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Abstract Fatigue damage is a common type of struc-
tural damage associated with long-term cyclic loading
operating on engineering structures. Within the fatigue
damage phenomenon, the breathing cracks are basic
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and widely occurred forms of fatigue damage in struc-
tures. Therefore, the identification and assessment of
breathing cracks are very crucial. Some damage iden-
tification methods to assess the breathing cracks are
available, but they have a common limitation is that
they focus on detection of the breathing crack, but they
cannot characterize its severity. Hence, the character-
ization of breathing cracks by creating robust nonlin-
ear damage indicators, that can accurately quantify the
degree of nonlinearity of breathing cracks, is of great
significance. To this end, a robust nonlinear damage
factor is developed by effectively utilizing the Fourier
transform in a multi-stage manner. The procedure of
creating this factor involves two steps of progressive
use of fast Fourier transform (FFT): (i) damage detec-
tion,where the secondary peaks of theFourier spectrum
indicate the presence of breathing cracks and imply the
dynamic inner interactions of them, and (ii) damage
quantification, where the FFT of the Fourier spectrum
is implemented and the resulted features that can quan-
titatively depict the degree of nonlinearity of breath-
ing cracks are utilized. The new method is called the
dual Fourier transform spectra (DFTS), where the FFT
of the Fourier spectrum is defined as a robust nonlin-
ear damage factor for breathing crack assessment in
beam-like structures. Various single and multiple dam-
age scenarios are studied numerically and experimen-
tally after considering noisy conditions. The proposed
method demonstrates outstanding performance and can
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be recommended for damage detection and quantifica-
tion of fatigue-breathing cracks in beam-like structures.

Keywords Fatigue crack · Breathing crack · Multiple
cracks · Damage severity · FEA · Experimental tests

1 Introduction

Fatigue-breathing cracks can appear in engineering
structures after a long duration of repetitive loading
and can develop to severe levels, threatening structural
integrity and safety which might lead to structural col-
lapse [1]. The fatigue cracks are dangerous because
they are usually negligible compared to the cracked
structure, as they cause minor structural changes in the
dynamic properties. These cracks open and close con-
tinuously according to the cyclic working loads, and
thus they are called breathing cracks [2]. The struc-
tural stiffness at the damage position is considered
to be instantaneous and nonlinear to precisely repre-
sent the opening–closing translation of harmonically
excited breathing cracks [3].

Compared with the modeling approaches of the
open cracks, the modeling of the breathing cracks is
more realistic because it leads to nonlinear vibration
responses due to the contact between the cracks sur-
faces, which results in higher harmonics [4]. These
higher harmonics could be sensitive indicators of
the presence of fatigue damages in structures. Meth-
ods concerning the modeling of breathing cracks and
their generation of higher harmonics mechanisms were
reviewed in [5].

It is well-known that nonlinearity could be exploited
for detecting damage that can be realized from several
studies reported in the literature. Nguyen [6] presented
a damage detection method based on the wavelet spec-
trum to study the effect of breathing and open cracks
on a vehicle-bridge system under a moving vehicle.
Andreaus and Baragatti [7] proved that breathing crack
increases damping and decreases the natural frequen-
cies, which can be considered as damage indicators.
Giannini et al. [8] proposed a nonlinear harmonic iden-
tification technique based on responses to the system’s
nonlinear characteristics.

For detecting the breathing cracks, Boungou et al.
[9] investigated the nonlinear model of a breathing
crack under low cycle fatigue utilizing cyclostationar-
ity. Habtour et al. [10] presented a nonlinear vibration
method for detecting fatigue damage precursors based

on the extraction of nonlinear dynamic characteristics.
Huang et al. [11] introduced a novel approach using
the nonlinear output frequency response functions to
study the cumulative fatigue damage. Lin and Ng [12]
studied the higher-order frequency response functions
and their application for damage detection and assess-
ment to structures with breathing cracks. Prawin and
Rao [13] introduced a nonlinear damage identifica-
tion method based on the Volterra series applying the
adaptive Volterra filter utilizing the nonlinear time his-
tory response. In their other research work [14], they
examined the adaptive filter algorithm via solving a
bilinear oscillator of a beam containing a breathing
crack. Prawin et al. [15] presented a novel baseline-free
detection algorithm for detecting, localizing, and char-
acterizing fatigue cracks using the singular spectrum
analysis. Long et al. [16] proposed a novel stiffness
model that reflects the breathing crack partial closure
effect to show the stiffness variation in the damaged
beam. Avramov and Malyshev [17] derived a nonlin-
ear dynamic model based on the Galerkin method to
studied the bifurcations and chaotic forced vibrations
of a cantilever beam containing two opposite breathing
cracks. Huang et al. [18] proposed a method for crack
detection based on the phase diagram properties.

In the forced vibration, the stiffness is changing peri-
odically during the harmonic vibration. Higher har-
monics could be an indication of the presence of breath-
ing cracks. Andreaus and Casini [19] introduced an
identification method based on analyzing the static
deflection of multi-damaged beams. They developed
a new damage index based on CWT by calculating the
deflection of damaged beams for different crack loca-
tions, sizes, and load conditions. The analysis results
proved that the damage index does not depend on the
mechanical features of beams, and the damage index of
one damage also does not depend on either the location
or size of other damages of the beams. In other work,
Andreaus et al. [20] presented an identification method
for crack detection and quantification of static deflec-
tion in beams usingwavelet analysis. They studied sim-
ply supported beams with single and double cracks
and open and fatigue cracks of different severities and
locations. Xu et al. [21] proposed a new identifica-
tion method based on nonlinear pseudo-force to detect
and locate breathing cracks on beams and analytically
investigated the intrinsic force that drives the breathing
crack to generate higher harmonics. The influence of
higher harmonics has been examined by introducing
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several scenarios. Cui et al. [22] studied the effects of
a beam’s nonlinear characteristics containing a breath-
ing crack under different harmonic loadings using a
bispectrum analysis method. The influence of load-
ing conditions, crack depth, location, and noise on the
nonlinear dynamic properties was examined. Recently,
Prawin and Rao [23] introduced two new indices for
breathing crack detection in beam-like structures. The
two indices exploited the decrease in the amplitude of
the Fourier power spectrum of the linear and nonlinear
components due to the energy transformation to the
nonlinear harmonic components. The results demon-
strated that the linear components of the Fourier power
spectrum amplitude could be efficiently analyzed for
damage detection of breathing cracks.

Several studies [24–26] have examined the breath-
ing crack behavior of damaged structures when sub-
jected to external dynamic excitation.When the crack is
completely closed, the structure is considered an intact
structure.On the contrary,when the crack is completely
open, the structure is considered a damaged structure.
The breathing crack behavior was observed in the form
of higher-order harmonics in the frequency spectrum
of the structural nonlinear vibration response, which
are fractional or integral multiples of the excitation
frequency. Higher-order harmonics are generated due
to the opening and closing of breathing cracks under
external dynamic excitation, which produces tensile
and compressive stresses in the cracked area, known
as breathing crack behavior. The dynamic response of
the structure then becomes nonlinear due to the exis-
tence of a breathing crack, which is associated with
localized stiffness changes. The local stiffness during
the crack openingwill decrease due to the tensile stress,
which corresponds to a damaged state. Conversely, the
local stiffness during the crack closing is restored due to
the compressive stress, which corresponds to a healthy
state. The applied load to the structure induces a peri-
odic change in the local stiffness between intact and
damaged states, which can be utilized to characterize
the nonlinear dynamic response. If the change in the
local stiffness is large, the generated nonlinearity is
significant, which corresponds to a significant crack
size. On the other hand, when the change in the local
stiffness is insignificant, the generated nonlinearity is
small, which occurs in the case of small depths of the
crack.

The limitations of existing research can be summa-
rized as the fact that most of the existing methods for

characterizing breathing cracks are based on compar-
ing the first or second amplitudes of superharmonics
and sideband components collected from intact and
damaged structures. Moreover, these nonlinear har-
monics depend on different factors, including crack
depth, location, damping amount, as well as the exci-
tation frequencies and magnitudes. Nevertheless, the
extraction of sidebands and superharmonics may mis-
lead the damage identification process due to the high
noise measurement and environmental fluctuations.

Based on the gaps in the existing research, in this
paper the vibrations of beam-like structures containing
breathing cracks are analyzed, where different beam
models of single andmultiple breathing cracks are stud-
ied. The main aim of this research is to analyze the
effect of crack depth, crack location, damping, exci-
tation frequency and magnitude in addition to noise
immunity on the nonlinear dynamic responses of a can-
tilever beam. Furthermore, in order to provide a com-
plete picture about breathing cracks in beam structures,
different beam models, including multiple, opposite,
and open cracks, are studied. The numerical study is
first conducted using the ABAQUS finite element soft-
ware, and the acceleration signals are registered. There-
after, the proposed method of breathing crack identifi-
cation in beam structures is applied and results are ana-
lyzed and discussed. Finally, the numerical simulation
results of the proposed method are validated experi-
mentally.

The rest of the paper is organized as follows: (i) the
problem formulation of identifying breathing cracks,
the typical methods, and their limitations are described
in Sect. 2; (ii) Sect. 3 introduces the fundamentals of
the proposed approach in which a new concept based
on the FFT is proposed; (iii) Sect. 4 presents the appli-
cation of the newDFTSmethod for the breathing crack
assessment in beam-like structures based on intensive
numerical investigations; (iv) by taking the successful
numerical results as basis, Sect. 5 presents the experi-
mental setup and validation of the applicability of the
proposed concept; (v) finally, the main conclusions of
this work are drawn together and presented in Sect. 6.

123



2614 T. Al-hababi et al.

2 Problem formulation in identifying breathing
cracks

2.1 Typical methods to identify breathing cracks

In recent decades, the community have showed a great
interest in structural dynamics and their application in
SHM by analyzing the dynamic response of structures
exposed to excitation forces. Such interest has led to
the development of many SHM approaches, most of
which are limited to linear structures [27,28]. Various
research works assumed that cracks remain open dur-
ing vibration, and thus a linear system has been con-
sidered, in which the dynamic properties of the lin-
ear system, such as changes in natural frequencies and
mode shapes, are exploited to determine the extent of
the damage. However, the linear characteristics of the
response are invalid when identifying fatigue crack due
to the effect of crack breathing in reality [16].

On the other hand, considering the crack as a breath-
ing crack is more realistic, but many difficulties sur-
round the identification process where the changes in
the natural frequencies are between the changes of the
healthy beam and the damaged beam, i.e., a fully open
crack. Gudmonson [29] studied the effects of continu-
ous crack closure on fractured beam vibrations through
experiments. Therefore, the dynamic system is consid-
ered nonlinear due to the stiffness changes caused by
the opening and closing of the crack.

Over the past few years, some researchers have
developed several methods used to study beams con-
taining breathing cracks, taking advantage of nonlin-
ear features. Among these methods, there are ana-
lytical methods [30–32] numerical methods [33,34],
and experimental methods [35,36]. Such studies have
shown that the nonlinear vibration features have a
higher sensitivity to breathing cracks, particularly the
existence of the so-called sub- and superharmonic res-
onances [37]. One successful study was reported by
Wei and Shang [38] in which they established a math-
ematical model to simulate bi-linear stiffness based on
the Timoshenko beam theory in order to describe the
effect of breathing cracks.

2.2 Limitations in existing methods

Nowadays, the industrial facilities have many meth-
ods for detecting structural damage. Each method dif-

fers from the others in terms of its advantages, limita-
tions, drawbacks, and applications. However, there is
no fully reliable and viable method for detecting differ-
ent types of damage and structures [39–43]. The appli-
cation under interest mainly determines the selection of
an appropriate damage identification method [44–47].
From this point of view, the identification of damage
based on using nonlinear vibrational effects could be
very promising for applications such as rotating shafts
and beam-like structures. The most important charac-
teristic of nonlinear vibrations is their high sensitivity
to the presence of breathing crack. Among the nonlin-
ear effects, the appearance of super- and subharmonic
resonances of orders 2/1 and 1/2 are useful for detect-
ing small cracks and indicating the severity of cracks,
respectively.

Another important point, when utilizing the nonlin-
ear effects to detect damage, is paying attention to the
damping value in the system because the crack propa-
gation increases in the level of damping significantly.
Therefore, it suppresses partially or totally the non-
linear effects that will appear. Wong et al. [48] used a
simple harmonic balance method to obtain the periodic
solutions of a harmonically excited nonlinear oscillator
in order to simulate breathing crack. Themethodworks
well for a weakly nonlinear system but has some diffi-
culties to deal with large nonlinear system. Such diffi-
culty could be overcome by applying a method called
the Incremental Harmonic Balance Method (IHBM).
Choi and Lou [49] introduced a combined method
based on both harmonic balance and FFT methods to
study the dynamic responses of both piece-wise lin-
ear and nonlinear systems. In another related study,
Chatterjee et al. [50] extended the equivalent lineariza-
tion method for obtaining periodic responses of piece-
wise nonlinear oscillators with harmonic excitation.
The method has the advantage of involving super- and
subharmonics, providing better findings than the har-
monic balance method. Andreaus and Baragatti [36]
studied experimentally and numerically the damage
detection of a steel cantilever beam containing a trans-
verse breathing crack using the nonlinear character-
istics of forced responses. The FFT spectrum of the
acceleration signals showed both sub- and superhar-
monics components of the damaged states, indicating
the presence of damage. This method induces many
uncertainties; therefore, its use in practice is limited.

The FFT is a common tool that can be used to
describe the properties of breathing cracks. There
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are some common problems and limitations in the
aforementioned methods used to characterize fatigue-
breathing cracks. One major problem is that they can
detect breathing cracks but not very clearly. For exam-
ple, the Fourier spectrum method cannot clearly dis-
tinguish between several fatigue-breathing cracks. In
addition, these methods have a common restriction:
they are qualified to indicate the existence of breathing
cracks, but they cannot characterize the severities of
breathing cracks. Therefore, the present work intends
to solve such problems by introducing the new DFTS
damage identification approach that is efficiently able
to both detect the breathing cracks and determine their
severities.

3 Theoretical formulation of the DFTS for
breathing crack identification

The Fourier transform is a frequency-based transform
broadly utilized in the study of linear systems. Fourier
transform breaks up the signal into different sine waves
with different frequencies and corresponding ampli-
tudes. However, the sum of different sine waves returns
the original signal.

The Fourier transform is a powerful tool used for the
analysis of many scientific problems and applications.
It converts any signal from the time domain to the fre-
quency domain. The objective of converting data from
the time domain to the frequency domain is to extract
the required data that cannot be extracted in the time
domain. The Fourier transform and its inverse [51,52]
of a continuous signal can be defined as:

X ( f ) =
+∞∫

−∞
x(t)e− j2π f t dt, (1)

and

x(t) =
+∞∫

−∞
X ( f )e j2π f t d f , (2)

where x(t) is the time-domain signal, the variable t rep-
resents the time, and f is the frequency in units of hertz
(Hz). However, when we have a discrete signal, the
Fourier transform of the continuous signal is invalid,
so the so-called discrete Fourier transform (DFT) is
introduced. The Fourier transform of a discrete signal
transforms a sequence of N complex numbers x(n) :=

x(0), x(1), ..., x(N −1) into another sequence of com-
plex numbers, X (k) := X (0), X (1), ..., X (N − 1),
which is given by the following expression as:

X (k) =
N−1∑
n=0

x(n)e
− j2πkn

N , (3)

The DFT is characterized by the fact that its spec-
trum is periodic and its period in the frequency domain
is f . And the formula for the Inverse Discrete Fourier
Transform (IDFT) is defined as:

x(n) = 1

N

N−1∑
k=0

X (k)e
j2πkn
N , (4)

where n and k = 0, 1, 2, ..., (N − 1).
The number of computations involved in calculat-

ing the DFT is much higher, so in order to overcome
this problem, an easy and fast algorithm called the FFT
algorithm was introduced. The number of computa-
tions is significantly reduced; instead of O(N 2) in the
DFT, it is O(N log2 N ) in the FFT. The difference
increases the more the number of samples increases.
Thus, the FFT is an important and simple algorithm.
Moreover, it has been proven that the DFT of length
N could be rewritten as the sum of two DFTs, each of
length N/2.

The FFT can be deduced from the DFT as follows:

S(k) =
N−1∑
n=0

s(n)Wnk, (5)

where W = exp(− j2π/N ), which is a complex num-
ber. Euler’s formula for any real number α states that:

e± jα = cosα ± sin α, (6)

where the exponential is the base of the natural loga-
rithm, j is the imaginary unit, and cos and sin are the
trigonometric functions cosine and sine, respectively.

The objective of the FFT algorithm is to simplify and
perform the calculations in the least time, so Eq. (5) can
be rewritten as even and odd summations as follows:

S(k) =
N−1∑
n = 0
n : even

s(n)Wnk +
N−1∑
n = 0
n : odd

s(n)Wnk, (7)

where (n = 2m) for even samples and (n = 2m+1) for
odd samples, andm = 0, ..., (N/2−1), by substituting
the value of n for even and odd samples into Eq. (7),
we get:

S(k) =
N/2−1∑
m=0

s(2m)W 2mk
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+
N/2−1∑
m=0

s(2m + 1)W (2m+1)k, (8)

and

S(k) =
N/2−1∑
m=0

s(2m)W 2mk

+
N/2−1∑
m=0

s(2m + 1)W 2mkWk, (9)

For a given value of k,Wk is a constant, so it is taken
out of the summation as,

S(k) =
N/2−1∑
m=0

s(2m)W 2mk

+Wk
N/2−1∑
m=0

s(2m + 1)W 2mk, (10)

S(k) = Sek + WkSok , (11)

where Sek and Sok are the kth components of the DFT of
length N/2 formed from the even and odd components
of the original samples, respectively.

The last equation gives the discrete Fourier trans-
form of the discrete signal by using the FFT algorithm.

A large number of calculations are performed to cal-
culate the Fourier transform for a certain number of
samples in the time domain, which is also the same
number obtained in the frequency domain.

Now, to introduce a new concept called dual Fourier
transform spectra (DFTS), we use the results of FFT
obtained from Eq. (11) (i.e., the FFT of the Fourier
spectrum).

Let S(k) = F(b). The dual Fourier transform spec-
tra can be defined as:

£(a) =
R−1∑
b=0

F(b)Mab (12)

where a and b = 0, 1, 2, ..., (R−1), R is the new num-
ber of sampled data resulted from the previous FFT,
and M = exp(− j2π/R), which is a complex number.
Equation (12) can be rewritten as even and odd sum-
mations as follows:

£(a) =
R−1∑
b = 0
b : even

F(b)Mab +
R−1∑
b = 0
b : odd

F(b)Mab. (13)

Now, let (b = 2r ) for even samples and (b = 2r +
1) for odd samples, where r = 0, ..., (R/2 − 1), by
substituting the value of b for even and odd samples
into Eq. (13), we get:

£(a) =
R/2−1∑
r=0

F(2r)M2ra +
R/2−1∑
r=0

F(2r + 1)M (2r+1)a, (14)

and

£(a) =
R/2−1∑
r=0

F(2r)M2ra +
R/2−1∑
r=0

F(2r + 1)M2raMa . (15)

For a specific value of (a), Ma is a constant. There-
fore, we can take it out of the summation as,

£(a) =
R/2−1∑
r=0

F(2r)M2ra + Ma
R/2−1∑
r=0

F(2r + 1)M2ra, (16)

where

£(a) = £ea + Ma£oa . (17)

Equation (17) gives the dual Fourier transform spec-
tra (DFTS), where £ea and £

o
a are the even and odd com-

ponents of the DFTS of length R/2, respectively.
In the DFTS method, as will be mentioned in the

following sections, it can be deduced that the average
energy of frequencies that are integer multiples of the
excitation frequency is taken and plotted. The presence
of distorted peaks in the DFTS plot detects the crack,
and the intensity of these peaks indicates the severity
of the crack. Therefore, the DFTS method can be used
to detect and quantify breathing cracks in beam-like
structures. To this end, the main objective of this work
is to develop a method capable of detecting and quanti-
fying single andmultiple breathing cracks in beam-like
structures. The efficacy of the DFTS method in detect-
ing single and multiple breathing cracks is numerically
and experimentally validated in Sects. 4 and 5, respec-
tively.

4 Numerical simulation

This section presents some of the likely damage sce-
narios to occur in beam-like structures. The nonlinear
dynamic characteristics of beam-like structures con-
taining breathing cracks are studied using the finite
element (FE) method.
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Fig. 1 The geometric drawing of a beam with a fatigue-breathing crack

Table 1 The material properties and dimensions of the beam

E (GPa) υ ρ (kg/m3) L (mm) B (mm) H (mm)

206 0.3 7800 300 25 10

4.1 Modeling of breathing cracks

Figure 1 shows a 3D FEmodel rectangular section can-
tilever beam modeled using the ABAQUS FEM soft-
ware with linear hexahedral elements of type C3D8R.
The elements density near the cracks is increased to
precisely capture the dynamic responses of the cracks.
The geometrical parameters of the beams are identi-
cal and chosen as length (L), width (B), and thickness
(H ). The material properties of the steel which used in
the numerical simulation are selected as Young’s mod-
ulus (E), mass density (ρ), and Poisson’s ratio (υ), are
provided in Table 1. The cantilever beam is excited
using harmonic excitation at the tip of the free end,
while the sensor is located on the opposite surface of
the excitation force. Sensors are used to record the time
history of the acceleration responses of the beams. The
location and depth of cracks were specified using the
dimensionless parameters q = xc/L and p = a/H ,
respectively.

In this study, characterizing the opening and clos-
ing of the breathing cracks are treated as local contact
problems. The penalty tangential behavior with a fric-
tion coefficient of 0.1 is used in the tangential direction,
whereas the hard penalty contact is used in the normal
direction. ABAQUS/Standard provides three common
contact approaches, general contact, contact pairs, and
contact element. In this paper, the contact pairs and the
surface-to-surface contact are used. The interactions
between the breathing crack surfaces are modeled by
considering one of the crack surfaces as a master sur-
face and the second as a slave surface, as illustrated in
Fig. 2. Particularly, nodes on the slave surface are not
allowed to penetrate the segments of themaster surface,

Fig. 2 Crackmodelingwith a surface-to-surface contactmethod

but the master nodes are allowed to penetrate the slave
surface. During the vibration of beams, three contact
states arise of the breathing crack: (1) the crack is fully
opened, it means there is no contact between the slave
and master surfaces; (2) the crack is fully closed, and
all nodes on the slave and master crack surfaces are in
contact; (3) the slave and master crack surfaces are in
partial contact.

4.2 Deficiencies of Fourier spectrum in representing
breathing cracks

It can be noted that there is only one peak in Fig. 3a,
while in Figs. 3b–d, higher-order harmonics begin to
appear andgradually increase as the depth of the breath-
ing crack increases. However, it is difficult to identify
the severity of single and multiple breathing cracks
using conventional methods such as FFT. Therefore, in
order to solve such deficiency, another method, which
is the DFTS, is needed.
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Fig. 3 FFT of intact and cracked cantilever beams at different crack depths
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Fig. 4 Effect of damage depth on vibration responses at q = 0.45 of the cantilever beam

4.3 Single breathing crack

This section presents the numerical results of analyz-
ing different beam models containing single breathing
cracks. The effect of crack depth, crack location, exci-
tation frequency and excitation magnitude, damping,
and noise immunity is analyzed.

4.3.1 The effect of crack depth on nonlinear dynamic
characteristics

Since crack growing is inevitable throughout the struc-
tural life cycle, identification of crack depth is essential.
It is crucial to understand the association between the
nonlinear dynamic properties and crack depth changes.

The first four natural frequencies of the intact can-
tilever beam are 90.657, 565.27, 1570.7, and 3044.9
Hz. The cantilever beam is excited at the free end with
excitation frequency and magnitude of ω = 1/2 f1 and
F = 500N, respectively. A breathing crack ismade at a
distance of q = 0.45 from the fixed end, and three sce-
narios of crack depths at p = 7, 20, and 41% are inves-
tigated. The three different crack depths are considered
to manifest the sensitivity of the proposed method. The
numerical simulation results of the intact and damaged
beams are shown in Fig. 4.

The numerical time history of the acceleration
responses is shown in Fig. 4a, and 4b shows their FFTs.
Figure 4c shows the semi-logarithmic plot of the FFTs,
and the DFTSs are shown in Fig. 4d.

For the intact beam in Fig. 4b, the FFT plot shows
only two high-amplitude peaks; the first represents the
excitation frequency (which is excluded from the fig-
ure), and the second represents the first fundamental
frequency. Figure 4c showsmany peaks at higher-order
harmonics of 1/2 f1. The excitation frequency is 45
Hz, and the peaks are 90, 135, 180, 225, and so on.
As the depth of the breathing crack increases, extra
higher order-harmonics appear in the Fourier power
spectrum. The linear harmonics of the Fourier power
amplitude decreases, whereas the amplitude of super-
harmonics increases with an increase in the depth of the
crack. Generally, regardless of any depth of the crack,
the amplitude of higher-order harmonics is an order of
magnitude lower than that of the linear harmonic com-
ponent. Moreover, the amplitude of the Fourier power
spectrum for high-order harmonics is very low com-
pared to the fundamental harmonics even for high depth
of the crack, which is apparent fromFig. 4c. Regardless
of the fundamental harmonics of excitation, the exis-
tence of high-order harmonics indicates the bi-linearity
of the structure because of breathing crack.
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Fig. 5 Effect of damage location on vibration responses at p = 41% and q = 0.040, 0.45, and 0.773 of the cantilever beam

The results indicate that there is an increase in the
amplitude of the nonlinear higher-order harmonics and
a decrease in the linear components with the increase
in the depth of the crack.

In the previous results, some peaks also exist in
the DFTS plot under the intact state. It is most likely
attributable to considering the nonlinear geometric
effect in the numerical simulation, and this was consid-
ered in order to approximate the numerical simulation
from the real case.

The physical interpretation of the DFTS method
depends on what is the input data. The peaks indi-
cate periodic components of the input data. It is well-
known that the output signal in the time domain will
be a signal of the same type that carries the nonlin-
ear dynamic characteristics due to the presence of the
breathing crack. The nonlinearity induced in the struc-
ture leads to what are so-called higher-order harmonics
which are multiple integers of the excitation frequency
depicted in the frequency domain. Here it is believed
that the average of the fundamental and higher-order
harmonic frequencies at a specific excitation frequency
is taken.Higher-order harmonics appear as peaks of dif-
ferent amplitudes in the DFTS, more pronounced when
the content of the nonlinearity of the system is higher.
The nonlinearity of the system increases as the crack
depth increases, so in such a case, peaks with higher
amplitudes will appear.

After analyzing the results, the DFTS method has
exhibited excellent performance in almost all cases of
different crack depths. The DFTS method shows great
potential for detecting and quantifying breathing cracks
at different crack depths. More significant distortion of
the response appears at higher depths of the crack and
decreases as crack depth decreases.

4.3.2 The effect of crack location on nonlinear
dynamic characteristics

Crack can occur in different locations of the structure
causing a distinct change in the dynamic response. The
structural response changes depending on the crack
location, as observed when the crack depth changed.
Many researchers have demonstrated that changing
the crack location leads to a change in the structural
response [53]. Therefore, in this paper, the effect of the
crack location on the dynamic response is studied to
test the capability of the proposed method of detecting
damages at different locations. Three different crack
locations are considered with the exact locations for all
beams. The breathing crack parameters are p = 40%
and q = 0.040, 0.450, and 0.773. The cantilever beam
is excited at the free end with excitation frequency and
magnitude of ω = 1/2 f1 and F = 500 N, respectively.

The numerical time history of the acceleration
responses is shown in Fig. 5a, and Fig. 5b shows their
FFTs. Figure 5c shows the semi-logarithmic plot of the
FFTs, and the DFTSs are shown in Fig. 5d.

Figure 5 shows the effect of the crack location at
three different locations. It is noticed that a more sig-
nificant distortion of the signal occurs as the crack
approaches the fixed end and vice versa, as illustrated
in Fig. 5d. The distortion of the signals demonstrates
that the nonlinear dynamic features change according
to the crack location. The reason for the changing of
the nonlinear dynamic characteristics of structures is
due to the change of the local stress field in the beam
with the change of the damage location.

The results of the DFTS in all cases of different
crack locations are encouraging. The DFTS method
shows excellent performance in detecting and quanti-
fying breathing cracks at different crack locations. A
more considerable distortion of the response appears at
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(a) (b) (c) (d)

Fig. 6 Effect of harmonic excitation frequency (F = 100 N) on vibration responses at p = 41% and q = 0.45 of the cantilever beam
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Fig. 7 Effect of harmonic excitation magnitude on vibration responses at p = 41% and q = 0.45 of the cantilever beam

the crack location closer to the fixed end and decreases
as the crack location is far from the fixed end.

4.3.3 The effect of harmonic excitation frequency on
nonlinear dynamic characteristics

In this subsection, the effect of excitation frequency on
nonlinear dynamic characteristics is analyzed. A can-
tilever beam is excited at the free end with four dif-
ferent excitation frequencies of ω = 1/3 f1, 1/2 f1, f1,
and 2 f1 and magnitude of F = 100 N. The cantilever
beam has one breathing crackmade at a distance of q =
0.45 with a crack depth of p = 41% of the total beam
depth. The numerical simulation investigation results
of the effect of the harmonic excitation frequency are
shown in Fig. 6.

Figure 6a represents the time history of the accel-
eration signals of the damaged beam at three different
levels of excitation frequency, Fig. 6b shows their FFTs,
Fig. 6c indicates the semi-logarithmic plot of FFT, and
Fig. 6d indicates the DFTSs.

Figure 6 shows that the highest amplitude is when
ω = f1. Choosing an excitation frequency close to the
fundamental frequency results in a higher amplitude, as
shown in Fig. 6b. It can be seen that an excitation fre-
quency equal to the first fundamental frequency has the

highest amplitude. In contrast, an excitation frequency
equal to the third first fundamental frequency has the
lowest amplitude. This conclusion arises from the fact
that at an excitation frequency equals to the first funda-
mental frequency, the resonance occurs with increased
amplitude.

Figure 6c shows many peaks, more peaks at an exci-
tation frequency of ω = 1/3 f1, and less at excitation
frequency of ω = 2 f1. The reason for this is that the
peaks are integer multiples of the excitation frequency.

It is interesting to note that the DFTS method works
well in all possible cases of different excitation fre-
quencies. The DFTS method exhibits great prospects
for detecting and quantifying breathing cracks at dif-
ferent excitation frequencies. More peaks of the DFTS
response appear at a higher level of excitation fre-
quency, and fewer peaks appear at the lower level of
the excitation frequency. Therefore, the DFTS method
can perform well at any excitation frequency.

4.3.4 The effect of harmonic excitation magnitude on
nonlinear dynamic characteristics

In this subsection, the effect of excitationmagnitude on
nonlinear dynamic characteristics is analyzed. A can-
tilever beam is excited at the free end with excitation
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Fig. 8 Effect of the level of damping (ζ ) on vibration responses at q = 0.45 of the cantilever beam

frequency of ω = 1/2 f1 and four different levels of
excitation magnitudes of F = 50, 250, 500, and 750 N.
The cantilever beam has one breathing crack made at
a distance of q = 0.45 from the fixed end with a crack
depth of p = 41%.

Figure 7a represents the time history of the acceler-
ation signals of the damaged beam at four different lev-
els of excitation magnitude, Fig. 7b shows their FFTs,
Fig. 7c indicates the semi-logarithmic plot of FFT, and
Fig. 7d indicates the DFTSs.

It is clear from Fig. 7c and d that when the excitation
magnitude increases from 50 N to 750 N, the nonlinear
features of the DFTS, the amplitude also increases. The
highest amplitude is when F = 750 N, and the lowest
amplitude is when F = 50 N.

Numerical simulation results reveal that the DFTS
method offers performance advantages of identifying
breathing cracks at different excitation magnitudes.
The DFTS method shows great potential for detect-
ing and quantifying breathing cracks at different exci-
tation magnitudes. The number of peaks in the DFTS
responses is the same and does not change as the excita-
tion magnitudes change, only amplified. It can be said
that the DFTS method is not significantly affected by
the change in the excitation magnitude, and it can be
used at different levels of excitation magnitude.

4.3.5 The effect of damping on nonlinear dynamic
characteristics

The damping level is one of the most important fac-
tors to consider when analyzing nonlinear vibrations.
Dampingplays an important rolewhendiagnosing non-
linear vibrations, as it dramatically affects the shape
of the response, especially at super- and subharmonic
resonance, and in some cases may suppress it entirely.
The fatigue cracks cause a significant increase in struc-

tural damping, so the level of damping must always be
known and taken into account [54].

In this subsection, the effect of damping levels on
nonlinear dynamic characteristics is analyzed. A can-
tilever beam is excited at the free end with an excitation
frequency and magnitude of ω = 1/2 f1 and F = 500
N, respectively. Three damping levels of ζ = 0.01,
0.02, and 0.03 are considered. The cantilever beam has
one breathing crackmade at a distance of q =0.45 with
p = 41%.

Figure 8 shows the numerical investigation results
of the analysis. Figure 8a displays the time history of
the acceleration signals of the damaged beam at three
different levels of damping, Fig. 8b shows their FFTs,
Fig. 8c indicates the semi-logarithmic plot of FFT, and
Fig. 8d illustrates the DFTSs.

Figure 8 shows that the highest amplitude occurs
when ζ = 0.01, and the lowest amplitude occurs when
ζ = 0.03. It can be observed that with increasing the
level of damping, the amplitude of the Fourier power
spectrumdecreases. The peaks aremore apparent when
the damping ratio is 0.3, as shown in Fig. 8c. More-
over, the signal distortion increases as the damping
level increases. Therefore, the selection of the level of
damping is essential.

The effectiveness of the DFTS method has been
proven in detecting and quantifying breathing cracks in
beam-like structures at different levels of damping. The
DFTS response shows a higher amplitude at a lower
level of damping and lower amplitude at a higher level
of damping. The DFTS method performs well despite
the differences in the level of damping of analyzed
cases.
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4.3.6 Noise immunity

In experimental tests, measurement noise affects the
quality and sensitivity of the damage identification pro-
cess [55]. Therefore, noise immunity is an essential
property to exhibit the robustness and applicability of
the proposed DFTS in the practical identification of
damage. For the sake of simulating actual cases, the
white Gaussian noise is added to the extracted accel-
eration time history responses of the different cases so
that the noise-contaminated signals could be obtained.
The damaged cases include a single breathing crack at
p = 41% and q = 0.45. In order to show diverse envi-
ronmental conditions, five noise levels, i.e., SN R =
85, 65, 45, 25, and 10, are considered.

Figure 9 shows the effect of noise levels on nonlin-
ear dynamic features. The results demonstrate that pro-
posed method has robust noise immunity. Moreover,
the DFTS concept is suitable for the identification of
practical damage where measurements are taken under
noisy conditions.

Numerical simulation results reveal that the DFTS
method works well under different noisy environmen-
tal conditions. The ability of the DFTS method to
detect and quantify breathing cracks under different
noisy conditions is one of the major advantages of this
method. The results imply that the DFTS method is
competent to detect breathing cracks in different noise
environments.

4.4 Multiple breathing cracks

In previous Sect. 4.3, a cantilever beam with single-
breathing crack is studied. In this section, multiple
cracks in beam-like structures are studiedusing the con-
cept of DFTS. Numerical simulations are performed to
study the effects of multiple, opposite, and mixed (i.e.,
breathing-open) cracks on nonlinear dynamic prop-
erties. Some comparisons are made between several
cases. The objective of this study is to emphasize the
strength of the proposed concept in detecting multiple
cracks.

4.4.1 The effect of multiple cracks on nonlinear
dynamic characteristics

Several structures are subjecting to high level of
vibrations which may influence their integrity and ser-

vice life. These high vibrations result inmultiple cracks
in the structures [56,57]. In such instances, it is essen-
tial to avoidmechanical breakdowns and failures before
they occur. One method that can be used to avoid such
conditions is to observe the nonlinear dynamic proper-
ties of the structures.

Identifying multiple cracks in beam-like structures
has become a research focus of increasing interest over
the past few years. Therefore, most current studies
address sensitivity to detect multiple damages. How-
ever, the most current methods are sensitive to mea-
surement noise, reducing their ability to detect multi-
ple damages. Therefore, the proposed DFTS method is
used to manifest the effect of multiple breathing cracks
on the nonlinear dynamic characteristics to overcome
this drawback.

The cantilever beam is excited at the free end with
excitation frequency and magnitude of ω = 1/2 f1 and
F = 500 N, respectively. The breathing cracks depth
is set to be p = 41% at distances of q = 0.04, 0.207,
and 0.373 from the fixed end for the first, second, and
third crack, respectively. Three beams with breathing
cracks were compared, the first containing one crack,
the second containing two cracks, and the third contain-
ing three cracks. The comparisons were made in order
to show the sensitivity and applicability of the pro-
posed method for detecting multiple breathing cracks
in beam-like structures.

Figure 10a represents the time history of the accel-
eration signals of intact and damaged beams, Fig. 10b
shows theFFTs, Fig. 10c indicates the semi-logarithmic
plot of FFT, and Fig. 10d indicates the DFTSs of the
acceleration signals.

The input signal to a linear system remains without
distortion, unlike the nonlinear system that distorts the
input signal, i.e., if the input signal is distorted, it means
that the system contains a kind of nonlinearity. There-
fore, it can be said that the distortion is proportional to
the amount of nonlinearity, as it is clear from Fig. 10.
The beam containing three cracks has more distortion
in the output signal than the beamcontaining twocracks
and so on.

Fourier analysis of the cracked structures in Fig. 10
shows high amplitude in the three-cracks beam and low
amplitude in the single-crack beam. It is clear from
Fig. 10 that each case has a unique signature. Further-
more, from Fig. 10b and c, it is difficult to distinguish
the effect of different damaged cases. Therefore, to
characterize this effect, the amplitude of the DFTS is
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Fig. 9 DFTS of the cantilever beam at different levels of noise
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Fig. 10 Effect of multiple cracks on nonlinear dynamic features at p = 41% and q = 0.040, 0.207, and 0.373

used as a damage-sensitive feature to indicate the extent
of damage, as illustrated in Fig. 10d. One can conclude
that the proposed method has the ability to identify
multiple breathing cracks in beam-like structures.

The main strength of the DFTS method includes its
ability to detect single breathing cracks and can be
extended to tackle multiple breathing cracks. There-
fore, the DFTSmethod can be an efficient tool to inves-
tigate multiple breathing cracks in beam-like struc-
tures.

4.4.2 The effect of opposite cracks on nonlinear
dynamic characteristics

Similar to the previous settings, the cantilever beam is
excited at the free end with excitation frequency and
magnitude of ω = 1/2 f1 and F = 500 N, respectively.
The comparison is made between two beams, one has
two breathing cracks on one side, and the other also
has two breathing cracks but on different sides. All
breathing cracks in both cases have the same depth of
p = 41% placed at q = 0.040 and 0.207, respectively.

The comparison aims to study the effect of two
breathing cracks versus opposite breathing cracks on
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the nonlinear dynamic response of structures. Also, to
test the performance and ability of the proposed con-
cept in identifying the opposite breathing cracks. Fig-
ure 11 shows that the cantilever beam with two breath-
ing cracks on one side has a higher amplitude than the
beam with two opposite cracks.

The DFTS method can be used to study various
issues associated with breathing cracks in beam-like
structures. For example, the DFTS method can also
identify breathing cracks in two different surfaces, such
as opposite breathing cracks.

4.4.3 The effect of breathing-open cracks on
nonlinear dynamic characteristics

As before, the cantilever beam is excited at the free end
with excitation frequency andmagnitude ofω = 1/2 f1
and F = 500 N, respectively. The comparison is made
between two beams, one containing two breathing
cracks and the other containing one breathing crack
and an open crack. The cracks in both cases have the
same depth of p = 41%. The width of the open crack is
2 mm. The two cracks were positioned at q = 0.04 and
0.207, respectively. The aim of the analysis is to study
the effect of two breathing cracks versus breathing-
open crack on nonlinear dynamic response of struc-
tures. Moreover, the results are used to show the ability
of the proposed concept to identify different types of
damages.

Figure 12a represents the time history of the accel-
eration signals of intact and damaged beams, Fig. 12b
shows their FFTs, Fig. 12c indicates the
semi-logarithmic plot of FFT, and Fig. 12d displays
the DFTSs.

Figure 12d shows a clear difference between the
beam with two breathing cracks and the beam with
breathing-open cracks, where the former has the higher
amplitude. The higher amplitude in the beam with two
breathing cracks is due to the nonlinearity caused by the
two breathing cracks. The nonlinearity induced from
two breathing cracks is more than that from breathing-
open cracks, explained by the nonlinear interaction
between the two breathing cracks.

In the view of aforementioned discussion, it is clear
that the DFTS method is a flexible tool and applica-
ble even in cases where there are mixed cracks (i.e.,
breathing and open cracks). The numerical simulation
investigation results indicate that the DFTS method is
promising and can be used to detect single andmultiple

breathing cracks in addition to different cracked beam
models.

5 Experimental results and discussion

In order to validate the proposed DFTS method for the
identification of breathing cracks in beam-like struc-
tures, a verified experimental framework is followed in
this work. For developing good breathing crack spec-
imens and by considering the difficulties of obtain-
ing real breathing cracks, some researchers were com-
pelled to construct specimens made up by bonding sev-
eral pieces together. Prime and Shevitz [58] experi-
mentally investigated a polycarbonate beam contain-
ing a breathing crack. The polycarbonate beam was
constructed by bonding three pieces together to form
a beam with a breathing crack. At the same time, the
intact beam was constructed by bonding two pieces.
By using the aforementioned experimental approach,
Douka and Hadjileontiadis [59] studied the effect of
breathing crack on the dynamic behavior of a cantilever
beam containing breathing crack both theoretically and
experimentally. Prawin and Rao in [55] and [23] con-
sidered a cantilever beam with single and multiple
breathing cracks constructed by forming two and three
pieces using an Araldite epoxy adhesive. By employ-
ing the same experimental approach, Prawin et al. [60]
proposed a novel method to identify single and mul-
tiple breathing cracks based on the zero strain energy
nodes concept. Similarly, in their other work [15] they
presented a baseline-free algorithm for detecting, local-
izing, and characterizing breathing cracks using singu-
lar spectrum analysis. Hence, in this work, the guide-
lines and procedures presented in the studiesmentioned
above are followed to verify the present methods for
identifying single and multiple breathing cracks.

In this research, several experiments are performed
on steel cantilever beams containing breathing cracks.
These experiments aim to validate the proposed DFTS
method for identifying breathing cracks. Cantilever
beams are formed by bonding two or more pieces of
steel with a high-performance structural adhesive. The
horizontal surfaces are interconnected, while the sur-
faces forming the breathing cracks are in contact only.
The contact surfaces help simulate the opening and
closing behavior of cracks under dynamic loads.

The dimensions of the intact and damaged beams are
300 mm × 25 mm × 10 mm. The dimensions of the
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Fig. 11 Effect of opposite cracks on nonlinear dynamic features at p = 41% and q = 0.040 and 0.207

(a) (c)(b) (d)

Fig. 12 Effect of breathing-open cracks on nonlinear dynamic features at p = 41% and q = 0.040 and 0.207
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Fig. 15 Experimental setup
system for the damage
identification of a cantilever
steel beam

Fig. 16 Tested beams

pieces that formed the cantilever beams determine the
depth and location of the breathing cracks, are shown in
Fig. 13. The material properties of the steel cantilever
beam used in the experiments are selected as Young’s
modulus E =200 GPa, mass density ρ = 7300 kg/m3,
and Poisson’s ratio υ = 0.3.

The experimental setup is shown in Fig. 14. The
specimens are securely fixed to a testing table. A snap-
shot and a schematic of themost important components
of the testing system are shown in Fig. 15. The sweep
signal generator (DH1301) generates a sinusoidal sig-
nal and sends it to the power amplifier (DH5872). The
amplified signal is then sent to an electromechanical

shaker (DH40200) to produce the required excitation.
The force is measured using a force sensor (DH5858C)
which is attached to the shaker shaft. The force sensor
is connected to a multichannel online monitoring and
analysis system (DH5972N) connected to a computer.
Finally, the data are measured and acquired using a
system consisting of a PSV-400 scanning laser head
and PSV-400 junction box and an OFV-5000 vibrom-
eter controller. The laser measuring spot is located at
q = 0.48 from the fixed end. A magnetic nut is used
to connect the electromechanical shaker to the can-
tilever beam. Figure 16 shows a photographic image
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Table 2 Damage parameters of the cantilever beams containing breathing cracks

Group Crack depth (p) Crack location (q) Excitation frequency (Hz) Excitation magnitude (N)

1 20% 0.45 1/2 f1 50

40%

2 40% 0.04 1/2 f1 50

0.45

Table 3 Harmonic excitation parameters of the cantilever beams with breathing cracks

Group Excitation frequency (Hz) Excitation magnitude (N) Crack depth (p) Crack location (q)

1 1/3 f1 50 40% 0.45

1/2 f1
2 1/2 f1 30 40% 0.45

50

(a) (b) (c) (d)

Fig. 17 Effect of damage depth on vibration responses at q = 0.45 of the cantilever beam

of the tested cantilever beams utilized to study multi-
ple cracks.

5.1 Single breathing crack

For studying the single breathing crack damage sce-
nario, a cantilever beam with a single breathing crack
is analyzed. Different crack and excitation parameters
are introduced in these experiments. Table 2 andTable 3
show the crack and the harmonic excitation parameters,
respectively.

The bonded test beams may not behave like real
fatigued beams and cannot corresponddirectly to actual
field conditions. However, since the main goal is to
grasp the nonlinear behavior of breathing cracks rather
than accurately quantify the damage, the test beams
satisfy the present working purpose. Furthermore, the
intact beam has been formed by bonding two pieces
together, so the only difference between the intact and
cracked beams is limited only around the crack area.

The first four natural frequencies of the intact can-
tilever beam are 80.63, 495.15, 1212.5, and 2686.7 Hz.
The effect of the breathing crack depth, location, and
excitation frequency and magnitude on the dynamic
response characteristics is shown in Figs. 17, 18, 19,
20, respectively. The time histories of the experimental
responses during 3.2 s are shown in Figs. 17, 18, 19,
20a, and Figs. 17, 18, 19, 20b show their frequency
spectrums. Figures 17, 18, 19, 20c show the semi-
logarithmic plot of the FFTs, and the DFTSs are shown
in Figs. 17, 18, 19, 20d.

Similar to the numerical results in Sect. 4, the ampli-
tude of the Fourier spectrum increaseswith the increase
of the crack depth, as shown in Fig. 17. The higher the
crack depth, the more numbers of higher-order har-
monics appear. Moreover, the amplitude of the lin-
ear harmonics decreases, while the amplitude of the
superharmonics increases as the crack depth increases.
Responses corresponding to the cracked beams show
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peaks at integermultiples of the excitation frequency of
40 Hz (i.e., 80, 120, 160, 200, and so on). The presence
of higher-order harmonics shows the bi-linearity of the
structure due to the nature of the breathing crack.

It can be observed that the dynamic response charac-
teristics change depending on the crack location due to
the change of local stress caused by the presence of the
crack in that position, as shown in Fig. 18. Similarly,
it is also clear from Figs. 19 and 20 that the ampli-
tude increases with the increase in the excitation fre-
quency and magnitude, respectively. Figure 21 shows
the normalized power spectral density (PSD) for dif-
ferent beam models for the influence of damage depth,
damage location, and excitation frequency and magni-
tude, respectively.

5.2 Multiple breathing cracks

For analyzing themultiple breathing cracks cases, some
experiments are carried out on steel cantilever beams
containingmultiple cracks. The purpose of these exper-
iments is to study the effect of multiple cracks on the
nonlinear dynamic response. The cantilever beams are
prepared by bonding many pieces of steel with a high-
performance structural adhesive. For example, in order
to build a cantilever beam containing three breathing
cracks, we need five pieces. The dimensions of the can-
tilever beams and material properties are the same as
in previous Sect. 5.1.

The results are divided into three groups to facili-
tate comparing different cracked beammodels. Table 4
shows the different parameters of crack and excitation
used in these experiments.

The effect of the multiple cracks (i.e., multiple
breathing cracks, opposite breathing cracks, and
breathing-open cracks) on the dynamic responses char-
acteristics is shown in Figs. 22, 23, 24. The time his-
tories of the experimental responses during 3.2 s are
shown in Figs. 22, 23, 24a, and Figs. 22, 23, 24b show
their frequency spectrums. Figures 22, 23, 24c show
the semi-logarithmic plot of the FFTs, and the DFTSs
are shown in Figs. 22, 23, 24d.

It is evident from Figs. 22, 23, 24 that each response
has a distinctive signature, different in amplitude and
the shape of the response. Furthermore, the numerical
simulation and experimental results show a similarity
between the responses of beams containing two and
three breathing cracks, as shown in Fig. 22. The oppo-

site cracks have a lower amplitude than the two breath-
ing cracks on one side, as shown in Fig. 23. Similarly,
the breathing-open cracks also have a lower amplitude
than the two breathing cracks on one side, as in Fig. 24.

Figure 25 shows the normalized power spectral den-
sity (PSD) of the vibration responses of all three cases.
The energy of higher-order harmonics is very low com-
pared to linear harmonics, regardless of the depth and
number of breathing cracks.

All studied cases show many peaks of integer mul-
tiples of the excitation frequency 40 Hz (i.e., 80, 120,
160, and soon).Thepresenceof thepeaks is evidenceof
the bilinear behavior characterized by breathing cracks
resulting from continuous opening and closing.

One of the most important characteristics of the
DFTS method is that it shows the nonlinearity result-
ing from the breathing cracks in the form of peaks, the
distortion of the peaks increases as the amount of non-
linearity in the system increases. The presence of dis-
torted peaks in the DFTS plot can indicate the crack,
and the intensity of these peaks indicates the sever-
ity of the crack. Therefore, the DFTS method can be
exploited for breathing crack detection and quantifica-
tion in beam-like structures.

It is clear from the collected numerical simula-
tion and experimental results that the proposed DFTS
method is qualified and can identify and quantify both
single andmultiple breathing cracks in beam-like struc-
tures. Therefore, it can be recommended as a powerful
damage identification tool and can be adopted for use
in industrial applications.

6 Conclusions

In this paper, a novel damage detection and quantifi-
cation method based on the DFTS damage indica-
tor is proposed. A robust nonlinear damage factor is
developed flexibly by applying the FFT in two steps.
Firstly, the FFT is applied, and the presence of the sec-
ondary peaks of the response serves as indicators of
the presence of breathing cracks. Secondly, the FFT
of the Fourier spectrum can quantitatively depict the
nonlinearity degree of breathing cracks. In the DFTS
method, it can be deduced that the average energy of
frequencies that are integer multiples of the excita-
tion frequency is taken and plotted. The presence of
distorted peaks in the DFTS plot detects the crack,
and the intensity of these peaks indicates the sever-

123



The dual Fourier transform spectra (DFTS): a new nonlinear damage 2629

0 1 2 3

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

V
el

oc
ity

 (m
/s

)

q = 0.04
q = 0.45

(a) velocity

100 150 200 250 300

f (Hz)

0

0.5

1

1.5

2

2.5

|P
1(

f)
|

10-3

q = 0.04
q = 0.45

(b) FFT

100 200 300 400 500

f (Hz)

10-6

10-4

10-2

|P
1(

f)
|

q = 0.04
q = 0.45

(c) log plot of FFT

100 150 200 250 300

f (Hz)

10-8

10-6

10-4

|P
1'

(f
)|

q = 0.04
q = 0.45

(d) DFTS

Fig. 18 Effect of damage location on vibration responses at p = 40% and q = 0.040 and 0.450 of the cantilever beam
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Fig. 19 Effect of harmonic excitation frequency (F = 50 N) on vibration responses at p = 40% and q = 0.45 of the cantilever beam
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Fig. 20 Effect of harmonic excitation magnitude on vibration responses at p = 40% and q = 0.45 of the cantilever beam
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Table 4 Damage and excitation parameters of beams containing breathing cracks

Model Crack depth (p%) Crack location (q) Excitation frequency (Hz) Excitation magnitude (N)

One crack 40 0.04 1/2 f1 50

Two cracks 40 0.04 and 0.207 1/2 f1 50

Three cracks 40 0.04, 0.207, and 0.373 1/2 f1 50

Opposite cracks 40 0.04 and 0.207 1/2 f1 50

Breathing-open cracks 40 0.04 and 0.207 1/2 f1 50
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Fig. 22 Vibration responses at q = 0.040, 0.207, and 0.373 of the cantilever beam for the first, second, and third breathing cracks,
respectively
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Fig. 23 Vibration responses at q = 0.040 and 0.207 of the cantilever beam for the first breathing and opposite cracks, respectively
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Fig. 24 Vibration responses at q = 0.040 and 0.207 of the cantilever beam for breathing and open cracks, respectively
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Fig. 25 Power spectral density (PSD) of vibration responses of the cantilever beam: a multiple cracks, b opposite cracks, c breathing-
open cracks

ity of the crack. The proposed method is developed to
overcome the usual limitations and difficulties found
in existing typical methods for identifying single and
multiple cracks in beam-like structures. The strength of
the proposed method has been proven numerically and
experimentally. Several beam models and damage sce-
narios are investigated, and noise immunity is tested by
contaminating the signals with Gaussian noise. More-
over, the ability to identify and quantify single and
multiple breathing cracks under different noisy con-
ditions is one of the major advantages of the proposed
method. Furthermore, the effects of crack and excita-
tion parameters on the nonlinear dynamic characteris-
tics have been investigated. On the other hand, identi-
fying multiple breathing cracks is an issue of broader
importance but a more significant challenge than iden-
tifying single breathing cracks. As an exploration to
identify multiple damages in beam-like structures, dif-
ferent beam models containing multiple, opposite, and
mixed (breathing-open) cracks have been investigated.
In all the above-mentioned damage scenarios, the pro-
posed DFTS method has shown outstanding results for
the identification of breathing cracks in beam struc-
tures and can be highly recommended and promoted
for structural damage detection and quantification to
handle complex issues found in several practical appli-
cations. Hence, future work intends to extend the con-
cept of DFTS and include other types of applications
such as composite structures and real bridges.
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