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Abstract In this paper, two methods for parameter

estimation of bilinear state-space systems with colored

noise, which are expressed by ARMA model, are

proposed. Using the hierarchical identification princi-

ple and gradient method, to reduce the computational

cost, both the four-stage recursive least squares

algorithm and the four-stage stochastic gradient algo-

rithm are exploited by which parameter estimation

error is reduced and the speed of convergence of

parameters is increased. In addition, a bilinear state

observer for state estimation is designed to make use

of the estimated states in the four-stage recursive least

squares and the four-stage stochastic gradient algo-

rithms. Finally, a numerical example and a practical

example are provided to indicate the superiority of the

proposed methods. The results show that due to the

data length increase, the estimation error of the

parameters is reduced. Furthermore, the estimated

parameters converge to the actual values in a short

time.

Keywords Bilinear systems � Parameter estimation �
Gradient search � Hierarchical identification

1 Introduction

System identification has been the focus of many

researchers in recent decades in various areas, for

modeling linear [1, 2] and nonlinear systems [3–5].

The main goal of system identification is to utilize

input/output data to obtain an appropriate model, in a

way that the behavior of the identified model is as

close as possible to the behavior of the actual system,

as per a predefined criterion. The mathematical model

thus created can be used for analysis or controller

design [6–9].

Mathematical modeling is possible in several ways:

analytical modeling (white-box), experimental mod-

eling (black-box) and hybrid modeling (gray-box). In

the white-box case, considering the nature of the

components of the system and the physical laws

governing them, mathematical models are formed

between the input and the output of the system. In
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black-box approach, there is no information about the

internal components of the system, and only by using

the input /output data, a mathematical relationship is

obtained between the input and the output. In the gray-

box approach, the physical components of the system

are distinctive; however, their values are unknown,

and by using the input/output data, the unknown

parameters can be determined. Several system iden-

tification methods have been proposed for linear and

nonlinear systems [10, 11]. Since most industrial

processes are complex and nonlinear, nonlinear sys-

tems identification has attracted a lot of attention in the

past two decades. However, nonlinear system identi-

fication is much more difficult than linear systems

identification [12]. In addition, due to the complexity

of the systems, it is difficult to obtain physical models

since the exact system model is not always available.

Therefore, data-driven methods that are dependent on

historical information of the system are recently

developed to identify the system behavior. These

methods do not require complex mathematical tools

and are very useful in practice [13, 14].

Bilinear systems are a class of nonlinear systems

that are widely studied and used due to their simplic-

ity, and they can be considered as a suitable model for

many physical systems [15–17]. In recent years,

bilinear systems have drawn a significant amount of

attention due to their intrinsic simplicity and wide

applications [18]. The importance of such systems is

due to their wide range of applications, not only in

engineering but also in biology, economics and

chemistry [19]. Such a system can explain many

physical phenomena and it has been used in many

fields, such as air conditioning control [20], immune

system, heart regulator, control of carbon dioxide in

the lungs and blood pressure [21–23]. There are a

couple of methods that have been proposed for bilinear

system identification, such as least-squares methods

that are based on minimizing the error, i.e., in other

words, the summation of square errors [24, 25],

gradient methods [26, 27], maximum likelihood

methods [28], iterative methods [29, 30], recursive

methods [31–33] and error prediction methods [34]. In

addition, interaction matrices approach is utilized for

identification and observer design of bilinear systems

[35, 36]. In [35], optimal bilinear observers are

designed for bilinear state-space models, and a new

method for identification of bilinear system is intro-

duced in [36]. As can be seen in this paper, by using

the interaction matrix formulation, the bilinear system

state is expressed in terms of input/output measure-

ment. In the iterative methods, to improve the

estimation of the parameters, the algorithm uses all

the data in every iteration and the results of the

previous iteration. In these methods, the algorithm is

applied once the input–output dataset is collected. In

the recursive algorithms, the algorithm uses only the

current data to improve the previous estimation. In

[37], recursive extended least squares and maximum

likelihood methods have been used to identify the

bilinear system parameters. Gibson et al. [28] have

provided maximum likelihood parameter estimation

algorithm for bilinear system identification. Also,

Kalman filtering algorithm for parameter estimation of

bilinear systems has been proposed in [38]. In [39], the

state-space model of bilinear systems has been con-

verted to a transfer function by removing state

variables and the recursive least squares algorithm

and multi-innovation theory are used to increase the

parameter estimation accuracy. In a multi-innovation

identification algorithm, increasing the innovation

length can increase parameter estimation accuracy

and reduce the algorithm’s sensitivity to noise.

Li et al. [25] have presented a least-squares iterative

algorithm to identify bilinear system parameters using

the maximum likelihood. The maximum likelihood

iterative least-squares algorithm can provide a more

accurate estimate of bilinear systems than the iterative

least-squares algorithm. In [40], an iterative algorithm

based on the hierarchical principle is proposed to

alleviate the complexity of computational load. The

proposed algorithm can improve the accuracy of

parameter estimation and reduce the computational

load. In [41], to achieve a better accuracy, an

algorithm using the Kalman filter and multi-innova-

tion theory has been proposed. Both algorithms work

well, and the Kalman filter-based multi-innovation

recursive extended least squares algorithm has a

higher parameter estimation accuracy than the Kalman

filter-based recursive extended least squares algo-

rithm. Using the principle of hierarchical identification

[40] and data filtering method, a gradient iterative

algorithm and a filtering-based gradient iterative

algorithm have been presented in [26]. The proposed

algorithms can provide very accurate estimates of

bilinear systems. Two-step gradient-based iterative

algorithm has less computational cost than gradient-

based iterative algorithm and its convergence speed is
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faster than other two methods in this paper. The

algorithms presented in [26] provide a better param-

eter estimation accuracy than the methods presented in

[27]. In [42], a state filtering-based hierarchical

identification algorithm has been proposed. In [43],

multi-innovation-based stochastic gradient algorithm

is presented by using the decomposition method.

Decomposition-based multi-innovation stochastic

gradient algorithm has higher accuracy than the

decomposition-based stochastic gradient algorithm.

Also, pursuant to hierarchical principle and data

filtering, a least squares iterative algorithm is proposed

for identification of bilinear systems [44]. Ding et al.

[45] have provided stochastic gradient algorithm and

gradient iterative algorithm to estimate the parameters

of bilinear systems using an auxiliary model. Auxil-

iary model-based gradient iterative algorithm uses all

the input–output data measured in each iteration which

is more suitable than the auxiliary stochastic gradient

algorithm. The auxiliary model-based gradient itera-

tive algorithm is effective for bilinear systems in a

white noise environment. With the help of subspace

identification method, a data-driven design approach

has been presented in [46]. In [47], the stochastic

gradient algorithm using hierarchical identification

principle and multi-innovation idea is developed. In

addition, in [48], considering the data filtering method,

an extended stochastic gradient algorithm has been

proposed.

Although the recursive least-squares method is the

most common estimation method among the various

previously published methods and has a high conver-

gence rate, it suffers from some drawbacks such as

high computational burden. Therefore, in order to

overcome this problem, other identification methods

such as the principle of hierarchical identification are

proposed that divide the main system into multiple

subsystems with smaller dimensions to estimate

unknown parameters. For example, in [25, 48], the

computational load for identifying the system is high,

and the hierarchical identification principle has been

utilized to obtain an effective method for parameter

estimation with higher computational efficiency. It has

been shown that the suggested algorithms have less

parameter estimation error compared to other pre-

sented algorithms.

Motivated by the above-stated concerns, a four-

stage hierarchical identification algorithm is used in

this paper to identify a bilinear system based on state-

space equations. In this regard, a four-stage recursive

least squares algorithm and a four-stage stochastic

gradient algorithm are proposed for the identification

of bilinear systems. To improve the computational

efficiency using the hierarchical identification princi-

ple, the identification model is decomposed into four

subsystems and the information vector is separately

decomposed into four subvectors with smaller dimen-

sions. In addition, an ARMA colored noise model is

used in the presented model. Since only input/output

data of the system is available in these algorithms, a

state observer is used to estimate the system states, and

then, the estimated states are used in the identification

algorithm. Finally, the proposed algorithm presented

for bilinear system identification is simulated and the

convergence of the identified parameters is reported.

The main contributions of this paper are listed as

follows:

• A four-stage recursive least squares algorithm and

a four-stage stochastic gradient are proposed using

the hierarchical identification principle to reduce

the computational efficiency. The principle of

hierarchical identification divides the main system

into several subsystems with small dimensions.

Also, the information vector is broken down into

several information subdivisions.

• A bilinear state observer is presented based on the

Kalman filter algorithm for bilinear state-space

estimation.

• To show the high efficiency of the four-stage

recursive least squares algorithm, a comparison of

the computational efficiency between two recur-

sive least squares and four-stage recursive least

squares algorithm is provided.

The rest of this paper is organized as follows: In

Sect. 2, the preliminary definitions, problem statement

and the bilinear state-space system is presented. In

Sect. 3, a four-stage recursive least squares algorithm

is described. Section 4 shows the computational

efficiency of the 4S-RLS algorithm. Section 5 pre-

sents a four-stage stochastic gradient algorithm. A

numerical example and a practical example are

presented in Sect. 6 to show the effectiveness of the

proposed algorithm. Finally, the paper is ended by

Sect. 7 with some concluding points.
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2 Problem statement

In this section, first, a number of notations are

explained. Superscript T represents the matrix trans-

pose. bqðtÞ is the estimation of the parameter q in time.

I (InÞ represents identity matrix n � n, and q is the unit

shift operator as

qz tð Þ ¼ z t þ 1ð Þ; q�1z tð Þ ¼ z t � 1ð Þ

Figure 1 shows the state-space representation of

bilinear systems. According to this figure, the bilinear

system state-space model is defined as follows:

z t þ 1ð Þ ¼ Az tð Þ þ Bz tð Þu tð Þ þ f u tð Þ ð1Þ

y tð Þ ¼ hz tð Þ þ xðtÞ ð2Þ

where zðtÞ ¼ ½z1ðtÞ; z2ðtÞ; � � � ; znðtÞ�T 2 Rn is the state

vector, u tð Þ is the system input, y tð Þ is the system

output,x tð Þ ¼ D qð Þ
C qð Þ vðtÞ is a colored noise and v tð Þ 2 R

is a zero mean white noise. A 2 Rn�n, B 2 Rn�n, f 2
Rn and h 2 R1�n are the system matrices and vectors

with an appropriate dimension as follows:

A ¼

�a1 1 0 . . . 0

�a2 0 1 . .
.

0

..

. ..
. . .

. . .
.

0

�an�1 0 � � � 0 1

�an 0 . . . 0 0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

2 Rn�n

B ¼

b1

b2

..

.

bn

2

6

6

6

6

4

3

7

7

7

7

5

2 Rn�n bi 2 R1�n

f ¼ f1; f2; . . .; fn½ �T2 Rn; h ¼ 1; 0; . . .; 0½ � 2 R1�n

Using the shift operator, the polynomials D qð Þ and

C qð Þ are defined as

D qð Þ ¼ 1þ d1q
�1 þ d2q

�2 þ � � � þ dpq�p

C qð Þ ¼ 1þ c1q
�1 þ c2q�2 þ � � � þ cmq�m

According to the method presented in [48] and also

using Eqs. (1) and (2), it can be concluded that

z1 tð Þ ¼ �
X

n

i¼1

aiz1 t � ið Þ þ
X

n

i¼1

biz t � ið Þu t � ið Þ

þ
X

n

i¼1

fiu t � ið Þ

ð3Þ

The parameter vector q is defined as:

q ¼ qs; qn½ �T 2 Rn2þ2nþmþp

where

qs ¼ qT
a ; q

T
b ; q

T
f

h iT

2 Rn2þ2n

qn ¼ c1; c2; . . .cm; d1; d2. . .; dp

� �T2 Rmþp

and

qa ¼ a1; a2; . . .; an½ �T2 Rn

qb ¼ b1; b2; . . .; bn½ �T2 Rn2

qf ¼ f1; f2; . . .; fn½ �T2 Rn

In addition, the information vector u tð Þ is defined as

follows:

u tð Þ ¼ uT
z tð Þ;uT

zu tð Þ;uT
u tð Þ;uT

n tð Þ
� �T2 Rn0 ;

n0 :¼ n2 þ 2n þ m þ p

us tð Þ ¼ uT
z tð Þ;uT

zu tð Þ;uT
u tð Þ

� �T2 Rn1 ;

n1 :¼ n2 þ 2n

uz tð Þ ¼ �z1 t � 1ð Þ;�z1 t � 1ð Þ; . . .;�z1 t � nð Þ½ �T2 Rn2 ;

n2 :¼ n

uzu ¼ ½zT t � 1ð Þu t � 1ð Þ; zT t � 2ð Þu t � 2ð Þ; . . .; zT t � nð Þu t � nð Þ�T 2 Rn2 ;

n3 :¼ n2

uu tð Þ ¼ u t � 1ð Þ; u t � 2ð Þ; . . .; u t � nð Þ½ �T2 Rn2 ;

n2 :¼ n

From (2), the colored noise equation can be written as

x tð Þ ¼ 1� C zð Þ½ �x tð Þ þ D zð Þv tð Þ
¼ �c1x t � 1ð Þ � c2x t � 2ð Þ � � � � � cmx t � mð Þ
þ v tð Þ þ d1v t � 1ð Þ þ d2v t � 2ð Þ þ � � �
þ dpv t � pð Þ ¼ uT

n tð Þqn þ v tð Þ
ð4Þ

where the information vector un tð Þ is defined as

follows:
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un tð Þ ¼ ½�x t � 1ð Þ;�x t � 2ð Þ; . . .;�x t � mð Þ;
v t � 1ð Þ; v t � 2ð Þ; . . .; v t � pð Þ�T 2 Rn4 ; n4 :¼ m þ p

Substituting (3) in (2) and according to the definition

of information vectors, the bilinear system identifica-

tion model in (1) and (2) can be expressed as:

y tð Þ ¼ uT
z tð Þqa þ uT

zu tð Þqb þ uT
u tð Þqf

þ uT
n tð Þqn þ v tð Þ ¼ uT tð Þqþ v tð Þ

ð5Þ

2.1 Input–output model of bilinear system

The input–output relationship of a bilinear state-space

system is obtained for the identification purpose by

eliminating the state variables. By removing the state

vector in Eqs. (1) and (2), the input–output relation-

ship of the bilinear system is expressed as follows:

A qð Þ þ u t � nð ÞB qð Þ½ �y tð Þ ¼ C qð Þ þ u t � 1ð ÞD qð Þ½ �u tð Þ þ v tð Þ

ð6Þ

A qð Þ ¼ 1þ a1q
�1 þ a2q

�2 þ � � � þ ana
q�na

B qð Þ ¼ b1q
�1 þ b2q

�2 þ � � � þ bnb
q�nb

C qð Þ ¼ c1q
�1 þ c2q�2 þ � � � þ cmq�m

D qð Þ ¼ d2q
�2 þ d3q

�3 þ � � � þ cwq�w

The following steps have been carried out to obtain

(6). Therefore, using (1), one can write

z1 t þ 1ð Þ ¼ z2 tð Þ þ f 1u tð Þ

z2 t þ 1ð Þ ¼ z3 tð Þ þ f 2uðtÞ

..

.

zn�1 t þ 1ð Þ ¼ zn tð Þ þ f n�1u tð Þ

zn t þ 1ð Þ ¼ �anz1 tð Þ � an�1z2 tð Þ

� an�2z3 tð Þ � . . .� a1zn tð Þ

� bnz1 tð Þ þ bn�1z2 tð Þ þ bn�2z3 tð Þ þ . . .½

þb1zn tð Þ�u tð Þ þ f nu tð Þ:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð7Þ

Then, by using (7), the following equations are

obtained directly:

z2 tð Þ ¼ z1 t þ 1ð Þ � f 1u tð Þ
z3 tð Þ ¼ z2 t þ 1ð Þ � f 2u tð Þ

¼ z1 t þ 2ð Þ � f 1u t þ 1ð Þ � f 2u tð Þ
z4 tð Þ ¼ z3 t þ 1ð Þ � f 3u tð Þ

¼ z1 t þ 3ð Þ � f 1u t þ 2ð Þ � f 2u t þ 1ð Þ � f 3u tð Þ

..

.

zn tð Þ ¼ zn�1 t þ 1ð Þ � f n�1u tð Þ
¼ z1 t þ n � 1ð Þ � f 1u t þ n � 2ð Þ � f 2u t þ n � 3ð Þ
� . . .�f n�1u tð Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð8Þ

Multiplying both sides of last equation of (8) by

operator q, we have

Fig.1 Bilinear state-space system
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zn t þ 1ð Þ ¼ z1 t þ nð Þ � f1u t þ n � 1ð Þ
� f2u t þ n � 2ð Þ � � � � � fn�1u t þ 1ð Þ

ð9Þ

Replacing (9) in the last equation of (7) yields

� an; an�1; an�2; . . .; a1½ �

z1 tð Þ
z2 tð Þ
z3 tð Þ
..
.

zn tð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

� bn; bn�1; bn�2; . . .; b1½ �

z1 tð Þ
z2 tð Þ
z3 tð Þ
..
.

zn tð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

u tð Þ þ fnu tð Þ

¼ z1 t þ nð Þ � f1u t þ n � 1ð Þ � f2u t þ n � 2ð Þ � � � � � fn�1u t þ 1ð Þ

ð10Þ

Now, according to matrix representation of (8) and

(10), one can write

1þ a1q�1 þ a2q
�2 þ � � � þ anq�n

� �

qnz1 tð Þ
þ b1q

�1 þ b2q�2 þ � � � þ bnq�n
� �

qnz1 tð Þ�u tð Þ
¼ ½fn þ an�1f1 þ an�2f2 þ � � � þ a1fn�1; fn�1

þ an�2f1 þ an�3f2 þ � � � þ a1fn�2; . . .; f2 þ a1f1; f1�
u tð Þ

u t þ 1ð Þ
..
.

u t þ n � 1ð Þ

2

6

6

6

6

4

3

7

7

7

7

5

¼
�

½bn�1f1 þ bn�2f2 þ � � � þ b1fn�1; bn�2f1

þ bn�3f2 þ � � � þ b1fn�2; . . .; b1f1; 0�
u tð Þ

u t þ 1ð Þ
..
.

u t þ n � 1ð Þ

2

6

6

6

6

4

3

7

7

7

7

5

9

>

>

>

>

=

>

>

>

>

;

u tð Þ

ð11Þ

In order to simplify (11), we define two vectors as

follows:

cn; . . .; c2; c1½ � :¼ ½fn þ an�1f1 þ an�2f2 þ � � �
þ a1fn�1; f2 þ a1f1; f1� 2 R1�n

ð12Þ

dn; . . .; d3; d2½ � :¼ ½bn�1f1 þ bn�2f2 þ � � �
þ b1fn�1; b1f1� 2 R1� n�1ð Þ ð13Þ

Then, (11) can be written as

A qð Þqnz1 tð Þ þ ½BðqÞqnz1ðtÞ�u tð Þ ¼ C qð Þqnu tð Þ
þ ½DðqÞ�qnu tð Þu tð Þ:

ð14Þ

where

A qð Þ ¼ 1þ a1q
�1 þ a2q

�2 þ � � � þ anq�n

B qð Þ ¼ b1q
�1 þ b2q

�2 þ � � � þ bnq�n

C qð Þ ¼ c1q
�1 þ c2q�2 þ � � � þ cnq�n

D qð Þ ¼ d2q
�2 þ d3q

�3 þ � � � þ dnq�n

Then, Eq. (14) can be rewritten as

A qð Þqnz1 tð Þ þ u tð Þ B qð Þqnz1 tð Þ½ � ¼ C qð Þznu tð Þ
þ u tð Þ D qð Þqnu tð Þ½ �

ð15Þ

By substituting t with t � n, we have

z1 tð Þ ¼ C qð Þ þ uðt � nÞD qð Þ
A qð Þ þ uðt � nÞB qð Þ uðtÞ

Replacing z1 tð Þ in relation (2), the input–output

relation of the bilinear state-space system in (1) and

(2) is obtained as follows:

y tð Þ ¼ C qð Þ þ uðt � nÞD qð Þ
A qð Þ þ uðt � nÞB qð Þ u tð Þ þ vðtÞ

3 Four-stage recursive least squares algorithm

In this section, a four-stage recursive least squares

algorithm is proposed to alleviate computational load,

increase the convergence rate of the parameters to

actual values and reduce the error simultaneously.

According to the hierarchical principle, the main

system is broken down into four subsystems; then, an

algorithm is presented to estimate the unknown

parameters of the bilinear system. Consider the

following performance index:

J qð Þ ¼
X

t

j¼1

y jð Þ � uT jð Þq
� �2

Using the least-squares principle and minimizing the

performance index, the recursive least squares algo-

rithm can be written as

bq tð Þ ¼ bq t � 1ð Þ þ K tð Þ y tð Þ � uT tð Þbq t � 1ð Þ
� �

ð16Þ
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K tð Þ ¼ R t � 1ð Þu tð Þ½1þ uT tð ÞR t � 1ð Þu tð Þ��1

ð17Þ

R tð Þ ¼ I � K tð ÞuT tð Þ
� �

R t � 1ð Þ ð18Þ

where R tð Þ is the covariance matrix and K tð Þ ¼
R tð Þu tð Þ is the gain vector. The first problem of

identification is that only the input and output data are

available. Since u tð Þ contains unknown state vari-

ables, and un tð Þ consists of the noise variable

ðx t � ið Þ; i ¼ 1; 2; ::mÞ, it is not possible to estimate

the parameter bq tð Þ with Eqs. (16)–(18). Therefore, a

bilinear state observer must be designed for state

estimation.

3.1 Bilinear state observer algorithm

As we know, Kalman filter algorithm is commonly

used to estimate the states of linear systems. Here, in

order to apply the Kalman filter for bilinear systems,

Eqs. (1) and (2) should be written in the following

form:

z t þ 1ð Þ ¼ A1 tð Þz tð Þ þ f u tð Þ
y tð Þ ¼ hz tð Þ þ x tð Þ
A1 tð Þ ¼ A þ Bu tð Þ

which may be considered as a Linear state-space

model. Therefore, the Kalman filter can be used to

design a bilinear state observecr [48].

ẑ t þ 1ð Þ ¼ Aẑ tð Þ þ Bẑ tð Þu tð Þ þ f u tð Þ
þ Kz tð Þ y tð Þ � hẑ tð Þ � uT

n tð Þqn

� � ð19Þ

Kz tð Þ ¼ ARz tð ÞhT hRz tð ÞhT þ Rv

� ��1
Bu tð ÞRz tð Þ

� hT hRz tð ÞhT þ Rv

� ��1

ð20Þ

Rz t þ 1ð Þ ¼ A � Kz tð Þh þ Bu tð Þ½ �Rz tð Þ
AT � hT KT

z tð Þ þ BT u tð Þ
� �

þ Kz tð ÞRvKT
z tð Þ

ð21Þ

where bRv tð Þ ¼ 1
t

Pt
j¼1 ½y jð Þ � hbz jð Þ�2, Kz tð Þ is the

optimal vector of state observer and Rz t þ 1ð Þ is the
covariance matrix state estimation error.

If the vectors and matrices A, B, f and n are

unknown, the bilinear state observer in (19)–(21)

cannot be used. Therefore, bz tð Þ should be estimated by

considering the estimated parameters.

Therefore, the parameter estimation vectors are

defined as follows:

q̂ ¼ q̂s; q̂n½ �T2 Rn0

qs ¼ q̂T
a ; q̂

T
b ; q̂

T
f

h iT

2 Rn1

q̂n ¼ ĉ1; ĉ2; . . .ĉm; d̂1; d̂2. . .; d̂p

� �T2 Rn4

q̂a ¼ â1; â2; . . .; ân½ �T

q̂b ¼ b̂1; b̂2; . . .; b̂n

h iT

2 Rn3

q̂f ¼ f̂1; f̂2; . . .; f̂n

� �T2 Rn2

bA tð Þ ¼

�ba1 tð Þ
�ba2 tð Þ

..

.

�ban�1 tð Þ
�ban tð Þ

1

0

..

.

0

0

0

1

. .
.

� � �
. . .

. . .
. .
.

. .
.

0

0

0

0
0
1

0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð22Þ

B̂ tð Þ :¼

b̂1 tð Þ
b̂2 tð Þ
..
.

b̂n tð Þ

2

6

6

6

4

3

7

7

7

5

bi 2 R1�n; f̂ tð Þ :¼

f̂1 tð Þ
f̂2 tð Þ
..
.

f̂n tð Þ

2

6

6

6

4

3

7

7

7

5

ð23Þ

By substituting A, B and f in (19)–(21) with the

estimated matrices and vectors bAðtÞ, bBðtÞ and bf ðtÞ, we
have

ẑ t þ 1ð Þ ¼ Âẑ tð Þ þ B̂ẑ tð Þu tð Þ þ q̂f u tð Þ
þ Kz tð Þ y tð Þ � hẑ tð Þ � ûT

n tð Þq̂n

� � ð24Þ

Kz tð Þ ¼ ÂRz tð ÞhT hRz tð ÞhT þ Rv

� ��1
B̂u tð ÞRz tð Þ

� hT hRz tð ÞhT þ Rv

� ��1

ð25Þ

Rz t þ 1ð Þ ¼ Â � Kz tð Þh þ B̂u tð Þ
� �

Rz tð Þ
ÂT � hT KT

z tð Þ þ B̂T u tð Þ
� �

þ Kz tð ÞRvKT
z tð Þ

ð26Þ

Thus, based on the bilinear state observer the estimates

bzðtÞ of the unknown states z(t) can be calculated.
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Replacing an unknown state z t � ið Þwith estimated

bz t � ið Þ and an unknown noise term x t � ið Þ with

estimated bx t � ið Þ, the information estimation vectors

are defined as:

bu tð Þ ¼ buz
T tð Þ; buzu

T tð Þ;uu
T tð Þ; bun

T tð Þ
h iT

2 Rn0

bus tð Þ ¼ buz
T tð Þ; buzu

T tð Þ;uu
TðtÞ

h iT

2 Rn1

buz tð Þ ¼ �bz1 t � 1ð Þ;�bz1 t � 2ð Þ; . . .;�bz1 t � nð Þ½ �T
2 Rn2

buzu ¼ ½bzT t � 1ð Þu t � 1ð Þ;bzT t � 2ð Þu t � 2ð Þ; . . .;bzT t � nð Þu t � nð Þ�T 2 Rn3

bun tð Þ ¼ ½�bx t � 1ð Þ;�bx t � 2ð Þ; . . .;�bx t � mð Þ; bv t � 1ð Þ; bv t � 2ð Þ; . . .; bv t � pð Þ�T 2 Rn4

It should be noted that the estimations of x tð Þ and v tð Þ
are defined as:

bx tð Þ ¼ y tð Þ � bus tð Þbqs t � 1ð Þ ð27Þ

bv tð Þ ¼ y tð Þ � buT tð Þbq t � 1ð Þ ð28Þ

The identification models 4 and 5 can be written in

four subsystems as follows:

ya tð Þ ¼ uT
z tð Þqa þ v tð Þ

yb tð Þ ¼ uT
zu tð Þqb þ v tð Þ

yu tð Þ ¼ uT
u tð Þqf þ v tð Þ

x tð Þ ¼ uT
n tð Þqn þ v tð Þ

According to the least squares principle, by defining

the criterion function, the recursive relationships are as

follows:

q̂a tð Þ ¼ q̂a t � 1ð Þ þ K1 tð Þ yz tð Þ � uT
z tð Þq̂a t � 1ð Þ

� �

¼ q̂a t � 1ð Þ þ K1 tð Þ½y tð Þ � uT
zu tð Þqb

� uT
u tð Þqf � uT

z tð Þq̂a t � 1ð Þ�
ð29Þ

K1 tð Þ ¼ R1 t � 1ð Þuz tð Þ
bþ uT

z tð ÞR1 t � 1ð Þuz tð Þ ð30Þ

R1 tð Þ ¼ 1

b
I � K1 tð ÞuT

z tð Þ
� �

R1 t � 1ð Þ ð31Þ

q̂b tð Þ ¼ q̂b t � 1ð Þ þ K2 tð Þ yzu tð Þ � uT
zu tð Þq̂b t � 1ð Þ

� �

¼ q̂b t � 1ð Þ þ K2 tð Þ½y tð Þ � uT
z tð Þqa

� uT
u tð Þqf � uT

zu tð Þq̂b t � 1ð Þ�
ð32Þ

K2 tð Þ ¼ R2 t � 1ð Þuzu tð Þ
bþ uT

zu tð ÞR2 t � 1ð Þuzu tð Þ ð33Þ

R2 tð Þ ¼ 1

b
I � K2 tð ÞuT

zu tð Þ
� �

R2 t � 1ð Þ ð34Þ

q̂f tð Þ ¼ q̂f t � 1ð Þ þ K3 tð Þ yu tð Þ � uT
u tð Þq̂f t � 1ð Þ

� �

¼ q̂f t � 1ð Þ þ K3 tð Þ½y tð Þ � uT
z tð Þqa

� uT
zu tð Þqb � uT

u tð Þq̂f t � 1ð Þ�
ð35Þ

K3 tð Þ ¼ R3 t � 1ð Þuu tð Þ
bþ uT

u tð ÞR3 t � 1ð Þuu tð Þ ð36Þ

R3 tð Þ ¼ 1

b
I � K3 tð ÞuT

u tð Þ
� �

R3 t � 1ð Þ ð37Þ

bqn tð Þ ¼ bqn t � 1ð Þ þ K4 tð Þ½x tð Þ � un
T tð Þbqn t � 1ð Þ�

ð38Þ

K4 tð Þ ¼ R4 t � 1ð Þun tð Þ
bþ uT

n tð ÞR3 t � 1ð Þun tð Þ ð39Þ

R4 tð Þ ¼ 1

b
I � K4 tð ÞuT

n tð Þ
� �

R4 t � 1ð Þ ð40Þ

The information vectors uz, uzu and un contain

unknown states z tð Þ, and Eqs. (29), (32), (35) and (38)
are used to estimate unknown parameters. Therefore,

the algorithm (29)–(40) cannot directly estimate the

unknown parameters. Consequently, by substituting

their estimations, we have the following relations:

q̂a tð Þ ¼ q̂a t � 1ð Þ þ K1 tð Þ½y tð Þ � uT
zu tð Þq̂b

� uT
u tð Þq̂f � uT

z tð Þq̂a t � 1ð Þ�
ð41Þ
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K1 tð Þ ¼ R1 t � 1ð Þbuz tð Þ
bþ buT

z tð ÞR1 t � 1ð Þbuz tð Þ
ð42Þ

R1 tð Þ ¼ 1

b
I � K1 tð ÞbuT

z tð Þ
h i

R1 t � 1ð Þ ð43Þ

q̂b tð Þ ¼ q̂b t � 1ð Þ þ K2 tð Þ½y tð Þ � ûT
z tð Þq̂a

� uT
u tð Þq̂f � ûT

zu tð Þq̂b t � 1ð Þ�
ð44Þ

K2 tð Þ ¼ R2 t � 1ð Þbuzu tð Þ
bþ buT

zu tð ÞR2 t � 1ð Þbuzu tð Þ
ð45Þ

R2 tð Þ ¼ 1

b
I � K2 tð ÞbuT

zu tð Þ
h i

R2 t � 1ð Þ ð46Þ

q̂f tð Þ ¼ q̂f t � 1ð Þ þ K3 tð Þ½y tð Þ � ûT
z tð Þq̂a

� ûT
zu tð Þq̂b � uT

u tð Þq̂f t � 1ð Þ�
ð47Þ

K3 tð Þ ¼ R3 t � 1ð Þuu tð Þ
bþ uT

u tð ÞR3 t � 1ð Þuu tð Þ ð48Þ

R3 tð Þ ¼ 1

b
I � K3 tð ÞuT

u tð Þ
� �

R3 t � 1ð Þ ð49Þ

bqn tð Þ ¼ bqn t � 1ð Þ þ K4 tð Þ½bx tð Þ � un
T tð Þbqn t � 1ð Þ�

ð50Þ

K4 tð Þ ¼ R4 t � 1ð Þbun tð Þ
1þ buT

n tð ÞR3 t � 1ð Þbun tð Þ
ð51Þ

R4 tð Þ ¼ I � K4 tð ÞbuT
n tð Þ

h i

R4 t � 1ð Þ ð52Þ

buz tð Þ ¼ �bz1 t � 1ð Þ;�bz1 t � 2ð Þ; . . .;�bz1 t � nð Þ½ �T
2 Rn

ð53Þ

buzu ¼ ½bzT t � 1ð Þu t � 1ð Þ;bzT t � 2ð Þu t � 2ð Þ; . . .;bzT t � nð Þu t � nð Þ�T 2 Rn2

ð54Þ

uu tð Þ ¼ u t � 1ð Þ; u t � 2ð Þ; . . .; u t � nð Þ½ �T ð55Þ

ûn tð Þ ¼ ½�x̂ t � 1ð Þ;�x̂ t � 2ð Þ; . . .;
� x̂ t � mð Þ; v̂ t � 1ð Þ; v̂ t � 2ð Þ; . . .; v̂ t � pð Þ�T 2 Rmþp

ð56Þ

ẑ t þ 1ð Þ ¼ Âẑ tð Þ þ B̂ẑ tð Þu tð Þ þ q̂f u tð Þ
þ Kz tð Þ y tð Þ � hẑ tð Þ � ûT

n tð Þq̂n

� � ð57Þ

Kz tð Þ ¼ ÂRz tð ÞhT hRz tð ÞhT þ Rv

� ��1
B̂u tð ÞRz tð Þ

� hT hRz tð ÞhT þ Rv

� ��1

ð58Þ

Rz t þ 1ð Þ ¼ Â � Kz tð Þh þ B̂u tð Þ
� �

Rz tð Þ
ÂT � hT KT

z tð Þ þ B̂T u tð Þ
� �

þ Kz tð ÞRvKT
z tð Þ

ð59Þ

bA tð Þ ¼

�ba1 tð Þ
�ba2 tð Þ

..

.

�ban�1 tð Þ
�ban tð Þ

1

0

..

.

0

0

0

1

. .
.

� � �
. . .

. . .
. .
.

. .
.

0

0

0

0
0
1

0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð60Þ

B̂ tð Þ :¼

b̂1 tð Þ
b̂2 tð Þ
..
.

b̂n tð Þ

2

6

6

6

4

3

7

7

7

5

bi 2 R1�n; f̂ tð Þ :¼

f̂1 tð Þ
f̂2 tð Þ
..
.

f̂n tð Þ

2

6

6

6

4

3

7

7

7

5

ð61Þ

Equations (41)–(61) consist of four recursive least-

squares algorithms for the bilinear system (1) and (2).

In summary, the steps of the above algorithm are given

in Algorithm 1.
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3.2 Convergence analysis

Assumption 1 Assume fv tð Þg is randomwhite noise

with zero mean and abounded variance r2

E v tð Þ½ � ¼ 0 ð62Þ

E v2 tð Þ
� �

¼ r2\1 ð63Þ

Lemma 1 For the four-stage recursive least squares

algorithm in (41)–(61), for any c[ 1, the following

inequalities hold:

X
1

t¼1

buz
T tð ÞR1ðtÞbuz tð Þ
ln R1

�1 tð Þ
�

�

�

�

� �c \1 ð64Þ

X
1

t¼1

buzu
T tð ÞR2ðtÞbuzu tð Þ
ln R2

�1 tð Þ
�

�

�

�

� �c \1 ð65Þ

X
1

t¼1

buu
T tð ÞR3ðtÞbuu tð Þ
ln R3

�1 tð Þ
�

�

�

�

� �c \1 ð66Þ

Table 1 Computational efficiency of the RLS algorithm

Expressions Multiplications Additions

q̂ tð Þ ¼ q̂ t � 1ð Þ þ K tð ÞE tð Þ n0 n0

E tð Þ ¼ y tð Þ � uT tð Þq̂ t � 1ð Þ½ � n0 n0

K tð Þ ¼ n tð Þ bþ uT tð Þn tð Þ½ ��1 2n0 n0

n tð Þ ¼ R t � 1ð Þû tð Þ n20 n20 � n0

R tð Þ ¼ 1
b R t � 1ð Þ � 1

b K tð Þn tð ÞT 3n2
0 n20

Total flops
N2 :¼ 6n2

0 þ 6n0

n0 :¼ 2n2 þ n3 þ n4
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Table 2 Computational efficiency of the 4S-RLS algorithm

Expressions Number of multiplications Number of additions

q̂a tð Þ ¼ q̂a t � 1ð Þ þ K1 tð ÞE tð Þ n2 n2

E tð Þ ¼ y tð Þ � uT
zu tð Þq̂b � uT

u tð Þq̂f � uT
z tð Þq̂a t � 1ð Þ

� �

n1 n1

K1 tð Þ ¼ nqa
bþ ûT

z tð Þnqa

� ��1 2n2 n2

nqa
tð Þ ¼ R1 t � 1ð Þûz tð Þ n2

2 n2
2 � n2

R1 tð Þ ¼ 1
b R1 t � 1ð Þ � 1

b K1 tð ÞnT
qa

3n22 n2
2

q̂b tð Þ ¼ q̂b t � 1ð Þ þ K2 tð ÞE2 tð Þ n3 n3

E2 tð Þ ¼ y tð Þ � ûT
z tð Þq̂a � uT

u tð Þq̂f � ûT
zu tð Þq̂b t � 1ð Þ n1 n1

K2 tð Þ ¼ nqb
bþ ûT

zu tð Þnqb

� ��1 2n3 n3

nqb
tð Þ ¼ R2 t � 1ð Þûzu tð Þ n2

3 n2
3 � n3

R2 tð Þ ¼ 1
b R2 t � 1ð Þ � 1

b K2 tð ÞnT
qb

3n23 n2
3

q̂f tð Þ ¼ q̂f t � 1ð Þ þ K3 tð ÞE3 tð Þ n2 n2

E3 tð Þ ¼ y tð Þ � ûT
z tð Þq̂a � ûT

zu tð Þq̂b � uT
u tð Þq̂f t � 1ð Þ n1 n1

K3 tð Þ ¼ nqf
bþ ûT

u tð Þnqf

h i�1 2n2 n2

nqf
tð Þ ¼ R3 t � 1ð Þûu tð Þ n2

2 n2
2 � n2

R3 tð Þ ¼ 1
b R3 t � 1ð Þ � 1

b K3 tð ÞnT
qf

3n22 n2
2

q̂n tð Þ ¼ q̂n t � 1ð Þ þ K4 tð ÞE4 tð Þ n4 n4

E4 tð Þ ¼ x̂ tð Þ � uT
n tð Þq̂n t � 1ð Þ n1 n1

K4 tð Þ ¼ nqn
bþ ûT

n tð Þnqn

� ��1 2n4 n4

nqn
tð Þ ¼ R4 t � 1ð Þûn tð Þ n2

4 n2
4 � n4

R4 tð Þ ¼ 1
b R4 t � 1ð Þ � 1

b K4 tð ÞnT
qn

3n24 n2
4

Total flops
N1 :¼ 6 2n22 þ n2

3 þ n2
4

� �

þ 8n1 þ 4n0

n0 :¼ 2n2 þ n3 þ n4; n1 ¼ n22 þ 2n2

Table 3 Number of additions and multiplications of the algorithms

Algorithm Multiplications Additions

4S-RLS 8n2
2 þ 4n3

2 þ 4n4
2 þ 4n1 þ 3n0 2ð2n2

2 þ n3
2 þ n4

2Þ þ 4n1 þ n0

RLS 4n0
2 þ 4n0 2n0

2 þ 2n0

Table 4 Comparison of total flops of the algorithms with n1 ¼ 8, n2 ¼ 2, n3 ¼ 4, n4 ¼ 2

Algorithm Number of multiplications Number of additions Total flops

4S-RLS 174 98 272

RLS 440 220 660
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X
1

t¼1

bun
T tð ÞR4ðtÞbun tð Þ
ln R4

�1 tð Þ
�

�

�

�

� �c \1 ð67Þ

The proof of Lemma 1 can be found in [49].

Theorem 1 For the system in (1)–(2) and the four-

stage recursive least squares algorithm in (41)–(61),

let

M tð Þ :¼ ln R�1
1 tð Þ

�

�

�

�

� �cþ ln R�1
2 tð Þ

�

�

�

�

� �c

þ ln R�1
3 tð Þ

�

�

�

�

� �cþ ln R�1
4 tð Þ

�

�

�

�

� �c ð68Þ

Assume that Conditions (62) and (63) hold, for any

c[ 1, we have

q̂a tð Þ � qak k2 ¼ O
M tð Þ

kmin R�1
1 tð Þ

� �

 !

;

q̂b tð Þ � qbk k2 ¼ O
M tð Þ

kmin R�1
2 tð Þ

� �

 ! ð69Þ

q̂f tð Þ � qf

�

�

�

�

2 ¼ O
M tð Þ

kmin R�1
3 tð Þ

� �

 !

;

q̂n tð Þ � qnk k2 ¼ O
M tð Þ

kmin R�1
4 tð Þ

� �

 ! ð70Þ

Proof See the detailed proof in [50]. h

Theorem 2 For the identification model in Eq. (5)

and the four-stage recursive least squares algorithm in

Eqs. (41)–(61), assume that there are positive con-

stants a1, a2, a3, a4, b1, b2, b3, b4 and large t such that

the following persistent excitation conditions hold:

a1In2 �
1

t

X
t

i¼1

buz ið Þbuz
T ið Þ� b1In2 ð71Þ

a2In3 �
1

t

X
t

i¼1

buzu ið Þbuzu
T ið Þ� b2In3 ð72Þ

a3In2 �
1

t

X
t

i¼1

buu ið Þbuu
T ið Þ� b3In2 ð73Þ

a4In4 �
1

t

X
t

i¼1

bun ið Þbun
T ið Þ� b4In4 ð74Þ

Then, four-stage recursive least squares parameter

estimation errors converge to zero as t goes to infinity.

q̂a tð Þ � qak k2!; q̂b tð Þ � qbk k2! 0 ð75Þ

q̂f tð Þ � qf

�

�

�

�

2!; q̂n tð Þ � qnk k2! 0 ð76Þ

The proof is expressed in Appendix section.

4 The computational efficiency

Utilizing flops is an useful way to determine comput-

sational efficiency [51]. Here, a flop is each operation

of addition, multiplication, subtraction or division. In

general, a division is presumed as a multiplication and

a subtraction is presumed as an addition. Therefore,

the algorithm can be represented by additions and

multiplications. The number of multiplications and

additions of the proposed algorithms are listed in

Tables 1 and 2. In order to show the computational

efficiency in the 4S-RLS algorithm, an RLS algorithm

is presented for the sake of comparison. Tables 3 and 4

show that the computational load of the proposed

algorithm is less than the RLS algorithm.

The flop difference between the RLS algorithm and

the 4S-RLS algorithm is as follows: N2 � N1 ¼
6 2n2 þ n3 þ n4ð Þ2þ6 2n2 þ n3 þ n4ð Þ � 6 2n2

2

��

þn2
3 þ n2

4Þ þ 8 n2
2 þ 2n2

� �

þ4 2n2 þ n3 þ n4ð Þ� ¼
4n2

2 þ 24n2n3 þ 24n2n4 þ 12n3n4

�12n2 þ 2n3 þ 2n4 [ 0. Therefore, N1\N2 which

means that the 4S-RLS algorithm is more efficient

than the RLS algorithm.

5 Four-stage stochastic gradient algorithm

In this part, a four-stage stochastic gradient algorithm

is considered to estimate the unknown parameters and

reduce the computational burden.
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The second-order criterion function is considered

as follows:

J qð Þ ¼ 1

2
y tð Þ � uT tð Þq
� �2

By computing the gradient of J, we have

r J qð Þ½ � ¼ o J qð Þð Þ
oq

¼ �uðtÞ y tð Þ � uT tð Þq
� �

According to the gradient search principle and min-

imizing the objective function, the stochastic gradient

algorithm is obtained as follows:

Assume that 1
lðtÞ is the step size.

q̂ tð Þ ¼ q̂ t � 1ð Þ þ u tð Þ
l tð Þ y tð Þ � uT tð Þq̂ t � 1ð Þ

� �

l tð Þ ¼/ l t � 1ð Þ þ u tð Þk k2; l 0ð Þ ¼ 1

where 0� / \1 is a forgetting factor that can

improve the accuracy of parameter estimation. Hence,

the four-stage stochastic gradient algorithm is

obtained as follows:

bqa tð Þ ¼ bqa t � 1ð Þ þ uz

l1 tð Þ ½y tð Þ � uzu
T tð Þqb

� uu
T tð Þqf � uz

T tð Þbqa t � 1ð Þ� ð77Þ

l1 tð Þ ¼/ l1 t � 1ð Þ þ kuzðtÞk
2 ð78Þ

bqb tð Þ ¼ bqb t � 1ð Þ þ buzu

l2 tð Þ ½y tð Þ � buz
T tð Þbqa

� uu
T tð Þbqf � buzu

T tð Þbqb t � 1ð Þ� ð79Þ

l2 tð Þ ¼/ l2 t � 1ð Þ þ kuzuðtÞk
2 ð80Þ

bqf tð Þ ¼ bqf t � 1ð Þ þ uu

l3 tð Þ ½yðtÞ � buz
T tð Þbqa

� buzu
T tð Þbqb � uu

T tð Þbqf t � 1ð Þ� ð81Þ

l3 tð Þ ¼/ l3 t � 1ð Þ þ kuuðtÞk2 ð82Þ

bqn tð Þ ¼ bqn t � 1ð Þ þ un

l4 tð Þ ½
bx tð Þ � un

T tð Þbqn t � 1ð Þ�

ð83Þ

l4 tð Þ ¼/ l4 t � 1ð Þ þ kunðtÞk2 ð84Þ

buz tð Þ ¼ �bz1 t � 1ð Þ;�bz1 t � 2ð Þ; . . .;�bz1 t � nð Þ½ �T

ð85Þ

buzu ¼ ½bzT t � 1ð Þu t � 1ð Þ;bzT t � 2ð Þu t � 2ð Þ; . . .;bzT t � nð Þu t � nð Þ�T 2 Rn2

ð86Þ

uu tð Þ ¼ u t � 1ð Þ; u t � 2ð Þ; . . .; u t � nð Þ½ �T ð87Þ

bun tð Þ ¼ ½�bx t � 1ð Þ;�bx t � 2ð Þ; . . .;�bx t � mð Þ; bv t � 1ð Þ; bv t � 2ð Þ; . . .; bv t � pð Þ�T 2 Rmþp

ð88Þ

bz t þ 1ð Þ ¼ bAbz tð Þ þ bBbz tð Þu tð Þ þ bqf u tð Þ
þ Kz tð Þ y tð Þ � hbz tð Þ � bun

T tð Þbqn

h i

ð89Þ

Kz tð Þ ¼ bARz tð ÞhT hRz tð ÞhT þ Rv

� ��1
bBu tð ÞRz tð Þ

� hT hRz tð ÞhT þ Rv

� ��1

ð90Þ

Rz t þ 1ð Þ ¼ bA � Kz tð Þh þ bBu tð Þ
h i

Rz tð Þ½ bAT

� hT Kz
T tð Þ þ bB

T
uðtÞ� þ Kz tð ÞRvKz

T tð Þ
ð91Þ

bA tð Þ ¼

�ba1 tð Þ
�ba2 tð Þ

..

.

�ban�1 tð Þ
�ban tð Þ

1

0

..

.

0

0

0

1

. .
.

� � �
. . .

. . .
. .
.

. .
.

0

0

0

0
0
1

0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð92Þ

B̂ tð Þ :¼

b̂1 tð Þ
b̂2 tð Þ
..
.

b̂n tð Þ

2

6

6

6

4

3

7

7

7

5

; f̂ tð Þ :¼

f̂1 tð Þ
f̂2 tð Þ
..
.

f̂n tð Þ

2

6

6

6

4

3

7

7

7

5

ð93Þ

In summary, the steps of the proposed algorithm are

presented in Algorithm 2.
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6 Simulation results

In order to show the efficiency of the proposed

method, two numerical examples are provided. The

first example is a bilinear state-space system that

should be identified, and the second one is a practical

example where the system is represented by bilinear

state-space model.

6.1 Numerical example

Consider a bilinear state-space system as follows:

z t þ 1ð Þ ¼
�0:20 1

0:25 0

	 


z tð Þ

þ
0:08 0:17

�0:12 �0:2

	 


z tð Þu tð Þ

þ
0:4

2

	 


u tð Þ

y tð Þ ¼ 1; 0½ �z tð Þ � cx t � 1ð Þ þ dv t � 1ð Þ þ v tð Þ

The parameter vector for identification is

q ¼ a1; a2; b11; b12; b21; b22; f 1; f 2; c; d½ �T

q ¼ ½0:20;�0:25; 0:08; 0:17;�0:12;�0:2; 0:40; 2;�0:3; 1�
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Fig. 2. 4S-RLS estimation

errors

Table 5 4S-RLS estimates and errors (r2 ¼ 0:102)

t a1 a2 b11 b12 b21 b22 f 1 f 2 c d d (%)

100 0.2991 - 0.3563 0.2064 0.0787 - 0.0414 0.0663 0.5845 2.2744 - 0.4334 0.8338 23.6133

200 0.2720 - 0.1443 0.1175 0.1519 - 0.0249 - 0.0765 0.4648 2.1403 - 0.3231 1.3230 11.1238

500 0.2402 - 0.1936 0.0927 0.1685 - 0.0629 - 0.1561 0.4066 2.0425 - 0.2711 1.0558 5.4112

1000 0.2151 - 0.2328 0.0822 0.1771 - 0.0916 - 0.1929 0.4054 2.0220 - 0.2575 1.0516 0.4339

2000 0.2033 - 0.2491 0.0739 0.1599 - 0.1192 - 0.2007 0.4018 2.0023 - 0.2984 0.9903 0.6882

3000 0.2012 - 0.2497 0.0808 0.1699 - 0.1151 - 0.2040 0.4046 2.0001 - 0.2944 1.0024 0.4303

True values 0.2000 - 0.2500 0.0800 0.1700 - 0.1200 - 0.2000 0.4000 2.0000 - 0.3000 1.0000

Fig. 3. 4S-SG estimation

errors
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Table 6 4S-SG estimates and errors (r2 ¼ 0:102)

t a1 a2 b11 b12 b21 b22 f 1 f 2 c d d (%)

100 0.1173 0.1219 0.1503 0.0993 0.0066 - 0.4278 0.5450 1.4749 - 0.3178 1.0348 30.9489

200 0.1140 0.1062 0.1461 0.0983 - 0.0011 - 0.4145 0.5186 1.5957 - 0.3144 1.0465 26.5585

500 0.1457 0.0333 0.1315 0.1110 - 0.0203 - 0.3806 0.3052 1.8643 - 0.3249 1.0565 17.3115

1000 0.1889 - 0.1082 0.0896 0.1138 - 0.0634 - 0.3157 0.3337 1.9947 - 0.3230 1.0330 9.2041

2000 0.2236 - 0.1934 0.0865 0.1418 - 0.0943 - 0.2608 0.3703 1.9871 - 0.2967 0.9744 4.4284

3000 0.2135 - 0.2630 0.1006 0.1668 - 0.1120 - 0.2312 0.4141 1.9806 - 0.2902 0.9710 2.4843

True values 0.2000 - 0.2500 0.0800 0.1700 - 0.1200 - 0.2000 0.4000 2.0000 - 0.3000 1.0000

Fig. 4 States z(1) and z(2)
and their estimates using 4S-

RLS algorithm

Fig. 5 States z(1) and z(2)
and their estimates using 4S-

SG algorithm
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For simulation studies, consider a persistent exci-

tation input signal uðtÞ, where vðtÞ is a white noise with
zero mean and variance r2 ¼ 0:102, b ¼ 0:88, /¼
0:998 and the data length is L = 3000. The parameter

estimation error is calculated by d ¼ q tð Þ � qk k= qk k.
The results of the parameters estimations and the error

with the four-stage recursive least squares algorithm

are presented in Fig. 2 and Table 5. In addition, the

results of the four-stage stochastic gradient algorithm

are shown in Fig. 3 and Table 6.

From the simulation results presented in the

figures and the tables, the following conclusions can

be derived: Convergence analysis shows that the

proposed algorithms are effective and the estimated

parameters by the proposed algorithms can converge

to their real values. Figures 2 and 3 show that the

estimation error decreases with a suitable speed. Also,

the results presented in Tables 5 and 6 show the

convergence of the parameters to the real values. The

4S-RLS algorithm can provide an effective parameter

estimation compared to the 4S-SG algorithm. Due to

Fig. 6 Structure of pH

neutralization process [17]

Fig. 7 Estimated output

and real output of pH

neutralization process using

4S-RLS algorithm
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the data length and the noise variance, the 4S-RLS

algorithm has a smaller estimation error than the 4S-

SG algorithm and also has a higher parameter

estimation accuracy. The system states and their

estimates are shown in Figs. 4 and 5, respectively.

The estimated states correspond well to the actual

system states, indicating that the bilinear state

observer is effective.

6.2 Practical example

The pH neutralization would be a case study to

demonstrate the effectiveness of the proposed meth-

ods. For this process, the input/output data are

gathered using the GMN test signal [32]. In this

process, which is a highly nonlinear process, acid flow

(HNO3), base flow (NaOH) and buffer (NaHco3) are

considered as input to the system, and the pH level is

considered as the system output. The inputs can be

regarded as (u1), (u2), (u3). In this process, it can be

assumed that acid flow rate and tank capacity are

constant. The structure of the pH neutralization

process is shown in Fig. 6.

In this example, it is assumed that only input/output

data is available and the proposed methods are used to

identify the system with bilinear state-space models.

To identify the system, 4S-RLS and 4S-SG algorithms

are used to estimate the vector parameter bq tð Þ with

data length t = N = 1280 and variance r2 ¼ 0:102. To

confirm the results, the estimated output and the actual

output data for the test dataset are shown in Figs. 7 and

8. The estimation error is calculated as

e :¼ kby tð Þ�yk
kyk � 100. According to the simulation

results, the obtained error value for the 4S-RLS

algorithm is 3.9734% and for the 4S-SG algorithm is

5.5564%.

7 Conclusion

In this paper, the parameter identification of bilinear

state-space systems with colored noise which is

expressed by the ARMA model was investigated.

The proposed methods are based on the hierarchy

principle. Since the states of the system need to be

used for identification and only the system input/

output data are available, a bilinear state observer was

designed to estimate the system states. By using the

hierarchical identification principle and the gradient

search, a four-stage recursive least-squares algorithm

and a four-stage stochastic gradient algorithm were

presented to reduce the computational burden.The

Fig. 8 Estimated output

and real output of pH

neutralization process using

4S-SG algorithm
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simulation results have demonstrated that 4S-SG

algorithm is efficient for identifying the bilinear

systems, and the 4S-RLS algorithm outperforms the

4S-SG algorithm, with less estimation error. In

addition, with increasing data length for different

noise variances, the accuracy of the proposed method

increases.
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Appendix

Proof of Theorem 2 From the covariance matrix relations, we

have

R�1
1 tð Þ ¼ R�1

1 t � 1ð Þ þ ûz tð ÞûT
z tð Þ

¼ R�1
1 0ð Þ þ

X
t

i¼1

ûz ið ÞûT
z ið Þ

ðA1Þ

R�1
2 tð Þ ¼ R�1

2 t � 1ð Þ þ ûzu tð ÞûT
zu tð Þ

¼ R�1
2 0ð Þ þ

X
t

i¼1

ûzu ið ÞûT
zu ið Þ

ðA2Þ

R�1
3 tð Þ ¼ R�1

3 t � 1ð Þ þ ûu tð ÞûT
u tð Þ

¼ R�1
3 0ð Þ þ

X
t

i¼1

ûu ið ÞûT
u ið Þ

ðA3Þ

R�1
4 tð Þ ¼ R�1

4 t � 1ð Þ þ ûn tð ÞûT
n tð Þ

¼ R�1
4 0ð Þ þ

X
t

i¼1

ûn ið ÞûT
n ið Þ

ðA4Þ

Considering the left side of inequalitie in (71) and the

covariance relation in (A1), we have

a1In2 �
1

t

X
t

i¼1

ûz ið ÞûT
z ið Þ ðA5Þ

Define

R1 0ð Þ ¼ r0In2R
�1
1 0ð Þ ¼ 1

r0
In2 ðA6Þ

where r0 is positive constant. As the elements of

R1
�1ð0Þ are nonnegative, by adding R1 0ð Þ to the right

side of inequality in (A5), one can write

a1In2 �
1

t

X
t

i¼1

buz ið Þbuz
T ið Þ þ R1

�1ð0Þ

Therefore, we have

ta1In2 �R1
�1 tð Þ

and

ta1 � kmin½R1
�1 tð Þ� ðA7Þ

Similarly

ta2 � kmin½R2
�1 tð Þ� ðA8Þ

ta3 � kmin½R3
�1 tð Þ� ðA9Þ

ta4 � kmin½R4
�1 tð Þ� ðA10Þ

Now, consider the right side inequalities in (71) and

Theorem 1.

1

t

X
t

i¼1

buz ið Þbuz
T ið Þ� b1In2 ðA11Þ

We add R1
�1ð0Þ to the both sides of inequality (A11):

R1
�1 tð Þ� tb1In2 þ R1

�1ð0Þ

R1
�1 tð Þ

�

�

�

�� tb1In2 þ R1
�1ð0Þ

� ��

�

�

� ¼ tb1 þ R1
�1ð0Þ

� �n2

ln R1
�1 tð Þ

�

�

�

�� n2lnðtb1 þ R1
�1ð0ÞÞ ðA12Þ

Similarly

ln R2
�1 tð Þ

�

�

�

�� n3lnðtb2 þ R2
�1ð0ÞÞ ðA13Þ

ln R3
�1 tð Þ

�

�

�

�� n2lnðtb3 þ R3
�1ð0ÞÞ ðA14Þ

ln R4
�1 tð Þ

�

�

�

�� n4lnðtb4 þ R4
�1ð0ÞÞ ðA15Þ

According to Theorem 1, we have

Now, the proof is complete. h
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