

and replace J (k) with J (ρk). The TCC value can
be approximated by an integral (Eq. 4), where J (ρ)

can be replaced by a fitted polynomial function. In
addition, we can choose l values at equal intervals
within [1, n − 1] and calculate the average value of
{J (k), k = 1, 1 + 2l, · · · ,ml}. Here, the positive m is
equal to [(n − 1)/ l], and l is a parameter that controls
the length of the interval. Later, if we use the approx-
imate calculation method, the value of l is set. Since
the Jaccard similarity value is in the interval [0, 1], in
Eq. (4), J (ρ) ≤ 1. Furthermore, due to the relation
Eq. (3), the function J (ρ) is a monotonically increas-
ing function and takes the value 1 when k = n − 1.
These properties of J (ρ) allow it to be estimated well
and do not need to consider convergence.

TCCOTD =
∫ 1

0
J (ρ)dρ (4)

TCC is a special case of GTCC , i.e. �t is a uni-
variate time series and ddef is the Euclidean dis-
tance defined over real numbers. In time series anal-
ysis, autocorrelation is an important analysis indica-
tor, such as it can be used to identify the order of
moving average process [26]. For a T DO , we can
also detect the time-delay similarity of its structure
through TCC , where the TCC with time lag τ is
defined on O1({�t , t = 1, 2, . . . , n − τ }, ddef) and
O2({�t , t = τ + 1, . . . , n}, ddef). Next, we use TCCτ

to denote the delay similarity.

2.5 Surrogate T DO

T DO includes a time factor, and in some cases�t has a
complex structure, eg,�t is a graphor network. In order
to analyze the characteristics of T DO in detail, we
introduce surrogate T DO for constructing significance
test.

Based on previous studies, we can construct surro-
gate T DOs for some special cases. For time series,

there have been some classical methods to construct
surrogate time series [27]. These methods remove or
maintain the dynamics inherent in time series from dif-
ferent perspectives. For example, the random permuta-
tion (RP) method scrambles the observations, thereby
providing a way to completely eliminate the original
dynamics [28]. In previous studies, the RP method has
been effectively applied to the significance analysis of
TCC [12].

Similar to time series, there are various methods for
generating benchmark networks in temporal network
theory [29]. These methods provide multiple bench-
marks of the original network by disrupting the net-
work structure or timeline. A common approach is
sequence shufflings, which destroy temporal correla-
tions by shuffling the order of network snapshots [29].
This method randomly shuffles the timestamps of the
temporal network, so that the structural relationship
between adjacent snapshots is destroyed. It can be
found that this method has formal similarities with the
RP method for time series.

In general, we can use the shuffling method to con-
struct a T DO for comparison. This is a generalized
extension of the RP method and the sequence shuf-
fling method. For a T DO , we scramble the timestamp
t of � = {�t }, and transform the distance matrix
D� = [ddef(�t1,�t2)] accordingly. Here, the transfor-
mation does not change the elements of the matrix, but
only shuffles the positions, and the main diagonal ele-
ments are equal to 0, and it is a symmetric matrix. The
shufflingmethod only changes the order of timestamps,
but does not change �. To sum up, for a T DO , this
method can be used to testwhether it is time-dependent,
so the null hypothesis is that the time-tagged set ({�t })
is time-independent. In particular, this null hypothesis
corresponds to the distance ddef .

3 Results

Since previous studies have systematically analyzed
various types of time series data using TCC [12], here
we only analyze the T DOs of chaotic systems and
temporal networks.
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3.1 T DO generated by Hénon map

3.1.1 Structural similarity analysis between TDOs
generated by Hénon map

We use the Hénon map to generate two sets of obser-
vations with parameters a = 1.4 and b = 0.3 (Eq. 5)
[22]. We set the initial values to (0, 0) and (0.01, 0.01)
to generate two T DOs, andmark themwith H1 and H2

respectively. Each set of observations consists of 1000
two-dimensional vectors and is assigned a Euclidean
distance, resulting in two T DOs (�t = (xt , yt )). The
TCC value between the two T DOs is 0.3871.

xt+1 = −ax2t + yt + 1,

yt+1 = bxt .
(5)

Next, we test the significance of TCC [12]. We gener-
ate a surrogate T DO from each original T DO , calcu-
late the TCC value and denote it as TCCrand (l = 2).
Here, we repeat the above steps 600 times and generate
600 TCC values. Figure 1 is a frequency histogram of
TCCrand values, including four descriptive statistics.
We then perform a Jarque-Bera test on these obser-
vations. The test report shows that the statistic χ =
5.3224 and the p−value = 0.06987, indicating that the
null hypothesis cannot be rejected at the significance
level α = 0.05. The test results support that this set of
observations comes from a normal population. Finally,
we calculate the Z -score, Z = 0.3871−0.3869

0.0014 = 0.1645.
A Z -score less than 1.96 indicates that the TCC value
is within the interval [ave − 1.96std, ave + 1.96std]
(α = 0.05) and thus not significant. The TCC value is
not significantly distinguishable from the baseline val-
ues, so there is no significant time-dependent structural
similarity between the two T DOs. In this example, a
chaotic systemwith the same parameters generates two
vector sequences with no significant time-dependent
topological similarity, thus demonstrating the sensitiv-
ity of TCC to initial values.

3.1.2 Time-delay similarity of T DO

Below, we calculate the TCCτ values for each T DO ,
where the order τ of the lags is chosen from 1
to 20. In addition, we generated surrogate T DOs,
denoted by Hs

1 and Hs
2 , respectively, and then calcu-

lated TCCτ values. Here, we use an approximate cal-
culation method, where the parameter l = 2. Figure 2

Fig. 1 Frequency histogram of TCCrand values. The symbol
‘ave’ represents the average value

Fig. 2 Most of the J (τ ) values of H1 are greater than those of
Hs
1 , and both sequences of J (τ ) values tend to 1 as τ increases

shows the J (τ ) curves for H1 and Hs
1 , where τ = 1.

The two curves can be distinguished significantly and
result in a difference between the TCC1 values. The
TCCτ of H1 is 0.5921 and that of Hs

1 is 0.3862, indi-
cating that the dataset generated by Eq. (5) includes
structural similarity and is significantly different from
the benchmark dataset.

Figure 3 shows the sequence of TCC values for
these two T DOs, where the abscissa corresponds to
the lag order. As τ increases, the TCCτ value decays,
and the TCCτ values of the same lag order are always
close to each other. In addition, we generated surrogate
T DOs, denoted by Hs

1 and Hs
2 , respectively, and then

calculated TCCτ values. In Fig. 3, we also identify
the lagged TCC values of the T DO constructed based
on the shuffling method. Table 1 lists the four TCCτ

value sequences. Comparing the TCCτ values of H1

and Hs
1 , it can be found that there is a significant differ-
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Fig. 3 TCCτ sequences of the two T DOs generated by Hénon
map (τ = 1, 2, . . . , 20)

Table 1 The sequence of τ values for T DO generated by the
Hénon map

τ H1 Hs
1 H2 Hs

2

1 0.5921 0.3862 0.5897 0.3852

2 0.4770 0.3856 0.4756 0.3868

3 0.4332 0.3856 0.4313 0.3862

4 0.4067 0.3866 0.4040 0.3861

5 0.4025 0.3862 0.3996 0.3875

6 0.4006 0.3861 0.3986 0.3856

7 0.4046 0.3863 0.4026 0.3892

8 0.4004 0.3867 0.4041 0.3836

9 0.3944 0.3843 0.4007 0.3853

10 0.3882 0.3873 0.3909 0.3859

11 0.3855 0.3873 0.3848 0.3883

12 0.3898 0.3880 0.3845 0.3878

13 0.3918 0.3858 0.3848 0.3837

14 0.3915 0.3872 0.3864 0.3906

15 0.3900 0.3888 0.3879 0.3892

16 0.3900 0.3864 0.3909 0.3890

17 0.3893 0.3856 0.3906 0.3853

18 0.3886 0.3876 0.3895 0.3868

19 0.3848 0.3850 0.3855 0.3862

20 0.3849 0.3868 0.3838 0.3849

ence between the two TCC1 values, and the difference
between the TCCτ values of H1 and Hs

1 is small when
τ ≥ 9. Similar results can be observed for H2 versus
Hs
2 .
Table 1 shows that GTCC can detect hidden linear

and nonlinear relationships in orbital sequences gen-
erated by Hénon system. Here, the variables xt and

yt are represented by a quadratic function and a lin-
ear function, respectively, and dependencies defined
by functions are broken in surrogate T DO . Further-
more, when τ is large enough, the level of dependence
decreases near the baseline. In particular, although the
TCC between the two T DOs was insignificant, the
decay rates of their TCCτ values exhibited similar pat-
terns.

3.2 Temporal network

The temporal network analyzed in this study is repre-
sented by a snapshot network, where the time interval
for extracting snapshots is 20s [30,31]. Each snapshot
is constructed from face-to-face data between 232 stu-
dents and 10 teachers. The dataset includes data for two
periods, October 1, 2009 and October 2, 2009, and are
labeled P1 and P2 below [30,31]. We specify the ddef
of T DO using two definitions: Jaccard distance, spec-
tral distance. Moreover, we use P1,s and P2,s to denote
the surrogate T DO generated from the two periods of
data, respectively.

3.2.1 Time dependencies of snapshot network
structures

Below, we show several snapshots of this temporal net-
work, as shown in Fig. 4. Figure 4a–d correspond to
snapshots No. 214–No. 217 on the first day, respec-
tively. The four snapshots only include some small-
sized subgraphs, and most nodes have no links to other
nodes. We only show the nodes with links here, where
the four networks contain 64, 74, 65 and 48 nodes
respectively. Some links appeared in different snap-
shots, such as v173 − v181 in Fig. 4a, b, and v36 − v68
in Fig. 4c, d. However, most of the links in one snap-
shot were eliminated in other snapshots. The Jacccard
distance matrix (Eq. 6) exhibits the similarity between
the four snapshots, where all off-diagonal elements are
greater than 0.7. The Jaccard distance depends on a
one-to-one correspondence between node sets of dif-
ferent snapshots. Spectral distance captures the dif-
ferences between networks globally, eliminating the
need to specify this correspondence. There is a signif-
icant difference between the calculated results of the
local structure and the global structure. Equation (7)
shows the spectral distance between the four snapshots.
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Fig. 4 Four snapshots of the temporal network, where a–b correspond to No. 214–No. 217, respectively

The two distance definitions lead to different compari-
son results. For example, dJaccard(1, 2) < dJaccard(1, 3)
and dLaplace(1, 3) < dLaplace(1, 2). The analysis here
is consistent with previous studies that the dynamics
in temporal networks can be observed from different
structural scales [20,23]. To sum up, the comparative
analysis shows that there are significant differences
between the local and global structures of network

snapshots, so that ddef needs to be specified when cal-
culating TCC .

dJaccard =

⎛
⎜⎜⎝

0 0.7625 0.8333 0.8590
0.7625 0 0.8312 0.8267
0.8333 0.8312 0 0.8732
0.8590 0.8267 0.8732 0

⎞
⎟⎟⎠(6)

dLaplace =

⎛
⎜⎜⎝

0 2.3525 1.5559 2.6413
2.3525 0 1.3966 4.2158
1.5559 1.3966 0 3.6260
2.6413 4.2158 3.6260 0

⎞
⎟⎟⎠
(7)
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Next, we first calculate the TCCτ values when ddef
is the Jaccard distance (l = 2). Figure 5a plots the
TCCτ values for the two periods, where the differ-
ence between the two series is small, suggesting a time-
dependent similarity between the structures of the two
T DOs. Figure 5a also plots the TCCτ value of Pi,s
(i = 1, 2). For a τ value, we find that the TCCτ values
of the two periods are close to each other. However,
all TCCτ values were greater than the baseline val-
ues generated by the surrogate T DOs. The table in the
appendix lists the TCCτ values for the two periods.
There are only minor differences between the TCCτ

series of P1 and P2. In particular, TCCτ values calcu-
lated from real data are always significantly larger than
the baseline values obtained from surrogates.

The similarity of decaying features suggests a simi-
larity between the dynamics hidden in the two temporal
networks. Since the Jaccard distance is defined by the
local structure, the similarity in the calculated results
stems from the fact that human behavior exhibits sim-
ilar patterns in the two periods.

Second, we calculate the TCCτ value when ddef is
the spectral distance (l = 2). Figure 5b plots the TCCτ

values of T DO with ddef defined by Laplace spec-
tral distance. We find a significant difference between
the TCCτ values of the two periods. The table in the
appendix lists the TCCτ series. For the case where ddef
is the spectral distance, the result is similar to the case of
the Jaccard distance. For each τ value, the TCCτ value
also deviates significantly from the baseline value.

Comparing Fig. 4 with Fig. 5, we find that the anal-
ysis results using the perspective of the global structure
are significantly different from those of the local struc-
ture. Figures 4 and 5 suggest that there is a high similar-
ity between the underlying local structural dynamics of
the two periods, while there are significant differences
between the global structural dynamics.

In this example, we found that adjusting distance on
the same set� can cause the analysis results to vary sig-
nificantly. For complex networks, the structure ismulti-
scale, such as including local, meso and macroscopic
structures [16]. Different distance definitions lead to
changes in calculation results is essentially a manifes-
tation of this feature.

3.2.2 TCC-based dynamics of temporal networks

The changes of the local structure and the global
structure are described by the Jaccard distance matrix

(a)

(b)

Fig. 5 TCCτ series for two periods of the temporal network.
Panel a plots the TCCτ series with ddef as the Jaccard distance,
where there is only a slight difference between the series of the
two periods. Panel b plots TCCτ series with ddef as the spectral
distance, and there is a significant difference between P1 and P2

and the spectral distance matrix, respectively. TCC
extracts the neighbor relations hidden in the distance
matrix, so that the structural dynamics of snapshot net-
works can be studied by sliding calculation window.
In order to observe the structural dynamics of T DO
in detail, below, we set the calculation window and
slide the window to calculate the sequence of TCCτ

values, where τ = 1. For window w, we extract two
T DOs, O1({�t , t = i, i + 1, . . . , i + w − 1}, ddef)
and O2({�t , t = i + 1, i + 2, . . . , i + w}, ddef), and
detect the TCCτ value between them. Here, we choose
w = 200. From this method, we can observe the details
of network dynamics by changes in topological simi-
larity.

Figure 6 shows the TCC1 sequence with ddef as the
Jaccard distance (blue line). Some peaks and valleys
can be clearly observed, implying that the topological
similarity varies with time. These peaks and valleys
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(a)

(b)

Fig. 6 The TCCτ series calculated by the sliding calculation
window (Jaccard distance), where the window length is 200 and
τ = 1. Figures a and b correspond to the P1 and P2 periods,
respectively

suggest that the temporal network has structural crit-
ical times. This is confirmed by the benchmark value
calculated based on the surrogate T DO (red line). Fig-
ure 6 shows that the baseline value changes slightly
and is significantly smaller than the TCC1 value of
the original temporal network. Furthermore, the blue
lines in Fig. 6a, b exhibit similar patterns. For example,
both periods included 5 peaks, suggesting similarities
between the underlying dynamics.

Table 2 lists the descriptive statistics of the four
TCC1 series calculated by sliding windows. The mean
values of TCC1 series at both P1 and P2 were signif-
icantly larger than the mean values of baseline series.
Furthermore, the minimum values are all larger than
the maximum values of the baseline series. In partic-
ular, the standard deviation of each series is greater
than ten times the standard deviation of the benchmark
series. The significant difference in standard deviations

Table 2 Descriptive statistics for the TCC1 series
(Jaccard distance)

T DO Ave Std Max Min

P1 0.6013 0.0470 0.7228 0.5133

P2 0.6008 0.0444 0.7024 0.5146

Ps
1 0.3984 0.0030 0.4065 0.3925

Ps
2 0.3964 0.0016 0.4000 0.3907

Ave average, Std standard deviation

Table 3 Descriptive statistics for the TCC1 series
(spectral distance)

T DO Ave Std Max Min

P1 0.4689 0.0317 0.5348 0.3979

P2 0.4513 0.0332 0.5122 0.3964

Ps
1 0.3886 0.0043 0.4008 0.3806

Ps
2 0.3870 0.0030 0.3942 0.3809

is essentially due to the presence of non-trivial dynam-
ics in T DOs.

We also calculated TCC1 series with ddef as spec-
tral distance (Fig. 7). All TCC1 values of the original
T DO are greater than those of the surrogate T DO .
Comparing Fig. 6 with Fig. 7, it can be observed that
the difference in the definition of distance results in
significant changes in the sequence of TCC1 values.
Similar to Fig. 6, in Fig. 7, the TCC1 series of Pi
(i = 1, 2) also includes some local peaks and valleys.
This implies that critical times of dramatic changes are
still included in the global structural dynamics. Table 3
shows the descriptive statistics calculated based on the
sliding window, in which the mean values correspond-
ing to P1 and P2 are significantly smaller than those
in Table 2. In addition, the standard deviations corre-
sponding to Ps

i (i = 1, 2) are also significantly smaller
than those of Pi (i = 1, 2), thus supporting that the
global structural dynamics is non-trivial.

In this example, we analyze the structural dynam-
ics of two periods by TCC and find that the struc-
tural similarity exhibits complex patterns when {�t }
is a sequence of network snapshots. Such complexity
requires equipping different distances (ddef ) for ana-
lyzing structural dynamics from multiple perspectives.
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(a)

(b)

Fig. 7 The figure shows the TCCτ sequence where ddef is the
spectral distance. Figuresa andb correspond to P1 and P2 respec-
tively, the calculation window length is 200, and τ = 1

4 Discussion and conclusions

4.1 Discussion

For special objects, such as time series or temporal net-
works, there are several ways to construct a surrogate
T DO . For example, autoregressive (AR) surrogates
in nonlinear time series analysis assume that the data
is described by an AR model [27]. Fourier transform
(FT ) surrogates are used to test whether a data set has
nonlinear structure from the perspective of power spec-
trum [27]. For a general T DO , we can check whether
its structure is time-dependent by shuffling method. A
related topic is how to construct other surrogates to
examine the structure of T DO in detail.

4.2 Conclusion

We introduced T DO for generalized analysis of
objects with time factors. T DO makes it possible
to develop tools to analyze data objects from differ-
ent research fields, such as time series, chaos dynam-
ics, and dynamic networks. The definition of T DO
includes two elements, time and distance. By com-
bining these two elements, we can calculate the time-
dependent structural similarity between T DOs by
the kN N filtering method. The kN N filter sequence
extracts the hidden multi-scale topology in the dataset
through the distance matrix of T DO . GTCC captures
the difference between two kN N filter sequences glob-
ally, thereby characterizing the topological similarity of
two T DOs.

To demonstrate the effectiveness of GTCC , we
analyzed a chaotic system and a temporal network
using GTCC . The examples demonstrate that nonlin-
ear dependencies in chaotic systems can be identified
by GTCC , as well as topological similarity in tempo-
ral networks. In particular, by GTCC , we found rich
dynamics in T DOs constructed from networks. For
example, we observed local peaks and valleys in all
TCC1 series, and two TCC1 sequences defined by
the same ddef had similar patterns. To sum up, this
study provides an analytical framework for insight into
datasets with time factors.
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Appendix

Tables 4 and 5 show the calculation results of TCCτ

of temporal network. The values in the columns cor-
responding to Ps

1 and Ps
2 are calculated based on sur-

rogates. The TCCτ values of the real data decrease
as τ increases and are all significantly larger than the
baseline values.
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Table 4 The series of TCCτ values for the temporal network,
where ddef is defined by the Jaccard distance

τ P1 Ps
1 P2 Ps

2

1 0.5795 0.3964 0.5776 0.3944

2 0.5625 0.3958 0.5599 0.3930

3 0.5540 0.3967 0.5529 0.3943

4 0.5484 0.3962 0.5480 0.3938

5 0.5448 0.3965 0.5458 0.3937

6 0.5410 0.3960 0.5437 0.3933

7 0.5392 0.3971 0.5419 0.3939

8 0.5381 0.3962 0.5398 0.3930

9 0.5366 0.3968 0.5371 0.3939

10 0.5336 0.3957 0.5366 0.3926

11 0.5313 0.3966 0.5352 0.3933

12 0.5303 0.3956 0.5333 0.3929

13 0.5302 0.3962 0.5318 0.3937

14 0.5275 0.3973 0.5304 0.3937

15 0.5262 0.3968 0.5297 0.3931

16 0.5246 0.3954 0.5271 0.3938

17 0.5231 0.3962 0.5277 0.3936

18 0.5221 0.3955 0.5266 0.3928

19 0.5202 0.3962 0.5252 0.3935

20 0.5200 0.3954 0.5243 0.3943

Table 5 The series of TCCτ values for the temporal network,
where ddef is defined by the spectral distance

τ P1 Ps
1 P2 Ps

2

1 0.5235 0.3882 0.4981 0.3849

2 0.5024 0.3888 0.4745 0.3831

3 0.4928 0.3866 0.4700 0.3866

4 0.4810 0.3878 0.4641 0.3867

5 0.4772 0.3857 0.4590 0.3884

6 0.4725 0.3869 0.4553 0.3862

7 0.4645 0.3863 0.4525 0.3874

8 0.4595 0.3858 0.4451 0.3858

9 0.4606 0.3892 0.4465 0.3878

10 0.4585 0.3871 0.4443 0.3853

11 0.4559 0.3862 0.4432 0.3871

12 0.4537 0.3885 0.4397 0.3882

13 0.4579 0.3826 0.4380 0.3887

14 0.4538 0.3864 0.4389 0.3865

15 0.4495 0.3855 0.4381 0.3869

16 0.4493 0.3867 0.4396 0.3858

17 0.4471 0.3870 0.4402 0.3870

18 0.4443 0.3845 0.4372 0.3867

19 0.4445 0.3867 0.4324 0.3872

20 0.4439 0.3845 0.4321 0.3851
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