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Abstract The ion exchange in neurons can trigger
time-varying magnetic fields. According to the super-
position field principle, each neuron is exposed to
the integrated magnetic field generated by the other
neurons. This paper considers the effect of magnetic
field coupling between two neurons on neuron dynam-
ics. The magnetic flux of the memristor describes the
impact of the magnetic field. According to the dif-
ferent coupling types of neurons, the excitatory cou-
pling between excitatory neurons. The inhibitory mag-
netic coupling between excitatory and inhibitory neu-
rons is also considered. And then, the excitatory and
inhibitory magnetic field coupling is studied under dif-
ferent external excitation currents. The excitatory mag-
netic field coupling can promote the firing of neurons.
When the intensity of inhibitory magnetic field cou-
pling is large enough, the neuronal firingmode is static.
Thefiringmode of neurons can be changed by adjusting
the coupling intensity. Therefore, magnetic field cou-
pling can provide new insights into the mechanism of
information interaction between neurons. Finally, the
excitability and inhibition of magnetic field coupling
are improved by comparing magnetic field coupling
with synaptic coupling. These results indicate thatmag-
netic field coupling has the same function as a synapse
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to some extent and has the characteristics of radiation
propagation.

Keywords Magnetic field coupling · Inhibition and
excitation · Electromagnetic induction · Hindmarsh–
Rose neuron · Memristor

1 Introduction

The transmission of information between neurons is
carried out by sequences of spikes [1]. The differential
in the charged ions’ concentration inside and outside
the membrane determines a neuron’s membrane poten-
tial.When a neuron transmits information, charged ions
move in and out of the cell membrane to generate an
action potential.According to theMaxwell electromag-
netic induction theorem, the movement of charged ions
can trigger time-varying electromagnetic fields [2]. The
impact of magnetic fields on information transmission
to neurons can help us better understand and explore
life’s mysteries.

The memristor is the fourth basic circuit element,
representing the mathematical relationship between
charge and flux [3]. Coexistence attractor [4–6], hidden
attractor [7–9], hyperchaotic attractor [10–12], circular
chaotic attractors [13], and other phenomena have been
identified in the research of chaos based on memris-
tor. Such complicated dynamics have been exploited to
encrypt [14–16]. Memristors have been used in circuit
elements to simulate biological synaptic functions [17–
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19]. Various types of memristors were also being pro-
posed [20], Fractional-order memristor [21–23], local
active memristor [24–26], and so on.

Inspired by the magnetic flux physical characteris-
tics of memristor [3], Ma et al. proposed introducing
magnetic flux into the neuron model [27]. HR neu-
ron model under electromagnetic radiation in 2016 to
obtain a variety of discharge modes [28]. Based on
this theory, the dynamic behaviors of different neuron
models under electromagnetic radiation were explored
[29–32]. For example, under the stimulation of elec-
tromagnetic radiation, FHN neurons can produce hid-
den extreme multistability phenomena [29]. Complex
hidden cluster discharge patterns can be formed when
the electromagnetic induction effect is applied to HR
neurons [30]. The electrical activities of neurons under
the electric fieldswere also considered inRefs. [31,32].
Introducing external electromagnetic radiation through
an inductor coil, Ref. [33] proposed a new neuron
model under the influence of time-varying electric and
magnetic fields and external electromagnetic radiation.
By introducing Hamiltonian energy to measure mag-
netic field energy, the relationship between different
neuron discharge modes and energy under electromag-
netic radiationwas studied, such asHRneuron [34–36],
FHN neuron [37,38], and Izhikevich neuron [39,40].
The researchers looked beyond the effects of electro-
magnetic radiation on neurons to neural networks. In
Refs. [41–44], the chaotic dynamic behavior of the
Hopfield neural network under the influence of external
electromagnetic radiation on some neurons has been
studied. The impact of different external stimuli on
the chaotic dynamics of the Hopfield neural network
was studied, and the energy transfer phenomenon of
the neural network under other incentives was learned
from the perspective of Hamiltonian energy [45]. The
modulation of different kinds of external electromag-
netic stimulation on the dynamics of the Newman–
Watts small-world neural network model proved the
feasibility of external electromagnetic stimulation in
controlling the evolution of the neural network model
[46].

Neurons communicate with one another via
synapses [47,48]. Neurons may also receive input
from inhibitory or excitatory postsynaptic potentials.
The excitatory synapse can increase firing usually,
and the inhibitory synapse makes possible a reduction
in neuronal firing [49]. Sometimes, increased arrival
rates of inhibitory input can enhance firing rates, and

increased excitatory input rates can decrease firing rates
[50]. Synapses in the neurological system are classi-
fied as electrical or chemical synapses [51]. Electrical
synapses convey messages to postsynaptic neurons via
electric currents. Chemical synapses transmit informa-
tion via neurotransmitters,which either excite or inhibit
postsynaptic neurons depending on the neurotransmit-
ter. Chemical synapses are characterized by unidirec-
tional transmission and delay because neurotransmit-
ters can only pass from the presynaptic membrane to
the postsynaptic membrane. It would be interesting to
discover another efficient method of signaling com-
munication between neurons. In [52], scholars studied
magnetic field coupling, the interaction between neu-
ron magnetic fields, and proposed the coupling neu-
ron model. When magnetic field coupling and elec-
trical synaptic coupling exist in neural networks, mag-
netic field coupling can regulate the collective behavior
of neural networks [53,54]. In the case that magnetic
field coupling, electric field coupling and synaptic cou-
pling simultaneously act on the Newman–Watts small-
world neuronal network, standard deviation and syn-
chronization factors are introduced to provide helpful
guidance for signal transmission between neurons [55].
The above studies suggest that magnetic field coupling
is another way of neuron signal propagation. In [52–
55], the influence of magnetic field coupling is con-
sidered. In [52,53], it is considered that magnetic field
coupling promotes phase synchronization of neurons.
In [54,55], Magnetic field coupling was considered to
regulate neuron activity, but only excitatory neuron net-
works were considered.

However, it is a pity that the split of magnetic field
coupling into excitatory and inhibitory magnetic field
coupling was not considered in previous researches
[52–55]. Excitatory and inhibitory synapses are two
types of synapses [47]. As magnetic field coupling is
another means of neuron signal communication, the
regulation of inhibitory and excitatory magnetic field
coupling on neuronal dynamical properties should also
be considered. Based on the above discussion, this
paper puts forward the concept of excitation and inhibi-
tion of magnetic field coupling and proposes the corre-
sponding theoretical model. According to Abe’s theo-
rem, the direction of themagnetic field is determined by
the law of ion movement. Therefore, the excitation and
inhibition of neurons can be indicated by the direction
of the magnetic field. The magnetic fields of the two
neurons are superimposed on each other, either in the
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same direction or opposite. The excitatory magnetic
field coupling and inhibitory magnetic field coupling
models are proposed. It is verified that excitatory mag-
netic field coupling can promote the firing of neurons,
inhibitorymagnetic field coupling can inhibit the corre-
sponding neuron, and the increasing coupling intensity
to a certain degree makes the neuron reach the static
state.

The following of this paper is organized as follows;
Sect. 2 splits magnetic field coupling into excitatory
and inhibitory magnetic field coupling; Sect. 3 studies
twomagnetic field coupling states under four discharge
modes; Sect. 4 summarizes the full text.

2 Model description and scheme considered

Synapses are the connections between neurons. And
the importance of magnetic coupling as a possible way
of transmitting information between neurons is unde-
niable. To study the modulation of dynamical proper-
ties of coupling neurons by excitatory and inhibitory
magnetic field coupling. In this paper, we consider the
response of the magnetic field coupled HR model to
external stimulus currents in two cases: Case I. Excita-
tory magnetic field coupling model; Case II. Inhibitory
magnetic field coupling model.

2.1 Excitatory magnetic field coupling model

In [52], a model of interaction between neuron mag-
netic fields was presented. In Refs. [53,55,56], electri-
cal synapses andmagnetic fieldswere used for informa-
tion interaction between neurons. And the two neurons
connected by magnetic coupling were both excited, so
it can be considered that the magnetic coupling con-
necting the two excited neurons is also excitatory mag-
netic coupling. The corresponding excitatory magnetic
field coupling model is shown below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(ϕ1)x1
ẏ1 = c − dx1

2 − y1
ż1 = r [s(x1 + 1.6) − z1]
ϕ̇1 = k1x1 − k2ϕ1 + Gex(ϕ2 − ϕ1)

ẋ2 = y2 − ax2
3 + bx2

2 − z2 + Iext − kρ(ϕ2)x2
ẏ2 = c − dx2

2 − y2
ż2 = r [s(x2 + 1.6) − z2]
ϕ̇2 = k1x2 − k2ϕ2 + Gex(ϕ1 − ϕ2),

(1)

where x, y, z and ϕ describe the membrane poten-
tial, recovery variables of slow current and adaptive
current, and magnetic flux, respectively. Iext is the
external stimulus current, thememristor couplingmag-
netic flux and membrane potential. Its conductivity is
ρ(ϕ) = α + 3βϕ2. Gex(ϕ1 − ϕ2) and Gex(ϕ2 − ϕ1),
represent the interaction of two magnetic fields. Gex

means the coupling strength of the corresponding exci-
tatory magnetic field, and the other parameters (a, b, c,
d, k, r, s, k1, k2) are constants as (1.0, 3.0, 1.0, 5.0, 1,
0.006, 4, 0.5, 0.5).

2.2 Inhibitory magnetic field coupling model

It is well known that synapses can be divided into
inhibitory and excitatory. Inhibitory synapses connect
the neurons, and the presynaptic neuron is activated
while the postsynaptic neuron is inhibited. In this paper,
magnetic field coupling is another way of neuron infor-
mation transmission. Therefore, there is also a corre-
sponding inhibitory magnetic field coupling. That is,
the upper-level neuron is activatedwhile the lower-level
neuron is inhibited, and they communicate with one
another via magnetic field coupling. In this work, we
propose the inhibitory magnetic field model coupling
two neurons as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = y1 − ax13 + bx12 − z1 + Iext − kρ(ϕ1)x1
ẏ1 = c − dx12 − y1
ż1 = r [s(x1 + 1.6) − z1]
ϕ̇1 = k1x1 − k2ϕ1 − G in(ϕ2 + ϕ1)

ẋ2 = y2 − ax23 + bx22 − z2 + Iext − kρ(ϕ2)x2
ẏ2 = c − dx22 − y2
ż2 = r [s(x2 + 1.6) − z2]
ϕ̇2 = k1x2 − k2ϕ2 + G in(ϕ1 + ϕ2),

(2)

whereG in is the coupling strength of the corresponding
inhibitory magnetic field.

It is well known that adjusting the applied exci-
tation current can alter the firing pattern of neurons.
To explore the influence of different degrees of mag-
netic field coupling intensity on neuronal firing mode
under other circumstances, we studied two magnetic
field coupling cases with four different firing patterns,
as shown in Table 1.
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Table 1 Cases of different firing states according to magnetic field coupling types

Different states Spiking firing Bursting firing Chaotic firing Periodical firing
Iext = 1.8 Iext = 2.3 Iext = 3.2 Iext = 4

Excited-excited Sec3.1-Case1 Sec3.1-Case2 Sec3.1-Case3 Sec3.1-Case4

Excited-inhibited Sec3.2-Case1 Sec3.2-Case2 Sec3.2-Case3 Sec3.2-Case4

2.3 Stability analysis for the equilibrium states

The equilibriumEq. (3) is found by zeroing the left side
of Eq. (1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 − ax13 + bx12 − z1 + Iext − kρ(ϕ1)x1 = 0
c − dx12 − y1 = 0
r [s(x1 + 1.6) − z1] = 0
k1x1 − k2ϕ1 + Gex(ϕ2 − ϕ1) = 0
y2 − ax23 + bx22 − z2 + Iext − kρ(ϕ2)x2 = 0
c − dx22 − y2 = 0
r [s(x2 + 1.6) − z2] = 0
k1x2 − k2ϕ2 + Gex(ϕ1 − ϕ2) = 0,

(3)

The equations may be solved using MATLAB, and
the real solution is the equilibrium point. The follow-
ing approach is used to construct the Jacobian matrix
corresponding to Eq. (1).

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

J11 1 −1 J14 0 0 0 0
J21 −1 0 0 0 0 0 0
J31 0 J33 0 0 0 0 0
J41 0 0 J44 0 0 0 J48
0 0 0 0 J55 1 −1 J58
0 0 0 0 J65 −1 0 0
0 0 0 0 J75 0 J77 0
0 0 0 J84 J85 0 0 J88

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

where

J11 = 2bx1 − 3ax21 − k(α + 3βϕ2
1); J21 = −2dx1;

J31 = J75 = rs; J85 = J41 = k1;
J14 = −6kβϕ1x1; J33 = J77 = −r;
J88 = J44 = −k2 − Gex; J48 = J84 = Gex;
J55 = 2bx2 − 3ax22 − k(α + 3βϕ2

2); J65 = −2dx2;
J58 = −6kβϕ2x2.

The eigenvalues of the appropriate equilibriumpoint
are calculated by substituting it into the Jacobian
matrix.

The related equilibrium Eq. (5) is found by zeroing
the left side of Eq. (2).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 − ax13 + bx12 − z1 + Iext − kρ(ϕ1)x1 = 0
c − dx12 − y1 = 0
r [s(x1 + 1.6) − z1] = 0
k1x1 − k2ϕ1 − G in(ϕ2 + ϕ1) = 0
y2 − ax23 + bx22 − z2 + Iext − kρ(ϕ2)x2 = 0
c − dx22 − y2 = 0
r [s(x2 + 1.6) − z2] = 0
k1x2 − k2ϕ2 + G in(ϕ1 + ϕ2) = 0,

(5)

The Jacobian matrix of (2) is yielded as

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

J11 1 −1 J14 0 0 0 0
J21 −1 0 0 0 0 0 0
J31 0 J33 0 0 0 0 0
J41 0 0 J44 0 0 0 J48
0 0 0 0 J55 1 −1 J58
0 0 0 0 J65 −1 0 0
0 0 0 0 J75 0 J77 0
0 0 0 J84 J85 0 0 J88

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6)

where

J11 = 2bx1 − 3ax21 − k(α + 3βϕ2
1); J21 = −2dx1;

J31 = J75 = rs; J85 = J41 = k1;
J14 = −6kβϕ1x1; J33 = J77 = −r;
J44 = −k2 − G in; J48 = −G in;
J55 = 2bx2 − 3ax22 − k(α + 3βϕ2

2); J65 = −2dx2;
J58 = −6kβϕ2x2; J84 = G in; J88 = −k2 + G in.

The equilibrium point of an actual number solution
is first found by solving equations and then replaced
into the Jacobian matrix, and the stability of the equi-
librium point is determined by its eigenvalue. Table 2
summarizes the findings.

Neither excitatory nor inhibitorymagnetic field cou-
pling has an equilibrium point whenGex=0 orG in = 0.
The applied excitation current determines the equilib-
rium point in excitatory magnetic field coupling. The
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Table 2 Equilibrium points and their corresponding eigenvalues and stabilities (Iext = 3.2)

Parameters Equilibrium points Eigenvalues Stabilities

Gex = 0.2 −0.6865, −1.3561, 3.6542, −6.8806, −6.8801, −0.8992, Unstable saddle point

−1.3729, −0.6865, −1.3561, −0.4939, 0.1289, 0.1225,

3.6542, −1.3729 0.0197, 0.0213

Gex = 0.8 −0.6865, −1.3561, 3.6542, −6.8806, −6.8783, −2.1052, Unstable saddle point

−1.3729, −0.6865, −1.3561, 0.0213,−0.4939, 0.1342,

3.6542, −1.3729 0.1225, 0.0187

Gex = 2 −0.6865, −1.3561, 3.6542, −6.8806, −6.8693, −4.5161, Unstable saddle point

−1.3729, −0.6865, −1.3561, 0.0213,−0.4939, 0.1365,

3.6542, −1.3729 0.1225, 0.0183

G in = 0.2 −0.7000, −1.4499, −6.9387, −6.7784, Unstable saddle-focus

3.6001, −0.3130,−0.6587, −0.6976±0.2024i, 0.1508,

−1.1694, 3.7652, −2.4043 0.0739, 0.0160, 0.0382

G in = 0.8 −0.6538, −1.1374, −6.7882, −6.5947, Unstable saddle-focus

3.7847, 2.5494, −0.5515, −1.3027±0.8024i, 0.1048,

−0.5207, 4.1940, −4.9600 0.0259, −0.0202±0.0582i

G in = 1.4 −0.5654, −0.5986, −6.6408, −6.7855, Unstable saddle-focus

4.1383, 4.6618, −0.4690, −1.9026±1.4007i, −0.1846,

−0.0997, 4.5241, −6.7307 0.0022±0.0597i, −0.0255

G in = 1.5 −0.5517, −0.5220, −6.6418, −6.8424, Stable focus-node

4.1931, 4.9551, −0.4580, −2.0024±1.5005i, −0.2134,

−0.0490, 4.5678, −6.9746 −0.0102±0.0601i, −0.0226

G in = 2 −0.4913, −0.2067, −6.7493, −7.1999, Stable focus-node

4.4350, 6.2435, −0.4120, −2.5013±1.9992i, −0.3363,

0.1513, 4.7520, −8.0501 −0.1025, −0.0430, −0.0159

excitatorymagnetic field coupling intensity has aminor
effect on the eigenvalue but no impact on the equi-
librium point. The inhibitory magnetic field coupling
intensity can affect both the equilibrium point and the
eigenvalue in the inhibitory magnetic field coupling.
The stability of the equilibriumpoint varies fromunsta-
ble equilibrium point to stable equilibrium point as the
magnetic field coupling strength increases.

3 Numerical results and discussion

In numerical study, this section uses the fourth order
Runge–Kutta algorithm to solve the dynamic equation
with a transient period of 1200.Neurons in themodel of
the initial value are set to (x1, y1, z1, ϕ1, x2, y2, z2, ϕ2)

= (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0), the other
parameters are chosen as a=1.0, b=3.0, c=1.0, d=5.0,
r=0.006, s=4, k=1, k1=0.5, k2=0.5, α=0.1, β=0.02. For

clear illustration, the influence of applied current on the
electrical activity of neurons can be illustrated by the
inter-spike interval (ISI) bifurcation diagram as shown
in Fig. 1.

ISI reflects the distance between two peaks in the
firing sequence diagram of neurons. The firing modes
of the HR neuronal models experienced several major
transitions. When the external stimulus Iext is too tiny,
the neuron is in a quiescent state. With the increase of
external stimulation, the neuron experiences spike dis-
charge, burst discharge, chaotic discharge and periodic
oscillation.We can select the appropriate external exci-
tation current to control the firing mode of neurons, as
shown in Fig. 2.

Various modes of electrical activity can be triggered
by selecting the right applied excitation current. And
two neurons with different initial values fired in the
same pattern without synaptic coupling and magnetic
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Fig. 1 Bifurcation diagram of neuron membrane potential and
different external stimulus signals

Fig. 2 Two neurons with different initial values were sampled
with different excitation (the blue is the response of the first
neuron, and the orange is the response of the second neuron). a
Iext = 1.8; b Iext =2.3; c Iext =3.2; d Iext =4; The initial values
are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)

coupling. When the external excitation current is fixed,
the regulation of excitatory and inhibitory magnetic
field coupling on neuronal dynamical properties under
different discharge modes is explored through bifurca-
tion analysis of magnetic field coupling intensity.

3.1 Inhibitory magnetic field coupling

In case 1, two neurons with different initial values at
peak discharge were selected to change the intensity of
magnetic field coupling, and the effect ofmagnetic field
coupling on neuron firing mode was detected. Bifurca-

Fig. 3 Bifurcation diagram of neuronal firing ISI with different
Inhibitory magnetic field coupling intensity, Iext = 1.8; (the blue
is the response of the first neuron, and the orange is the response
of the second neuron) The inserted figure is an enlarged version

Fig. 4 Sampled time series for membrane potential, Iext = 1.8
(the blue is the response of the first neuron, and the orange is
the response of the second neuron). a G in = 0; b G in = 0.2; c
G in = 0.8; d G in = 2

tion of ISI with parameter G in and neuron firing pat-
terns are shown in Figs. 3 and 4.

It has been discovered that changing the magnetic
coupling strength alters the firing mode of neurons.
With the increase of magnetic field coupling intensity,
the firing mode of neuron 1 becomes more and more
complex, and the observed spikes become more and
more intensive. To observe the bifurcation diagram in
greater detail, zoom in on the bifurcation diagram near
G in = 0.8. The neuron starts to inhibit the firing until
the magnetic field coupling intensity reaches a certain
degree. We can find that the bifurcation diagram disap-
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Fig. 5 Bifurcation diagram of neuronal firing ISI with different
Inhibitory magnetic field coupling intensity, Iext = 2.3 (the blue
is the response of the first neuron, and the orange is the response
of the second neuron)

Fig. 6 Sampled time series for membrane potential, Iext = 2.3
(the blue is the response of the first neuron, and the orange is
the response of the second neuron). a G in = 0; b G in = 0.2; c
G in = 0.8; d G in = 2

pears, indicating that the neuron is stationary. With the
increase of magnetic coupling intensity, the amplitude
and frequency of the membrane potential of neuron 2
became smaller and smaller and reached the quiescent
state before neuron 1.

In case 2, the intensity of magnetic field coupling
was changed to detect the influence of magnetic field
coupling on neuron firing mode. The bifurcation dia-
gram of ISI and the time series diagram are shown in
Figs. 5 and 6.

With the increase of excitation current, more
inhibitory magnetic field coupling is needed to make
the neuron reach the quiescent state. The different dis-
charge patterns of the two neurons were observed. The

Fig. 7 Bifurcation diagram of neuronal firing ISI with different
Inhibitory magnetic field coupling intensity, Iext = 3.2 (the blue
is the response of the first neuron, and the orange is the response
of the second neuron)

Fig. 8 Sampled time series for membrane potential, Iext = 3.2
(the blue is the response of the first neuron, and the orange is
the response of the second neuron). a G in = 0; b G in = 0.2; c
G in = 0.8; d G in = 2

two neurons move from the same firing mode to a dif-
ferent one due to inhibitorymagnetic coupling. Figure 6
shows the existence of burst discharge and Subthresh-
old oscillation [57] and the existence of burst discharge
and chaotic state.Moreover, when the neuron is station-
ary, the membrane potential of neuron 1 is lower than
that of neuron 2.

In case 3, two neurons with different initial values at
chaotic discharge were selected to change the intensity
of magnetic field coupling, and the effect of magnetic
field coupling on neuron firing mode was detected.
Bifurcation of ISI with parameterG in and neuron firing
patterns are shown in Figs. 7 and 8.
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Fig. 9 Bifurcation diagram of neuronal firing ISI with different
Inhibitory magnetic field coupling intensity, Iext = 4 (the blue
is the response of the first neuron, and the orange is the response
of the second neuron)

Fig. 10 Sampled time series for membrane potential, Iext =
4(the blue is the response of the first neuron, and the orange is
the response of the second neuron). a G in = 0; b G in = 0.2; c
G in = 0.8; d G in = 2

As seen from the diagram, neurons can have a vari-
ety of discharge modes by adjusting the magnetic field
coupling intensity. With the increase of magnetic field
coupling intensity, the discharge modes of the two neu-
rons change from chaos state to burst state and period-1
discharge and static form.

In case 4, two neurons at periodic oscillation were
selected to change the intensity of magnetic field cou-
pling, and the effect of magnetic field coupling on neu-
ron firing mode was detected. Bifurcation of ISI with
parameter G in and neuron firing patterns are shown in
Figs. 9 and 10.

Fig. 11 Bifurcation diagram of neuronal firing ISI with different
excitatory magnetic field coupling intensity, Iext = 1.8 (the blue
is the response of the first neuron, and the orange is the response
of the second neuron)

Fig. 12 Sampled time series for membrane potential, Iext = 1.8
(the blue is the response of the first neuron, and the orange is
the response of the second neuron). a Gex = 0; b Gex = 0.2; c
Gex = 0.8; d Gex = 2

The discharge mode can be controlled by selecting
suitable magnetic coupling intensity. The two neurons
move from the same firing mode to a different one due
to inhibitory magnetic coupling. When G in = 2, the
neuron firing pattern is subthreshold oscillation rather
than resting, as shown inFig. 10d.Andwith the increase
of external stimulus current, the two neurons needmore
inhibitory magnetic coupling strength to reach the rest-
ing state.
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Fig. 13 Bifurcation diagram of neuronal firing ISI with different
excitatory magnetic field coupling intensity, Iext = 2.3 (the blue
is the response of the first neuron, and the orange is the response
of the second neuron)

Fig. 14 Sampled time series for membrane potential, Iext = 2.3
(the blue is the response of the first neuron, and the orange is
the response of the second neuron). a Gex = 0; b Gex = 0.2; c
Gex = 0.8; d Gex = 2

3.2 Excitatory magnetic field coupling

In case 1, two neurons with peak discharge were stimu-
lated by an excitatory couplingmagnetic field. Then the
coupling intensity was changed to observe the firing of
the neurons without synaptic coupling; the results are
presented in Figs. 11 and 12.

With the increase of magnetic coupling intensity,
the two neurons’ firing mode becomes more and more
complex, and the observed spikes become denser. The
firing mode of neurons changes from peak discharge to
period-2 discharge.

Fig. 15 Bifurcation diagram of neuronal firing ISI with different
excitatory magnetic field coupling intensity, Iext = 3.2 (the blue
is the response of the first neuron, and the orange is the response
of the second neuron)

Fig. 16 Sampled time series for membrane potential, Iext = 3.2
(the blue is the response of the first neuron, and the orange is
the response of the second neuron). a Gex = 0; b Gex = 0.2; c
Gex = 0.8; d Gex = 2

In case 2, two neurons with burst discharge were
stimulated by an excitatory coupling magnetic field.
Then the coupling intensity was changed to observe the
neurons firing without synaptic coupling. The results
are presented in Figs. 13 and 14.

Neurons firing in period-2 discharge flip to firing in
a period-3 discharge after being activated by an excita-
tory magnetic coupling. And it was found that excita-
tory magnetic fields made neurons asynchronous.

In case 3, two neurons with chaotic discharge were
stimulated by an excitatory coupling magnetic field,
and then the coupling intensity was changed to observe
the discharge of the neurons without synaptic coupling.
The results are presented in Figs. 15 and 16.
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Fig. 17 Bifurcation diagram of neuronal firing ISI with different
excitatory magnetic field coupling intensity, Iext = 4 (the blue is
the response of the first neuron, and the orange is the response
of the second neuron)

The bifurcation diagram shows that the two neurons
are in chaotic discharge, but through the sequence dia-
gram,we can find that the excitatorymagnetic coupling
promotes the neuron discharge.

In case 4, two neuronswith Periodic oscillationwere
stimulated by an excitatory coupling magnetic field,
and then the coupling intensity was changed to observe

Fig. 18 Sampled time series for membrane potential, Iext = 4
(the blue is the response of the first neuron, and the orange is
the response of the second neuron). a Gex = 0; b Gex = 0.2; c
Gex = 0.8; d Gex = 2

the discharge of the neurons without synaptic coupling.
The results are presented in Figs. 17 and 18.

In conclusion, the effects of excitatory and inhibitory
magnetic field coupling on neuron discharge differ.
Excitatory magnetic field coupling can benefit neu-
ron firing but also affect neuron firing patterns, com-
plicating electrical activity. Inhibitory magnetic field
coupling can enhance neuron firing when the cou-
pling intensity is small but can inhibit neuron firing

Table 3 Different ways to couple HR neurons

Different coupling Equations Remarks

Excitatory electrical
synaptic [55]

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = f (x1, p) + D(x2 − x1)
ϕ̇1 = k1x1 − k2ϕ1
ẋ2 = f (x2, p) + D(x1 − x2)
ϕ̇2 = k1x2 − k2ϕ2,

Bidirectional, electric field

Excitatory chemical
synaptic [58]

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = f (x1, p)
ϕ̇1 = k1x1 − k2ϕ1

ẋ2 = f (x2, p) + gex(vse − x2)(
1

1+e(−λ(x1(t−τc )−θ)) ) vse > x2max

ϕ̇2 = k1x2 − k2ϕ2,

Unidirectional, time delay,
neurotransmitter

Inhibitory chemical
synaptic [58]

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = f (x1, p)
ϕ̇1 = k1x1 − k2ϕ1

ẋ2 = f (x2, p) + gin(vse − x2)(
1

1+e(−λ(x1(t−τc )−θ)) ) vse < x2min

ϕ̇2 = k1x2 − k2ϕ2,

Unidirectional, time delay,
neurotransmitter

Excitatory magnetic field
[2]

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = f (x1, p)
ϕ̇1 = k1x1 − k2ϕ1 + Gex(ϕ2 − ϕ1)

ẋ2 = f (x2, p)
ϕ̇2 = k1x2 − k2ϕ2 + Gex(ϕ1 − ϕ2),

Bidirectional, magnetic
field

Inhibitory magnetic field

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = f (x1, p)
ϕ̇1 = k1x1 − k2ϕ1 − G in(ϕ2 + ϕ1)

ẋ2 = f (x2, p)
ϕ̇2 = k1x2 − k2ϕ2 + G in(ϕ1 + ϕ2),

Bidirectional, magnetic
field
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when the coupling intensity is vital. The neurons enter
a static state when the magnetic coupling strength
reaches a critical point. As the external stimulus cur-
rent increases, more inhibitory magnetic field coupling
strength is required to make the neuron enter the qui-
escent state.

4 Conclusions

Sequences of spikes carry out the information of neu-
rons; neurons can modulate the firing patterns of other
neurons usingmagnetic fields. Like synapses,magnetic
coupling acts as a means of transmitting data between
neurons. Thus, themagnetic couplingmay have proper-
ties similar to synaptic coupling. This paper divided the
magnetic field coupling into excitation and inhibition
magnetic field coupling, and two coupling models are
established, respectively. The method of transmitting
neuron information through magnetic field coupling is
further improved. It increases the magnetic coupling
strength of the excitatory model, which promotes neu-
ronal electrical activity. A high enough inhibitory mag-
netic coupling causes the neuron to become quiescent.
Table 3 lists the two neurons’ synaptic and magnetic
coupling models. Chemical synaptic coupling is unidi-
rectional; information can only be transmitted from the
presynaptic neuron to the postsynaptic neuron. Chem-
ical synapses have a time delay due to synaptic cleft.
Magnetic coupling is the ability of neurons to inter-
act with each other. It is bi-directional and has no
time delay. It is divided into excitatory synapses and
inhibitory synapses. Moreover, the neuronal magnetic
field not only affects postsynaptic neurons but also has
a diffusion effect. Because neurons are exposed to the
integrated magnetic fields of other neurons, the next
step of this paper is to study the interaction of mag-
netic fields of multiple neurons.
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