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Abstract Exact solutions of higher-dimensional non-
linear equations takes a major place in the study of
nonlinear phenomena observed in nature. In this arti-
cle, some new kink type solutions are investigated
for the new (3+1)-dimensional Boiti-Leon-Manna-
Pempinelli(BLMP) equation. Firstly, a variety of solu-
tions are obtained by Hirota’s bilinear form, which
include kink type wave solution, periodic solitary wave
solutions and singular solitary wave solutions using
extendedhomoclinic test approach. Secondly, solutions
with three wave form are obtained by generalized three
wave method. The extended homoclinic test approach
is also used to construct solutions with a tail which
explain some physical phenomenon. Moreover, some
figures of the solutions are shown behind.
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1 Introduction

Nonlinear science is a vital discovery in the area of
natural science since the 20th century, and its rapid
development has made it one of the popular topics in
mathematical physics. In recent decades, researches
on soliton solutions [1],rogue waves solutions [2],
periodic wave solutions [3], interaction solutions [4]
and lump solutions [5] of nonlinear partial differential
equations (NLPDEs) have received increasing attention
from experts and scholars.

Recently, nonlinear evolution equations (NLEEs)
has wide application in various fields. Various methods
have been proposed to explore nonlinear phenomena.
For example, three-wave method [6,7], tanh method
[8], Bäcklund transformation [9], Darboux transfor-
mation [10], Exp-function method [11], Hirota bilin-
ear method [12], homogeneous balance method [13],
the generally projective F-expansions [14], (G’/G)-
expansion method [15], auxiliary equation method
[16], Riccati equation method [17], simplest equation
method [18,19], etc.

Wazwaz proposed a new (3+1)-dimensional Boiti-
Leon-Manna-Pempinelli (BLMP) equation which has
time dependent coefficients. It’s written as the form
[20]

F(t)(ux + uy + uz)t + G(t)(ux + uy + uz)xxx

+H(t)(ux (ux + uy + uz))x = 0. (1.1)
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It comes from one of themost typical NLEEs, which
is the (3+1)-dimensional BLMP equation

(uy + uz)t + (uy + uz)xxx + (ux (uy + uz))x = 0,

(1.2)

which includes three expressions which consist the
derivatives uy + uz . The Eq. (1.1) has the additional
derivative ux to every expressions.

Let F(t) = 1,G(t) = 1, H(t) = 1, Eq.(1.1)
reduces to the a equationmainly discussed in this paper
with constant coefficients

(ux + uy + uz)t + (ux + uy + uz)xxx

+(ux (ux + uy + uz))x = 0. (1.3)

These equations describe a kind of physical phe-
nomenon in the natural world, that is, the propagation
of waves in incompressible fluid. To confirm its inte-
grability, the Painlév analysis is used by Wazwaz to
obtain the compatibility condition. By the simplified
Hirota’s method and the complex Hirota’s criteria, the
multiple soliton solutions andmultiple complex soliton
solutions are determined. [20]

Based on the new (3+1)-dimensional BLMP equa-
tion given by Wazwaz, scholars have obtained many
new research achievements. Liu and Wazwaz further
get breather wave solutions, lump type solutions of
equation (1.3) in Ref. [21]. Yuan presented more kinds
of the interaction solutions, including lump and N-
soliton solutions. The breather-wave solution is stud-
ied in Ref. [22]. Han and Bao investigated the equation
(1.1) with time-dependent coefficients on the basis of
the Hirota bilinear method, and obtained the mixed
high-order lump N-soliton solutions and the hybrid
solutions in Ref. [23]. To construct test functions, Qiao,
Zhang and Yue used a specific bilinear neural network
framework. Three kinds of periodic-type solutions of
Eq. (1.3) are given in Ref. [24].

The paper is structured as follows, Sect. 2 obtains
kink-shaped solitary wave solutions, singular solitary
wave solutions, periodic wave solutions and periodic
kink wave solutions by using the extended homoclinic
test approach. In Sect. 3 a three-wave method is used to
find three-wave solutions. We get periodic kink wave
solutions, periodic cross kink wave solutions and peri-
odic wave solutions. Section 4 obtains kink-shaped
solitarywave solutionswith tails, by using the extended
homoclinic test approach. Section 5 is dedicated to giv-
ing the conclusion.

2 Extended homoclinic test approach

The new (3+1)-dimensional BLMP equation with con-
stant coefficients has been written as

(ux + uy + uz)t + (ux + uy + uz)xxx

+(ux (ux + uy + uz))x = 0. (2.1)

According to the function transformation

u(x, y, z, t) = 6[ln f (x, y, z, t)]x , (2.2)

the Hirota bilinear form of Eq. (2.1) is

[D4
x + DyD

3
x + DzD

3
x + Dt Dx + Dt Dy

+Dt Dz] f · f = 0. (2.3)

Then Eq. (2.1) becomes

3 fxx
2 + 3 fxz fxx + 3 fxy fxx − ft fz − ft fy − ft fx

−3 fx fxxz − 3 fx fxxy − fz fxxx

− fy fxxx − 4 fx fxxx + f ( fzt + fyt + fxt

+ fxxxz + fxxxy + fxxxx ) = 0. (2.4)

Let f take the form

f = k1 cos(ξ1) + k2 exp(ξ2) + exp(−ξ2), (2.5)

where ξi = ai x+bi y+ci z+di t, ki ∈ R, ai , bi , ci , di ∈
C(i = 1, 2)are undetermined constants.

Substituting Eq. (2.5) into (2.3) and setting coeffi-
cients of

cos(ξ1) exp (−ξ2), cos (ξ1) exp (ξ2),

sin (ξ1) exp (−ξ2), sin (ξ1) exp (ξ2)

and the constant term to zero, we obtain a set of alge-
braic equations (2.6)with respect to ki andai , bi , ci , di ,
(i = 1, 2).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1(−a41 − (b1 + c1)a
3
1 + 3a2(c2 + 2a2 + b2)a

2
1

+ [(3b1 + 3c1)a
2
2 + d1]a1

− a42 + (−c2 − b2)a
3
2 − a2d2 + (b1 + c1)d1

− d2(c2 + b2)) = 0,

k1((−c2 − 4a2 − b2)a
3
1 − 3a2(b1 + c1)a

2
1

+ [4a32 + (3c2 + 3b2)a
2
2 + d2]a1

+ (b1 + c1)a
3
2 + d1a2 + (c2 + b2)d1 + d2(b1 + c1)) = 0,

k1k2(a
4
1 + (b1 + c1)a

3
1 − 3a2(c2 + 2a2 + b2)a

2
1

− [(3b1 + 3c1)a
2
2 + d1]a1

a42 + (c2 + b2)a
3
2 + a2d2 + (−b1 − c1)d1 + d2(c2 + b2)) = 0,

k1k2((−c2 − 4a2 − b2)a
3
1 − 3a2(b1 + c1)a

2
1

+ [4a32 + (3c2 + 3b2)a
2
2 + d2]a1

+ (b1 + c1)a
3
2 + d1a2 + (c2 + b2)d1 + d2(b1 + c1)) = 0,

− (a1 + b1 + c1)(−4a31 + d1)k
2
1 + (a2 + b2 + c2)(4a

3
2 + d2)4k2 = 0.

(2.6)

Solving Eq. (2.6), we have following conclusion.
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2.1 Solution in the situation k1 = 0

If k1 = 0, we have some cases.

Case 1
I.

k1 = 0, a2 = −c2 − b2, (2.7)

where a1, b1, b2, c1, c2, d1, d2, and k2 are free param-
eters.
II.

k1 = 0, d2 = −4a32, (2.8)

where a1, a2, b1, b2, c1, c2, d1 and k2 are free parame-
ters.

Substituting Eq. (2.7–2.8) into Eq. (2.5) and Eq.
(2.2), we obtain the solutions in the case of i = 1 and
i = 2. The corresponding solutions are given by

u = Ci
k2eζi − e−ζi

k2 eζi + e−ζi
, i = 1, 2, (2.9)

where

ζ1 = (−c2 − b2) x + b2y + c2z + d2t,

ζ2 = −a2x − b2y − c2z + 4a32 t, C1 = −6 (c2

+b2) , C2 = 6a2.

In particular, solutions Eq. (2.9) can be expressed as

u1 = Ci tanh

(

ζi + 1

2
ln k2

)

, k2 > 0, i = 1, 2,

(2.10)

u2 = Ci coth

(

ζi + 1

2
ln (−k2)

)

, k2 < 0, i = 1, 2,

(2.11)

where

ζ1 = (−c2 − b2) x + b2y + c2z + d2t,

ζ2 = −a2x − b2y − c2z + 4a32 t,

C1 = −6 (c2 + b2) , C2 = 6a2.

It is easy to know that u1, u2 are kink-shaped solitary
wave solutions.

To simplify the results, the sign of k2 will not be
discussed in each case later.

2.2 Solution in the situation k2 = 0

If k2 = 0, we have

Case 2

b1 = −a1 − c1, d1 = a31 − 3a1a
2
2 , d2

= 3a21a2 − a32, k2 = 0, (2.12)

where a1, a2, b2, c1, c2, and k1 are free parameters.
Substituting Eq. (2.12) into Eq. (2.2) and Eq. (2.5),

the solutions are yielded that

u = 6
−k1a1 sin (ζ1) − a2 eζ2

k1 cos (ζ1) + eζ2
, (2.13)

where ζ1 = (
a1x + (−a1 − c1) y + c1z + (

a13 − 3a1
a22

)
t
)
, ζ2 = −a2x − b2y − c2z − (

3a12a2 − a23
)
t .

In particular, solution Eq. (2.13) can be expressed as

u3 = 6
−k1a1 sin (ζ1) − a2 (cosh ζ2 + sinh ζ2)

k1 cos (ζ1) + cosh ζ2 + sinh ζ2
, (2.14)

where ζ1 = (
a1x + (−a1 − c1) y + c1z + (

a13 − 3a1
a22

)
t
)
, ζ2 = −a2x − b2y − c2z − (

3a12a2 − a23
)
t .

Case 3
The case of complex solutions.
I.

b2 = − 1

3a1(a12 + a22)
(b2a + b2b + b2c + b2d),

d1 = 4a31, d2 = ±
(
3 ia1

3 + 3 ia1a2
2
)

+ 3a2a1
2

−a2
3, k2 = 0, (2.15)

where a1, a2, b1, c1, c2, and k1 are free parameters. and

b2a = 3a1
3c2 − 3a2 a1

2b1 − 3a2 a1
2c1 + 4a1 a2

3

+3a1 a2
2c2 + a2

3b1 + a2
3c1,

b2b = (a1(±(3 ia1
3 + 3 ia1 a2

2) + 3a2 a1
2 − a2

3),

b2c = (±(3 ia1
3 + 3 ia1 a2

2) + 3a2 a1
2 − a2

3)b1,

b2d =
(
±

(
3 ia1

3 + 3 ia1 a2
2
)

+ 3a2 a1
2 − a2

3
)
c1),

II.

a1 = ±ia2, b1 = ∓ia2 − c1,

d1 = ∓4ia32, b2 = −a2 − c2, k2 = 0, (2.16)

where a2, c1, c2, d2 and k1 are free parameters.
Substituting Eq. (2.15–2.16) into Eq. (2.5) and Eq.

(2.2), we obtain a∗ = a1, i = 1 and a∗ = ±ia2, i = 2,
respectively. The corresponding solutions are given by

u = −6
k1a∗ sin (ζi ) + a2 eηi

k1 cos (ζi ) + eηi
, i = 1, 2, (2.17)

where ζ1 = a1x + b1y + c1z + 4a13t, η1 = −a2x −
b2y − c2z − (± (

3 ia13 + 3 ia1a22
) + 3a2a12 − a23)t,

ζ2 = (±i) a2x + ((∓i) a2 − c1) y + c1z + 4 (∓i) a32 t,
η2 = −a2x − (−a2 − c2) y − c2z − d2t.
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Fig. 1 The singular solitary wave solution u3 at a1 = 1, c1 = 1, a2 = 1, b2 = 1, k1 = 1, z = 0, at =-1,bt = 0, ct = 1

Fig. 2 The singular solitary wave solution u5 at a2 = 1, b1 = 1, b2 = 1, k1 = 1, x = 0, at = −5,bt = 0, ct = 5

Here, the form of b2 is shown in Eq. (2.15). In par-
ticular, solution Eq. (2.17) can be expressed as

u4 = −6
k1a∗ sin(ζi ) + a2 (cosh ηi + sinh ηi )

k1 cos(ζi ) + cosh ηi + sinh ηi
, i

= 1, 2, (2.18)

where ζ1 = a1x + b1y + c1z + 4a13t, η1 = −a2x −
b2y − c2z − (± (

3 ia13 + 3 ia1a22
) + 3a2a12 − a23)t,

ζ2 = (±i) a2x + ((∓i) a2 − c1) y + c1z + 4 (∓i) a32 t,
η2 = −a2x − (−a2 − c2) y − c2z − d2t.

Case 4

a1 = 0, d1 = 0, d2 = −a32, k2 = 0, (2.19)

where a2, b1, b2, c1, c2, and k1 are free parameters.
Substituting Eq. (2.19) into Eq. (2.2) and Eq. (2.5),

the solutions are yielded that

u = − 6a2 eζ1

k1 cos(b1y + c1z) + eζ1
, (2.20)

where ζ1 = a23t − a2x − b2y − c2z. In particular,
solution Eq. (2.20) can be expressed as

u5 = −6a2
cosh ζ1 + sinh ζ1

k1 cos (b1y + c1z) + cosh ζ1 + sinh ζ1
,

(2.21)

where ζ1 = a23t − a2x − b2y − c2z.

2.3 Solution in the situation k1 �= 0 and k2 �= 0

If k1 �= 0 and k2 �= 0, we have following conclusion.

Case 5

a1 = 0, d1 = 0, b2 = −a2 − c2, d2 = −a32, (2.22)

where a2, b1, c1, c2, k1 and k2 are free parameters.
Substituting Eq. (2.22) into Eq. (2.2) and Eq. (2.5),

the solutions are yielded that

u = 6a2
k2eζ1 − e−ζ1

k1 cos(ζ2) + k2 eζ1 + e−ζ1
, (2.23)

where ζ1 = a2x + (−a2 − c2) y + c2z − a23t , ζ2 =
b1y + c1z.

In particular, the solutionEq. (2.23) canbe expressed
as

u6 = 12
√
k2a2

sinh
(
ζ1 + 1

2 ln k2
)

k1 cos(ζ2) + 2
√
k2 cosh

(
ζ1 + 1

2 ln k2
)

,(2.24)

where ζ1 = a2x + (−a2 − c2) y + c2z − a23t ,ζ2 =
b1y + c1z.

Case 6

b1 = −a1 − c1, d1 = a31, a2 = 0, d2 = 0, (2.25)
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Fig. 3 The periodic kink wave solution u6 at a2 = 1, b1 = 1, c1 = 1, c2 = 1, k1 = 1, k2 = 1, x = 0, at = −5,bt = 0, ct = 5

Fig. 4 The periodic solitary
wave solution u7 at a1 =
1, b2 = 1, c1 = 1, c2 =
1, k1 = 1, k2 = 1, az =
0, t = 0,bx = 0, t = 0

Fig. 5 The periodic kink wave solution u8 at i = 1, a2 = 2, b1 = 1, c1 = 1, c2 = 2, d2 = 2, k1 = 1, k2 = 2, z = 0, at = −5, bt =
0, ct = 5

where a1, b2, c1, c2, k1 and k2 are free parameters.
Substituting Eq. (2.25) into Eq. (2.2) and Eq. (2.5),

we obtain the solution

u = −6k1a1
sin(ζ1)

k1 cos(ζ1) + k2 eζ2 + e−ζ2
, (2.26)

where ζ1 = a1x + (−a1 − c1) y + c1z + a31 t , ζ2 =
b2y + c2z.

In particular, the solution Eq. (2.26)can be expressed
as

u7 = −6k1a1
sin(ζ1)

k1 cos(ζ1) + 2
√
k2 cosh

(
ζ2 + 1

2 ln k2
)

,(2.27)

where ζ1 = a1x + (−a1 − c1) y + c1z + a31 t , ζ2 =
b2y + c2z.

Case 7

b1 = −a1 − c1, a2 = −c2 − b2, (2.28)

where a1, b2, c1, c2, d1, d2, k1 and k2 are free parame-
ters.

Substituting Eq. (2.28) into Eq. (2.5) and Eq. (2.2),
we obtain

u = 6
−k1a1 sin(ζ1) + (−c2 − b2) (k2 eζ2 − e−ζ2 )

k1 cos(ζ1) + k2 eζ2 + e−ζ2
, (2.29)
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where ζ1 = a1x + (−a1 − c1) y + c1z + d1t , ζ2 =
(−c2 − b2) x + b2y + c2z + d2t .

In particular, the solutionEq. (2.29) canbe expressed
as

u8 = 6
−k1a1 sin(ζ1) + (−c2 − b2)

(
2
√
k2 sinh

(
ζ2 + 1

2 ln k2
))

k1 cos(ζ1) + 2
√
k2 cosh

(
ζ2 + 1

2 ln k2
) ,

(2.30)

where ζ1 = a1x + (−a1 − c1) y + c1z + d1t , ζ2 =
(−c2 − b2) x + b2y + c2z + d2t .

Case 8
Compared with the case7, the solution obtained is

complex solutions.

a1 = ±ia2, d1 = ∓4ia32, d2 = −4a32, (2.31)

where a2, b1, b2, c1, c2, k1 and k2 are free parameters.
Substituting Eq. (2.31) into Eq. (2.2) and Eq. (2.5),

we obtain

u = 6
∓ia2k1 sin(ζ1) + a2(k2 eζ2 − e−ζ2)

k1 cos(ζ1) + k2 eζ2 + e−ζ2
, (2.32)

where ζ1 = ±ia2x+b1y+c1z∓4ia23t , ζ2 = −4a23t+
a2x + b2y + c2z.

In particular, the solutionEq. (2.32) canbe expressed
as

u9 = 6
∓ia2k1 sin(ζ1) + a2

(
2
√
k2 sinh

(
ζ2 + 1

2 ln k2
))

k1 cos(ζ1) + 2
√
k2 cosh

(
ζ2 + 1

2 ln k2
) , (2.33)

where ζ1 = ±ia2x+b1y+c1z∓4ia23t , ζ2 = −4a23t+
a2x + b2y + c2z.

3 Three wave method

Now, the equation (1.3) is considered by three wave
method. We assume it has three wave solutions, which
takes the form

f (x, y, z, t) = exp (ξ1) + δ1 cos (ξ2) + δ2 cosh (ξ3)

+δ3 exp (−ξ1) , (3.1)

where

ξi = Pi x + Qi y + Ri z

+wi t; δi ∈ R; Ri , Qi , Ri , wi ∈ R(i = 1, 2, 3)

are undetermined constants.
Substituting Eq. (3.1) into Eq. (2.5) and setting coef-

ficients of

cosh (ξ3) exp (±ξ1), cos (ξ2) exp (±ξ1), sinh (ξ3) exp (±ξ1),

sin (ξ2) exp (±ξ1), cos (ξ2) cosh (ξ3), sin (ξ2) sinh (ξ3),

and the constant term to zero, a set of nonlinear alge-
braic equations Eq. (3.2).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ2δ3[P4
1 + (R1 + Q1) P

3
1 + 3P3 (R3 + Q3 + 2P3) P

2
1

+
(
(3R1 + 3Q1) P

2
3 + w1

)
P1

+ P4
3 + (Q3 + R3) P

3
3 + w3P3 + (R1 + Q1) w1

+ w3 (Q3 + R3)] = 0,

δ1δ3[P4
1 + (R1 + Q1) P

3
1 − 3P2 (R2 + Q2 + 2P2) P

2
1

+
(
(−3R1 − 3Q1) P

2
2 + w1

)
P1

+ P4
2 + (Q2 + R2) P

3
2 − w2P2 + (R1 + Q1) w1

+ w2 (R2 + Q2)] = 0,

δ2δ3[(R3 + Q3 + 4P3) P
3
1 + 3P3 (R1 + Q1) P

2
1

+
(
4P3

3 + (3R3 + 3Q3) P
2
3 + w3

)
P1

+ (R1 + Q1) P
3
3 + w1P3 + (R3 + Q3) w1

+ w3 (R1 + Q1)] = 0,

δ1δ3[(R2 + Q2 + 4P2) P
3
1 + 3P2 (R1 + Q1) P

2
1

+
(
−4P3

2 + (−3R2 − 3Q2) P
2
2 + w2

)
P1

+ (−R1 − Q1) P
3
2 + w1P2 + (R2 + Q2) w1

+ w2 (R1 + Q1)] = 0,

δ2[P4
1 + (R1 + Q1) P

3
1 + 3P3 (R3 + Q3 + 2P3) P

2
1

+
(
(3R1 + 3Q1) P

2
3 + w1

)
P1

+ P4
3 + (Q3 + R3) P

3
3 + w3P3 + (R1 + Q1) w1

+ w3 (Q3 + R3)] = 0,

δ1[P4
1 + (R1 + Q1) P

3
1 − 3P2 (R2 + Q2 + 2P2) P

2
1

+
(
(−3R1 − 3Q1) P

2
2 + w1

)
P1

+ P4
2 + (Q2 + R2) P

3
2 − w2P2 + (R1 + Q1) w1

+ w2 (R2 + Q2)] = 0,

δ2((R3 + Q3 + 4P3) P
3
1 + 3P3 (R1 + Q1) P

2
1

+
(
4P3

3 + (3R3 + 3Q3) P
2
3 + w3

)
P1

(R1 + Q1) P
3
3 + w1P3 + (R3 + Q3) w1

+ w3 (R1 + Q1)) = 0,

δ1((R2 + Q2 + 4P2) P
3
1 + 3P2 (R1 + Q1) P

2
1

+
(
4P3

2 + (−3R2 − 3Q2) P
2
2 + w2

)
P1

(−R1 − Q1) P
3
2 + w1P2 + (R2 + Q2) w1

+ w2 (R1 + Q1)) = 0,

δ1δ2(P
4
2 + (R2 + Q2) P

3
2 − 3P3 (R3 + Q3 + 2P3) P

2
3

+
(
(−3R2 − 3Q2) P

2
3 − w2

)
P2

+ P4
3 + (Q3 + R3) P

3
3 − w3P3 + (−R2 − Q2) w2

+ w3 (R3 + Q3)) = 0,

δ1δ2((−R3 − Q3 − 4P3) P
3
2 − 3P3 (R2 + Q2) P

2
2

+
(
4P3

3 + (3R3 + 3Q3) P
2
3 + w3

)
P2

+ (R2 + Q2) P
3
3 + w2P3 + (R3 + Q3) w2

+ w3 (R2 + Q2)) = 0,

(−4P3
2 + w2) · (R2 + P2 + Q2) = 0,

(4P3
3 + w3) · (R3 + P3 + Q3) = 0,

(4P3
1 + w1) · (R1 + P1 + Q1) = 0.

(3.2)
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Solve Eq. (3.2), we have following conclusion.
In general, we only consider the case where the free

parameters are real numbers, and let δ1 �= 0, δ2 �= 0
and δ3 �= 0.

In addition, if δ2 = 0, Eq. (3.1) has the same form
as Eq. (2.5).

Case 1

R1 = −P1 − Q1, R2 = −Q2 − P2, R3

= −Q3 − P3, (3.3)

where Q1, Q2, Q3, P1, P2, P3, w1, w2 andw3 are free
parameters.

Substituting Eq. (3.3) into Eq. (2.2) and Eq. (3.1),
we obtain the solution

u = 6
P1 eη1 − δ1P2 sin(η2) + δ2P3 sinh(η3) − δ3P1 e−η1

eη1 + δ1 cos(η2) + δ2 cosh(η3) + δ3 e−η1
(3.4)

where η1 = P1x + Q1y + (−Q1 − P1) z + w1t. η2 =
P2x+Q2y+(−Q2 − P2) z+w2t. η3 = P3x+Q3y+
(−Q3 − P3) z + w3t.

In particular, solution Eq. (3.4) can be expressed as

u1 = 6
−δ1P2 sin(η2) + δ2P3 sinh(η3) + 2P1

√
δ3 sinh

(
η1 + 1

2 ln
1
δ3

)

δ1 cos(η2) + δ2 cosh(η3) + 2
√

δ3 cosh
(
η1 + 1

2 ln
1
δ3

) ,

(3.5)

where η1 = P1x + Q1y + (−Q1 − P1) z + w1t. η2 =
P2x+Q2y+(−Q2 − P2) z+w2t. η3 = P3x+Q3y+
(−Q3 − P3) z + w3t.

Case 2

P1 = − 3
√

w1, R1 = −Q1 + 3
√

w1, P2 = 3
√

w2,

R2 = −Q2 − 3
√

w2, P3 = 0, w3 = 0, (3.6)

where Q1, Q2, Q3, R3, w1 andw2 are free parameters.
Substituting Eq. (3.5) into Eq. (2.2) and Eq. (3.1),

we obtain the solution

u = 6
− 3

√
w1eη1 − δ1 3

√
w2 sin(η2) + δ3 3

√
w1e−η1

eη1 + δ1 cos(η2) + δ2 cosh(η3) + δ3 e−η1
,

(3.7)

where η1 = − 3
√

w1x+Q1y+(−Q1 + 3
√

w1
)
z+w1t ,

η2 = 3
√

w2x + Q2y + (−Q2 − 3
√

w2
)
z + w2t , η3 =

Q3y + R3z.
In particular, solution Eq. (3.7) can be expressed as

u2 = 6
−δ1 3

√
w2 sin(η2) − 2 3

√
w1

√
δ3 sinh

(
η1 + 1

2 ln
1
δ3

)

δ1 cos(η2) + δ2 cosh(η3) + 2
√

δ3 cosh
(
η1 + 1

2 ln
1
δ3

) ,

(3.8)

where η1 = − 3
√

w1x+Q1y+(−Q1 + 3
√

w1
)
z+w1t ,

η2 = 3
√

w2x + Q2y + (−Q2 − 3
√

w2
)
z + w2t , η3 =

Q3y + R3z.

Case 3

P1 = − 3
√

w1, R1 = −Q1 + 3
√

w1, P2 = 0, w2 = 0,

P3 = − 3
√

w3, R3 = −Q3 + 3
√

w3, (3.9)

where Q1, Q2, Q3, R2, w1 andw3 are free parameters.
Substituting Eq. (3.9) into Eq. (2.2) and Eq. (3.1),

we obtain the solution

u = 6
− 3

√
w1e

η1 − δ2 3
√

w3 sinh(η2) + δ3 3
√

w1e−η1

eη1 + δ1 cos(η3) + δ2 cosh(η2) + δ3 e−η1
,

(3.10)

where η1 = − 3
√

w1x + Q1y + R1z + w1t , η2 =
− 3

√
w3x+Q3y+(−Q3 + 3

√
w3

)
z+w3t , η3 = Q2y+

R2z.
In particular, solution Eq. (3.10) can be expressed as

u3 = 6
−δ2 3

√
w3 sinh(η2) − 2 3

√
w1

√
δ3 sinh

(
η1 + 1

2 ln
1
δ3

)

δ1 cos(η3) + δ2 cosh(η2) + 2
√

δ3 cosh
(
η1 + 1

2 ln
1
δ3

) ,

(3.11)

where η1 = − 3
√

w1x + Q1y + R1z + w1t , η2 =
− 3

√
w3x+Q3y+(−Q3 + 3

√
w3

)
z+w3t , η3 = Q2y+

R2z.
Case 4

P1 = − 3
√

w1, R1 = −Q1 + 3
√

w1, P2 = 0, w2 = 0,

P3 = 0, w3 = 0, (3.12)

where Q1, Q2, Q3, R2, R3, and w1 are free parame-
ters.

Substituting Eq. (3.12) into Eq. (2.2) and Eq. (3.1),
we obtain the solution

u = −6
3
√

w1(eη1 − δ3e−η1)

eη1 + δ1 cos(η2) + δ2 cosh(η3) + δ3 e−η1
,(3.13)

where η1 = − 3
√

w1x+Q1y+(−Q1 + 3
√

w1
)
z+w1t ,

η2 = Q2y + R2z, η3 = Q3y + R3z.
In particular, solution Eq. (3.13) can be expressed as

u4 = −6
2
√

δ3 3
√

w1 sinh
(
η1 + 1

2 ln
1
δ3

)

δ1 cos(η2) + δ2 cosh(η3) + 2
√

δ3 cosh
(
η1 + 1

2 ln
1
δ3

) ,

(3.14)

where η1 = − 3
√

w1x+Q1y+(−Q1 + 3
√

w1
)
z+w1t ,

η2 = Q2y + R2z, η3 = Q3y + R3z.
Case 5

P1 = 0, w1 = 0, P2 = 3
√

w2, R2 = −Q2 − 3
√

w2,

P3 = − 3
√

w3, R3 = −Q3 + 3
√

w3, (3.15)

where Q1, Q2, Q3, R1, w2 andw3 are free parameters.
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Fig. 6 The periodic kink wave solution u1 at δ1 = 1, δ2 = 1, δ3 = 1, Q1 = 1, Q2 = 1, Q3 = 1, P1 = 1, P2 = 1, P3 = 1, w1 =
2, w2 = 2, w3 = 2, z = 0, at = −5,bt = 0, ct = 5

Fig. 7 The periodic cross kink wave solution u2 at δ1 = 1, δ2 = 1, δ3 = 1, Q1 = 2, Q2 = 1, Q3 = 1, R3 = 1, w1 = 1, w2 = 1, z =
0, at = −5,bt = 0, ct = 5

Fig. 8 The periodic kink wave solution u3 at δ1 = 1, δ2 = 1, δ3 = 1, Q1 = 1, Q2 = 1, Q3 = 3, R1 = 1, R2 = 1, w1 = 1, w2 =
1, w3 = 1, x = 0, at = −5,bt = 0, ct = 5

Substituting Eq. (3.15) into (2.2) and Eq. (3.1), we
obtain the solution

u = −6
δ1 3

√
w2 sin(η1) + δ2 3

√
w3 sinh(η2)

eη3 + δ1 cos(η1) + δ2 cosh(η2) + δ3 e−η3
,

(3.16)

where η1 = 3
√

w2x + Q2y + (−Q2 − 3
√

w2
)
z + w2t ,

η2 = − 3
√

w3x + Q3y + (−Q3 + 3
√

w3
)
z + w3t , η3 =

Q1y + R1z.

In particular, solution Eq. (3.16) can be expressed as

u5 = −6
δ1 3

√
w2 sin(η1) + δ2 3

√
w3 sinh(η2)

δ1 cos(η1) + δ2 cosh(η2) + 2
√

δ3 cosh
(
η3 + 1

2 ln
1
δ3

) ,

(3.17)

where η1 = 3
√

w2x + Q2y + (−Q2 − 3
√

w2
)
z + w2t ,

η2 = − 3
√

w3x + Q3y + (−Q3 + 3
√

w3
)
z + w3t , η3 =

Q1y + R1z.

123



Some new kink type solutions for the new (3+1)-dimensional 691

Fig. 9 The periodic cross kink wave solution u4 at δ1 = 1, δ2 = 1, δ3 = 1, Q1 = 2, Q2 = 1, Q3 = 1, R2 = 1, R3 = 1, w1 = 1, x =
0, at = −5,bt = 0, ct = 5

Fig. 10 The periodic cross kink wave solution u5 at δ1 = 1, δ2 = 1, δ3 = 1, Q1 = 1, Q2 = 1, Q3 = 2, R1 = 1, w2 = 1, w3 = 1, x =
0, at = −5,bt = 0, ct = 5

Case 6

P1 = 0, w1 = 0, P2 = 3
√

w2, R2 = −Q2 − 3
√

w2,

P3 = 0, w3 = 0, (3.18)

where Q1, Q2, Q3, R1, R3 andw2 are free parameters.
Substituting Eq. (3.18) into Eq. (2.2) and Eq. (3.1),

we obtain the solution

u = −6
δ1 3

√
w2 sin(η1)

eη2 + δ1 cos(η1) + δ2 cosh(η3) + δ3 e−η2
,

(3.19)

where η1 = 3
√

w2x + Q2y + (−Q2 − 3
√

w2
)
z + w2t ,

η2 = Q1y + R1z, η3 = Q3y + R3z.
In particular, solution Eq. (3.19) can be expressed as

u6 = −6
δ1 3

√
w2 sin(η1)

δ1 cos(η1) + δ2 cosh(η3) + 2
√

δ3 cosh
(
η2 + 1

2 ln
1
δ3

) ,

(3.20)

where η1 = 3
√

w2x + Q2y + (−Q2 − 3
√

w2
)
z + w2t ,

η2 = Q1y + R1z, η3 = Q3y + R3z.
Case 7

P1 = 0, w1 = 0, P2 = 0, w2 = 0, P3 = − 3
√

w3,

R3 = −Q3 + 3
√

w3, (3.21)

where Q1, Q2, Q3, R1, R2 andw3 are free parameters.
Substituting Eq. (3.21) into Eq. (3.1) and Eq. (2.2),

we obtain the solution

u = −6
δ2 3

√
w3 sinh(η1)

eη2 + δ1 cos(η3) + δ2 cosh(η1) + δ3 e−η2
,

(3.22)

where η1 = − 3
√

w3x+Q3y+(−Q3 + 3
√

w3
)
z+w3t ,

η2 = Q1y + R1z, η3 = Q2y + R2z.
In particular, solution Eq. (3.22) can be expressed as

u7 = −6
δ2 3

√
w3 sinh(η1)

δ1 cos(η3) + δ2 cosh(η1) + 2
√

δ3 cosh
(
η2 + 1

2 ln
1
δ3

) ,

(3.23)

where η1 = − 3
√

w3x+Q3y+(−Q3 + 3
√

w3
)
z+w3t ,

η2 = Q1y + R1z, η3 = Q2y + R2z.
The figure of u7 is similar to the figure of u4, and it

is a periodic cross kink wave solution.
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Fig. 11 The periodic wave
solution u6 at δ1 = 1, δ2 =
1, δ3 = 1, Q1 = 1, Q2 =
1, Q3 = 1, R1 = 1, R3 =
1, w2 = 1, az = 0, t =
0,bx = 0, t = 0

4 Non-traveling wave solutions

In this section, we use the extended homoclinic test
approach in Ref. [25] to get non-traveling wave solu-
tions, which in form

u(x, y, z, t) = ϕ (ξ, t) + q(z), (4.1)

where ξ = x+my+nt+θ(z),m, n are twononzero con-
stants, ϕ(ξ, t), q(z) and θ(z) are three functions unde-
termined. Substituting Eq. (4.1) into (2.1), we obtain
(
1 + m + θ ′(z)

)
ϕξξξξ + (

n + mn + nθ ′(z)
+q ′(z)

)
ϕξξ

+ (
2 + 2m + 2θ ′(z)

)
ϕξϕξξ + (

1 + m + θ ′(z)
)

ϕξ t = 0. (4.2)

To simplify Eq. (4.2), we let

n + mn + nθ ′(z) + q ′(z) = 0. (4.3)

From Eq. (4.3), we get

q(z) = −
∫

[(n + mn + nθ ′(z))dz] + c

= −nθ(z) − (nm + n)z + c.
(4.4)

where c is the integral constant. Therefore, in the con-
dition of (1 + m + θ ′(z)) �= 0, Eq. (4.2) reduces to

ϕξξξξ + 2ϕξϕξξ + ϕξ t = 0. (4.5)

Integrating Eq. (4.5) once with respect to ξ . Let con-
stant c = 0, we get

ϕξξξ + (ϕξ )
2 + ϕt = 0. (4.6)

Let

ψ(ξ, t) = −1

3
ϕ(ξ, t). (4.7)

Substituting Eq. (4.7) into (4.6), one gets

ψξξξ − 3ψ2
ξ + ψt = 0. (4.8)

In order to solving Eq. (4.8), a nonlinear function
transformation of dependent variable are used

ψ = −2(ln φ)ξ , (4.9)

where φ(ξ, t)will be determined later. Substituting Eq.
(4.9) into Eq. (4.8), one can get a bilinear equation
(
Dξ Dt + D4

ξ

)
φ · φ = 0. (4.10)

Let the solution in the form

φ = k1 cos(ζ1) + k2 exp(ζ2) + exp(−ζ2), (4.11)

where ζi = aiξ + bi t, ki ∈ R; ai , bi ∈ C(i = 1, 2) are
undetermined constants.

Substituting Eq. (4.11) into (4.10) and setting coef-
ficients of cos2(ζ1), cos(ζ1) exp(ζ2), cos(ζ1) exp(−ζ2),
sin2(ζ1), sin(ζ1) exp(ζ2), sin(ζ1) exp(−ζ2) and the
constant term to zero, a set of nonlinear algebraic equa-
tions with respect to ai , bi and ki , (i = 1, 2) are given
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k21(4a
4
1 − a1b1) = 0,

k1k2(a
4
1 + a42 − 6a21a

2
2 + a2b2 − a1b1) = 0,

k1(a
4
1 + a42 − 6a21a

2
2 + a2b2 − a1b1) = 0,

k2(16a
4
2 + 4a2b2) = 0,

k1k2(4a1a
3
2 − 4a31a2 + a1b2 + a2b1) = 0,

k1(−4a1a
3
2 + 4a31a2 − a1b2 − a2b1) = 0.

(4.12)

Solving Eq. (4.12), we have the following results.
Case1

k1 = 0, b2 = −4a32, (4.13)

where a1, a2, b1 and k2 are free parameters.
Collecting Eq. (4.1), (4.4), (4.7), (4.9), (4.11),

(4.13), we obtain the solution
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Fig. 12 The exact kink-like solution with tail u1 at x = y = 0, a2 = 1, k2 = 1, n = 3,m = 1, c = 0, aθ(z) = z,bθ(z) = z2, cθ(z) =
z3

u = 6a2
k2eλ1 − e−λ1

k2eλ1 + e−λ1
− nθ(z) − (nm + n)z + c.

(4.14)

whereλ1 = a2
(
x + my + (

n − 4a22
)
t + θ(z)

)
.

In particular, solution Eq. (4.14) can be expressed as

u1 = 6a2 tanh

(

λ1 + 1

2
ln k2

)

−nθ(z) − (nm + n)z + c, k2 > 0 (4.15)

u2 = 6a2 coth

(

λ1 + 1

2
ln (−k2)

)

−nθ(z) − (nm + n)z + c, k2 < 0 (4.16)

whereλ1 = a2
(
x + my + (

n − 4a22
)
t + θ(z)

)
.

Case 2

a1 = 33/4
√
2

6
((±i) ± 1)a2, b1

= 2 · 33/4√2

3
((±i) ± 1)a32,

b2 = −4a32, k2 = 0, (4.17)

where a2 and k1 are free parameters.
Collecting Eq. (4.1), (4.4), (4.7), (4.9), (4.11),

(4.17), we obtain the solution

u = −a2
3

3
4
√
2 ((±i) ± 1) k1 sin λ2 + 6 e−a2λ3

k1 cos λ2 + e−a2λ3
,

(4.18)

where λ2 = 3
3
4
√
2

6 ((±i) ± 1) a2
(
4a22t + my + nt +

θ(z) + x
)
and λ3 = −4a22t + my + nt + θ (z) + x .

In particular, solution Eq. (4.18) can be expressed as

u3 = −a2
3

3
4
√
2 ((±i) ± 1) k1 sin λ2 + 6 (cosh (−a2λ3) + sinh (−a2λ3))

k1 cos λ2 + cosh (−a2λ3) + sinh (−a2λ3)
,

(4.19)

where λ2 = 3
3
4
√
2

6 ((±i) ± 1) a2
(
4a22t + my + nt +

θ (z) + x
)
and λ3 = −4a22t + my + nt + θ (z) + x .

Case 3

a1 = 0, b1 = 0, b2 = −a32, k2 = 0, (4.20)

where a2 and k1 are free parameters.
Collecting Eqs. (4.20, 4.11, 4.9, 4.7, 4.4) with Eq.

(4.1), we obtain the solution

u = −6a2
e−λ4

k1 + e−λ4
− nθ(z) − (nm + n)z + c,

(4.21)

where λ4 = a2
(
x + my + (

n − a22
)
t + θ(z)

)
.

In particular, solution Eq. (4.21) can be expressed as

u4 = −6a2
(cosh (−λ4) + sinh (−λ4))

k1 + (cosh (−λ4) + sinh (−λ4))

−nθ(z) − (nm + n)z + c, (4.22)

The figure of u4 is similar to the figure of u1, and it
is a kink-like solution with tail.

5 Discussion and conclusions

In this work, we mainly investigate the new (3+1)-
dimensional BLMP equation, which is firstly proposed
byWazwaz. In Sect. 2, it is devoted to use the extended
homoclinic test approach to construct solutions. If k1 =
0, a kink-shaped solitary wave solution is obtained, if
k2 = 0, different kinds of singualr solitary wave solu-
tions are obtained; if k1 �= 0 and k2 �= 0, we get 2 kinds
of periodic kink wave solutions and periodic solitary
wave solution. In Sect. 3, we use the three wavemethod
to construct three wave solutions. It is obviously that,
if δ2 = 0, the form of the solution constructed is the
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same as extended homoclinic test approach. In this sec-
tion, we let the free parameters are real numbers and
let δ1 �= 0, δ2 �= 0, and δ3 �= 0. And the periodic kink
wave solutions, periodic cross kink wave solutions and
periodic wave solutions are obtained. In Sect. 4, we
also use the extended homoclinic test approach to con-
struct kink-shaped solitary wave solutions, what is dif-
ferent from the second part is that these solutions have
a tail. These results reflect that the methods used in
this paper are effective for seeking solutions of higher
dimensional NLEEs.
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