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Abstract In this study, a review is presented of

recent work of the authors on a class of multibody

dynamic systems, involving bilateral motion con-

straints. First, the Analytical Dynamics framework is

adopted and the basic theoretical ingredients of a

method leading to a new set of equations of motion are

presented. According to this method, the motion

constraints are treated as an integral part of the overall

analytical process. Consequently, this yields the

equations of motion as a set of pure second-order

ordinary differential equations in a natural way. Then,

this set is put in an appropriate weak form and a

suitable numerical discretization scheme is developed,

respecting the geometric properties of the configura-

tion space. This scheme is also capable of handling

cases involving redundant constraints and singular

positions, through a proper extension to an augmented

Lagrangian form. Finally, the accuracy and efficiency

of the new numerical scheme are demonstrated by

examining a selected set of mechanical examples,

including a benchmark problem. An extensive com-

parison with classical numerical schemes, based on

equations of motion expressed as sets of differential–

algebraic equations, is also performed.

Keywords Analytical dynamics � Multibody

dynamics � Equality motion constraints � Second-order
ODE form � Three-field weak formulation �
Geometrically consistent discretization � Augmented

Lagrangian formulation

1 Introduction

This work is concerned with dynamics of a wide class

of multibody mechanical systems subject to motion

constraints. Both the theoretical and the numerical

aspects of setting up and solving the governing

equations are quite challenging [1–5]. Moreover, such

systems appear in many engineering disciplines, like

mechanisms, robotics, biomechanics, ground vehicles,

naval and aerospace structures, to just mention a few

of them [6–8]. As a result, a large amount of research

effort has already been devoted to understanding,

improving and controlling their dynamic response

[9–12].

In general, the motion constraints imposed on a

mechanical system are divided into bilateral or

unilateral constraints, depending on whether they

appear in an equality or inequality form, respectively.

Typically, the latter case appears in problems involv-

ing contact, impact and friction between the members

of the system examined and are not considered here

[13, 14]. Instead, the present study focuses on systems
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subject to equality motion constraints. Also, the work

focuses on systems possessing discrete dynamic

characteristics. In the great majority of previous

publications on the subject, the constraint equations

are just appended to the set of equations governing the

dynamics. This leads to a set of differential algebraic

equations (DAEs) of high index [8, 15]. Such equa-

tions are known to involve severe singularities and

lead to drift in the lower kinematical levels (velocities,

displacements) and instabilities [16–20]. As a conse-

quence, a lot of research effort has been devoted to

several typical activities aiming at overcoming these

difficulties. For instance, these activities include

scaling the equations of motion [18, 19], performing

projections to eliminate the drift in the solution [20],

lowering the DAE index or even producing convenient

sets of ordinary differential equations (ODEs)

[15, 21, 22]. However, in all those cases, the emphasis

was given to a rather mathematical or numerical

treatment of the constraint equations, which does not

lead to a definite cure or elimination of the inherent

problems of a DAE-based formulation. A comprehen-

sive review of such methods can be found in [8].

Over the last years, a new methodology has

emerged, where the motion constraints are treated as

an integral part of the whole process of deriving the

equations of motion (EOM) [23]. This led to deriva-

tion of a new set of equations of motion, through the

introduction of suitable linear operators, originating

from the motion constraints, as well as by a consistent

application of Newton’s second law on the configu-

ration space. Eventually, this gives rise to a set of pure

second-order ODEs, in a natural way. A distinct

feature of these equations of motion is that they

involve inertia, damping and stiffness terms in both

the original equations of motion and those resulting by

the constraint equations [24]. This, in turn, provides

mechanisms for an automatic scaling and stabilization

of these equations. Then, more numerical benefits are

gained by putting the original second-order (strong)

form of these equations into an equivalent first-order

three-field weak form [25]. Simultaneously, a suit-

able numerical discretization procedure is applied,

respecting and exploiting the geometric properties of

the configuration manifold. Finally, a special aug-

mented Lagrangian methodology has also been devel-

oped, in order to handle cases related to the presence of

redundant coordinates and the appearance of singular

positions during the motion [26].

The outline of the present work is as follows: First,

in Sect. 2, the emphasis is put on a presentation of the

general analytical setting, leading to derivation of the

new set of equations of motion governing the behavior

of the class of dynamic systems examined. Then, the

basic ingredients of an appropriate weak form of these

equations are presented in Sect. 3. This provides a

foundation for the derivation of an equivalent set of

equations of motion in first-order form and a solid

basis for its geometrically consistent temporal dis-

cretization. Some representative numerical integration

methodologies are presented in Sect. 4, including a

suitable augmented Lagrangian formulation. Next, a

collection of mechanical examples, illustrating the

advantages of employing the new set of equations of

motion, in comparison with classical DAE formula-

tions, is presented in Sect. 5. Finally, the highlights of

this work, together with some directions for future

work, are summarized in Sect. 6.

2 Derivation of the equations of motion

In this section, a brief but quite complete summary of

the essential steps and the main theoretical results

obtained in previous publications of the authors on the

subject are presented [23–26]. Specifically, the equa-

tions of motion are derived by adopting the classical

Analytical Dynamics framework [2, 22, 27]. First, the

general analytical setting is provided by considering

mechanical systems described by Lagrangian coordi-

nates. Then, the effect of imposing motion constraints

in deriving a new set of equations of motion in a

second-order (strong) ODE form is investigated.

Finally, some important theoretical issues which are

frequently overlooked in the literature are considered.

2.1 General analytical setting

According to the classical viewpoint of Analytical

Dynamics, the motion of a mechanical system in the

three-dimensional physical space can be described by

a set of generalized coordinates, say q ¼ ðq1. . . qnÞ
[1–5]. Consequently, the motion of the same system

can be represented by the motion of a fictitious point p

along a curve cðtÞ of an n-dimensional abstract

manifold M, parameterized by time t [9–11]. In fact,

the coordinates of point p are obtained through a local

smooth map:
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q ¼ uðpÞ; ð1Þ

acting from a neighborhood of point p to an n-

dimensional Euclidean manifold. Moreover, the tan-

gent vector v ¼ dc=dt to the motion curve cðtÞ at point
p of manifold M belongs to an n-dimensional vector

space TpM [28]. This vector is known as generalized

velocity, and if Be ¼ fe1. . . eng is a basis of TpM it

can be put in the compact form

v ¼ viei;

by using the usual summation convention on repeated

indices [5]. Also, to each tangent space TpM there

corresponds a cotangent (or dual) space T�
pM, with

elements known as covectors. In fact, to each vector u

corresponds a covector u
s

�, established through the

duality or natural pairing:

u
s

�ðwÞ � hu;wi; 8w 2 TpM; ð2Þ

where h�; �i is the inner product on TpM. In this way, a

dual basis B�
e ¼ fe1. . . eng to Be can be created for

T�
pM, through application of the condition e

s

iðe jÞ ¼ dij,

where dij is a Kronecker delta [28].

The inner product on TpM is expressed in terms of

the components

gij ¼ he i; e ji ð3Þ

of the metric tensor g � gij e
s

i � e
s

j at point p and is

useful in measuring lengths of and angles between

vectors of TpM. In dynamics, these components are

determined through consideration of the kinetic

energy of the system, so that

T � 1

2
hv; vi ¼ 1

2
vigijv

j: ð4Þ

Then, it is easy to verify that covectors p
s

�
M
¼ pi e

s

i

represent generalized momenta, with components

pi ¼ gij v
j; ð5Þ

in the dual basis B�
e .

In general, the geometry of the configuration

manifold M is non-Euclidean. For this reason, the

exact solution path on M is determined by application

of Newton’s second law in the form

rv p
s

�
M
¼ f

s

�
M
; ð6Þ

provided that the generalized coordinates selected

form an independent set [23]. In particular, the term in

the right-hand side of Eq. (6) is a covector, f
s

�
M
¼ fi e

s

i,

representing the applied forces, while the term in the

left-hand side is the covariant derivative of the

generalized momentum p
s

�
M

along a path on M with

tangent vector v. The latter term can be expressed in

the following component form

rvp
s

�
M
ðtÞ ¼ ð _pi � Kk

j ipkv
jÞe

s

i; ð7Þ

with i; j; k ¼ 1; . . .; n. The quantities Kk
j i, known as

affinities, are components of the affine connection r
of the manifold, satisfying the definition

re j
ei ¼ Kk

jiek: ð8Þ

They dictate the transition from a tangent space to a

neighboring tangent space of manifold M [5, 28]. In

this respect, they determine the parallel translation of

vectors along a curve of M as well as some vital

geometric properties of M, like its torsion and

curvature [5, 29]. Therefore, the connection, together

with the abstract set of points p belonging toM and the

metric tensor g, provides the geometry of the config-

uration manifold M in a complete manner. Since their

definition depends directly on motion constraints,

some more details on their selection are provided in

Sect. 2.3.

Among all the bases of TpM, any special basis

Bg ¼ fg
1
. . . g

n
g, having base vectors tangent to the

coordinate lines corresponding to the coordinate map

(chart) defined by Eq. (1), is called natural (or

holonomic) basis. In this basis, the velocity compo-

nents are simply

vi ¼ _qi:

By introducing the classical matrix notation

q ¼ ðq1. . . qnÞT;M ¼ ½gij� and f ¼ ðf1. . . fnÞT

and selecting a natural basis for simplicity, Eq. (6) can

eventually be cast in the form

ðMðqÞ _qÞ� þ hðq; _qÞ ¼ f ðq; _q; tÞ; ð9Þ
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where the array hðq; _qÞ includes the inertia terms

related to the affinities Kk
ij only [24].

The extension to quasi-coordinates is straightfor-

ward. Such coordinates do not appear explicitly in the

equations of motion and are not so useful, since they

depend on the specific path followed on a manifold

[27]. However, their time derivatives, known as quasi-

velocities, are employed in several practical cases, like

in rigid body rotation or in systems involving

nonholonomic constraints [30]. Such velocities are

related to anholonomic bases Be, where the equations

of motion appear in a bit more involved form. Namely,

if the elements of a basisBe are related to the elements

of a natural basis through the transformation

ei ¼ Aj
i gj or g

i
¼ Bj

i ej; ð10Þ

with Aj
iB

i
k ¼ d j

k [31], then

vi ¼ Bi
j _q

j or _qi ¼ Ai
jv

j: ð11Þ

Finally, direct substitution of the last expression in

Eq. (9) provides the equations of motion in terms of

the set of quasi-velocities selected.

2.2 Mechanical systems with additional motion

constraints

A new picture arises when the system examined is

subjected to an additional set of motion constraints. In

particular, the class of mechanical systems examined

is assumed to be subject to a set of k scleronomic,

catastatic and linearly independent constraints, with

general form

_wR � aRi ðqÞvi ¼ 0 or _wðq; vÞ � AðqÞv ¼ 0; ð12Þ

where R ¼ 1; . . .; k and A ¼ ½aRi ðqÞ� is a known k � n

matrix (cases with rheonomic, acatastatic or inequality

constraints need more involved but similar treatment

[32, 33]). In some cases, the equation of a constraint

can be integrated and put in the (holonomic) form

/RðqÞ ¼ 0: ð13Þ

The manipulation of these constraint equations is quite

critical for the derivation of the new set of equations of

motion. Essentially, they provide the tools to decom-

pose the original configuration manifold M locally

into an (n� k)-dimensional manifold MA, described

by an appropriate set of m ¼ n� k minimal coordi-

nates, say h ¼ ðh1. . . hmÞ, plus k one-dimensional

manifolds MR, one for each constraint. This is

achieved by first using Eq. (12) to derive a linear

relation

v ¼ NvA; ð14Þ

with

vA ¼ va ea;

where a ¼ 1; . . .m, va ¼ _ha and e a is an element of a

basis of the vector space TpAMA at point pA of manifold

MA, related to p through the constraints [24]. In the last

expression and in the sequel, Latin and Greek lower-

case indices correspond to components of entities

defined on manifold M and MA, respectively. Then,

Eq. (14) provides a foundation for defining a suit-

able set of linear operators, acting between the tangent

and dual spaces of these manifolds. For instance, the

operator

ES � Ni
�ae i � e

s

a ð15Þ

helps in rewriting Eq. (14) in the alternative form

v ¼ ES vA; ð16Þ

which illustrates that ES acts as a linear transformation

from TpAMA to TpM. Likewise, the dual operator

ESD � N �i
a e

s

a � e i ð17Þ

helps in transferring covectors from the corresponding

cotangent space T�
pM to T �

pA
MA. Specifically, after

defining the special covectors

h
s

�
M � rv p

s

�
M
� f

s

�
M
; ð18Þ

on T�
pM, then operator ESD helps in determining the

corresponding covectors

h
s

�
A ¼ ESD h

s

�
M: ð19Þ

on T �
pA
MA. Covectors h

s

�
M are called Newton covectors

on M, since they are equal to zero when there are no

additional motion constraints, according to Newton’s

second law expressed by Eq. (6) [23].In a similar

manner, the communication between the tangent and

cotangent spaces of the configuration manifoldM and

each of the single dimensional constraint manifolds
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MR, R ¼ 1; . . .; k is established through the pair of

operators

TR � aR�i eR � e
s

i and TRD � a�Ri e
s

i � eR; ð20Þ

for each constraint. Then,

vR ¼ TR v and h
s

�
M;R ¼ TRD h

s

�
M; ð21Þ

with

vR ¼ vReR and h
s

�
M;R ¼ hR e

s

R ð22Þ

expressing a vector and a covector of spaces TpRMR

and T�
pR
MR, respectively. In Eqs. (20)–(22) and in the

sequel, the convention on repeated indices does not

apply to index R.

Among other things, the set of linear operators

introduced based on the constraints helps in splitting

each element of the cotangent space T�
pM in a unique

manner [24]. More specifically, a Newton covector on

M is expressed in the form

h
s

�
M ¼ h

s

�
S þ h

s

�
T ; ð23Þ

with

h
s

�
S ¼ ETDh

s

�
A and h

s

�
T ¼

Xk

R¼1
TRDh

s

�
R : ð24Þ

The linear operators ETD and TRD transfer the corre-

sponding Newton covectors h
s

�
A from T �

pA
MA and h

s

�
R

from each of the T�
pR
MR, respectively, back to T�

pM.

The special covectors h
s

�
A and h

s

�
R are defined in

accordance with Eq. (18).

Due to the presence of the motion constraints,

expressed by Eq. (12), the original set of coordinates

q ¼ ðq1. . . qnÞ becomes redundant. Consequently,

Eq. (6) is no longer valid and is replaced by

h
s

�
A ¼ 0

s

; ð25Þ

instead. Then, by taking Eqs. (24) and (25) into

account, Eq. (23) becomes

h
s

�
M ¼

Xk

R¼1
TRDh

s

�
R : ð26Þ

Next, substitution of Eqs. (5) and (7) in Eq. (18) yields

h
s

�
M ¼ hi e

s

i; ð27Þ

with components

hi ¼ ðgijv jÞ� � Km
‘igmjv

jv‘ � fi: ð28Þ

Likewise, each Newton covector h
s

�
R
on the constraint

manifolds MR (for R ¼ 1; . . .; k) takes the form of

Eq. (22) with components

hR ¼ ðmRR
_kRÞ� þ cRR _k

R þ kRRk
R � f R: ð29Þ

Moreover, during the solution process, the terms

mRR ¼ ciRgijc
j
R and f R ¼ ciRfiðq; v; tÞ ð30Þ

are determined through a projection along special

directions cR on TpM, defined for each of the

constraints. In particular, the components of the n-

vector cR are chosen so that

aRi c
i
R ¼ 1: ð31Þ

Finally, each coefficient cRR and kRR is selected so that

the corresponding term in Eq. (29) represents a

corrective force applied to the figurative point (parti-

cle), when a constraint violation tends to develop

along direction cR. For instance, if the applied forces

depend on the generalized coordinates and velocities,

a convenient choice is

cRR ¼ �ciR
ofi
ov j

c j
R and kRR ¼ �ciR

ofi
oq j

c j
R: ð32Þ

Next, by combining Eqs. (20) and (26)–(29), it

easily turns out that

hi ¼
Xk

R¼1
aRi hR; ð33Þ

or eventually

ðgijv jÞ� � Km
‘ igm jv

jv‘ ¼ fi

þ
Xk

R¼1
aRi ½ðmRR

_kRÞ� þ cRR _k
R þ kRRk

R � f R�;
ð34Þ

for i ¼ 1; . . .; n. Therefore, after enhancing the matrix

notation introduced by Eq. (9) with

k ¼ ðk1. . . kkÞT; M ¼ diagðm11. . . mkkÞ;
C ¼ diag(c11. . . ckkÞ; K ¼ diagðk11. . . kkkÞ

ð35Þ

and the array f , as determined by Eqs. (30)–(32),

Eq. (34) can be cast in the following matrix form
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ðMðqÞ _qÞ� þ hðq; _qÞ ¼ f ðq; _q; tÞ
þ ATðqÞ½ðM _kÞ� þ C _kþ Kk� f �:

ð36Þ

Equation (34), or Eq. (36), corresponds to a set of n

second-order ODEs, involving the nþ k unknowns qi

and kR. A complete mathematical formulation is

obtained by including the k equations of the con-

straints. Originally, these are expressed by Eq. (12)

but can eventually be put in the second-order ODE

form:

gR ¼ ðmRR
_/RÞ� þ cRR _/R þ kRR/

R ¼ 0 or

gR ¼ ðmRR
_wRÞ� þ cRR _wR ¼ 0:

ð37Þ

through appropriate mappings from M to MR, forcing

/R or _wR, respectively, to become zero for

R ¼ 1; . . .; k.
A complete picture of the formulation presented in

this section, together with an extensive comparison

with previous theoretical formulations on the subject,

is provided in earlier publications [23, 24]. Briefly,

compared to previous approaches in the field of

constrained multibody dynamic systems, the present

approach brings significant advantages. These advan-

tages arise from the physically consistent application

of Newton’s second law, leading to a natural and

correct elimination of the singularities associated with

the sets of high-index DAEs of motion, obtained in

earlier studies [8, 17]. More specifically, in the new

formulation the motion constraints are treated as an

integral part of the overall process yielding the

equations of motion, which leads to a set of dynamic

Lagrange multipliers, expressed by Eq. (29). As an

outcome, each constraint introduces effective inertia

and damping terms, in addition to restoring terms, in

Eqs. (36) and (37). In this way, the overall set of

equations of motion appears now in a pure second-

order ODE form, from the onset. Moreover, all the

extra terms appearing in the new set of equations of

motion are determined in a systematic and analytical

manner. This is achieved through a proper application

of Newton’s law of motion on configuration manifolds

with general geometric properties. Consequently,

there is no need for an ad hoc choice of parameter

values in order to stabilize the constraints numerically.

Likewise, no scaling of the equations of motion is

necessary, since the k’s are now treated as coordinates

and not as forces. Finally, additional advantages arise

during the numerical integration, because the equa-

tions of motion are first put in an appropriate three-

field weak form and are then discretized in time by

respecting and exploiting the geometric properties of

the configuration space, as explained in Sects. 3 and 4,

respectively.

2.3 Selection of the affinities—metric

compatibility conditions

Some results are presented in this section, which are

usually overlooked in setting up the equations of

motion of constrained mechanical systems in the

literature. First, if the motion on the original manifold

M is governed by Newton’s law in the form of Eq. (6),

then this form remains invariant on the constrained

manifold MA, only when two dynamic conditions are

satisfied, which were produced in a previous study

[23]. Specifically, through the use of the linear

operators established by the set of the additional

motion constraints, expressed by Eq. (12), it was

shown that Newton’s law of motion is transferred from

M toMA in a form similar to that expressed by Eq. (6),

provided that the components of the metric and

connection on MA satisfy the following conditions:

gab ¼ Ni
agijN

j
b ð38Þ

and

ðKq
cagqb � Ni

a;cN
j
bgij � Ni

aN
j
bN

k
cK

‘
jig‘kÞ vbvc ¼ 0;

ð39Þ

respectively [23]. Then, given the metric compo-

nents and the affinities of M, together with the

elements of the n� m matrix N ¼ ½Ni
a�, defined by

Eq. (14), relation (38) fixes the metric on manifoldMA

completely, while (39) provides a condition on the

selection of the corresponding connection, involving

some freedom.

In several earlier studies, the connection on man-

ifold M is chosen to be fully compatible with its

metric, by directly adopting the common choice in

abstract Riemannian geometries [28, 31]. This means

that the components of the connection are determined

by imposing the condition
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ðrvgÞðu;wÞ ¼ 0 )
ðgij;k � g‘ iK

‘
kj � g‘jK

‘
k iÞvkuiw j ¼ 0;

ð40Þ

for all vectors v, u and w of TpM, where the metric

tensor appears in the form g � gij e
s

i � e
s

j. Then, the

affinities are selected by satisfying the conditions

Dkgij � gij;k � g‘iK
‘
kj � g‘jK

‘
ki ¼ 0; ð41Þ

and depend solely on the components of the metric

tensor on M. Consequently, we assume that the

connection is torsionless and provides the extra

conditions needed for a full determination of the

affinities. The same selection is also performed on the

constrained manifold MA. In contrast, the affinities

selected by using Eq. (39) are more appropriate for the

class of systems examined since they depend on these

constraints explicitly, through the elements of matrix

N. Specifically, based on condition (39), the affinities

on MA are split in the general form

Kq
ca ¼ K

q
ca þ K

_q

ca; ð42Þ

where the componentK
q
ca is determined completely by

K
q
ca ¼ gqbN j

bðN
i
a;cgij þ Ni

aN
k
cK

‘
kig‘jÞ; ð43Þ

while the component K
_q

ca satisfies the condition

K
_q

cagqbv
bvc ¼ 0: ð44Þ

Since K
_q

cagqbv
bvc ¼ K

_q

capqv
c, a simple inspection of

Eq. (7) verifies that this component of the affinities

does not affect the equations of motion. However, the

addition of such a component affects some of the

crucial geometric properties of MA, like its autopar-

allel curves. Finally, when Eq. (14) is interpreted as a

simple velocity transformation in the same manifold,

then Eq. (43) provides the affinities in the new basis.

Obviously, Eq. (43) fixes an appropriate connec-

tion on manifold MA, given the set of additional

motion constraints and the geometric properties of the

original manifold M [23]. According to a common

view of Analytical Mechanics [1–5], the equations of

motion on M can be obtained by reference to the

archetypal Euclidean configuration manifold E3N ,

corresponding to motion of N unconstrained particles

in the three-dimensional physical space. The motion

on manifold E3N is described by a set of 3N Cartesian

coordinates. Then, imposing a set of holonomic/

nonholonomic motion constraints leads through a

coordinate/velocity transformation, respectively, to a

system whose configuration manifold is M, where the

motion is described by a set of Lagrangian coordinates

q [11, 27]. The manifold E3N possesses a constant

diagonal metric and zero affinities. Therefore, the

metric and the affinities on M can be established once

the set of motion constraints leading from E3N toM is

known. In this sense, even the motion on M can be

considered as a constrained motion. This procedure

has already been illustrated in a previous study, where

the affinities corresponding to rigid body motion have

been evaluated as an example [23].

An alternative, more common and popular way to

derive the equations of motion of mechanical systems

is based on using the classical Lagrange equations.

However, this derivation is subject to some conditions,

which are usually overlooked and lead to mistakes.

More specifically, the Euler–Lagrange operator on

manifold M is defined by:

Li �
d

dt

oT

ovi

� �
� oT

oqi
; ð45Þ

where T is the kinetic energy of the dynamical system

examined, furnished by Eq. (4). Also, Eq. (7) can be

rewritten and put in the form

rv p
s

�
M
ðtÞ ¼ Dpi

D t
e
s

i;

with

Dpi
Dt

¼ _pi � Kk
j ipkv

j: ð46Þ

Then, it was shown in a previous study [23] that the

following relation holds on M

Dpi
D t

� Li ¼
�
1

2
Digjk � gmj s

m
k i þ cmki

� ��
v jvk; ð47Þ

where the derivative termDi gj k is defined by Eq. (41),

while cmk i are the Hamel transitivity coefficients or

structure constants [5, 28]. These quantities are

defined through the Lie bracket of the base vectors

in the form
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½ek; ei� ¼ cmk i em: ð48Þ

They are related to the properties of the basis of the

tangent space TpM and are equal to zero for a

holonomic basis. Moreover, the terms smk i are the

components of the torsion of the connection [28],

found in the form

smki ¼ Km
ki � Km

ik � cmki: ð49Þ

For instance, when a body frame is selected in

studying rotation of a rigid body about a fixed point,

it is easy to verify that the correction terms in the right-

hand side of Eq. (47) provide the quadratic angular

velocity terms, which are missing when using the

Lagrange operator as defined by Eq. (45).

Equation (47) is of fundamental importance in the

dynamics of constrained systems. It shows that the

Euler–Lagrange operator Li coincides with the (cor-

rect) Newton operator rvpi only when three condi-

tions are satisfied simultaneously. Namely, the

application of these operations on the configuration

manifoldM yields the same set of equations of motion

only when the connection is torsionless and satisfies

the metric compatibility condition (41), while the

basis employed on the tangent space TpM is natural.

These requirements are too restrictive and are not

satisfied in general (e.g., in rigid body dynamics). In

fact, the well-known Boltzmann–Hamel or Poincare

equations are a special case of the above, since they are

derived by employing the Euler–Lagrange operator

and include the correction terms, arising when an

anholonomic basis is used [27, 34].

3 Three-field weak form of the equations of motion

In many cases, it is more convenient to work with

systems of equations of motion, which are dynami-

cally equivalent to a set of first-order ODEs. Such a set

was derived in an earlier work and was shown to

correspond to the classical Hamilton’s canonical

equations [25]. Briefly, the process leading to that

result starts from Eq. (26), which is first put in the

integral form

Z t2

t1

ðh
s

�
M �

Xk

R¼1
TRDh

s

�
R ÞðwÞdt ¼ 0; 8w 2 TpM;

ð50Þ

for arbitrary time instances t1 and t2. A similar

treatment of each constraint equation, expressed by

Eq. (37), leads first to

Z t2

t1

ðgR e
s

RÞ ðdkRe RÞdt ¼
Z t2

t1

gR dk
Rdt ¼ 0;

8dkR; R ¼ 1; . . .; k:

ð51Þ

Then, by performing lengthy mathematical opera-

tions, involving a typical step with an appropriate

integration by parts on a manifold leads eventually to a

set of first-order ODEs of the generalized coordinates

qi and the dynamic Lagrange multipliers kR. More-

over, in order to exploit more theoretical and numer-

ical advantages of the weak formulation, the position,

velocity and momentum variables can be considered

as independent quantities, according to the Veubeke–

Washizu methodology, applied earlier to systems with

a flat configuration manifold [35, 36]. For this, a new

velocity field t is introduced on manifold M, which is

forced to become identical to the true velocity field v in

an average rather than a pointwise sense through the

relations

Z t2

t1

dpiðti � viÞ d t ¼ 0; i ¼ 1; . . .; n; ð52Þ

where dpi are arbitrary constants. Likewise, a new

quantity lR is introduced for each constraint, which is

forced to become identical to _kR, by imposing the

conditions

Z t2

t1

drRðlR � _kRÞ d t ¼ 0; R ¼ 1; . . .; k; ð53Þ

where drR are arbitrary constants. In addition, the last

two sets of equations are enhanced by an accompa-

nying set of integral conditions, consisting of

Z t2

t1

piðdti � dviÞ dt ¼ 0; ð54Þ

and
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Z t2

t1

rRðdlR � d _kRÞ d t; ¼ 0 ð55Þ

where pi and rR are appropriate Lagrange multipliers,

leading to independent variations dti, dvi and dlR,

d _kR, respectively. Therefore, by augmenting Eq. (50)

with Eq. (54) and performing another round of

manipulations, it can be shown (see [25] for details)

that this leads eventually to the following variational

equation

ðpi �
Xk

R¼1
aRi mRRl

R � piÞwi
h i���

t2

t1

þ
Z t2

t1

pi þ
Xk

R¼1
aRi mRRl

R � piÞ dtidt
	

�
Z t2

t1

p‘ þ
Xk

R¼1
aR‘mRRl

R � p‘

	 
n

s‘ij � K‘
ij þ r‘ij

	 

t j þ fi � _pi

þ
Xk

R¼1
aRi ðcRRlR þ kRRk

R � f RÞ � _aRi mRRl
R

� �


wi d t ¼ 0;

ð56Þ

where the quantities rij k are arbitrary constants, with

rikj ¼ �rij k, while

_aRi ¼ ðaRi;j � aR‘K
‘
jiÞ t j and _pi ¼ ðpi;j � K‘

j ip‘Þ t j;
ð57Þ

with partial derivatives aRi;j � oaRi
�
oq j and

pi;j � opi=oq j. Finally, a similar manipulation of

Eqs. (51) and (55) yields

ðmRR
_/R�rRÞdkR

��t2
t1
þ
Z t2

t1

ðrR � mRR
_/RÞdlR

h

þð _rR þ cRR _/R þ kRR/
RÞdkR

i
dt ¼ 0:

ð58Þ

Note that the holonomic version of the constraints, as

expressed by Eq. (37), is employed in Eqs. (56) and

(58). A similar form is obtained for each nonholo-

nomic constraint by eliminating the terms involving

kRR.

By construction, the variations wi (representing dqi

for a true coordinate qi), dkR, dti, dlR, dpi and drR are
independent for all i ¼ 1; . . .; n and R ¼ 1; . . .; k.

Therefore, collecting the terms of Eqs. (56) and (58),

multiplied by the variations wi and dkR, yields

��
pi �

Xk

R¼1
aRi mRRl

R � pi

�
wi

�����
t2

t1

�
Z t2

t1

��
p‘ þ

Xk

R¼1
aR‘mRRl

R � p‘

��
s‘ij � K‘

ij

þ r‘ij

�
t j þ fi � _pi þ

XK

R¼1

�
aRi

�
cRRl

R þ kRRk
R

� f R

�
� _aRi mRRl

R

��
wi dt ¼ 0;

ð59Þ

and

ðmRR
_/R�rRÞdkR

��t2
t1

þ
Z t2

t1

ð _rR þ cRR _/R þ kRR/
RÞdkR dt ¼ 0;

ð60Þ

respectively. Then, collecting the terms of the same

equations, multiplied by dti and dlR, yields
Z t2

t1

ðpi � pi þ
Xk

R¼1
aRi mRRl

RÞdti dt ¼ 0 ð61Þ

and

Z t2

t1

ðrR � mRR
_/RÞdlRd t ¼ 0; ð62Þ

respectively. The last two equations can be used in

order to obtain updates of the values of the generalized

momenta pi and rR, respectively, when necessary.

Likewise, Eqs. (52) and (53) are used in order to obtain

updates of the values of the generalized coordinates qi

and the Lagrange multipliers kR, respectively. The
above results provide a solid foundation for perform-

ing an appropriate temporal discretization of the

equations of motion, based on the weak form, as

explained in Sect. 4.2.

4 Numerical integration of the equations of motion

The equations of motion of the class of mechanical

systems examined comprise strongly nonlinear sets of

ODEs in both the strong form, expressed by Eqs. (36)

and (37), and in the first-order weak form, expressed

by Eqs. (59)–(62), (52) and (53). Therefore, their

solution can be determined by applying a plethora of

suitable numerical integration techniques. Next, a

sample of such techniques is presented, starting from
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the simplest and concluding with the most involved

and effective methodology.

4.1 Direct integration of the strong form

The easiest and most direct way to integrate the

equations of motion of the class of systems examined

is to consider their strong form, expressed by Eqs. (36)

and (37). Specifically, Eq. (36) is first rewritten in the

second-order ODE form

MðqÞ €qþ _MðqÞ _qþ hðq; _qÞ � f ðq; _q; tÞ

� ATðqÞðM€kþ _M _kþ C _kþ Kk� f Þ ¼ 0:
ð63Þ

Likewise, taking into account Eq. (12), Eq. (37) is put

in the form

ðM _/Þ� þ C _/þ K/ ¼ 0 ) MðA€qþ _A _qÞ

þ ð _M þ CÞA _qþ K / ¼ 0:
ð64Þ

Therefore, combination of Eqs. (63) and (64) leads

eventually to the composite form

MðqÞ �ATðqÞM

�MA 0

" #
€q

€k

 !

þ
_MðqÞ _qþhðq; _qÞ� f ðq; _q;tÞ�ATðqÞð _M _kþC _kþKk� f Þ

�½M _Aþð _MþCÞA� _q�K/

0

@

1

A

¼0:

ð65Þ

The above represents a strongly nonlinear set of

second-order ODEs for the generalized coordinates qi

and the Lagrange multipliers kR. Therefore, given any
appropriate set of initial conditions, this system of

equations can be solved by using any numerical

integration method which is suitable for ODEs.

Based on the existing literature on the subject, both

implicit and explicit numerical integration methods

can be developed and applied in solving Eq. (65). In

fact, special methods exploiting the Lie group struc-

ture and possible symmetries of the configuration

space can be developed [9, 37]. In particular, the

existence of group properties provides the ground for a

definition of appropriate left and right translation

operators, which in turn furnish valuable analytical

tools, such as the identification of one-parameter

subgroups and the generation of the corresponding

exponential matrices [28, 31]. Then, these tools can be

used for the development of suitable numerical algo-

rithms, so that all the integration points remain on the

manifold [38–40]. Such methods have already been

developed for solving the equations of motion of

multibody systems in DAE form [41, 42]. In cases

where the system examined possesses redundant

coordinates or passes from singular positions, it is

advantageous to apply an augmented Lagrangian

formulation [43–46]. Here, the application of such

methods can lead to additional advantages, in both

cases, since the equations of motion appear in an ODE

rather than a DAE form.

4.2 Direct integration of the weak form

In general, the presence of motion constraints causes a

non-flatness (i.e., appearance of curvature and/or

torsion) to the configuration space of the class of

systems examined. Therefore, it is useful to utilize

special types of curves in performing the temporal

discretization, in order to exploit the geometric

properties of this space. For instance, the most natural

curves to select are the autoparallels, corresponding to

the ‘‘straightest’’ curves on the configuration manifold

[28, 29]. Likewise, the one-parameter subgroups are

the most appropriate curves on the manifold, when the

manifold possesses group properties. In fact, in rigid

body spherical motion it was possible to select the

affinities on the configuration manifold so that the

autoparallel curves coincide with the curve on the

manifold corresponding to one-parameter subgroups

and their left translation [47, 48].

Among all the possible choices, a special temporal

discretization is performed. Specifically, taking into

account earlier approaches applied to flat spaces [49],

all the variations in Eqs. (52), (53) and (59)–(62) are

assumed to remain constant within each time interval

[tm; tmþ1], while the corresponding variables vary

linearly in time. Then, these conditions help to convert

Eqs. (52) and (53) into relations with the following

general form:

q
mþ1

¼ q
m
þ gðtmþ1; tmÞDt ð66Þ

and
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kRmþ1 ¼ kRm þ 1

2
lRmþ1 þ lRm
� �

Dt; R ¼ 1; . . .; k;

ð67Þ

where Dt ¼ tmþ1 � tm is the time step. In particular,

the function gðtmþ1; tmÞ in Eq. (66) is determined in

terms of the components of the connection selected.

For instance, in a Euclidean configuration space [23],

where Kk
ij ¼ 0, it turns out that

gðtmþ1; tmÞ ¼
1

2
ðtmþ1 þ tmÞ:

Equations (66) and (67) represent update formulas

for the generalized coordinates and the Lagrange

multipliers, respectively. For simplicity and clarity,

the numerical implementation of the algorithm

employed for solving the discretized set of equations

of motion, given by Eqs. (59) and (60), is presented

next for mechanical systems possessing rigid bodies

only. In this case, through the choices r‘ij ¼ 0 and

s‘ij ¼ K‘
ij, with the affinities as determined in [23],

Eqs. (59) and (60) are replaced by
�

pi �
Xk

R¼1
aRi mRRl

R
	 
���

t2

t1

�
Z t2

t1

�
fi þ

Xk

R¼1

�
aRi

�
cRRl

R

þ kRRk
R � f R

�
� _aRi mRRl

R

��
dt

�
wi ¼ 0

ð68Þ

and

½ðmRR
_/RÞjt2t1þ

Z t2

t1

ðcRR _/R þ kRR/
RÞ dt� dkR ¼ 0;

ð69Þ

respectively. Then, Eq. (68) can be put in the matrix

form

½Aðp� ATMlÞ�
���
tmþ1

tm
�
Z tmþ1

tm

A f dt ¼ 0; ð70Þ

with

f � f þ ATðClþ Kk� f Þ � BTMl and B � ½ _aRi �;
ð71Þ

where the terms _aRi are defined by Eq. (57). In

addition, the action of operator A is equivalent to

the identity matrix or the corresponding rotation

matrix of a rigid body when it applies to its transla-

tional or rotational degrees of freedom, respectively.

Likewise, Eq. (69) is also put in the matrix form

½M _/�
���
tmþ1

tm
þ
Z tmþ1

tm

h dt ¼ 0; ð72Þ

with

h � C _/þ K/: ð73Þ

Therefore, the application of the classical trapezoidal

rule to Eqs. (70) and (72) leads eventually to the

equations

½Aðp� AT �MlÞ�
���
tmþ1

tm
� 1

2
Dt ðAmf

m
þAmþ1f

mþ1
Þ

¼ 0;

ð74Þ

and

½M _/ �
���
tmþ1

tm
þ 1

2
Dt ðh mþ1 þ h mÞ ¼ 0; ð75Þ

respectively.

In summary, the set of unknowns arising by

application of the three-field weak formulation

includes the generalized coordinates qi and kR, the
corresponding generalized velocities ti and lR as well

as the generalized momenta pi and rR. Therefore, it
includes 3ðnþ kÞ unknowns, satisfying the system of

3ðnþ kÞ nonlinear algebraic equations consisting of

Eqs. (61), (62), (66), (67), (74) and (75). This set of

equations is solved by applying a block-type iterative

technique within each time step [50], as explained

next.

First, it is assumed that the values of all the

unknowns but the components of the weak velocity

vectors, t ¼ ðt1. . . tnÞT and l ¼ ðl1. . . lkÞT, are

fixed. Then, the application of Eqs. (74) and (75)

leads to a set of nþ k nonlinear algebraic equations

only, with form

gðtmþ1; lmþ1
; tm; lm; qm; km; pm; rmÞ ¼ 0; ð76Þ

where tmþ1 and tm represent the values of t at times

tmþ1 and tm, respectively, while a similar meaning is

given to the quantities l, q, k, p and r. Then, Eq. (76)

is solved by applying a Newton–Raphson approach,

with respect to the unknowns
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x � ð tT lT ÞT: ð77Þ

In brief, given an estimate x‘mþ1, a corrected value

x‘þ1
mþ1 is obtained, according to

x‘þ1
mþ1 ¼ x‘mþ1 þ Dx‘; ð78Þ

where the correction Dx‘ is determined by solving the

linearized problem

J‘mþ1D x‘ ¼ �R‘
mþ1; ð79Þ

resulting by substituting Eq. (78) into Eq. (76), with

Jacobian matrix

J‘mþ1 ¼
og

ox
ðt‘mþ1; l

‘
mþ1

; tm; lm; qm; km; pm; rmÞ

and residual vector

R‘
mþ1 ¼ gðt‘mþ1; l

‘
mþ1

; tm; lm; qm; km; pm; rmÞ:

In fact, the residual covector can be split in the form

R
s
T ¼ ðR

s
v R

s
l Þ;

where R
s
v and R

s
l are the numerical residual of

Eqs. (74) and (75), respectively. Then, the square of

the norm of the total residual is evaluated in the form

jjR
s
T jj

2 ¼ ðR
s

T
v R

s

T
l Þ

M�1 0

0 �M�1

� � R
s
v

R
s
l

0
@

1
A

¼ R
s

T
v M

�1R
s
v þR

s

T
l
�M�1R

s
l:

ð80Þ

Likewise, the square of the norm of the residual of the

equation constraints, given by Eq. (12), is obtained by

jjRT
Cjj

2 ¼ _/
T
M _/: ð81Þ

For a given tolerance level, the calculations are
assumed to have converged when both jjR

s T
jj and

jjRCjj are smaller than the selected tolerance value.

When the norms of vector xmþ1 and the constraint

equations become smaller than a pre-specified numer-

ical value, the computations are stopped. Also, if the

iterations exceed a critical number, the time step Dt is
reduced and the process is restarted [51]. After

determining the generalized velocities xmþ1, the

generalized coordinates q
mþ1

and kmþ1 are determined

by a direct update, using Eqs. (66) and (67),

respectively. Next, if the residual in the right-hand

side of Eq. (79) becomes sufficiently small, the

iterations are considered to be complete. Otherwise,

the time step is decreased and the process is repeated.

Eventually, the updated values of the generalized

momentum variables pmþ1 and rmþ1 can also be

obtained, by employing the equations resulting by

direct application of Eqs. (61) and (62), respectively.

4.3 An augmented Lagrangian formulation

In multibody dynamics, there appear many occasions

where the system examined involves redundant con-

straints or passes through singular positions. To over-

come the difficulties arising in such cases, it is

convenient to apply an augmentedLagrangian approach

[43–46]. Then, the equations of motion are derived by

applying optimization techniques to an appropriate

objective function. Based on recent work of the authors,

a suitable objective function is the following:

ð82Þ

with

h
s

� � h
s

�
M
�
Xk

R¼1
TRDh

s

�
R
;

h
s

�
g ¼ ðg1. . . gkÞ and n

s

¼ ðn1. . . nkÞ;

where the positive constants nR are known as penalty

factors, while

h
s

�
gR

� TRDg
s

�
R
¼ gRa

R
i es

i: ð83Þ

Then, performing appropriate mathematical operations

on this objective function leads eventually to a new

weak form [26]. Essentially, this form becomes iden-

tical to that represented by Eqs. (52)–(56) and (58),

provided that the terms lR and kR are substituted by

lR ¼ lR � nR _wR and k
R ¼ kR � nR/

R; ð84Þ

when they are multiplied by mRR or cRR and kRR,

respectively. This permits to include only the weak

velocity t ¼ ð t1 � � � tnÞT in the original set of

unknowns. Then, the solution of each linear problem,

as expressed by Eq. (79), is stopped when vector x ¼ t
is determined up to a pre-specified accuracy or the

iterations exceed a critical number. In the latter case,

the process is restarted after reducing the time step Dt.
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Next, based on Eq. (84), the new values of l are

determined by the augmentation:

ljþ1

mþ1
¼ l j

mþ1
� N _w

j

mþ1
; ð85Þ

where the diagonal matrix

N ¼ diagðn1. . . nkÞ

includes the penalty values. She new round of

iterations is completed when a suitable augmentation

criterion is satisfied. If this is not feasible, the values of

the penalty parameters are increased according to

common practice [52, 53]. Then, the process is

repeated up to satisfaction of the convergence criteria

set on the accurate enforcement of the motion

constraints on the velocity level. Following determi-

nation of t mþ1, the generalized coordinates q
mþ1

and

kmþ1 of the augmented system are evaluated by a

direct update, using Eqs. (66) and (67), respectively.

When both the residual in the right-hand side of

Eq. (79) and the error in the motion constraints,

expressed by Eq. (37), become also sufficiently small,

the iterations are stopped. Otherwise, the time step is

decreased and the process is repeated. After all these

iterations are finished, the values of the generalized

momenta pmþ1 and rmþ1 can also be determined by

employing the equations resulting from application of

Eqs. (61) and (62), respectively.

5 Numerical results

In this section, the theoretical and numerical advantages

of the new set of equations of motion, obtained for the

class of constrained dynamic systems examined, are

supported and illustrated by numerical results. Specif-

ically, a selected set of results is presented for five

challenging mechanical examples. The attention is

focused on comparisons with analytical results as well

as with results produced by employing standard DAE

solvers and codes. Finally, comparison with results

from a benchmark problem is also performed.

5.1 Torque-free motion of a rigid body

with spherically symmetric inertia

In the first example, torque-free motion of a rigid body

with spherically symmetric inertia is investigated.

Namely, the body has equal mass moments of inertia

along the axes of an orthonormal Cartesian frame

Oxyz, which is fixed in the body and has origin at its

center of mass O. That is,

Ixx ¼ Iyy ¼ Izz � IO: ð86Þ

Therefore, the mass moment of inertia matrix with

respect to the center of mass O has the form I ¼ IOI3,

where I3 is the 3� 3 identity matrix. In fact, this

implies that the mass moment of inertia of the body

along any axis passing through point O is equal to IO
(equimomental [27, 54]). For such bodies, by a simple

inspection of the Euler equations

I _Xþ ~X I X ¼ 0; ð87Þ

it can be verified that they accept simple solutions with

form

_Xx ¼ _Xy ¼ _Xz ¼ 0: ð88Þ

This means that the body preserves its original angular

velocity X0, and it therefore undergoes a pure rotation

about the axis defined by X0, throughout its subse-

quent motion.

If OXYZ is a fixed (inertial) frame, the body

orientation is specified completely by using the

corresponding 3–1-3 set of Euler angles

h E ¼ ðu h w ÞT, where u, h and w represent

precession, nutation and spin angles, respectively

[6, 55]. Starting from Eq. (87), the equations govern-

ing the rotational part of a torque-free motion of a rigid

body become:

TTI T €hE þ TTðI _T þ ~X I TÞ _hE ¼ 0; ð89Þ

where

X ¼ T _hE ð90Þ

and T represents the transformation matrix between X

and _hE [6]. Furthermore, the translation of the body

under no external forcing is described by the equations

of motion

M €rO ¼ 0; ð91Þ

where M ¼ m I3 is the mass matrix of the body.

Obviously, the rotational and translational compo-

nents of the motion, governed by Eqs. (89) and (91),

respectively, are decoupled. Moreover, if the initial

conditions r Oð0Þ ¼ 0 and _r Oð0Þ ¼ 0 are imposed, it

can easily be proved that r OðtÞ ¼ 0.
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Next, numerical integration of Eqs. (89) and (91)

was performed, after imposing the condition / ¼
r OðtÞ ¼ 0 as a motion constraint, instead, through a

spherical joint at the mass center O. The specific body

examined consists of three identical rods, connected at

their centers, as shown in Fig. 1a. Each rod has mass

m ¼ 1 kg and length ‘ ¼ 1 m. Also, each rod axis is

aligned with one of the axes of the body frameOxyz, so

that IO ¼ 1
6
ml2. In addition, the example body starts

moving from an initial position with ðu0; h0;w0Þ ¼
ð0; p=2; 0Þ and an angular velocity having components

Xx0 ¼ 1 rad=s, Xy0 ¼ 2 rad=s and Xz0 ¼ 3 rad=s.

First, in Fig. 1b, c are shown numerical results

obtained by integrating the new set of the equations of

motion. Specifically, in Fig. 1b are depicted the time

histories of the angular velocity components Xx, Xy

and Xz, over the first 50 s of the motion. The

corresponding mechanical energy of the body is

included in Fig. 1b. The results presented were

obtained by employing the numerical integration of

the strong form and the weak form, as presented in

Sect. 4.1 and 4.2, respectively. The strong form,

expressed by Eq. (65), was integrated by using the

MATLAB solver ode45. In brief, this is a single-step

solver, based on an explicit Runge–Kutta (4, 5)

formula [56]. This method is labeled by ODE-45,

while the integration method of the weak form is

labeled by ODE-GC. For the ODE-45 method, the

maximum time step was set equal to 0.1 s, while three

different values were selected for the numerical

tolerance. Specifically, the tolerance value was chosen

so that the relative tolerance is equal to the absolute

tolerance. Also, for the ODE-GC method, the toler-

ance value is chosen by Eq. (80).

It is remarkable that the new method ODE-GC

captures the correct time history in just one step,

independently on the duration of the motion and the

magnitude of the tolerance value. This is so because

this method is geometrically consistent (GC), since it

takes full advantage of the manifold geometry.

Namely, the temporal discretization is performed by

using the autoparallel curves on the manifold. For

rigid body rotation, these curves correspond to pure

rotation, by definition [48]. On the other hand, the

Fig. 1 Torque-free motion:

a mechanical example,

b angular velocity

components and

c mechanical energy of the

example body, using the

ODE-GC (geometrically

consistent) new method and

the MATLAB ODE-45

solver with Eq. (65)
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discretization employed in ode45 needs a sufficiently

small time step to run, since this solver does not

respect the manifold geometry and the integration is

not performed along curves of the manifold corre-

sponding to pure rotation. Consequently, the results

start deviating from the expected pure rotation along

the original axis of rotation, so that smaller time steps

are required for the same level of accuracy.

In the results presented, the accuracy level of the

computations is governed by the tolerance parameter.

Obviously, the solution deviates from the exact

solution in all cases, eventually. However, the smaller

the tolerance value, the closer the numerical solution

comes to the exact motion. This effect is also reflected

in the corresponding mechanical energy, shown in

Fig. 1c, indicating that the numerical solution con-

verges to the exact solution, as the numerical accuracy

level is increased.

Next, the equations of motion were put in a classical

DAE form. More specifically, the following set of

equations of motion was employed:

ðMðqÞ _qÞ� þ hðq; _qÞ ¼ f ðq; _q; tÞ þ ATðqÞk; ð92Þ

accompanied by the equations of constraint in the form

/ ¼ 0 or €/ ¼ 0; ð93Þ

corresponding to the index-3 and index-1 formulation,

respectively [6, 8]. These equations were integrated by

employing the MATLAB solvers ode15i and ode15s.

In brief, the former is a fully implicit solver (DAE-FI),

based on the backward differentiation formulas

(BDFs) of orders 1 to 5 [57], while the latter is a

semi-explicit solver (DAE-SE), based on the numer-

ical differentiation formulas (NDFs) of orders 1 to 5

[58]. In both cases, Eq. (93) was replaced by

€/þ CB
_/þ KB / ¼ 0; ð94Þ

where the elements of the diagonal matricesCB andKB

were selected according to the classical constraint

stabilization approach suggested by Baumgarte

[8, 59].

First, results obtained by using the fully implicit

DAE formulation (DAE-FI) are presented in Fig. 2,

for a maximum time step of 0.1 s and three different

values of the tolerance. The angular velocity compo-

nents are depicted in Fig. 2a, while the mechanical

energy of the rigid body is shown in Fig. 2b. For

comparison purposes, the corresponding results of the

geometrically consistent new method (ODE-GC) are

also included. The results indicate that the predictions

of the DAE-FI solver exhibit a continuous divergence

from the exact motion, which is also reflected in the

mechanical energy history. For the largest tolerance

value, the energy reaches levels about two orders of

magnitude larger than the initial energy, while for the

intermediate tolerance value the integration fails at

about 72 s, as indicated by the star symbol in Fig. 2b.

Finally, for the smallest tolerance value, this DAE

integration method led to a pure rotation about an axis

which is different than the original axis, after a long

transient period. This is illustrated by including the

time interval between 290 and 300 s in the right side of

Fig. 2a. This deviation cannot be eliminated by

decreasing the value of the numerical tolerance.

Next, similar results obtained by using the semi-

explicit DAE formulation (DAE-SE) are presented in

Fig. 3. Here, the emerging picture is much worse,

since there is no evidence of even converging to a pure

rotation solution by decreasing the tolerance. More

specifically, a new solution arises by changing the

tolerance value. In addition, quite large oscillations of

the mechanical energy are observed to occur in all

cases examined.

5.2 Motion of a spherical pendulum

In the second example, motion of a rigid pendulum,

with massm ¼ 1 kg and length 2‘ ¼ 1 m, is examined.

Its cross-section is circular, with radius r ¼ 0:1 m,

while its end O is supported on the ground through a

spherical joint. Moreover, its longitudinal axis is

aligned with the axis Cx of an orthonormal Cartesian

frame Cxyz, which is fixed in the body, with origin at

its center of mass C, as shown in Fig. 4. In addition,

the orientation of the body with respect to a fixed

frameOXYZ is determined by using the corresponding

3–1-3 set of Euler angles h E ¼ ðu h w ÞT, again.
Finally, the pendulum moves inside a gravity field

with a constant gravity acceleration g ¼ 9:81 m
�
s2,

acting along the OY axis.

The first set of numerical results was obtained by

assuming that the pendulum has an initial position

with r Cð0Þ ¼ ð ‘ 0 0 ÞT, ðu0; h0;w0Þ ¼ ð0; p=2; 0Þ
and starts from rest (i.e., with _r Cð0Þ ¼ 0 and

Xð0Þ ¼ 0), as depicted in Fig. 4. First, in Fig. 5 are

shown the time histories of the norm of the motion
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constraint function /, the norm of _/, the time step

employed during numerical integration and the

mechanical energy of the body over the first two

seconds of the motion. In particular, the constraint

function is defined by

/ ¼ rC þ R s; ð95Þ

with s ¼ ð�‘ 0 0 ÞT. Then, differentiation of

Eq. (95) leads to

_/ ¼ _vC þ _Rs ¼ ½ I3 �R~sT �
_vC
_hE

 !
; ð96Þ

Fig. 2 Torque-free motion: a angular velocity components and b mechanical energy of the rigid body, using the fully implicit DAE

formulation (DAE-FI) and the geometrically consistent new method (ODE-GC)

Fig. 3 Torque-free motion: a angular velocity components and b mechanical energy of the rigid body, using the semi-explicit DAE

formulation (DAE-SE) and the geometrically consistent new method (ODE-GC)
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which specifies the constraint matrix

A ¼ ½ I3 �R ~s T �, required in Eq. (92).

The numerical methods applied to the first example

are also applied to this, a little more involved,

mechanical example. More specifically, a comparison

is performed between results obtained by employing

the geometrically consistent new method (ODE-GC)

and by integrating Eq. (65) using theMATLAB solver

ode45 (ODE-45) and Eqs. (92) and (94) using the

MATLAB solvers ode15s (DAE-SE) and ode15i

(DAE-FI). When using the ODE-GC method, the time

step was set equal to the constant value 0.01 s. In all

other cases, the maximum time step was set equal to

0.01 s, since these methods employ a variable time

step. Also, in all cases, a tolerance value equal to 0.001

was selected.

First, the results shown in Fig. 5a, b reveal that the

norms of k/k and k _/k are sufficiently small in all

Fig. 4 A spherical

pendulum under the action

of gravity

Fig. 5 Time histories of: a
the norm of the motion

constraint function /, b the

norm of _/, c the time step of

numerical integration and

d the mechanical energy, for

motion of a spherical

pendulum
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methods. In particular, the results of the ODE-GC

method are close to the required accuracy level. Also,

the biggest values for both of these norms appear for

the DAE-FI method, while the smallest values are

obtained by ODE-45. The last observation is justified

by the high order of accuracy of the ode45 Runge–

Kutta solver [56]. In fact, all these are also reflected by

the results of Fig. 5c, providing the history of the time

step selected by each method. The last results reveal

that the DAE-FI method exhibits the most irregular

variation of the time step. Finally, the corresponding

mechanical energy is depicted in Fig. 5d. Again, the

DAE-FI solver exhibits the worst performance.

Under the initial conditions selected, the pendulum

is expected to undergo planar motion (within the OXY

plane). This was found to be the case by using the

geometrically consistent ODE-GC and the ODE-45

solver, indeed. However, integration with the DAE

methods led to different results. For instance, in

Fig. 6a, b are presented results obtained for the

displacement of the pendulum center along the

direction of the OX and the OZ axes, respectively,

over the first 40 s of the motion. First, the DAE-SE

solver exhibited an instability at about 20 s and failed

to run further at about 32 s, as indicated by the star

symbol. In fact, this instability is related to the

appearance of a strong out of plane displacement, as

shown in Fig. 6b. Also, the DAE-FI solver run through

the whole time interval considered but gave accept-

able results at the beginning of the motion only. The

corresponding histories of the time step and the

mechanical energy are also included in Fig. 6c, d.

Obviously, both DAE solvers exhibit very large and

irregular variations in the time step. Moreover, direct

comparison with the results of the geometrically

consistent new method shows that the numerical

instability developed at about 20 s when using the

DAE-SE solver is also related to an exceeding increase

in the mechanical energy within the time interval

20–32 s, which destroys the subsequent solution.

Next, a second set of numerical results was

obtained by assuming that the initial conditions are

Fig. 6 Time histories of the

pendulum: a center of mass

displacement along the OX
axis and b along theOZ axis,
c integration time step and

d mechanical energy
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the same as before, but with Xzð0Þ ¼ 0:1 rad=s. Under

this new set of initial conditions, the pendulum is

expected to exhibit a spatial motion. First, in Fig. 7a–d

are shown the time histories of the norms of / and _/,

the time step of integration and the mechanical energy

of the body, by applying the same numerical

integration methods. The results reveal that the

DAE-SE solver run over the time interval examined.

However, it gave acceptable results at the very

beginning of the motion, only, as confirmed by the

results of Fig. 7a, b. In contrast, the DAE-FI solver

failed in this case, at about 5.5 s. The history of the

Fig. 7 Time histories of: a
the norm of the motion

constraint function /, b the

norm of _/, c the time step of

numerical integration, d the

mechanical energy, e the
center of mass displacement

along the OX axis and

(f) along the OZ axis, for

motion of a spherical

pendulum
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time step and the energy, shown in Fig. 7c, d,

respectively, provides a justification for the unusual

behavior observed. Finally, in Fig. 7e, f are presented

results obtained for the displacement of the pendulum

center along the direction of the OX and the OZ axes,

respectively. Once again, the results obtained by the

DAE methods are problematic. More specifically, the

DAE-FI solver provided results which appear to be

reasonably close to the solution obtained by both the

ODE solvers, but it failed to continue after 5.5 s. In

addition, the DAE-SE solver provided highly inaccu-

rate results from the very beginning of the motion. On

the other hand, the predictions of both ODE-GC and

ODE-45 stay close throughout the motion, which now

becomes spatial, by developing a significant displace-

ment component along the OZ axis in a gradual

manner.

5.3 Chain motion

In the third example, motion of a chain, involving

fifteen identical members and suspended at four

points, is investigated. The suspension points A, B,

C and D are located at a distance of b ¼ 0:9144 m

apart, as shown in Fig. 8. Each member is a bar with

mass m ¼ 1 kg and length ‘ ¼ 0:3048 m, all inter-

connected with spherical joints. At some moment,

while the chain is at rest, the supports at the

intermediate points B and C are removed suddenly

and the chain starts moving under the action of gravity.

Specifically, the gravity acceleration is g ¼ 9:81 m/s2

and acts along the negative AY axis of a fixed frame

AXYZ. Finally, each bar is modeled as a rigid body

with six generalized coordinates, so that the total

system is described by 90 generalized coordinates and

involves 48 motion constraints. More details about the

chain configuration can be found in the original

reference [60].

Next, in Fig. 9 are presented and compared results

obtained by using the ODE-GC numerical integration

with results derived by employing two state-of-the-art

commercial codes [61, 62]. In those codes, the

equations of motion are first set up as a system of

high-index DAEs, which are then solved numerically,

by employing classical backward differentiation for-

mulas (BDFs). In particular, the GSTIFF and DASPK

methods were selected in solving the equations of

motion by ADAMS andMotion Solve, respectively. In

brief, GSTIFF is a variable-order, variable-step, multi-

step integrator with a maximum integration order of

six. The BDF coefficients it uses are calculated by

assuming that the step size of the model is mostly

constant [61]. Likewise, DASPK solves a system of

differential/algebraic equations of the form

Gðt; y; y0Þ ¼ 0, using a combination of BDF methods

[62]. For each of the two codes, the numerical results

were determined for a maximum allowable time step

of 0.001 s. Instead, the time step is kept constant to the

value of 0.001 s in ODE-GC.

Originally, the history of the mechanical energy of

the system over the first two seconds of the motion is

shown in Fig. 9a. According to the analytical predic-

tions, the mechanical energy of the system should

remain constant, through the entire duration of the

motion. The results of the codes were obtained for two

widely different values of the numerical tolerance

parameter. In all cases, a sudden and large drop in the

mechanical energy is observed at the time where point

E reaches its lowest position for the first time. At that

instant, the forces developed at the joints become very

large temporarily. As an outcome, the results obtained

by the DAE solvers for the larger tolerance value

present a drop in the energy, which continuous

afterward. In contrast, the ODE solution and the

solutions obtained by both the DAE solvers for the

smaller tolerance seem to return to the correct value,

Fig. 8 Initial static configuration of a fifteen member chain
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after that moment. However, the results presented in

Fig. 9b, showing the history of the mechanical energy

of the system over the first twenty seconds of the

motion, indicate that only the new method conserves

the energy eventually. This is attributed to the way the

constraints are treated and imposed in the overall

formulation. On the other hand, this is not the case for

the results obtained by both the DAE solvers. For

scaling purposes, only the results corresponding to the

smaller tolerance value are included in Fig. 9b, c.

These results illustrate that an increase in the numer-

ical accuracy level has only a temporary effect, but it

cannot eliminate the inherent problems of the DAE

solvers.

Also, despite the fact that the initial static position

and the forcing are planar, the two DAE solvers

predict significant levels of out-of-plane motion. For

instance, in Fig. 9c are presented the time histories

obtained for the displacement of the middle point E

along the AZ axis. The new method (ODE-GC)

predicts a virtually zero value for the out-of-plane

displacement. However, both ADAMS and Motion

Solve (even with the smaller tolerance value) predict

the development of significant levels of out-of-plane

motion, after an initial short interval of plane motion.

Finally, the time evolution of the time steps required

during the direct integration is included in Fig. 9d. The

new method produces quite satisfactory results with

the selected time step, throughout the computations.

However, the DAE solvers require a much smaller

time step, compared to the time step needed in ODE-

GC.

5.4 Motion of a spinning top

In the fourth example, motion of a spinning top is

examined. In particular, the top has a symmetry axis

Oz, whose point O is fixed on the ground, as shown in

Fig. 10. Consequently, if frame Oxyz is fixed in the

body and frame OXYZ is fixed on the ground, the

Fig. 9 Motion of a chain:

a mechanical energy of the

system over the first two

seconds and b over the first

twenty seconds, c out-of-
plane displacement of point

E, d integration time step
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configuration of the top is specified completely by the

3–1–3 set of Euler angles hE ¼ ðu h w ÞT. More-

over, the top is under the action of a uniform gravity

field, acting along the negative OZ axis, while the

friction effects are negligible. Finally, the top center of

mass C is located at a distance ‘ from point O and the

mass of the top is m. In addition, the mass moment of

inertia with respect to point O is Izz ¼ Ia about the

symmetry axis and Ixx ¼ Iyy ¼ It about the other body

axes.

The spinning top was selected as a mechanical

example since its dynamics is quite interesting and

admits an exact solution [54, 55]. This provides the

ground to evaluate the numerical performance and

accuracy of both the new ODE methods and the DAE

solvers, by direct comparison with existing analytical

solutions. For instance, in Fig. 11 are presented results

for one of the most characteristic motions of a heavy

symmetrical top, known as cuspidal motion. These

motions appear under the following special choice of

the initial conditions.

u0 ¼ w0 ¼ 0; hð0Þ ¼ h0; _u0 ¼ _h0 ¼ 0;
_wð0Þ ¼ x3:

During such a motion, the analysis predicts that the

top nutates between the angles h0 and h1 [ h0, while it

precesses and spins, simultaneously, with time-vary-

ing angular rates _u and _w.
The spinning top was modeled as a constrained 6-

dof rigid body, where the constraint function is given

by Eq. (95), again, with s ¼ ð 0 0 �‘ ÞT. In partic-

ular, the set of numerical results presented in Fig. 11

were obtained for the following set of numerical

values: m ¼ 5 kg, ‘ ¼ 0:1 m, Ia ¼ 0:01 kg m2, It ¼
0:1 kg m2 and a gravity acceleration g ¼ 9:81 m/s2.

Moreover, h0 ¼ 20 �, x3 ¼ Xzð0Þ ¼ 50 rad/s, while

the tolerance value was selected equal to 10–4. Finally,

a fixed time step of 0.001 s was chosen for ODE-GC,

while a maximum time step of 0.001 s was allowed for

all the other solvers.

First, in Fig. 11a, b is presented the time history of

the nutation angle and the angular rate _u, over the

initial 5 s of the motion. The results demonstrate that

the predictions of both the ODE solvers (ODE-45 and

ODE-GC) are virtually coincident with the analytical

results. However, the ODE-45 solver achieves that

objective at the expense of a large decrease in the time

step, as is illustrated by Fig. 11c. In contrast, the

results obtained by either DAE-SE or DAE-FI are not

appropriate. More specifically, the DAE-FI solver

provides results of acceptable accuracy, only during a

short initial interval, and it then fails suddenly to

continue. In addition, the DAE-SE solver runs

throughout the time interval examined, but the solu-

tion obtained is inaccurate. Also, its time step varies

rapidly, by about four orders of magnitude during the

computations. These results are also reflected by

Fig. 11d, where the mechanical energy of the system

is plotted.

5.5 Motion of a multi-bar system

In the last example, motion of a multiple four-bar

mechanism, possessing five degrees of freedom, is

investigated. In fact, the system examined is a

benchmark problem, where the main objective is to

assess the efficiency of a multibody formulation in the

dynamic simulation as well as to test the handling of

redundant constraint equations and singular positions

[63]. More specifically, the system consists of a 5 9 5

grid of four-bar mechanisms, with members aligned

with the OY and OZ axes of a fixed coordinate system

OXYZ. The initial static position of the system is

depicted in Fig. 12a.

Fig. 10 A spinning top
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The members of the system examined are modeled

as three-dimensional bodies. This implies that the

system is mechanically over-constrained. Specifically,

the bodies are connected through revolute joints,

which are parallel to the OX axis. Also, all the bars

have a length of 1 m, a uniformly distributed mass of

1 kg and a negligible mass moment of inertia with

respect to their longitudinal axis. Moreover, the

mechanism is under the action of gravity, which acts

along the negativeOZ axis, with a gravity acceleration

of g ¼ 9:81 m/s2. In addition, the initial velocity of the

six top bodies is _u1 ¼ 2p=3 rad/s, while the simula-

tion is run for 10 s. Furthermore, the total number of

moving bodies is 55, while the number of joints is 80.

Finally, the mechanical energy of the system is

evaluated at every time step. After defining the energy

drift as the absolute value of the difference between

the current and the initial system energy, the simula-

tion error is computed as the maximum energy drift,

with maximum allowable value 1 J.

Next, in Fig. 12b–f are presented numerical results

obtained by applying the numerical integration of the

new method and compared with the benchmark

results. Due to the presence of redundant coordinates

and multiple singular solutions, the augmented

Lagrangian version of the ODE-GC solver was

employed for this set of calculations [26]. Direct

comparison demonstrates that the results on the

response quantities are virtually indistinguishable. In

fact, ODE-GC leads to a much better energy predic-

tion. All these results illustrate the numerical accuracy

and efficiency of the new method.

6 Synopsis and extensions

In the first part of this work, the essential steps of a

theoretical procedure were presented, leading to a new

set of equations governing the motion of a general

class of multibody dynamic systems subjected to

Fig. 11 Cuspidal motion of

a spinning top. History of

the: a nutation angle, b
angular rate _u, c time step

and d mechanical energy
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equality motion constraints. This procedure was

founded on fundamental concepts of Analytical

Mechanics and provided a set of pure second-order

ODEs in a natural manner. Then, this set was

converted to an equivalent first-order three-field weak

form. This provided the foundation to develop an

appropriate numerical integration scheme, respecting

the geometric properties of the configuration space

and avoiding the singularities and instabilities related

to existing DAE formulations. Moreover, to cover

cases involving redundant coordinates and singular

positions, this scheme was also extended and put to a

convenient Augmented Lagrangian form.

In the second part of this study, the numerical

effectiveness and accuracy of the scheme developed

were tested in several mechanical example systems.

This was done by comparison of numerical results

with similar results obtained by using analytical

Fig. 12 Numerical results

for a 5-DOF multiple four-

bar mechanism: a initial

static position of the overall

mechanism, b total

mechanical energy,

c angular position and

d angular velocity of the first
row of four-bar

mechanisms, e Y coordinate

and f Z coordinate of joint A
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solutions as well with results determined by employ-

ing DAE solvers. In particular, the results of the new

method were found to be virtually coincident with the

analytical predictions and the results of a benchmark

problem. Also, the robustness, accuracy and efficiency

of the new numerical method were demonstrated by

comparison with classical DAE solvers. These solvers

exhibited the usual pathologies related to their singular

form and expressed by gradual and eventually large

deviations from the solution or by appearance of

sudden instabilities. Even worse, it was found that

application of typical numerical procedures, like the

reduction of the time step or the allowable tolerance

level, does not guarantee an improvement in the

quality of the numerical results of the DAE solvers.

All these are in agreement with findings of previous

studies on the subject [8, 18–21, 64, 65]. The superior

performance of the new method over the classical

DAE solvers is due to the consistent and systematic

exploitation of the complex geometric properties

characterizing the configuration space of the class of

systems examined. This is reflected both by the extra

terms appearing in the equations of motion and by the

consistent geometric discretization performed. The

former causes a natural stabilization and scaling of the

equations of motion, while the latter adds robustness to

the numerical discretization process.

The new method can be applied to more complex

and challenging mechanical systems. For instance, it

can easily be extended to systems with rheonomic

characteristics, where the new set of equations of

motion is also available [32]. Furthermore, a related

area, with an enormous theoretical and engineering

significance, is the area of multibody systems involv-

ing contacts, impacts and friction, where the geometry

and dynamics of the motion are more complex, since

some of the constraints appear in an inequality form

[66–68]. Some preliminary work, applicable to single

contact events, indicates that similar methodologies

are applicable and equally beneficial. Specifically, the

equations of motion can be put in a second-order ODE

form, again. Moreover, development and application

of geometrically consistent methodologies are still

available [69, 70]. Another possible extension is to

multibody dynamic systems where some of the

members of the system exhibit significant deforma-

bility [6, 8]. In this respect, it is of interest to

investigate how do the motion constraints applied to

bodies with a general three-dimensional geometry

affect the geometric properties (mainly the affinities)

of the resulting two-dimensional (e.g., plates, shells)

and one-dimensional (e.g., rods, rings, beams) coun-

terparts [71]. In addition, investigation of similar

effects of the classical geometric discretization pro-

cedures applied to the original continuous body (e.g.,

finite element methods [72]) is also desirable. Fur-

thermore, an area with large engineering significance

for the application of the new method is the special but

large class of mechanical systems with linear charac-

teristics, subject to linear motion constraints [73, 74].

This will also be useful in efforts to investigate the

stability properties of the numerical integration

schemes. Finally, the ODE form of the new equations

of motion makes amenable the development of new

robust implicit or explicit numerical integration

methods, depending on the specific characteristics

and properties of the system examined, as well as their

application to large-scale mechanical systems

[74, 75].
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