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Abstract High-speed rotor systems mounted on gas

foil bearings present bifurcations which change the

quality of stability, and may compromise the oper-

ability of rotating systems, or increase noise level

when amplitude of specific harmonics drastically

increases. The paper identifies the dissipating work

in the gas film to be the source of self-excited motions

driving the rotor whirling close to bearing’s surface.

The energy flow among the components of a rotor gas

foil bearing system with unbalance is evaluated for

various design sets of bump foil properties, rotor

stiffness and unbalance magnitude. The paper presents

a methodology to retain the dissipating work at

positive values during the periodic limit cycle motions

caused by unbalance. An optimization technique is

embedded in the pseudo-arc length continuation of

limit cycles, those evaluated (when exist) utilizing an

orthogonal collocation method. The optimization

scheme considers the bump foil stiffness and damping

as the variables for which bifurcations do not appear in

a certain speed range. It is found that secondary Hopf

(Neimark–Sacker) bifurcations, which trigger large

limit cycle motions, do not exist in the unbalanced

rotors when bump foil properties follow the

optimization pattern. Period-doubling (flip) bifurca-

tions are possible to occur, without driving the rotor in

high response amplitude. Different design sets of rotor

stiffness and unbalance magnitude are investigated for

the efficiency of the method to eliminate bifurcations.

The quality of the optimization pattern allows opti-

mization in real time, and gas foil bearing properties

shift values during operation, eliminating bifurcations

and allowing operation at higher speed margins.

Compliant bump foil is found to enhance the stability

of the system.

Keywords Gas foil bearing � Nonlinear dynamics �
Bifurcation elimination � Energy dissipation � Design
optimization � Numerical continuation
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Hellenic letters

af Dimensionless compliance of the bump foil

per area, af ¼ 2p0 l0=tbð Þ3 1� v2ð Þs0= crEð Þ
a; a Angular acceleration, dimensionless

a ¼ 36l2R4a= p20c
4
r

� �

g Loss factor in the bump foil structure

j Dimensionless parameter in Reynolds

equation, j ¼ R=Lb
l Dynamic viscosity of gas

v Poisson’s ratio of the bump foil material

s Dimensionless time s ¼ p0c
2
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�
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ur Journal’s angle of rotation
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u0 Angle of foil fixation point

X;X Angular velocity of the rotor, dimensionless
�X ¼ 6lR2X / p0c

2
r

� �

Abbreviations

AI Artificial Intelligence

AH Andronov–Hopf bifurcation

DoF Degree of Freedom

FFT Fast Fourier Transform

FDM Finite Difference Method

GFB Gas Foil Bearing

LPC Limit Point of Cycles

NS Neimark–Sacker bifur.

ODE Ordinary Diff. Equation

PD Period-Doubling bif.

SN Saddle Node bifurcation

STFT Short Time Fourier Tr.

1 Introduction

Gas Foil Bearings (GFBs) are bearing elements which

support rotating shafts in high-speed applications and

they have been evolving for more than half a century.

The advantages of high reliability, simplicity, and

environmental friendly characteristics (oil-free tech-

nology) make a rapidly evolving technology. The

operating principle lies on the elasto-aerodynamic

flow (EAD lubrication) where the rotating element

(rotor) is supported without contacting the stationary

elements (bearing) by the self-developing pressure of

the gas (ambient air in most applications). Low power

loss and wear can be achieved as a major advantage

together with the enhanced stability characteristics for

the entire rotor-bearing system. However, the low load

capacity (due to the low viscosity of the gas) is a

limitation for the wide applicability of GFBs. Several

types of GFBs have been introduced in the past, with

the most common and efficient being the bump-type

foil bearing. The major difference detected in com-

parison with the conventional oil bearings is the

presence of a thin gas film as a lubricant, which results

to building up an aerodynamic, load-carrying lubrica-

tion wedge and eliminates the need for external

pressurization [1–3, 3, 4].

For more than half a century GFBs have been

included in various applications, among which are the

air cycle machines in commercial aircraft [6], oil-free

turbochargers [5], oil-free rotorcraft propulsion

engines [6], and micro-gas turbines [7–9]. In most

applications, GFBs tend to substitute rolling element

bearings, increasing the reliability of the rotating

machine, the mean time between failures [5, 6, 6], and

the respective sound emissions. The stiffness of the

foil element is lower than the effective stiffness of the

gas film and a GFB adapts to the operating conditions

through the deformation of the foil. Further to the

enhanced stability characteristics, GFBs provide large

range between 2nd and 3rd critical speeds, and high

rotating speeds can be achieved.

The design of a GFB is a multi-physical problem,

and the research work on GFBs follows generically

scientific objectives which have to couple each other at

most times; these are mainly (a) the material devel-

opment (super alloys) for use in the GFB components

[3], (b) the fluid–structure interaction including the

aerodynamic lubrication problem (compressible flow)

and the structural problem predicting the bump foil

structure dynamic properties and dynamic behaviour

[10–19], (c) the nonlinear dynamics of simple or

complex rotors mounted on GFBs [20–38], and (d) the

development of alternative GFB configurations

including also adjustable/controllable configurations

and control schemes [39–41]. There are several

contributions at all fields mentioned, and this intro-

duction does not aim to cover all aspects on GFB

research and development, as this paper focuses on the

nonlinear dynamics of rotor-GFB systems.

Nonlinear dynamics of rotor-GFB systems, and its

study with tools like continuation methods, is rela-

tively new object. Continuation methods have been

applied on the nonlinear dynamics of rotor systems on

oil bearings of several types [42–48], and recently in

GFB rotor systems as well [49]. Bifurcations of Hopf

type have been investigated at both bearing types (with

oil and gas) [50–53]. The strongly nonlinear aerody-

namic forces render a variety of motions and stability

quality in the system, including periodic, quasi-

periodic and chaotic motions. Further to that, the

system has the potential of totally different motions

even at the same operating speed, according to initial

conditions and operating parameters, such unbalance

magnitude. Dynamic systems present stable and unsta-

ble solution branches and respective bifurcation sets,

and this is the case in rotor-GFB systems too.

Nonlinear dynamics of rotor-GFB systems were

mostly used to correlate the quality of response of

the system with advances in top/bump foil structure
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simulation, or alternative models in the aerodynamic

simulation. Some of the recent work existing in the

literature is presented hereby. Most of these works

include advances in the simulation of aerodynamic

lubrication and in the simulation of bump foil

structure. The response of the rotor system at each

case is analysed with respect to its nonlinear features.

Significant work has been conducted in solving the

compressible Reynolds equation numerically. The

authors in [12, 22, 54] used the Finite Difference

Method (FDM) to substitute the time derivatives of

pressure _p ¼ dp=dt and of film thickness _h ¼ dh=dt

included in Reynolds equation by backward-differ-

ence approximations. In [25, 26, 28, 29] a state

variable w ¼ p � h was introduced in order to solve the
Reynolds equation and simultaneously acquire results

for other state variables, at the same time step. In

parallel, FDM and Galerkin reduction methods were

used in order to perform the spatial discretization. In

[19], a slightly different approach by using the FDM

method and Galerkin reduction method without

inserting the state variable w was presented. Instead,

a backward-differences approximation for the spatial

differentiation of the pressure and fluid film variables

was included and the Reynolds equation for the time

derivative _p was solved.

Further to the aerodynamic modelling and, the

bump-type foil modelling has been investigated dur-

ing the last decades as its properties are directly

correlated to the aerodynamic performance of the

bearing (fluid–structure interaction). Heshmat et al.

[1] introduced the so-called simple elastic foundation

model, consisting of linear elastic uncoupled springs.

No viscous damping was taken into account until Peng

and Carpino [11] and Ku and Heshmat [55] took into

consideration the top-to-bump foil and bump-to-

housing Coulomb friction damping. Later on, Peng

and Carpino [56] introduced a 2D foil model structure

characterized by linear stiffness and damping coeffi-

cients, while considering the elastic behaviour of the

bump foil. Alternative approaches have been pub-

lished by Lez et al. [54] and other researchers [32, 49],

where the foil bumps and their interaction are

modelled by multi-degree freedom systems. Recently,

Baum et al. [19] introduced another foil structure,

consisting of rigid, massless, beam-like elements with

one finite dimension in axial direction and no coupling

of the elements in the circumferential one, where each

bump foil is modelled by a nonlinear spring and a

linear damper.

An ample number of tests and simulations have

been executed throughout the years on the dynamics of

complete systems with flexible rotors and gas foil

bearings. Nonlinear behaviour has been detected by

Lez et al. [54], which can be attributed to the strongly

nonlinear bearing forces. Baum et al. [19] performed a

run-up and a coast-down simulation and obtained the

response of the system, in addition to a waterfall

diagram depicting the vibrations arising throughout

the whole process. After a certain speed, qualitative

and quantitative changes in the rotor’s behaviour

occurred. Bhore and Darpe [27] conducted an analysis

of a flexible rotor supported on two identical GFBs,

where Poincaré maps, bifurcation and Fast Fourier

transform (FFT) plots were extracted in order to

observe the influence of different operating parame-

ters on the system behaviour.

The above-mentioned work in the literature aims to

the enhanced modelling and precise prediction of the

nonlinear dynamics of rotor-GFB systems. In this

paper, a rather simplistic model for bump foil prop-

erties of linearized stiffness and damping coefficients

is utilized directly from the literature [27], and two

design parameters are introduced as foil compliance af
and foil loss factor g. The rotor model follows the

Jeffcott rotor model and the shaft’s lateral stiffness ks
is introduced as the third design parameter in the

modelling.

In difference to the aforementioned literature, this

paper aims to the insight of the local instability

mechanisms, which trigger bifurcations, and drive the

response of the system far from its elastic response

(self-excited vibrations), usually close to the bearing

clearance in journal positions and the rotor–stator

clearance along the rotor. In this paper, it is found that

the dissipating energy in the gas film should be directly

correlated to the first (at lower speed) bifurcation

detected in such a system, this being a Neimark–

Sacker bifurcation in the unbalanced system, at most

cases, or a period-doubling (flip) bifurcation in some

others. Specifically, this paper benefits from the well-

known lemma that self-excited motions are triggered

when negative damping is included in the system;

similar notification was made in [57] for rotors on oil

bearings, under linear harmonic analysis. The energy

flow among the structural components of the system is
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evaluated for various design sets and this is used to an

optimization scheme to avoid bifurcations in a certain

speed range. The paper is organized as follows:

In Sect. 2, the dynamic system of consisting of an

elastic Jeffcott rotor mounted on two GFBs is com-

posed for the autonomous (balanced), and the non-

autonomous (unbalanced) case. The composition of

the system renders a set of ordinary differential

equations of 1st order (ODE set). The aerodynamic

lubrication model and the bump foil structural model

follow the existing literature [19, 27]. The authors

program the pseudo-arc length continuation method

[58–60] with embedded orthogonal collocation

method to provide the potential periodic solutions of

the ODE set with unbalance excitation (elastic

response or self-excited motions).

In Sect. 3, some indicative quality of nonlinear gas

forces is given first for the static problem evaluating

the equilibrium locus of the system (fixed point

solutions) for several operating conditions. Then, the

quality of motions developed in such system is

discussed evaluating the bifurcation sets, the time–

frequency decomposition of the response, Poincaré

maps, and Floquet multipliers, for some design

scenarios and at a certain speed range. The energy

flow is evaluated in the system during the respective

periodic motions, with primary interest on the dissi-

pative work of gas forces. An optimization scheme of

successive polls for the two GFB design variables is

implemented from the literature [62] and retains the

dissipative work in the gas film positive in the

respective speed range. Different rotor stiffness and

unbalance magnitude are considered in the results.

The paper concludes that there are specific values

of bump foil stiffness and damping, evaluated at

discrete rotating speeds in the operating speed range,

which retain the dissipative work in the gas film in

positive values, and therefore self-excited motions

(secondary Hopf bifurcations) are not triggered. The

specific stiffness and damping of the bump foil is the

outcome of an optimization scheme, checked on its

efficiency with different objective functions, and for

different values of unbalance magnitude and rotor

stiffness (flexible rotor or rigid rotor). The bifurcation-

free range of operating speed achieved through the

optimization procedure is approximately two times

larger than that of the reference design (without

optimization to be embedded).

2 Physical and analytical model of a rotor on gas

bearings

A representation of a symmetric flexible Jeffcott rotor

carrying a disc mass md at its centre, and two journal

masses mj at its ends is depicted in Fig. 1. The

simplified symmetric rotor system is selected in this

study to avoid the influence of gyroscopic effect in the

stability of the system. Figure 2a depicts a gas foil

bearing consisting of three major parts: the rigid

housing, the bump foil, and the top foil. The shaft is

considered elastic, with lateral stiffness ks. The

coordinates Od xd; ydð Þ and Oj xj; yj
� �

represent the

geometric centres of the disc and of the journals,

respectively, and make up the four degrees of freedom

(4 DoFs) of the rotor (both journals perform identical

motions due to symmetry). The rotational axes of the

journals are considered parallel to the axes of the

bearings, an assumption necessary to neglect

misalignment and gyroscopic affect. The geometrical

centre of the bearing is denoted by Ob, and its nominal

radius is defined as Rþ cr, see Fig. 2a. Notice the

fixation point of the foil at v ¼ h0.
The physical model of the rotating system is

depicted in Fig. 2b where the gas forces are evaluated

in the next Section as a function of the bump foil

stiffness kf and damping cf .

2.1 Analytical model of the gas bearing

The assumptions introduced in the elastoaerodynamic

lubrication problem are: a) isothermal gas film, b)

laminar flow of the gas, c) no-slip boundary condi-

tions, d) continuum flow, e) negligible fluid inertia, f)

ideal isothermal gas law p=q ¼ constantð Þ, g) negli-
gible entrance and exit effects, and h) negligible

curvature R � Rþ crð Þ. The Reynolds equation for

compressible gas flow under these assumptions is

given in Eq. 1 [19], and it is an implicit function of

time and of journal and top foil kinematics.

o

ox
ph

3 op

ox

� �
þ j2

o

oz
ph

3 op

oz

� �

¼ X
o

ox
ph
� �

þ 2
o

os
ph
� �

ð1Þ

Analytical solution for Eq. (1) cannot be defined; a

common approach to evaluate the pressure distribu-

tion is the FDM. The pressure domain is converted into

a grid of i ¼ 1; . . .;NX þ 1 and j ¼ 1; . . .;NZ þ 1
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points, where i and j are the indexes in the circum-

ferential and axial direction, respectively, see Fig. 3a.

The Reynolds equation is first rewritten defining the

first time derivative of the pressure in Eq. (2a) and

after some math in Eq. (2b). Then, the discrete

Reynolds equation is defined in the grid points

expressing the partial derivatives with finite

differences.

o

os
ph
� �

¼ 1

2

o

ox
ph

3 op

ox

� �
þ j2

2

o

oz
ph

3 op

oz

� �

� X
2

o

ox
ph
� �

ð2aÞ

_p ¼ 1

2h

o

ox
ph

3 op

ox

� �
þ j2

2h

o

oz
ph

3 op

oz

� �
� X

2h

o

ox
ph
� �

� p _h

h

ð2bÞ

The dimensionless parameters of gas pressure p,

gas film thickness h, spatial coordinates (circumfer-

ential and axial, respectively)h and z, time s, rotating

speed X, and ratio j ¼ R=Lb are included in the

elastoaerodynamic lubrication problem of Eq. (1).

The gas film thickness function is defined in Eq. (3)

for the continuous and the discrete pressure domain

(finite difference grid) where q ¼ q hð Þ (or qi ¼ q hið Þ
in the discrete pressure domain) is the foil deformation

in radial direction, see also Figs. 2a and 3a.

Fig. 1 Representation of a Jeffcott (Laval) rotor of length Ls and radius Rs, with a massmd at its centre, mounted on two GFBs of equal

radius Rb ¼ Rþ cr � R and length Lb, carrying two masses mj at its ends

Fig. 2 aRepresentation of a
gas foil bearing cross section

and key geometry and

operating parameters.

b Representation of the

physical model; bump foil is

modelled by linear springs

and dampers
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�h ¼ 1� �xj cos h� �yj sin hþ �q;

�hi ¼ 1� �xj cos hi � �yj sin hi þ �qi
ð3Þ

Boundary and initial conditions of the problem are

defined in continue. Ambient pressure is assumed at

the starting and ending angle of the foil (periodic

boundary condition) in Eq. (4), in the continuous and

the discrete pressure domain, respectively.

�p s; h0; �zð Þ ¼ �p s; h0 þ 2p; �zð Þ ¼ 1; �p1;j ¼ �pNXþ1;j ¼ 1

ð4Þ

Taking into account the symmetry of the lubrication

problem, instead of assuming the gas pressure equal to

the ambient po at the axial ends,

p z ¼ 0ð Þ ¼ p z ¼ 1ð Þ ¼ 1, the boundary condition

can be written in Eq. (5) (for the continuous and the

discrete pressure domain). In this way the lubrication

problem is solved in the half domain, reducing the

evaluation cost severely.

o�p

o�z

����
�z¼1=2

¼ 0;
�pi;NZ=2 � �pi;NZ=2�1

D�z
¼ 0 ð5Þ

Last, the initial conditions for the dimensionless

form of the problem are defined in Eq. (6) (in the

continuous and the discrete pressure domain).

�p s ¼ 0; h; �zð Þ ¼ 1; �p
t0h i

i;j
¼ 1 and �q s ¼ 0; hð Þ ¼ 0; �q

t0h i

i

¼ 0

ð6Þ

After evaluating gas pressure p(as pi;j), the nonlin-

ear gas forces are determined in Eq. (7), where Dx ¼
2p=NX and Dz ¼ 1=NZ .

FB;X ¼ �
Z2p

0

Z1

0

p� 1ð Þ cos hdzdh

¼ �
XNX

i¼2

XNZ

j¼2

pi;j � 1
� �

cos hiDxDz
� �

ð7aÞ

FB;Y ¼ �
Z2p

0

Z1

0

p� 1ð Þ sin hdzdh

¼ �
XNX

i¼2

XNZ

j¼2

pi;j � 1
� �

sin hiDxDz
� �

ð7bÞ

In this way the aerodynamic problem renders NX �
NZ ODEs of 1st order with respect to the time

derivative of the point pressure in Eq. (8)

p
�
¼ p

�

i;j

( )

¼ fB p; x; x
�
; q; q

�� 	
ð8Þ

The vectors x and q may be perceived as x ¼
xj yj xd ydf gT representing the journal motion

(coupled to the disc motion through the rotor’s

equations of motion) and q ¼
q1 q1 . . . qNX


 �T
representing the foil motion

Fig. 3 a Finite difference

grid Nx � Nz used for the

evaluation of pressure

distribution. The values

Nx � Nz in the figure are

exemplary for the

understanding of index

values. b Definition of the

mean pressure pm applied

over bearing length Lb, and
of gas force Fb with

respective indexes
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(coupled to the journal motion through the Reynolds

equation due to the gas film thickness function).

It is important to mention that it is quite common

that sub-ambient pressure arises in GFBs. The sub-

ambient pressure can cause the top foil to separate

from the bumps into a position in which the pressure

on both sides of the pad is equalized. Heshmat et al.

[1, 2] introduced a set of boundary conditions

accounting for this separation effect. More specifi-

cally, a simple Gümbel boundary condition is

imposed, meaning that sub-ambient pressures are

discarded when integrating the pressure in Eq. 7 to

obtain the bearing force components FB;X ,FB;Y essen-

tially leaving the sub-ambient regions ineffective. In

terms of numerical calculations, the assumption made

by Heshmat [1, 2] can be simply explained as

following: in case fluid pressure p is lower than the

ambient p0, then the former should be considered

equal to p0 and the foil deformation at these points will

be zero qi ¼ 0 for pi\1ð Þ.
The simplified model for the bump foil structure is

depicted at Fig. 2b. The structure consists of NX � 2

linear massless elements of stiffness kf (compliance

af ¼ 1=kf ) and damping cf . The springs and dampers

mount the corresponding NX � 1 top foil stripes of

area Dx � Lb(or dimensionless area Dx � 1), see Fig. 3b.
The top foil of the bearing is not covering a complete

cylinder; a single gap can be found at h ¼ h0, see
Fig. 2a, where the top foil is clamped to the bearing

housing. Therefore, the moving top foil stripes are

NX � 1, see Fig. 3b. The top foil stripes are assumed to

remain parallel to the bearing longitudinal axis during

their lateral motion; therefore, no axial coordinate is

required for the top foil motion. The geometry of the

foil structure and its properties, shown in Figs. 2a and

3b, render the dimensionless compliance af ¼
2p0 l0=tbð Þ3 1� v2ð Þs0= crEð Þ [27]. The motion of each

of the top foil stripe is excited by the mean gas

pressure pm;i acting on the top of it, creating the gas

force FB ið Þ, see Figs. 2b and 3b. The mean gas

pressure pm;i is defined in Eq. (9) (in the continuous

and discrete pressure domain, respectively), for

dimensional and dimensionless form.

pm hð Þ ¼ 1

Lb

Z Lb

0

p hð Þdz; pm;i ¼
1

Lb

XNZ

j¼2

pi;jDz
� �

; �pm;i

¼ 1

1

XNZ

j¼2

�pi;jD�z
� �

¼ 1

NZ

XNZ

j¼2

�pi;j
� �

ð9Þ

The foil stiffness and damping coefficient are given

as kf ¼ 1=af and cf ¼ gkf for foil motion synchronous

to the excitation. The NX � 1 ODEs that describe the

radial displacement qi of the stripe i are defined in

Eq. (10).

�cf _�qi þ �kf �qi ¼ �pm;i; i ¼ 2; 3; :::;NX ð10Þ

The ODEs in Eq. (10) may be written as in Eq. (11)

to be used in continue.

q
�
¼ q

�

i;j

( )

¼ fF q; p; x; x
�� 	

ð11Þ

2.2 Analytical model of the flexible rotor

The equations of motion for the Jeffcott rotor shown in

Fig. 1 are defined in Eq. (12) for the journal and the

disc, in the two main directions, horizontal and

vertical.

€�xj ¼
md

2mj

�ks �xd � �xj
� �

þ n � �FB;X ;

€�yj ¼
md

2mj

�ks �yd � �yj
� �

þ n � �FB;Y � r
ð12aÞ

€�xd ¼ � �ks �xd � �xj
� �

þ �FU;X;

€�yd ¼ � �ks �yd � �yj
� �

þ �FU;Y � r
ð12bÞ

The ODEs in Eq. (12) may be written in Eq. (13),

in the state space representation, to be used in

continue.

x
�
¼ fR p; x; x

�
; q; q

�� 	
ð13Þ

In Eq. (12) ks is the dimensionless shaft stiffness

coefficient, and n,r are dimensionless parameters

defined in Eq. (14).

n ¼ 36l2LR5

mjp0c5r
; r ¼ 36l2R2g

p20c
5
r

ð14Þ

In addition, in Eq. (12), FU;X and FU;Y are the

dimensionless unbalance forces defined in Eq. (15a)
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for constant rotating speed X, and in Eq. (15b) for

linearly varying rotating speedX ¼ a � swith constant
acceleration a.

�FU;X ¼ e � �X2 cos �ur;

�FU;Y ¼ e � �X2 sin �ur; �ur ¼ �Xs
ð15aÞ

�FU;X ¼ e �X2 cos �ur þ �a sin �ur

� �
;

�FU;Y ¼ e �X2 sin �ur � �a cos �ur

� �
; �ur ¼ �as2=2

ð15bÞ

Dimensionless unbalance eccentricity e ¼ eu=cr
follows in this paper the ISO unbalance grades (G-

grades) for low, medium, and high unbalance as G1,

G2.5 and G6.3 correspondingly. The unbalance

located in the disc is of magnitude u ¼
md þ 2mj

� �
eu at each case, and the corresponding

eccentricity eu is given by Eq. (16), where the service

speed of the system is selected at Xr ¼ 2500 rad/s.

eu½mm� ¼ G

Xr½rad/s�
; G ¼ 1; 2:5; 6:3 ð16Þ

For instance, the notation u G2:5ð Þ used in continue
refers to the unbalance eccentricity of

eu G ¼ 2:5ð Þ ¼ 9:55lm:.

2.3 Composition and solution of the dynamic

system

Equations (8, 11, and 13) compose a coupled ODE set

which is composed by the discretized Reynolds

equation in the fB equations, the foil motion in fF
equations, and the rotor motion in fR equations. The

coupled nonlinear ODE set is defined in Eq. (17)

expressing a non-autonomous dynamic system which

will be studied with respect to the bifurcation param-

eter X. The ODE set is characterized as non-

autonomous due to the explicit time presence in the

equations of unbalance forces, see Eq. (15). The state

vector s and the respective functions f are defined in

Eq. (18).

s
�
¼ f s;X; s
� �

ð17Þ

s ¼ p q xf gT; f ¼ fB fF fRf gT ð18Þ

The total number of equations in Eq. (17) (size of

vector function f) is N ¼ NX � NZð Þ þ NX � 1ð Þ þ 8

with the first term coming from the pressure equations,

the second term coming from the foil equations, and

the third term from the rotor equations in state space.

The ODE set in Eq. (17) renders the time response

of the physical systemwhen time integration is applied

[62]. The system is numerically stiff and special

algorithms are applied in time integration [62].

Furthermore, the Reynolds equation can be reduced

in size applying an order reduction method [19],

improving the computational cost. The time integra-

tion can handle both cases of unbalance equations, for

constant rotating speed or for run-up, see Eq. (15).

An orthogonal collocation method [59] is applied

for the computation of limit cycle motions produced

by the ODE set in Eq. (17) at a constant X; Eq. (15a)
applies for unbalance forces at this case. Numerical

continuation of limit cycles has been programmed by

the authors according to pseudo-arc length continua-

tion method [58, 61, 63, 64] with embedded colloca-

tion scheme [59]. The formulation of the method is

defined also in Appendix A1. The need for the

implementation of collocation method for the evalu-

ation of periodic limit cycles is based on the advantage

of it to handle large state vectors (many degrees of

freedom) which in the current system are sourced on

the pressure states defined by the finite difference

mesh in the solution of the aerodynamic lubrication

problem. An alternative of e.g. the shooting method

would not be efficient in this case as this requires

perturbations of the initial state at a limit cycle, at all

degrees of freedom, with respect to all state variables;

every perturbation is followed by time integration for

the time of one period, increasing the computational

time dramatically; this would be not time efficient in

the problem of this work. A finite difference method

could have been used to solve the boundary value

problem for the definition of periodic limit cycles in

this problem. The authors chose to implement the

collocation method as defined by Doedel in [59], as in

the literature this is recommended in dynamic systems

of high order.

As the collocation method cannot handle non-

autonomous ODE systems, Eq. (17) has to be con-

verted to autonomous. This is achieved by coupling

the ODE set of Eq. (17) with a two DoF oscillator, see

Eq. (19), whose unique solution is a harmonic motion

of frequency X, see Eq. (20) [59].
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_sNþ1 ¼ fNþ1

¼ sNþ1 þ X � sNþ2 � sNþ1 � s2Nþ1 þ s2Nþ2

� �

ð19aÞ

_sNþ2 ¼ fNþ2

¼ �X � sNþ1 þ sNþ2 � sNþ2 � s2Nþ1 þ s2Nþ2

� �

ð19bÞ

�sNþ1 ¼ cos �Xs
� �

; �sNþ2 ¼ sin �Xs
� �

ð20Þ

The size of the final autonomous ODE set is N þ 2

and is defined in Eq. (21) with the unbalance forces to

be defined at constant rotating speed, in Eq. (22).

es
�
¼ ef es;X
� �

ð21aÞ

es ¼ sT sNþ1 sNþ2


 �Tef ¼ fT fNþ1 fNþ2


 �T

ð21bÞ

FU;X ¼ e � X2
sNþ1; FU;Y ¼ e � X2

sNþ2 ð22Þ

3 Results and discussion

3.1 Static performance of the gas bearing

The nonlinear feature of gas forces is presented in this

Section. The vertical displacement of each journal

(equal at both journals due to symmetry) when loadW

is applied vertically at each journal, further to the

gravity load, is depicted in Fig. 4 for low, moderate,

and high bump foil compliance, and for different

design and operating conditions of the GFBs. In

Fig. 5, the corresponding equilibrium locus of the

journal inside the radial clearance is depicted for the

various cases mentioned. One may notice that the

nonlinear feature of the gas forces becomes less or

more intense depending on the design configuration of

the bearing and the respective operating speed X. The
gas foil bearings configured for the results in Figs. 4

and 5 are of length to diameter ratio equal to 1, while

the ratio of the radial clearance to the journal radius

differs among the cases R=cr ¼ 500; 750; 1000 to

produce different Sommerfeld number S. In Fig. 5 one

may notice that the gas film pressure at the axial

middle of the bearing (pressure profile) may exceed

two times the ambient pressure when bump foil is

relatively stiff and specific load is high.

The dynamic viscosity l ¼ 0:018mPa � s of the gas
equals this of the ambient air at 20oC, and the ambient

pressure is set at p0 ¼ 100kPa � 1atm. Radial clear-

ance ratio is R=cr ¼ 500 in the results produced at all

next Sections while all other parameters are retained as

defined hereby.

3.2 Quality of motion of the dynamic system

The dynamic system defined in Eq. (21) in autono-

mous and in Eq. (18) in non-autonomous version is

investigated on its potential to develop a variety of

bifurcation sets with respect to the key design

parameters, namely rotor stiffness ks, foil compliance

af , foil loss factor g, and unbalance magnitude u. In

Fig. 4 Vertical displacement of the journal as a function of vertical specific load for a af ¼ 0:01, b af ¼ 0:1, and c af ¼ 1. Different

rotating speed is considered to allow for influence of compressibility
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this paper, the key design parameters are defined

within specific intervals, composing the case studies

which are presented in continue. The design param-

eters follow a variation of ‘‘low’’, ‘‘reference’’, and

‘‘high’’. This is interpreted to the rotor stiffness values

ks ¼ 0:3; 1; 3(flexible to rigid rotor), foil compliance

values af ¼ 0:01; 0:1; 1(stiff to flexible foil), foil loss

factor g ¼ 0:005; 0:05; 0:5(low to high foil damping),

and unbalance magnitude

u G1ð Þ; u G2:5ð Þ; u G6:3ð Þ(low to high unbalance). A

reference system is defined with the design parameters

to be ks ¼ 1, af ¼ 0:1, g ¼ 0:05, and u G6:3ð Þ.
The validation of the developed code is presented in

Fig. 6 considering the fixed-point equilibrium state

and the respective stability property, and the extension

of a stable limit cycle at a selected rotating speed,

comparing with the recent literature [53]. In Fig. 6a

one may note that the fixed-point solution at the

rotating speed of X ¼ 12000RPM, and with the

properties of Table 1, converges to this evaluated in

[53] with the same system properties. The divergence

in the transient response (path followed by the journal

towards the asymptotically stable fixed point) is due to

the different time integration solver implemented in

the numerically stiff system.

A bearing load of FB;Y ¼ 10N is then applied

according to [53] to evaluate the stable fixed-point

solutions and limit cycles as presented in Fig. 6b at the

rotating speed of 13,000 RPM, and in Fig. 6c-d for a

range of rotating speed; the fixed-point solutions agree

well between the two models. However, the extent of

limit cycles is not identical and this is due to the fact

that the shooting method is used in [53] to predict the

limit cycle solutions while in current work, numerical

continuation and collocation method are implemented.

In this example, Hopf bifurcation occurs in 12,030

RPM according to the current model, while in [53] this

is at 11,475 RPM, see Fig. 6c-d; this is a difference of

less than 5% and can be explained by a different

perturbation in the evaluation of Jacobian matrix. Note

that fixed point stability is calculated with a linear

stability analysis at both works.

The time transient response of the reference system

is evaluated applying time integration in Eq. (21)

defined for variable rotating speed (run-up) of constant

rotating acceleration; the result is used only for

comparison. The ODE system is subjected to numer-

ical continuation algorithm which evaluates limit

cycles at the different rotating speeds (bifurcation

parameter). In this paper, limit cycles refer in periodic

motions caused either by elastic response or self-

excitation.

In Fig. 7a the time history of the journal motion in

the vertical plane (evaluated by time integration) is

presented together with the maximum and minimum

values of the limit cycle at each rotating speed. The

rotating speed is retained constant at each limit cycle

evaluation (several discrete speed values are used to

cover the entire range of rotating speed), and the

unbalance forces are implemented through Eq. (15a).

Fig. 5 Equilibrium locus, pressure profile, and foil deformation

for different loading conditions for a af ¼ 0:01, b af ¼ 0:1, and
c af ¼ 1. Different rotating speed is considered to allow for

influence of compressibility. Starting point is depicted at

Sommerfeld number S ¼ 1:5
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Time-transient response evaluation applying time

integration (transient run-up) requires the unbalance

forces to be implemented through Eq. (15b), as in this

case the rotating speed is linearly increasing. A

reference bifurcation set is established in Fig. 7a with

PD, SN, and NS bifurcations to be presented. The

frequency content of the time history obtained during

the run-up (by time integration) is depicted in Fig. 7b

where time–frequency decomposition is applied

(STFT). The journal trajectory at a selected rotating

speed is depicted in Fig. 7c together with the respec-

tive limit cycles evaluated with the collocation

method. The transient response and the Poincaré

map depicted also in Fig. 7c consider the last 100

periods of the response evaluated for 500 periods

applying time integration [62]. The Floquet

multipliers in Fig. 7d provide information regarding

the quality of bifurcations mentioned above, at the

respective speeds.

In general, periodic, quasi-periodic and chaotic

motions are expected to be generated by the system

studied in this paper. A drawback of the current

continuation scheme programmed by the authors is

that only periodic motions can be evaluated by the

collocation method. The quasi-periodic motions can

only be evaluated by time integration in this paper and

depicted as transient response. For the evaluation and

continuation of quasi-periodic limit cycles, the reader

may consider the recent work in [66].

Further bifurcation sets for the respective design

sets are presented in continue in order to study the

system motion for the various combinations of design

Fig. 6 a Fixed point

solution, and b Periodic

solution for the current

model and [53]; stable and

unstable fixed-point

solution, and stable periodic

solutions in c Current
analysis, and d Taken from

[53]

Table 1 Geometrical and physical properties of the GFB for validation [53]

Rs ¼ 19:05mm L ¼ 38:1mm cr ¼ 31:8lm kf ¼ 4:6417GN/m3

g ¼ 0:25 p0 ¼ 1:01325 � 105 Pa l ¼ 1:95 � 10�5 Pa � s FB;Y ¼ 15N
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parameters and to reveal the types of motions and of

bifurcations which may occur. These are defined

considering one design parameter, changing each

time, to the next higher and lower value of the

respective design variable. Figure 8 considers systems

of different rotor stiffness, and two cases are presented

in Fig. 8a and c, for k
þ
s ¼ 3(rigid rotor) and

k
�
s ¼ 0:3(flexible rotor). One may notice the different

bifurcation sets compared to the reference case.

Period-doubling bifurcation is not noticed in this case.

In Fig. 9, systems of different foil compliance are

considered, and two cases are presented in Fig. 9a and

c, for aþf ¼ 1(flexible foil) and a�f ¼ 0:01(rigid foil).

One may notice the different bifurcation sets com-

pared to the reference case, and the previous case

(Fig. 8). The type of bifurcations is same to this at the

reference case, but the speed in which they appear is

different.

In Fig. 10, systems of different foil damping are

considered, and two cases are presented in Fig. 10a

and c, for gþ ¼ 0:5(high foil damping) and

g� ¼ 0:005(low foil damping). The influence of foil

damping in the bifurcation set is not severe, compared

to the reference design (see Fig. 7).

In Fig. 11, systems of different unbalance are

considered, and three cases are presented in Fig. 11a,

for u G0ð Þ (balanced rotor—autonomous system),

u G1ð Þ(low unbalance), and u G2:5ð Þ (medium unbal-

ance). It is worth noticing that the autonomous system

of u G0ð Þ loses local stability of fixed-point equilibria

through an Andronov–Hopf bifurcation, at similar

speed where the unbalanced systems lose local

stability through secondary Hopf (Neimark–Sacker

bifurcations). Further to that, in the unbalanced

systems, the higher the unbalance is, the lower the

speed of NS bifurcations is. Stable limit cycles close to

radial clearance occur with higher amplitude in the

balanced system, than in the unbalanced systems. In

the balanced system the limit cycles of amplitude

Fig. 7 Reference system:

system of ks ¼ 1, af ¼ 0:1,
g ¼ 0:05, and u G6:3ð Þ.
Transient response and

continuation of limit cycles

during run-up in a Vertical

direction, and b Horizontal

direction. c STFT of the

response time history,

d Floquet multipliers of the

corresponding limit cycles
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close to radial clearance will lose stability through a

NS bifurcation at high speeds.

In the figures above, Poincaré maps are constructed

at selected speeds to depict the different quality of

motions (periodicity), and the respective frequency

content can be considered through the FFT and the

STFT in each figure. At lower speeds, the system

oscillates periodically with 1T period at all cases

(T ¼ 2p=X is the driving period hereby). This renders

one point in Poincaré map, and additional harmonics

of integer multiple in the FFT, see Fig. 8c. This status

remains till a periodic doubling occurs at some cases,

e.g. Figure 10c, and the system oscillates with period

2T immediately after; this renders two points in

Poincaré map. At the highest speeds investigated, only

quasi-periodic or chaotic motions where evaluated,

these through time integration. The respective quality

and frequency content is depicted in Figs. 9c and 11c,

where Poincaré map is constructed with several points

without forming a shape. The frequency content at

such speeds includes higher and lower harmonics of

synchronous response without integer multiple.

3.3 Energy flow and optimization for bifurcation

elimination

The energy flow among the structural components of

the system is evaluated in this Section aiming to reveal

any correlation of the non-conservative work with the

existence of bifurcations. The reference design cases

presented in Sect. 3.2 were used also in this Section.

The scope of this Section is to apply an optimization

Fig. 8 System of k
�
s ; k

þ
s af ¼ 0:1g ¼ 0:05u ¼ G6:3ð Þ. a Continuation of limit cycles, b STFT of the response time history k

þ
s , c

Trajectory, Poincare map, and FFT at X ¼ 0:4, d Floquet multipliers of the corresponding limit cycles
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scheme for the bump foil design (stiffness and

damping) such that the non-conservative work is

retained in positive values (existence of effective

damping).

In order to evaluate the work of the non-conserva-

tive forces, the energy balance in the system is studied

first. The storage of potential energy occurs in the

stiffness elements of the system, these being the

flexible rotor of lateral stiffness ks, and the flexible

bump foil consisting of Nx elements of stiffness kf .

Note that kf expresses the stiffness coefficient per top

foil area. The gas film possesses an unknown stiffness

property and therefore potential energy is considered

to be stored in the gas through the work of the

conservative part of the gas forces. Kinetic energy

storage occurs in the three masses of the system, these

being the disc mass md and the two journal masses mj;

note that bump foil is considered massless and no

inertia effects are considered in the gas flow inside the

gas bearings. Dissipation of energy occurs in the gas

film forces (viscous damping) and in the bump foil

damping elements of damping coefficient per area cf .

The system executes planar motions with the energy

offered through the work of the unbalance forces. The

unbalance force is a result of rotation, and a motor is

supposed to retain the rotating speed constant. The

lateral vibrations are uncoupled to the energy offered

by the motor.

In a closed trajectory (limit cycle motion) of the

three rotor masses and the bump foil elements, the

collocation method offers all values of the state vector
~swhile _~s can be easily found by Eq. (21a). Let the time

intervals during a limit cycle motion be Nt, defining

Nt þ 1 discrete time points (these are the time intervals

which are further divided by collocation points; this is

not of interest hereby asNt renders a short enough time

Fig. 9 System of

ks ¼ 1,a�f ; a
þ
f ,

g ¼ 0:05,u ¼ G6:3ð Þ. a
Continuation of limit cycles,

b STFT of the response time

history for aþf , c Trajectory,

Poincare map, and FFT at

X ¼ 0:9, d Floquet

multipliers of the

corresponding limit cycles
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interval). The corresponding gas forces at each

discrete time point are evaluated by the state vector ~s

and its time derivative _~s using Eq. (7), these being

FB;X ið Þ and FB;Y ið Þ, for i ¼ 1; 2; :::Nt þ 1. Similarly,

the bump foil forces are evaluated in the radial

direction as Ff ; j ið Þ for the jth element of the Nx in total

(see Figs. 2b and 3b), as Ff ; j ið Þ ¼ kf qj ið Þ þ cf _qj ið Þ,
with qj; _qj to be contained in the already known ~s and _~s.

The unbalance forces are defined as FU;X ið Þ and

FU;Y ið Þ from Eq. (15a). The work of the bearing forces

is evaluated in Eq. (23a), the work of the bump foil

forces is evaluated in Eq. (23b), and the work of

unbalance forces in evaluated in Eq. (23c).

WB ¼ 2
XNt

i¼1

FB;X ið Þ � dxj ið Þ þ FB;Y ið Þ � dyj ið Þ
� �

¼ Wcb þ Wkb|{z}
¼ 0

ð23aÞ

Wf ¼ 2
XNt

i¼1

XNx

j¼1

Ff ;j ið Þ � dqj ið Þ
 !

¼ Wcf þ Wkf|{z}
¼ 0

ð23bÞ

Wfu ¼
XNt

i¼1

FU;X ið Þ � dxd ið Þ þ FU;Y ið Þ � dyd ið Þ
� �

ð23cÞ

Fig. 10 System of ks ¼ 1

af ¼ 0:1g�; gþ,u G6:3ð Þ. a
Continuation of limit cycles,

b STFT of the response time

history for gþ, c Trajectory,
Poincare map, and FFT at

X ¼ 0:57, d Floquet

multipliers of the

corresponding limit cycles

for gþ
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In Eq. (23a) the portions Wcb and Wkb cannot be

evaluated separately, but only in total. However, it is

expected that Wkb � 0 as this is the work of the

conservative portion of the bearing forces in the closed

trajectory. In Eq. (23b)Wcf is evaluated asWcf ¼ Wf ;

it is found that Wkf ¼ 0 as this is the work of

conservative forces in a closed trajectory. In a closed

trajectory, the kinetic energy T1 and T2 of the system at

the beginning and at the end of the trajectory,

respectively, must equal the work of the non-conser-

vative forces plus the work offered to the system.

Therefore, Eq. (24) holds, with T1 ¼ T2(periodic

motion) [67].

T2 � T1 þWfu ¼ Wcf þWcb ð24Þ

Equation 24 renders Wcb as Wfu is known by

Eq. (23c) and Wcf is known by Eq. (23b). The value

of Wcb is also validated by Eq. (23a). The work of the

non-conservative forcesWcb andWcf together with the

work of the unbalance forceWfu is depicted in Fig. 12

for selected design sets from the previous Section.

In Fig. 12a–d, both stable and unstable limit cycles

are considered with the respective notation. At all

cases, it is found that Neimark–Sacker bifurcations are

triggered simultaneously to the reverse (from positive

values to negative) of the dissipating work in the gas

film Wcb, meaning that energy is not dissipated in the

gas film (when Wcb\0) and self-excitation takes

place. The respective limit cycles for the cases in

Fig. 12 can be found in Sect. 3.2. In Fig. 12a–d, the

arrows depict the path that would be followed during

the run-up of the system (evaluated by time integration

of the motion equations).

For the understanding of the sensitivity of non-

conservative workWcb to the bump foil properties, this

is evaluated for several values of bump foil properties,

Fig. 11 System of

ks ¼ 1,af ¼ 0:1g ¼ 0:05. a
Continuation of limit cycles,

b STFT of the response time

history, c Trajectory,
Poincare map, and FFT at

X ¼ 0:97, d Floquet

multipliers of the

corresponding limit cycles
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Fig. 12 Evaluation of

energy flow at the respective

limit cycles for a) ks ¼ 3,

af ¼ 0:1, g ¼ 0:05,

u G6:3ð Þ, b) ks ¼ 1,

af ¼ 0:01, g ¼ 0:05,

u G6:3ð Þ, c) ks ¼ 1,

af ¼ 0:1, g ¼ 0:5, u G6:3ð Þ,
and d) ks ¼ 1, af ¼ 0:1,
g ¼ 0:05, u G2:5ð Þ

Fig. 13 Dissipated energy in the gas film in one limit cycle for various values of foil compliance af and foil loss factor g, at aX ¼ 0:2, b

X ¼ 0:4, c X ¼ 0:6
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and at three different speeds (low speeds), where local

stability is guaranteed according to the analysis in

Sect. 3.2.

The workWcb is plotted in Fig. 13 for the respective

cases of bump foil design and for the reference system

regarding rotor stiffness and unbalance magnitude.

Figure 13 depicts the sensitivity of Wcb in regards to

bump foil properties. It is worth noticing that at the

lowest rotating speed X ¼ 0:2 the dissipated energy

has a maximum for specific value of foil compliance

af � 1 and for low values of loss factor g. This is not

the case at the higher speed X ¼ 0:4, where Wcb has a

maximum still for af � 1, but for high values of loss

factor g, see Fig. 13b. Increasing the speed further at

X ¼ 0:6,Wcb has the highest values for several pairs of

af and g, the former receiving the lower values, and the

latter at higher values, see Fig. 13c.

The conclusion made from Fig. 13 is that the

dissipated energy in the gas film has different progress

(related to the design of the foil) as the rotating speed

changes. Therefore, retaining the dissipated energy in

the gas film at highest values requires a continuous

adaptation of foil properties in regards to the rotating

speed.

Further rotor designs and unbalance magnitudes

were checked with relatively similar conclusion on the

sensitivity of dissipated energy to design

characteristics.

Figure 14 depicts that the dissipating energy in the

bump foil dampers (through workWcf ) follows similar

progress in regards to the bump foil design, at all three

speeds. This is increased when foil becomes flexible

and of low damping, as this combination allows higher

displacement.

Specific values of bump foil properties which

render the highest dissipation energy in the gas film

are sought applying the optimization pattern of

successive poles [65]. The optimization scheme is

implemented in several discrete speeds. The opti-

mization requires the minimization of an objective

function OBJ, which is defined as the inverse of

dissipated energy in the gas film, OBJ ¼ 1=Wcb. This

is the 1st optimization problem.

Starting from random input values for foil compli-

ance af and foil loss factor g, the optimization pattern

renders after some iterations the values of af and g that

maximize Wcb at every speed X. The related progress

of Wcb during optimization is depicted in Fig. 15 at

selected speeds. The optimization pattern works in the

following sequence, see also Appendix A2:

(a) a low rotating speedX(in which local stability is
guaranteed) is selected for the system and

random foil properties are assigned to the

model, as a
0

f
and g

0
; an initial limit cycle is

evaluated as es
0

, and the initial dissipation energy

W
0

cb
in the gas film is computed.

(b) Successive poles are performed for the input

variables as a
1

f
and g

1
, and the limit cycle es

1

is

Fig. 14 Dissipated energy in the bump foil damper for various values of foil compliance af and foil loss factor g, at a X ¼ 0:2, b

X ¼ 0:4, c X ¼ 0:6
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computed with initial value to be ~s
0

; the respec-

tive dissipated work is then obtained asW
1

cb
. This

is iteration i ¼ 1.

(c) For each pair of a
i

f
and g

i
, the limit cycle es

i

is

computed given ~s
i�1

as initialization.

(d) Steps (b) and (c) are repeated till

W
n

cb
[ max W

n�1

cb
; W
n�2

cb
; :::W

0

cb

� �
; es
n

is achieved. The

procedure may require n ¼ 10� 200 iterations

depending on the feature of OBJ at each speed,

see Fig. 15.

(e) A prediction for the limit cycle at the next speed,

say Xþ DX, is computed by pseudo-arc length

continuation, given the limit cycle es
n

, and a
n

f
,g
n
, as

initialization.

(f) Steps (b) to (e) are repeated till X reaches a

desired (high) value.

It has to be clarified that each of Fig. 15a–c depicts

the values W
i

cb
,a
i

f
and g

i
at all n iterations, at selected

speeds.

The limit cycle ~s
n
is plotted in Fig. 16 for different

rotor stiffness scenarios (flexible-rigid), and in Fig. 17

for different unbalance scenarios (low–high). The

respective values a
n

f
and g

n
rendered by the optimization

algorithm at each speed, are included in Figs. 16 and

17. The efficiency of the methodology to eliminate

bifurcations at a desired speed range is depicted in

Figs. 16a and 17a.

The operating speed range is limited by the limit

values for the foil compliance af and the foil loss

factor g, here defined as 0:01� af � 2 and

0:0005� g� 10. Considering the bifurcations sets

evaluated in Sect. 3.2 for various designs, Figs. 16 and

17 depict elimination of bifurcations in approximately

double speed range. It is also worth noticing that the

bifurcation-free speed range is limited by a secondary

Hopf (Neimark–Sacker) bifurcation at all cases of

design.

In Figs. 16a and 17a one may notice the displace-

ment of the limit cycles in vertical direction as the foil

compliance receives higher and lower values. The

Floquet multipliers in Fig. 16d and 17d are retained

within the unit circle as the rotating speed increases

and tend to cross the unit circle at the points

�0:9;	0:25ð Þ.
As the optimization pattern aims to retain stability,

the Floquet multipliers appear to turn to a new

direction as the rotating speed increases, and they

continue moving along the path of the unity circle, still

inside the circle, up to the points �0:2;	0:9ð Þ. At the
highest rotating speeds checked, the optimization

cannot retain the dissipative energy positive and this

results in a bifurcation. The Floquet multipliers do not

lie inside the unit circle anymore, resulting in

Neimark–Sacker bifurcation. The respective values

of the dissipative energy are presented in Figs. 16a and

Fig. 15 Optimization of the dissipated energy in the gas film of the reference system with ks ¼ 1 and u G6:3ð Þ with respect to the foil
compliance af and the foil loss factor g, at a X ¼ 0:2, b X ¼ 0:4, c X ¼ 0:6
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17e where the positive value is verified up to the speed

where NS bifurcation occurs. Note that the negative

values after the NS bifurcation are not included in

Figs. 16a and 17e. The trend of bump foil properties

does not follow a specific path during the optimization

in the different design cases, see Figs. 16b-c and 17b-c.

One may notice that the optimization pattern renders

flexible foil (higher compliance) in order to allow

motion of the foil and more energy dissipation in the

system. However, this is not the case for the rigid rotor

(ks ¼ 3) in Fig. 16b.

An alternative objective function was investigated

in the 2nd optimization problem. At each limit cycle ~s
i

,

the highest magnitude of the Floquet multipliers was

defined as objective function, OBJ ¼ max lj
�� ��� �

,

neglecting the one existing always at the unit circle,

point þ1; 0ð Þ. In this way, all Floquet multipliers are

retained inside the unity circle, lj
�� ��\1. The respective

limit cycles are presented in Fig. 18 for different rotor

stiffness and in Fig. 19 for different unbalance mag-

nitude. The evaluation time for the limit cycles was

lower at this case (compared to the optimization

considering the dissipative work), as the computation

of dissipative work is not required.

It is interesting to note how the optimization

algorithm retains the Floquet multipliers inside the

unity circle as the rotating speed increases, see

Figs. 18d and 19d. In Figs. 18b and 19b one may

notice the very similar trend of bump foil compliance

to obtain high values, at all design cases. Similar trend

is noticed for the bump foil loss factor, when

comparing Figs. 18c and 19c; the trend is to obtain

lower values at all design cases.

Fig. 16 Elimination of bifurcations at a speed range for the system of u G2:5ð Þ and ks ¼ 0:1, ks ¼ 1, ks ¼ 3: a Journal motion limit

cycles, and corresponding values for b) Compliance af , c Loss factor g, d Floquet multipliers, and e Dissipating work in the gas film
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Utilizing the Floquet multipliers as objective func-

tion, the rotor does not experience discontinuities in

the location of limit cycles, as occurred when dissi-

pative work was used in the objective function (1st

optimization problem, see Figs. 16a and 17a). The 2nd

optimization problem reveals that a stable system

requires rather compliant bump foil with low damping.

4 Conclusions

The bifurcation sets of a rotating shaft on gas foil

bearings were initially presented in this paper for

flexible and rigid rotors with high and low unbalance,

and for various bump foil stiffness and damping

properties, at a certain range of rotating speed. The

periodic limit cycle motions were evaluated for these

sets of designs applying a pseudo-arc length contin-

uation method with embedded orthogonal collocation.

At that stage the potential of the system to develop

different motions (periodic, quasi-periodic, chaotic)

and different types of stability was investigated.

The work of the non-conservative (and nonlinear)

damping force of the gas film was evaluated at each

limit cycle, even when unstable, as the collocation

method allows for this possibility. As the rotating

speed of the system increased, the dissipative work

generated by the gas film forces was found to be

directly correlated to the self-exciting mechanism

which triggers secondary Hopf bifurcations (Nei-

mark–Sacker bifurcations) leading the journal motion

towards limit cycle motions of high extent (operability

Fig. 17 Elimination of bifurcations at a speed range for the system of ks ¼ 1 and u G1ð Þ, u G2:5ð Þ, u G6:3ð Þ: a Journal motion limit

cycles, and corresponding values for b Compliance af , c Loss factor g, d Floquet multipliers, and e Dissipating work in the gas film
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of the system may be compromised at this case). It is

found that the loss of this local stability occurs

simultaneously with the reversal in the energy flow in

the gas film, meaning that the dissipative work

changes sign (from positive to negative) when the

NS bifurcation takes place.

Using this notation, an optimization pattern was

applied at discrete speeds during a virtual run-up of the

system, and aimed to maximize the dissipated work in

the gas film (retain it positive); this was the 1st

optimization problem. The input variables for the

optimization were the values of bump foil stiffness and

damping. In this manner, bifurcations of limit cycles

were avoided at a wide range of rotating speed, when

specific bump foil stiffness and damping were applied

through the optimization pattern.

A generic outcome from the optimization patterns

is that bifurcations are avoided when bump foil

stiffness is reduced; bump foil damping appeared to

influence the existence of bifurcations much less than

stiffness. Low damping values should be preferred in

the bump foil though, according to the 2nd optimiza-

tion pattern. The operating speed range without

bifurcations to take place was found almost double,

compared to the other sets (without optimization). The

optimization procedure was repeated for several

design scenarios of rotor stiffness and unbalance

magnitude, and similar efficiency was noticed regard-

ing bifurcation elimination. Research on design solu-

tions to implement the change of foil damping and

stiffness in real system operation belongs to ongoing

work.

For the theoretical completeness of the work, an

optimization pattern utilizing the magnitude of Flo-

quet multipliers in the objective function (retaining

Floquet multipliers inside the unit circle) was checked,

and similar results for the bump foil properties were

Fig. 18 Elimination of bifurcations at a speed range for a

system with unbalance u G2:5ð Þ and stiffness ks ¼ 0:3,ks ¼ 1,

and ks ¼ 3: a Journal motion limit cycles, and corresponding

values for b Compliance af , c loss factor g, d Floquet

multipliers, and e Dissipating work in the gas film
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found for a bifurcation-free operating range; this was

the 2nd optimization problem.
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Appendix

A1. Implementation of the pseudo-arc length

continuation with embedded orthogonal

collocation for the evaluation of periodic limit

cycles in the dynamic system

The authors programmed the collocation method

embedded to a pseudo-arc length continuation method

for the evaluation of limit cycles as the bifurcation

parameter (rotating speed X) changes at discrete

values. The methodology is similar to this presented

in [59]. The problem is to find the solution branches

x n0; t;Xð Þ for the following Boundary Value Problem:

_x ¼ f x;Xð Þ; ð25Þ

x n0; 0;Xð Þ ¼ x n0; T ;Xð Þ ð26Þ

The ODE system in Eq. (25) is identical to the ODE

system in Eq. (21a) and X is the continuation param-

eter (bifurcation parameter) expressing the rotating

speed of the shaft,n0 is an initial state vector that

belongs to the solution curve x and T is the period of

the solution. If time t is rescaled to ½0; 1�½0; 1�, Eqs. (25
and 26) become

_x ¼ T � f x;Xð Þ; ð27Þ

x n0; 0;Xð Þ ¼ x n0; 1;Xð Þ ð28Þ

The period T is unknown so an additional equation

(phase condition) is required

u ¼
Z 1

0

x; _x0h i dt ¼ 0 ð29Þ

where x; _x0h i denotes the scalar product and _x0 is the
time derivative of the previous solution. If the pseudo

arc length is used as a continuation parameter then X
also becomes an unknown and an additional equation

is required (pseudo-arc length condition),

w ¼
Z 1

0

x� x0; x
0
0

� 

dt þ T � T0ð ÞT 0

þ X� X0ð ÞX0 � Ds ¼ 0

ð30Þ

where ðÞ0 denotes the derivative with respect to arc

length d �ð Þ=ds. Setting u ¼ x; T ;Xð Þ and writing Eqs.

(27 and 28) as F uð Þ ¼ 0f g the system to solve

becomes

H uð Þ ¼
F uð Þ
u xð Þ
w uð Þ

2

4

3

5 ¼
0
0

0

8
<

:

9
=

;
ð31Þ

and Newton’s method for solving (31) is

uiþ1 ¼ ui � A ui
� �� ��1

H ui
� �

ð32Þ

where

A uð Þ ¼

oF

ox

oF

oT

oF

oX
ou
ox

0 0

x0 T 0 X0

2

6664

3

7775
ð33Þ

which is iterated until a suitable convergence criterion

is satisfied. The arc length derivatives du=ds can be

calculated either by backwards differences or by

solving

A
du

ds
¼ 0 � � � 0 1f gT ð34Þ

The final step is to discretize in time and calculate

A. To this end the method of orthogonal collocation at

Gauss points with piece-wise polynomials was used.

An overview of the method applied to nonlinear BVPs

with periodicity boundary conditions with unknown

period is given below.

The time interval ½0; 1� is discretized into N sub-

intervals. For the ith sub-interval the collocation

equations must be assembled at the required time

nodes

tij ¼ ti þ hiqj; i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .;m

ð35Þ

where hi ¼ tiþ1 � ti the length of the time sub-interval

i and qj are chosen as the zeroes of an mth order

Legendre polynomial. At the above time nodes, an

initial solution xij must be provided along with the

function evaluation T � f xij;X
� �

(abbreviated hence-

forth as f ij), Jacobian of
ox xij;X
� �

, and parameter

derivative (for the case of pseudo arc length contin-

uation) of
oX xij;X
� �

. Equivalently, the values xij can be

extracted from the solutions at the global time nodes ti
as
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xij ¼ xi þ hi
Xm

l¼1

ajlfil; ð36Þ

xiþ1 ¼ xi þ hi
Xm

l¼1

bfil ð37Þ

where aj1; aj2; . . .; ajk are the quadrature weights.

Then the quasi linearized two point BVP (equivalent

to Newton’s method) can be written as shown below

D _xij ¼ T
of

ox
xij;X
� �

Dxij þ f xij;X
� �

DT

þ T
of

oX
xij;X
� �

DXþ rij ð38Þ

xNþ1 � x1 ¼ 0 ð39Þ

where rij ¼ Tf xij;X
� �

� _xij. Applying parameter con-

densation to eliminate the local unknowns xij at every

time interval ti we can write the derivatives f i ¼
fi1 fi2 � � � fim½ �T for the local unknowns as a

function of the global unknowns xi. Substituting (36)

in (37) yields

f i ¼ f xi þ hi
Xm

l¼1

ajlfil

 !

¼ T
of

ox
xij;X
� �

Dxij þ T
of

ox
xij;X
� �

hi
Xm

l¼1

ajlfil

þ f xij;X
� �

DT þ T
of

oX
xij;X
� �

DXþ rij ð40Þ

The above can be rewritten as

f i ¼ W�1
i ViDxi þW�1

i UiDT þW�1
i SDXþW�1

i ri

ð41Þ

where

Wi ¼ I

� hi

a11T
of

ox
xi1;Xð Þ � � � a1mT

of

ox
xi1;Xð Þ

..

. . .
. ..

.

a1mT
of

ox
xim;Xð Þ � � � ammT

of

ox
xik;Xð Þ

2

66664

3

77775

ð42Þ

Vi ¼

T
of

ox
xi1;Xð Þ

..

.

T
of

ox
xim;Xð Þ

2

666664

3

777775
;

Si ¼

T
of

oX
xi1;Xð Þ

..

.

T
of

oX
xim;Xð Þ

2

666664

3

777775
;

ri ¼

Tf xi1;Xð Þ � fi1

..

.

Tf xi1;Xð Þ � fim

2

664

3

775

ð43Þ

Substituting (41) to (37) yields a set of n� N linear

equations

Dxiþ1 ¼Dxþ hi
Xm

l¼1

blf il ¼ Dx

þ hi b1I � � � bmI½ �
W�1

i ViDxi þW�1
i UiDT þW�1

i SDXþW�1
i ri

� �

ð44Þ

Dxiþ1 ¼ CiDxi þ KiDT þ RiDXþ ri ð45Þ

where

D ¼ b1I � � � bmI½ �; Ci ¼ Iþ hiDW
�1
i Vi; Ki

¼ hiDW
�1
i Ui; Ri ¼ hiDW

�1
i Si; ri ¼ hiDW

�1
i

ð46Þ

The linear algebraic system for the combined

collocation-pseudo arc length continuation method is

finally expressed in Eq. (47).
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�C1 I 0 . . . 0 �K1 �R1

0 �C2 I 0 0 �K2 �R2

..

. ..
. . .

. . .
. ..

. ..
. ..

.

0 0 . . . �CN I �KN �RN

I 0 0 . . . �I 0 0

h1 _x1 h2 _x2 . . . hN _xN 0 0 0

x0
0

1 x0
0

2 . . . x0
0

N 0 T00 X00

2

6666666666664

3

7777777777775

Dx1
Dx2

..

.

DxN
DxNþ1

DT

DX

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

¼

r1

r2

..

.

rN

xNþ1 � x1
PN

i¼1

Pm

j¼1

aij xij; _x
0
ij

D E

PN

i¼1

Pm

j¼1

aij xij � _x0ij

� 	
x0ij þ T � T0ð ÞT 0 þ X� X0ð ÞX0

0 � Ds

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

ð47Þ

where aij are the quadrature weights for the time

intervals ti�1 ti½ �.
The solution of the linear system can be achieved

by various methods. Iterative methods are applied in

this work. Floquet multipliers are evaluated as the

eigenvalues of the matrix C1 � C2 � � �CN when the

iterative solution of the n� N system is achieved

(right hand side less than a maximum). Calculating the

Floquet multipliers in this way severely reduces the

evaluation time compared to other methods (e.g.

shooting method). The normal form coefficient is

calculated with different method for the different type

of bifurcation occurring. For more detailed informa-

tion, the reader may refer to [63, 64].

A2. Implementation of the optimization pattern

Patternsearch [65] finds a sequence of

points x0; x1; x2; :::; that approach an optimal point.

The value of the objective function either decreases or

remains the same from each point in the sequence to

the next. The pattern search begins at the initial

point x0 provide as initialization by the user.

Iteration 1

At the first iteration, the mesh size is 1 and the

Generalized Pattern Search (GPS) algorithm adds the

pattern vectors to the initial point x0 to compute the

following mesh points: 1; 0½ � þ x0, 0; 1½ � þ x0,

�1; 0½ � þ x0, 0;�1½ � þ x0. The algorithm computes

the objective function at the mesh points in the order

shown above. The algorithm polls the mesh points by

computing their objective function values until it finds

one whose value is smaller than the value at x0. If it

finds that value then, the poll at iteration 1 is success-

ful and the algorithm sets the next point in the

sequence equal to x1.

Iteration 2

After a successful poll, the algorithm multiplies the

current mesh size by 2. Because the initial mesh size is

1, at the second iteration the mesh size is 2. The mesh

at iteration 2 contains the following points:

2 � 1; 0½ � þ x1, 2 � 0; 1½ � þ x1, 2 � �1; 0½ � þ x1,

2 � 0;�1½ � þ x1. The algorithm polls the mesh points

until finds one whose value is smaller than the value at

x1. If it finds that value then, the poll at iteration 2 is

again successful. The algorithm sets the second point

in the sequence equal to x2. As the poll is successful,

the algorithm multiplies the current mesh size by 2 to

get a mesh size of 4 at the third iteration.

An unsuccessful poll

By the fourth iteration, the current point is x3 and the

mesh size is 8, so the mesh consists of the points:

8 � 1; 0½ � þ x3, 8 � 0; 1½ � þ x3, 8 � �1; 0½ � þ x3,

8 � 0;�1½ � þ x3. At this iteration, none of the mesh

points has a smaller objective function value than the

value at 9 3, so the poll is unsuccessful. In this case,

the algorithm does not change the current point at the

next iteration. That is x4 ¼ x3. At the next iteration, the

algorithm multiplies the current mesh size by 0.5, so

that the mesh size at the next iteration is 4. The

algorithm then polls with a smaller mesh size.

Patternsearch modifies poll points to be feasible at

each iteration, meaning to satisfy all bounds and linear

constraints. In this paper, the boundaries that are used

to implement the optimization for af and g are

0:005\af\2 and 0:0001\g\10, respectively.

Stopping conditions for the pattern search

The algorithm stops when any of the following

conditions occurs:
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1. The mesh size is less than the MeshTolerance op-

tion which was set at 10�6.

2 The number of iterations performed by the algo-

rithm reaches the value of the MaxIterations op-

tion which was set at 300.

3. The total number of objective function evaluations

performed by the algorithm reaches the value of

the MaxFunctionEvaluations option.

4. The time, in seconds, the algorithm runs until it

reaches the value of the MaxTime option. In our

optimization that was free.

5. After a successful poll, the distance between the

point found in the previous two iterations and the

mesh size are both less than

the StepTolerance option.

6. After a successful poll, the change in the objective

function in the previous two iterations is less than

the FunctionTolerance option and the mesh size

is less than the StepTolerance option.
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