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Abstract This paper presents an investigation on

thermo-electro-mechanical nonlinear low-velocity

impact behaviors of the geometrically imperfect

functionally graded (FG) graphene-reinforced com-

posite (GRC) beam with surface-bonded piezoelectric

layers. Both uniformly distributed and FG patterns of

graphene nanoplatelets (GPLs) are considered along

the thickness of the GRC host beam. The effective

Young’s modulus is calculated by the Halpin–Tsai

model. The Poisson ratio and mass density are

calculated by the rule of mixture. The modified

nonlinear Hertz contact law is employed to predict

the impact force between the spherical impactor and

the geometrically imperfect GRC piezoelectric beam

during impacting. By considering the first-order shear

deformation theory and von Kármán nonlinear dis-

placement–strain relationship, the nonlinear govern-

ing equations are obtained by Hamilton principle and

dispersed by differential quadrature (DQ) method. The

Newmark-b method associated with Newton–Raph-

son iterative process is adopted to parametrically

identify the impact force and the dynamic response of

the system. The effects of geometric imperfection,

weight fraction and distribution pattern of GPLs,

temperature variation, thickness of piezoelectric layer

and impactor’s initial velocity on nonlinear low-

velocity impact behaviors of geometrically imperfect

GRC beams are discussed in detail. Our results

illustrate that the coupling effect of geometric imper-

fection and thermo-electro-mechanical load has a

significant effect on the nonlinear low-velocity impact

behavior of GRC beam, and GPLs distributing into the

piezoelectric layers is better for reducing the impact

response of geometrically imperfect GRC piezoelec-

tric beam.

Keywords Low-velocity impact � Thermo-electro-

mechanical load � Graphene nanoplatelets � Geometric

imperfection � Nonlinear Hertz contact law �
Functionally graded materials

1 Introduction

Geometric imperfections are inevitable in engineering

structures due to the influence of manufacturing and

environmental factors, and these imperfections have

significant effects on the mechanical behaviors of
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structures [1–3], especially for the vibration, buckling

and nonlinear dynamic behaviors [4–6]. Sheinman

et al. [6] studied the imperfection sensitivity of an

isotropic beam under a nonlinear elastic foundation.

Farokhi et al. [7] investigated the effect of geometric

imperfection on the nonlinear resonance of the

Timoshenko microbeam. Wadee [8] proposed the

one-dimensional imperfection model to simulate var-

ious global and localized imperfections existing in

engineering structure, and then conducted a detailed

research on buckling and post-buckling behaviors of

the geometrically imperfect sandwich panel. Their

results shown that the mechanical behaviors of

structures are very sensitive to the geometric imper-

fections. Obviously, the research on the dynamic

behaviors of structures with geometric imperfections

is of great significance in engineering design.

Except the isotropic homogeneous structures men-

tioned above, more and more lightweight and high

strength materials and high-performance composite

structures are emerging in the field of aerospace and

engineering applications, such as the functionally

graded materials (FGM), fiber-reinforced composite

structures and carbon-based composite structures

[9–12]. In the framework of isogeometric analysis

[13], Nguyen and his co-workers calculated the static

and dynamic behaviors of the high-performance

composite structures, such as the vibration of FGM

piezoelectric porous microplates [14] and postbuck-

ling of functionally graded carbon nanotube-rein-

forced composite (CNTRC) shells [15]. When the

high-performance composite structures operate under

thermo-electro-mechanical loads, their mechanical

behaviors can significantly be affected by their

working conditions. Yang and his co-authors

[16, 17] analyzed the large amplitude vibration and

thermal bifurcation buckling of carbon nanotube-

reinforced composite (CNTRC) beams bonded with

piezoelectric layers. Liew’s group [18, 19] researched

active vibration control of FG composite plates

bonded with the piezoelectric actuator and sensor.

Wu et al. [20, 21] analyzed the post-buckling and free

vibration of FG-CNTRC beam with geometric imper-

fections under thermal–mechanical-electrical loads.

Recently, graphene nanoplatelets (GPLs) have

shown tremendous potentials in the development of

high-performance composites due to its unique

mechanical properties since its first report by Novo-

selov et al. [22]. Extensive theoretical and

experimental investigations have shown that the

dispersion of GPLs in the polymer matrix can

significantly improve its mechanical properties

[23–25]. Yang’s group firstly proposed the function-

ally graded (FG) GPLs-reinforced composite (GRC)

structures and carried out a detailed study on their

bending, buckling and vibration behaviors [26–29].

Mao et al. [30–33] conducted a detailed analysis of the

static and dynamic behaviors of FG-GRC structures.

Rahimi et al. [34, 35] employed a semi-analytical

solution to obtain the three-dimensional bending and

free vibration behaviors of FG-GRC cylindrical shells.

Furthermore, many scholars have studied the vibra-

tions and stability of FG-GRC structures under various

loads, including transverse excitation [36, 37], axial

compression [38], thermal loads [39] and impact loads

[40]. Results illustrated that the GPL reinforcements

can significantly enhance the stiffness of the GRC

structures, and the enhancement effect largely depends

on the distribution pattern of GPLs in matrix.

According to the researches about nonlinear behav-

iors of FG-GRC structures with geometric imperfec-

tions, shapes and amplitudes of geometric

imperfections have significant effects on the buckling

[41, 42], nonlinear vibration [4, 43] and resonance [44]

of FG-GRC structures. It is worth noting that impact is

one of common loads for engineering structures,

which may result in internal damage and even lead to

severe failure of structures. Introducing the modified

Hertz model, Fan et al. [45, 46] discussed the low-

velocity impact response of FG-GRC structures rest-

ing on visco-elastic foundations. Based on the energy-

balance and spring-mass model, Dong et al. [47]

predicted the low-velocity impact response of FG-GR

cylindrical shells under axial load and thermal loads.

Selim et al. [48] examined the impact behaviors of FG-

GRC plates resting on Winkler-Pasternak elastic

foundations by using a meshless approach.

The existing literature have researched the low-

velocity impact behaviors of intact GRC structures

and the nonlinear dynamic behaviors of geometrically

imperfect GRC structures in detail separately. To our

best knowledge, there is no relevant reports on the

impact behavior of GRC beam with geometric imper-

fections. But it is the utmost important for the safety

and longevity of engineering structures, especially for

the high-performance composite structures working

under complex loading, such as the situation among

thermal, electrical and mechanical loads.
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In order to investigate the couple effect of the low-

velocity impact and geometric imperfections on the

nonlinear dynamic behaviors of the GRC beam

subjected to thermal–mechanical-electrical loads, the

present work introduces a theoretical model and

numerical analysis method. For the geometric imper-

fect GRC beam with surface-bonded piezoelectric

layers subjected to low-velocity impact and thermo-

electro-mechanical loads, the governing equations of

motion are derived based on the first-order shear

deformation theory, von Kármán nonlinear displace-

ment–strain relationship and Hamilton’s principle,

and dispersed by differential quadrature (DQ) method.

The Newmark-b method associated with Newton–

Raphson iterative method is employed to study the

effects of the weight fraction and distribution pattern

of GPLs, the types and amplitude of geometric

imperfections, temperature variation, impact velocity,

as well as thickness of the piezoelectric layer on

impact force and impact response of the geometrically

imperfect GRC piezoelectric beam.

2 Theoretical models

2.1 Geometry model

Figure 1a illustrates a GRC beam with geometric

imperfection. The length, width and thickness of the

GRC beam are L, b and h, respectively. Two

piezoelectric layers with a thickness of hp are perfectly

bonded on the upper and lower surfaces of the

geometrically imperfect GRC beam and respectively

applied with voltage U0. The hinged supported

boundary conditions are considered. The GRC beam

is subjected a uniform temperature variation DT ¼
T � T0 and it is stress-free at initial temperature T0. It

is assumed that the material properties of GRC beam

are independent of the varying temperatures to focus

on the coupled effect of the temperature variation and

geometric imperfection on the nonlinear low-velocity

impact response of the GRC piezoelectric beam. The

geometrically imperfect GRC piezoelectric beam is

impacted by a spherical impactor with initial velocity

V0. mi and Ri respectively denote the mass and radius

of the impactor.

The geometric imperfection w� xð Þ is simulated in

the form of the product of the trigonometric and

hyperbolic functions [8]

w� xð Þ ¼ A0hsech a x=L� cð Þ½ � cos bp x=L� cð Þ½ �: ð1Þ

where a is a constant, representing the localization

degree of the imperfection, and A0 is the dimensionless

amplitude of the geometric imperfection. The spher-

ical impactor impacts to the concave surface of the

GRC beam for A0[ 0, as shown in Fig. 1, and the

convex surface is impacted for A0\ 0. Note thatw�ðxÞ
is symmetric about x=L ¼ c, and b is the half-wave

numbers of the imperfection in x-axis. Sine, global

(G) and localized (L) imperfections are considered. As

presented in Fig. 2, the varying values of constants a,

b and c represent various geometric imperfections,

Sine, Gs and Ls (s = 1, 2, 3, 4).

(b)

(a)

Fig. 1 Structural

schematic: a A model of an

N-layered geometrically

imperfect GRC

piezoelectric beam

subjected to low-velocity

impact, b GPLs distribution

patterns: UD, FG-X, FG-O
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2.2 Nonlinear Hertz model

Based on Newton’s second law, the governing equa-

tion of motion for the impactor can be expressed as

mi €yi tð Þ þ FC tð Þ ¼ 0; ð2Þ

where yi tð Þ is the displacement of the impactor, and

FC tð Þ is the impact force between the impactor and the

impacted geometrically imperfect GRC piezoelectric

beam.

When the contact area between the impactor and

the impacted beam is much smaller than the geome-

tries of the beam, Hertz contact theory can be utilized

to calculate the impact force. The nonlinear low-

velocity impact process can be divided into two

phases, namely, loading phase and unloading phase

[46, 49]. The loading phase starts from the moment

that the impactor impacts to the target beam, and ends

when the local contact indentation reaches to the

maximum. The unloading phase begins at the local

contact indentation reaching to the maximum, until the

impactor totally departing from the geometrically

imperfect GRC piezoelectric beam. According to the

modified nonlinear Hertz contact proposed by Yang

and Sun [50], the varying impact force FC tð Þ during

these two different phases can be predicted through

two different equations.

During the loading phase [49],

FC tð Þ ¼ KCa
3=2 tð Þ; ð3Þ

with the contact stiffness KC and the local contact

indentation a tð Þ

KC ¼ 4

3

ffiffiffiffiffi

Ri

p 1 � m2
i

Yi
þ

1 � m2
~t

Y~t

� ��1

; a tð Þ

¼ yiðtÞ � wCðtÞ ð4Þ

where Y and m are the Young’s modulus and Poisson

ratio, respectively, and the subscript ‘‘i’’ and ‘‘~t’’
respectively represent the impactor and the top surface

of the geometrically imperfect GRC piezoelectric

beam. Besides, wC denotes the deflection of the

geometrically imperfect GRC piezoelectric beam at

the impacted point.

During the unloading phase [49],

FC tð Þ ¼ Fmax

a tð Þ � a0

amax � a0

� �5=2

; ð5Þ

where amax and Fmax are respectively the maximum

local contact indentation and the corresponding

impact force, and a0 is the permanent indentation of

the target beam. If the plastic deformation is not

considered, a0 ¼ 0.

Sine (a=0, b=1, c=0.5) G1 (a=0, b=2, c=0.5) G2 (a=0, b=3, c=0.5)

G3 (a=0, b=5, c=0.5) G4 (a=0, b=7, c=0.5) L1 (a=15, b=2, c=0.5)

L2 (a=15, b=3, c=0.5) L3 (a=15, b=5, c=0.5) L4 (a=15, b=7, c=0.5)

Fig. 2 Geometric

imperfection modes
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2.3 Physical parameter model

It is assumed that the GRC beam is composed by a

mixture of an isotropic matrix and GPLs with length

lG, width wG and thickness hG. GPLs disperse into the

GRC beam along its thickness direction. Both uni-

formly distributed (UD) and functionally graded (FG)

patterns are taken into consideration, as shown in

Fig. 1(b), namely UD, FG-X and FG-O. GPL volume

fraction respectively decreases and increases in FG-X

and FG-O from the top and bottom layers to the middle

layers. In other words, the GPL volume fractions of the

middle layers are the lowest in FG-X, but the GPL

volume fractions of the middle layers are the highest in

FG-O. GPL volume fraction V
kð Þ

G in the kth layer of the

GRC beam can be expressed as

U : V
kð Þ

G ¼ V�
G; ð6Þ

FG � X : V
kð Þ

G ¼ 2V�
G 2k � N � 1ð Þ

�

N; ð7Þ

FG � O : V
kð Þ

G ¼ 2V�
G 1 � 2k � N � 1j jð Þ

�

N; ð8Þ

where

V�
G ¼ fG

fG þ qG=qMð Þ 1 � fGð Þ : ð9Þ

fG denotes the total GPL weight fraction. qG and qM
are respectively the mass density of the GPLs and

matrix, and k ¼ 1; 2; � � � ; N.

According to the Halpin–Tsai model [24] and the

rule of mixture, the effective material properties,

including Young’s modulus Y
kð Þ

C , Poisson ratio m kð Þ
C ,

mass density q kð Þ
C and thermal expansion coefficient

a kð Þ
C of the kth GRC layer, can be predicted by

Y
kð Þ

C ¼
3 1 þ 2nLWnWHgLV

kð Þ
G

� �

8 1 � gLV
kð Þ

G

� � � YM

þ
5 1 þ 2nWHgWV

kð Þ
G

� �

8 1 þ gWV
kð Þ

G

� � � YM; ð10Þ

q kð Þ
C ¼ qGV

kð Þ
G þ qM 1 � V

kð Þ
G

� �

; ð11Þ

m kð Þ
C ¼ mGV

kð Þ
G þ mM 1 � V

kð Þ
G

� �

; ð12Þ

a kð Þ
C ¼ aGV

kð Þ
G þ aM 1 � V

kð Þ
G

� �

; ð13Þ

with

gL ¼ YG=YM � 1

YG=YM þ 2nLWnWH

; gW ¼ YG=YM � 1

YG=YM þ 2nWH

;

ð14Þ

where the subscripts ‘‘M’’ and ‘‘G’’ represent matrix

and GPLs, respectively. nLW and nWH are respectively

the length-to-width ratio and width-to-thickness ratio

of the GPLs, expressed by

nLW ¼ lG
wG

; nWH ¼ wG

hG
: ð15Þ

3 Nonlinear dynamic equations

In this study, the first-order shear deformation theory

is used to estimate the deformation of the geometri-

cally imperfect GRC piezoelectric beam. The axial

and transverse displacements ~u x; z; tð Þ and ~w x; z; tð Þ of

the novel beam can be presented by its mid-plane

axial, transverse and rotary displacements u x; tð Þ,
w x; tð Þ and u x; tð Þ, combined with the initial trans-

verse geometric imperfection w� xð Þ

~u x; z; tð Þ ¼ u x; tð Þ þ zu x; tð Þ;
~w x; z; tð Þ ¼ w x; tð Þ þ w� xð Þ:

ð16Þ

Referring to von Kármán nonlinear displacement–

strain relationship, the normal strain exx and shear

strain cxz of the geometrically imperfect GRC piezo-

electric beam are gained as

exx ¼
ou

ox
þ 1

2

ow

ox

� �2

þz
ou
ox

þ ow

ox

dw�

dx
; cxz ¼

ow

ox
þ u:

ð17Þ

The linear constitutive relations for the kth GRC

layer and piezoelectric layers can be expressed as

r kð Þ
xx ¼ Q

kð Þ
11 exx � a kð Þ

C DT
� �

; s kð Þ
xz ¼ Q

kð Þ
55 cxz; ð18Þ

rPxx ¼ QP
11 exx � aPDTð Þ � e31Ez; s

P
xz ¼ QP

55

ow

ox
þ u

� �

;

DZ ¼ e31exx þ k33EZ ;

ð19Þ

where
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Q
kð Þ

11 ¼ Y
kð Þ

C

1 � m kð Þ2
C

;Q
kð Þ

55 ¼ Y
kð Þ

C

2 1 þ m kð Þ
C

� � ; ð20Þ

QP
11 ¼ YP

1 � m2
P

;QP
55 ¼ YP

2 1 þ mPð Þ ð21Þ

YP and mP are Young’s modulus and Poisson ratio of

the piezoelectric layer, respectively, e31, k33 and DZ

are respectively the piezoelectric stress constant,

permittivity constant and electric displacement of the

piezoelectric layer. The electric potential variation is

considered to be linear throughout the thickness of

piezoelectric layer as Ref. [51], so the electric field EZ

can be expressed as

EZ ¼ U0

hP
: ð22Þ

Based on Hamilton principle, the partial differential

governing equations of motion for geometrically

imperfect GRC piezoelectric beam under low-velocity

impact are obtained as

oNx

ox
¼ I1

o2u

ot2
þ I2

o2u
ot2

; ð23Þ

o

ox
Nx

ow

ox
þ Nx

ow�

ox

� �

þ oQ

ox
þ FC tð Þd x� xCð Þ

¼ I1
o2w

ot2
; ð24Þ

oMx

ox
� ksQx ¼ I2

o2w

ot2
þ I3

o2u
ot2

; ð25Þ

where the shear correction factor ks ¼ 5=6 and xC is

the location of the impacted point. Ij (j = 1, 2 and 3)

are the inertia related terms

I1

I2

I3

0

B

@

1

C

A

¼
X

N

k¼1

Z h=2� k�1ð ÞDh

h=2�kDh
q kð Þ
C

1

z

z2

0

B

@

1

C

A

dz

þ
Z �h=2

�H=2

qP
1

z

z2

0

B

@

1

C

A

dz

þ
Z H=2

h=2

qP
1

z

z2

0

B

@

1

C

A

dz: ð26Þ

The in-plane force Nx, bending moment Mx and

shear forces Qx are respectively expressed by

Nx ¼ A11

ou

ox
þ 1

2

ow

ox

� �2

þ ow

ox

ow�

ox

" #

þ B11

ou
ox

� NP
x

� NT
x ;

ð27Þ

Mx ¼ B11

ou

ox
þ 1

2

ow

ox

� �2

þ ow

ox

ow�

ox

" #

þ D11

ou
ox

�MP
x

�MT
x ;

ð28Þ

Qx ¼ A55

ou

ox
þ u

� �

: ð29Þ

where the stiffness components A11, B11, D11 and A55

are respectively given by

A11

B11

D11

0

B

@

1

C

A

¼
X

N

k¼1

Z h=2� k�1ð ÞDh

h=2�kDh
Q

kð Þ
11

1

z

z2

0

B

@

1

C

A

dz

þ
Z �h=2

�H=2

QP
11

1

z

z2

0

B

@

1

C

A

dz

þ
Z H=2

h=2

QP
11

1

z

z2

0

B

@

1

C

A

dz; ð30Þ

A55 ¼
X

N

k¼1

Z h=2� k�1ð ÞDh

h=2�kDh
Q

kð Þ
55 ksdzþ

Z �h=2

�H=2

QP
55ksdz

þ
Z H=2

h=2

QP
55ksdz:

ð31Þ

The thermal and electric related loads are written as

NT
x

MT
x

 !

¼
X

N

k¼1

Z h=2� k�1ð ÞDh

h=2�kDh
Q

kð Þ
11 a

kð Þ
c

1

z

 !

dz

þ
Z �h=2

�H=2

QP
11aP

1

z

 !

dz

þ
Z H=2

h=2

QP
11aP

1

z

 !

dz; ð32Þ

NP
x

MP
x

 !

¼
Z �h=2

�H=2

e31EZ

1

z

 !

dz

þ
Z H=2

h=2

e31EZ

1

z

 !

dz; ð33Þ
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Obviously, MP
x ¼ 0. In this study, the geometrically

imperfect GRC piezoelectric beam has hinged sup-

ported boundary conditions at both ends (x = 0, L).

The corresponding boundary conditions are given as

follows

u ¼ 0;w ¼ 0;Mx ¼ 0 ð34Þ

Introducing the following dimensionless quantities

X ¼ x

L
; U;W ;W�ð Þ ¼ u;w;w�ð Þ

h
;w ¼ u; g ¼ L

h
;

s ¼ t

L

ffiffiffiffiffiffiffiffiffi

A110

I10

r

;

a11; a55; b11; d11ð Þ ¼ A11

A110

;
A55

A110

;
B11

A110h
;

D11

A110h2

� �

;

~I1; ~I2; ~I3
� 	

¼ I1
I10

;
I2
I10h

;
I3

I10h2

� �

;

~NP; ~NT
� 	

¼ NP;NTð Þ
A110

;F�
C ¼ FCL

A110h
;

A110 ¼ YM
1 � m2

M

h; I10 ¼ qMh;

ð35Þ

The partial differential governing Eqs. (23)–(25)

can be rewritten in the dimensionless forms

a11

o2U

oX2
þ 1

g
o2W

oX2

oW

oX
þ dW�

dX

� �

þ 1

g
oW

oX

d2W�

dX2


 �

þ b11

o2w
oX2

¼ ~I1
o2U

os2
þ ~I2

o2w
os2

ð36Þ

4 Solution procedure

In this paper, the differential quadrature (DQ) method

[32, 52] and Newmark-b method [53] combined with

Newton–Raphson iterative process [13, 54] are intro-

duced to numerically analyze the nonlinear low-

velocity impact response of the geometrically imper-

fect GRC piezoelectric beam subjected to thermo-

electro-mechanical loads. According to DQ method,

the dimensionless displacement components U, W, w
of the geometrically imperfect GRC piezoelectric

beam and their rth derivatives with respect to Xi are

approximated in following forms

U; W ; wf g ¼
X

n

m¼1

lm Xð Þ Um; Wm; wmf g; ð39Þ

a11

1

g
o2U

oX2
þ 1

g2

o2W

oX2

oW

oX
þ 1

g2

o2W

oX2

dW�

dX
þ 1

g2

oW

oX

d2W�

dX2

� �

þ b11

g
o2w
oX2


 �

oW

oX
þ dW�

dX

� �

þ a11

1

g
oU

oX
þ 1

2g2

oW

oX

� �2

þ 1

g2

oW

oX

dW�

dX

" #

þ b11

g
ow
oX

� ~NT
x � ~NP

x

( )

o2W

oX2
þ d2W�

dX2

� �

þ a55

o2W

oX2
þ g

ow
oX

� �

þ F�
C tð Þd X � XCð Þ ¼ ~I1

o2W

os2

ð37Þ

b11

o2U

oX2
þ 1

g
oW

oX

o2W

oX2
þ 1

g
o2W

oX2

dW�

dX
þ 1

g
oW

oX

d2W�

dX2


 �

þ d11

o2w
oX2

� a55 g
oW

oX
þ g2w

� �

¼ ~I2
o2U

os2
þ ~I3

o2w
os2

: ð38Þ
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or

oXr
U; W ; wf g

�

�

�

�

X¼Xi

¼
X

n

m¼1

C
rð Þ
im Um; Wm; wmf g; ð40Þ

where Um; Wm; wmf g ¼ U; W ; wf gjX¼Xm
, lm Xð Þ is

the Lagrange interpolation polynomial, C
rð Þ

im is the

weighting coefficients of the rth derivative at X ¼ Xi,

n is the total number of nodes distributed along the

whole length of the GRC beam. In the present work,

the distribution of nodes is given by the following

equation

Xi ¼
1

2
1 � cos

p i� 1ð Þ
n� 1


 �

i ¼ 1; 2; . . .; nð Þ: ð41Þ

Substituting Eqs. (39) and (40) into Eqs. (36)–(38),

the dimensionless partial differential governing equa-

tions for nonlinear low-velocity impact response of

geometrically imperfect GRC piezoelectric beam can

be written as following ordinary differential equations

a11

X

n

m¼1

C
2ð Þ

im Umþ
a11

g

X

n

m¼1

C
1ð Þ

im Wm

X

n

m¼1

C
2ð Þ

im Wm þ dW�

dX

�

�

�

�

X¼Xi

X

n

m¼1

C
2ð Þ

im Wm

"

þd2W�

dX2

�

�

�

�

X¼Xi

X

n

m¼1

C
1ð Þ

im Wm

#

þ b11

X

n

m¼1

C
2ð Þ

im wm ¼ ~I1 €Ui þ ~I2 €wi

ð42Þ

a11

g

X

n

m¼1

C
2ð Þ
im Um þ a11

g2

X

n

m¼1

C
1ð Þ

im Wm

X

n

m¼1

C
2ð Þ

im Wm þ dW�

dX

�

�

�

�

X¼Xi

X

n

m¼1

C
2ð Þ

im Wm þ d2W�

dX2

�

�

�

�

X¼Xi

X

n

m¼1

C
1ð Þ

im Wm

 !"

þb11

g

X

n

m¼1

C
2ð Þ

im wm

#

X

n

m¼1

C
1ð Þ

im Wm þ dW�

dX

�

�

�

�

X¼Xi

 !

þ a11

g

X

n

m¼1

C
1ð Þ

im Um

 

þ a11

g2

dW�

dX

�

�

�

�

X¼Xi

X

n

m¼1

C
1ð Þ

im Wm

þ a11

2g2

X

n

m¼1

C
1ð Þ

im Wm

X

n

m¼1

C
1ð Þ

im Wm þ b11

g2

X

n

m¼1

C
1ð Þ

im wm � ~NT
x

�

�

X¼Xi
� ~NP

x

�

�

X¼Xi

!

X

n

m¼1

C
2ð Þ

im Wm þ d2W�

dX2

�

�

�

�

X¼Xi

 !

þa55

X

n

m¼1

C
2ð Þ

im Wm þ g
X

n

m¼1

C
1ð Þ

im wm

 !

¼ ~I1 €Wi � F�
C sð Þd X � XCð Þ X¼Xi

j ;

ð43Þ

b11

X

n

m¼1

C
2ð Þ

im Umþ
b11

g

X

n

m¼1

C
1ð Þ

im Wm

X

n

m¼1

C
2ð Þ

im Wm þ dW�

dX

�

�

�

�

X¼Xi

X

n

m¼1

C
2ð Þ

im Wm þ d2W�

dX2

�

�

�

�
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X
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1ð Þ
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þd11

X

n

m¼1

C
2ð Þ

im wm � a55 g
X

n

m¼1

C
1ð Þ

im Wm þ g2wi

 !

¼ ~I2 €Ui þ ~I3 €wi:

ð44Þ
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With the DQ method, the boundary conditions in

Eq. (34) can be rewritten as

Hence, the above ordinary differential equations

can be written as the following matrix equation

M€dþ KL þKNLð Þd ¼ Fþ R; ð47Þ

where d ¼ Uif gT ; Wif gT ; wif gT

 �T

is the unknown

displacement vector, i ¼ 1 � � � n. M denotes the mass

matrix, KL and KNL denote the structural linear and

nonlinear stiffness matrix. Additionally, F and R are

respectively time-dependent and time-independent

load vectors, which respectively generated by impact

and the geometrically imperfect combined with the

thermo-electro-mechanical load

F ¼

0f gn�1

F�
C sð Þd X � XCð Þ X¼Xi

j

 �

n�1

0f gn�1

0

B

B

@

1

C

C

A

;

R ¼

0f gn�1

~NT
x þ ~NP

x

� 	d2W�

dx2

�

�

�

�

X¼Xi

( )

n�1

0f gn�1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

:

ð48Þ

Stiffness-proportional damping matrix C ¼
2f=xlð ÞKL [55–57] is considered to model energy

dissipation of the impacted geometrically imperfect

GRC piezoelectric beam, Eq. (44) can be written as

M€dþ C _dþ KL þKNLðdÞð Þd ¼ Fþ R ð49Þ

where f is modal damping factor, and xl is the

corresponding natural frequency. In this paper, xl is

taken as the first natural frequency.

Assuming the initial conditions of the impactor as

yi 0ð Þ ¼ 0; _yi 0ð Þ ¼ V0; ð50Þ

the governing equations of motion for the impactor,

Eq. (2), and the ordinary differential equation of

motion for the geometrically imperfect GRC piezo-

electric beam, Eq. (49), can be solved parametrically

by combining the Newmark-b method [53] with the

Newton–Raphson iterative method [13, 54] to analyze

the time-dependent impact force FC tð Þ and nonlinear

dynamic behaviors of the low-velocity impact system.

Figure 3 is the flowchart for the solution procedure,

which is processing as below.

i. For the first time-step, assuming an initial

impact force FC0, the displacements yi1 and d1

of the impactor and geometrically imperfect

GRC piezoelectric beam can be respectively

solved by Eq. (2) and Eq. (49) according to

initial conditions d0, _d0, €d0, yi0 and _yi0.

ii. Applying the displacements obtained from step i

into Eq. (3), a new impact force FC1 and local

contact indentation can be predicted (Note that

when the local contact indentation reaches the

b11

X

n

m¼1

C
1ð Þ

1mUm þ 1

2g

X

n

m¼1

C
1ð Þ

1mWm

 !2

þ 1

g
dW�

dX

�

�

�

�

X¼X1

X

n

m¼1

C
1ð Þ

1mWm

2

4

3

5þ d11

X

n

m¼1

C
1ð Þ

1mWm

�MT
x

�

�

X¼X1
¼ 0;U1 ¼ 0;W1 ¼ 0;

ð45Þ

b11

X

n

m¼1

C 1ð Þ
nmUm þ 1

2g

X

n

m¼1

C 1ð Þ
nmWm

 !2

þ 1

g
dW�

dx

�

�

�

�

X¼Xn

X

n

m¼1

C 1ð Þ
nmWm

2

4

3

5þ d11

X

n

m¼1

C 1ð Þ
nmWm

�MT
x

�

�

X¼Xn
¼ 0;Un ¼ 0;Wn ¼ 0

ð46Þ
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maximum, the new impact force needs to be

calculated by Eq. (5)). If FC1 is close to FC0,

turn to step iii. If not, take the new impact force

FC1 as the initial impact force, and repeat step i.

iii. Treating the displacements and impact force

obtained from steps i and ii as the initial

conditions for the next time-step, repeat steps i

and ii.

iv. When the central displacement of the geomet-

rically imperfect GRC piezoelectric beam

remains unchanged, the iterative process ends.

5 Results and discussions

In this section, the nonlinear low-velocity impact

behaviors are analyzed numerically for the GRC beam

with geometric imperfections under thermo-electro-

mechanical loads. The effects of weight fraction fG and

distribution pattern of GPLs, mode and amplitude A0

of imperfections, initial impact velocity V0, tempera-

ture variation DT and thickness ratio hP=h on the

impact force and dynamic response of the system are

discussed in detailed.

Epoxy is selected as the matrix material of GRC

beam, and the piezoelectric material is made by

Polyvinylidene fluoride (PVDF). Material parameters

[32, 33, 58] of epoxy, GPLs and PVDF are

respectively

Epoxy: EM ¼ 3:0 GPa; qM ¼ 1200 kg=m3; mM
¼ 0:34; aM ¼ 60 � 10�6=K

GPLs : EG ¼ 1010 GPa; qG ¼ 1060 kg=m3; mM
¼ 0:186; aG ¼ 5 � 10�6=K

PVDF : EP ¼ 1:44 GPa, qP ¼ 1929 kg/m3;

mP ¼ 0:29; aP ¼ 145 � 10�6/K;

e31 ¼ 0:05043 C/m2;

k33 ¼ 0:5957 � 10�9 V/cm

Fig. 3 Flowchart for

solving the nonlinear

dynamic equations of

geometrically imperfect

GRC piezoelectric beams

under low-velocity impact
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If there is no special instruction, length of the

considered GRC beam L ¼ 50 mm, thicknesses of

GRC host beam and piezoelectric layers are respec-

tively h ¼ 10 mm and hp ¼ 0:5 mm, dimensionless

amplitude of the geometric imperfection A0 ¼ 0:02,

the applied piezoelectric actuator voltage

U0 ¼ 400 V, temperature variation DT ¼ 50 K and

damping factor f ¼ 0:1. The total number of the layers

in the GRC host beam is N ¼ 12. The geometric

parameters of GPLs are lG � wG � hG ¼ 2:5 lm �
1:5 lm � 1:5 nm and total weight fraction of GPLs is

fG ¼ 0:3%. The impactor is made of steel, and its

material parameters are Yi ¼ 207 GPa, qi ¼
7960 kg/m3 and mi ¼ 0:3. It is assumed that the

impactor’s radius is Ri ¼ 5 mm, and the impactor

with initial velocity V0 ¼ 5 m/s impacts on the center

(XC ¼ 0:5) of the top surface for the geometrically

imperfect GRC piezoelectric beam.

Convergence and comparison studies are firstly

performed to ensure the effectiveness and accuracy of

the present method. Figure 4 calculates and compares

the effect of geometric imperfection modes on (a) the

highest impact force and the (b) maximum central

deflections of the geometrically imperfect GRC

piezoelectric beams with varying nodes number n

during the impact process. Obviously, L-mode imper-

fections converge slowly. It is because L-mode

imperfections have sudden changes in geometric

characteristics (Fig. 2). Even G1-mode has the lowest

impact force, it leads to the biggest center deflection.

Hence, G1-mode imperfection is the most harmful

geometric imperfection for the stability of the GRC

piezoelectric beam under impact. In the following
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Fig. 4 Convergence results: the a highest impact force and

b maximum central deflection of X-GRC piezoelectric beam

with different geometric imperfections

Table 1 Comparison results: Nonlinear frequency ratios of

FG-X CNTRC beams with/without L1-mode imperfection

Wmax Intact L1-mode

Wu et al. [59] Present Wu et al. [59] Present

0 1 1 1.0031 1.0020

0.1 1.0043 1.0045 1.0073 1.0126

0.2 1.0171 1.0180 1.0200 1.0319

0.3 1.0382 1.0400 1.0414 1.0594

0.4 1.0700 1.0700 1.0709 1.0947

0.5 1.1027 1.1073 1.1085 1.1371

0 50 100 150 200
0

500

1000

1500

2000

2500

ecroftcap
mI

 F
)

N(

t (µs)

 Present
 Kiani et al. [61]

Fig. 5 Comparison of impact force history of the FG-X

CNTRC beam under low-velocity impact load
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analyses, we pay attention to the G1-mode imperfect

GRC piezoelectric beam with nodes number n ¼ 13.

The comparison results are given in Table 1 and

Fig. 5. In Table 1, the nonlinear frequency ratios are

compared with Wu et al.’s results [59] for the intact

and L1-mode imperfect FG-X CNTRC beams with

nodes number n ¼ 39. Figure 5 compares the impact

force history with Kiani et al.’s results [60] for the

intact FG-X CNTRC beam subjected to a low-velocity

impact with V0 ¼ 3 m/s. The comparison results show

that our results are in good agreement with the existing

literature results.

Figure 6 shows the influence of GPL distribution

patterns (FG-X, UD, FG-O) on the impact force and

impact response of the geometrically imperfect GRC

piezoelectric beam. The case of pure epoxy piezo-

electric beam’s results is also given for comparing.

GPLs distributing into the GRC core beam and the

piezoelectric layers are respectively considered in

Fig. 6a, b. It is known that GPL reinforcements can

largely improve the stiffness of the matrix. Keeping in

mind that the dynamic displacement and impact force

FC are respectively closely related to the bending

stiffness of the structure and contact stiffness of the

impacted area. Therefore, when GPLs distribute into

the GRC core beam, the varying GPL distribution

pattern can significantly affect the dynamic behaviors,

but has little effect on the impact force FC. To the

(a1)

(a)

(b1) (b2)

(b)

(a2)

Fig. 6 Effect of GPL distribution patterns on the impact force and impact response of the geometrically imperfect GRC piezoelectric

beam: a GPLs distributing into the GRC core beam and b GPLs distributing into the piezoelectric layers
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contrary, the impact force is distinctly affected by the

different GPL distribution pattern when GPLs dis-

tribute into the piezoelectric layers. In addition, the

FG-X pattern has the lowest central deflection Wmid.

For brief, only geometrically imperfect GRC piezo-

electric beams with FG-X distributed GPLs are

analyzed below.

Figure 7 illustrates the influence of GPL weight

fractions (fG ¼ 0:0%, 0.1%, 0.3% and 0.5%) on the (a)

impact force history and (b) impact response of the

geometrically imperfect FG-X GRC piezoelectric

beams. fG ¼ 0:0% stands for the case of pure epoxy

piezoelectric beam. As seen, both impact force FC and

central deflection Wmid decrease with the increase in

GPL weight fractions, and the central deflection Wmid

is more sensitive to the varying weight fraction of

GPLs. It indicates that even a small amount of GPLs

can contribute to a great increase in bending stiffness

of the geometrically imperfect FG-X GRC piezoelec-

tric beam.

Figure 8 displays the effect of the imperfection

amplitude A0 (A0 = - 0.02, - 0.01, 0, 0.01, 0.02) on

the (a) impact force and (b) impact response of the

geometrically imperfect GRC piezoelectric beam.

A0 = 0 means the intact GRC piezoelectric beam. As

seen, the impact force for the convex surface (A0\ 0)

of the GRC beam impacted is obviously greater than

that for the concave surface (A0[ 0) impacted.

What’s more, the impact force decreases with the

increasing imperfection amplitude A0 of the imper-

fection. Obviously, the final equilibrium position of

(a)

(b)

Fig. 7 Effect of GPL weight fractions on the a impact force and

b impact response for X-GRC piezoelectric beams

(b)

(a)

Fig. 8 Effect of imperfection amplitude on the a impact force

and b impact response of the geometrically imperfect X-GRC

piezoelectric beam

123

Nonlinear low-velocity impact response of GRC beam with geometric imperfection under… 3267



the geometrically imperfect GRC piezoelectric beam

is also related to the sign of the imperfection amplitude

A0. Bigger the absolute value of the imperfection

amplitude is, further the final equilibrium position is

apart from the z-axis. It is leaded by the direction and

value of the component along z-axis of the force vector

R in Eq. (49).

Note that the force vector R generated by the

geometrically imperfect and the thermo-electro-me-

chanical load. R = 0 when the GRC piezoelectric

beam is intact.

To illustrate the coupled effect of the geometric

imperfection and thermo-electro-mechanical load on

the nonlinear low-velocity impact behavior, Fig. 9

shows the effect of temperature variation (DT ¼ 0 K,

25 K, 50 K) on the nonlinear low-velocity impact

response of (a) geometrically imperfect (A0 ¼ �0:02

and 0.02) and (b) intact (A0 ¼ 0) GRC piezoelectric

beams. It can be observed that the impact force and

impact response of the imperfect cases are much more

sensitive to the varying temperature than those of the

intact one. In other words, the influence of thermal

load on the nonlinear low-velocity impact response is

barely for the intact GRC piezoelectric beam, but can

be largely amplified once the geometric imperfection

appearing.

Figure 10 demonstrates the (a) impact force history

and (b) impact response of geometrically imperfect

GRC piezoelectric beam impacted by different initial

impactor velocities (V0 ¼ 3 m/s, 5 m/s and 7 m/s). As

(a1)

(a)

(b)

(b1) (b2)

(a2)

Fig. 9 Effect of temperature variation on the impact force and impact response of the a geometrically imperfect and b intact X-GRC

piezoelectric beam
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seen that the increase in the initial impactor velocity

V0 leads to the remarkably increase in the maximum

impact force, but obviously decreases the impacted

time. Besides, the maximum center displacement

increases a little for the increasing initial impactor

velocity, which accompany with an increasing initial

energy.

Figure 11 demonstrates the effect of the thickness

ratio (hP=h ¼ 0, 1/10, 1/5) of piezoelectric layer to

GRC host beam on the (a) impact force FC and (b)

central deflection Wmid for the geometrically imperfect

GRC piezoelectric beam. Here, we keep the thickness

of GRC host beam unchanged. hP=h ¼ 0 represents

GRC beam without any piezoelectric layers. Because

the increase in piezoelectric layer thickness can

improve the stiffness of the GRC piezoelectric beam,

the impact force FC increases, and the absolute value

of the central deflection Wmid decreases.

6 Conclusions

The nonlinear low-velocity impact responses of GRC

beam with geometric imperfection under thermo-

electro-mechanical loads are investigated. The impact

force is calculated by the modified nonlinear Hertz

contact law. Based on the first-order shear deformation

beam theory, von Kármán nonlinear displacement–

strain relationship and Hamilton principle, the non-

linear dynamic equations are deduced, and solved by

the DQ method and Newmark-b method combined

(b)

(a)

Fig. 10 Effect of initial indenter velocity on the a impact force

and b impact response of the geometrically imperfect X-GRC

piezoelectric beam

(b)

(a)

Fig. 11 Effect of thickness ratio on the a impact force and

b impact response of geometrically imperfect X-GRC piezo-

electric beam
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with Newton–Raphson iterative method. Comprehen-

sive numerical results are presented to investigate the

effects of the distribution pattern and weight fraction

of GPLs, the mode and amplitude of imperfection,

initial velocity of the spherical impactor, temperature

variation, thickness of piezoelectric layer, as well as

the coupled effect of geometric imperfection and

thermo-electro-mechanical load on the low-velocity

impact characteristics of the geometrically imperfect

GRC piezoelectric beam. The major conclusions are

given as follows.

(1) When calculating the impact behaviors of

geometrically imperfect GRC piezoelectric

beam via DQ method, the geometric imperfec-

tion with sudden changes require more nodes

number. G1-mode is the most harmful imper-

fection for the stability of the GRC piezoelectric

beam under impact.

(2) When GPL reinforcements are distributed into

GRC core beam, only FG-X pattern reduces the

low-velocity impact response of geometrically

imperfect GRC piezoelectric beam. For GPL

reinforcements distributing into the piezoelec-

tric layers, all the patterns are effective for

reducing the central deflection of the geometri-

cally imperfect GRC piezoelectric beam under

impact.

(3) The thermal load has barely effect on the impact

behaviors of intact GRC piezoelectric beam.

Once the geometric imperfection appearing, the

thermal effect is largely amplified.
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