
Nonlinear Dyn (2022) 110:2429–2445
https://doi.org/10.1007/s11071-022-07739-2

ORIGINAL PAPER

Output feedback sliding mode control for path-tracking
of autonomous agricultural vehicles

Chen Ding · Shihong Ding · Xinhua Wei ·
Keqi Mei

Received: 10 April 2022 / Accepted: 17 July 2022 / Published online: 16 August 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract In this work, the output feedback sliding
mode control (SMC) methods are developed for the
path-tracking control system of autonomous agricul-
tural vehicles with unknown bounded disturbances,
where only the position deviation information of vehi-
cles is required to be known for the control implemen-
tation. First of all, the path-tracking offset dynamics
model is converted to a canonical system by introduc-
ing a coordinate transformation, where the unmodeled
dynamics, the external disturbances, the parameter per-
turbations in the transformed system is regarded as
a lumped term. Then, the second-order robust exact
differentiator (RED) reconstructs the unknown sys-
tem state in finite time and provides an estimate of
the unknown lumped perturbation in the resulting sys-
tem. On this foundation, the traditional first-order slid-
ing mode (FOSM) controller is constructed to ensure
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that the lateral deviation and the orientation error will
approach the origin as closely as possible. To further
improve the transient performance of the path-tracking
errors, the second-order sliding mode (SOSM) con-
troller is designed by means of the modified adding a
power integrator (API) technique. The Lyapunov anal-
ysis is carried out to verify the finite-time convergence
of the path-tracking errors. Finally, comprehensive sim-
ulation results are presented to clearly illustrate that the
designed control strategies can acquire high precision
path-tracking performance and significantly reduce the
chattering effects.

Keywords Path-tracking · Sliding mode control ·
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1 Introduction

As the core part of the precision agriculture technology
system, the automatic guidance of agricultural machin-
ery has been widely used in agricultural production
processes in recent years, mainly including farming,
sowing, fertilizing, spraying, and harvesting, etc. [1,2].
Meanwhile, the rapid update of some technologies has
effectively promoted the intellectualization of modern
agricultural machinery and equipment, which has also
attracted widespread attention to the automatic driving
technology of agricultural vehicles [3,4]. These tech-
nologies involve control technology, sensor technol-
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ogy, information technology and microprocessor tech-
nology, etc. Actually, one of the most critical issues for
autonomous agricultural vehicles is the path-tracking
control [5], which refers to the use of RTK, lidar, cam-
era and other sensors to get the vehicle’s operating envi-
ronment and location information, and then under the
action of the path-tracking control algorithms, the vehi-
cle arrives and tracks the specified path. It should be fur-
ther emphasized that the path-tracking errors (i.e., the
lateral deviation and the orientation error) are required
to be stabilized to the origin for the sake of accomplish-
ing the task of path-tracking operation.

The high precision path-tracking capability of
autonomous agricultural vehicles not only improves
the quality of field operations, but also further reduces
agricultural production costs [6]. Consequently, many
research teams are focusing on the problem of the
path-tracking control of farm vehicles. Actually, the
reported path-tracking control approaches can achieve
satisfactory tracking performance if the vehicle motion
is almost pure rolling without slippage [7]. However,
agricultural vehicles are inevitably affected by various
uncertain factors in actual agricultural scenarios, such
as tire slip and wheel deformation, etc., which means
that the pure rolling constraints are usually not satisfied
[8]. Under these circumstances, the automatic guidance
performance and system stability of agricultural vehi-
cles will severely degraded. In addition, the existence
of the model uncertainties and external disturbances
makes it extremely difficult to control autonomous agri-
cultural vehicles [9]. It is notable that the model uncer-
tainties are usually caused by changes in vehicles or
environmental parameters and vehicle states.

To address the above-mentioned problems, some
interesting research results have been put forward in
the current literatures. For instance, the sliding effects
considered in [10], which can be seen as an addi-
tional uncertain parameter, are introduced into the ideal
kinematics model, and then a robust adaptive control
scheme is proposed on account of the back-stepping
control technique. In [11], the slipping is modeled as
fast dynamics, and the robust tracking performance
is achieved by adopting singular perturbation method
when the sliding is small enough. In [12], the sliding
effects are eliminated by re-planning predefined paths
adaptively according to steady-state tracking errors
which are usually caused by modeled slippage effects.
Furthermore, the kinematic control law in combination
with dynamic observers estimating slip parameters is

used in [13,14] to obtain suitable path-tracking pre-
cision. It is worth noting that the complete kinematic
model and the offset model of the tractor-trailer system
are obtained by utilizing engineering mechanics theory
[15]. As a matter of fact, the kinematic model is used
to predict the driving trajectory of agricultural vehicles
in actual operation, and the offsets dynamics model is
used to design path-tracking controllers for farm vehi-
cles. For instance, the straight and circular forward or
backward path-tracking problem of a tractor-trailer is
solved in [16] by utilizing the Lyapunovmethod. Later,
the kinematic and offset dynamics models for a tractor-
trailer system with slips in practical farmland environ-
ment are proposed in [17] inspired by the practicalwork
in [15]. Meanwhile, a robust controller is developed in
[18] by combining a back-stepping and nonlinear PI
control, which ensures that the tractors with steerable
trailer can accurately track the desired trajectory under
the influences of sideslip.

On the other hand, SMC has been considered as an
excellent robust controlmethod in dealingwith the non-
linear characteristics of the model, parametric uncer-
tainties and unknown external perturbations [19–23].
Therefore, SMC has been broadly applied in solving
agricultural vehicle path tracking problems in recent
years [24,25]. In [26], the kinematic model of vehi-
cles is converted to a perturbed chain system, and then
a SMC strategy with robustness to sliding effects and
input noise is proposed with the aid of the natural alge-
braic structure of chained systems. In [27], a nonlin-
ear sliding mode (SM) controller is developed for an
autonomous farming tractor with wheel slips and con-
trol input saturation. In [28], a composite SM control
law is proposed to control the agricultural tractor to
precisely track a specified path based on a novel dis-
turbance observer. Moreover, other well-known path-
tracking control algorithms, including proportional-
integral-derivative control [29], fuzzy control [30] and
model predictive control [31], have been applied to
address the problem as well.

It should be pointed out that the path-tracking con-
trol lawsusually contain the headingdeviation informa-
tion of the vehicle [32]. Unfortunately, due to the fact
that the loss of GPS signal and the measurement noise
of angle sensor always exist in the automatic guidance
system, themeasured heading deviation is usually inac-
curate. Besides, the measurement noises may also lead
to abnormal fluctuations of the control signal. From the
perspective of real agricultural applications, as the fea-
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sible alternative control strategies, the output feedback
control techniques can be applied to the path-tracking
control design of autonomous agricultural vehicles,
so as to attempt to circumvent the aforementioned
problems.

Although numerous output feedback control
approaches have been proposed in the current research
works andwidely applied to address the path-following
control problem of vehicles [33,34]. However, there
are very few literature works simultaneously handled
the sliding effects and the unknown heading devia-
tion, along with the external interference, in the output
feedback path-tracking control for autonomous agri-
cultural vehicles. Motivated by the preceding discus-
sion, we will present the robust output-feedback SM
control schemes for path-tracking problems of auto-
matics agricultural vehicles considering the external
disturbances and sideslip effects. The proposed control
methods can not only deal with unknown lump distur-
bance without using the information of the orientation
angle measured by the sensor, but also can improve
the transient performance of tracking and weaken the
influences of chattering. Specifically, the path-tracking
offset dynamicsmodel is first transformed into a canon-
ical form, where the unmodeled dynamics, unknown
external disturbances, parameter perturbations in the
derived system are seen as additive lumped term. The
transformed canonical system then permits simultane-
ous reconstructionof unknownsystemstate and estima-
tion of unknown lumped disturbance by using second-
order RED. Finally, two categories of output-feedback
SM control methods are constructed by utilizing the
estimated system states and lumped disturbance. Com-
prehensive simulation results are provided to verify
the effectiveness of the proposed path-tracking control
schemes.

The main contributions of this study are refined in
three aspects:

(1) The path-tracking error dynamics is converted to
a strict-feedback form under the coordinate trans-
formation, and then immeasurable system state
and lumped disturbance are estimated by second-
order RED. It is worth noting that using second-
order RED can theoretically achieve the property
of finite-time convergence, which ensures that the
precondition of separation principle can be trivially
satisfied.

(2) Two robust output feedback controllers based on
SM control algorithms and second-order RED are
designed, which can guarantee that the lateral devi-
ation and heading error are stabilized to the origin.
It should be emphasized that the designed output
feedback SOSM control algorithm can improve
transient performance and obtain faster system
response.

(3) The designed control schemes only require the
information about the deviation of vehicles’ posi-
tion rather than the orientation error. In addition,
the proposed controlmethods obviously reduce the
effects of chattering.All these nice propertiesmake
the proposed controllers more attractive in practi-
cal control implementation.

The remainder of this paper are organized in the fol-
lowingmanner. Section 2 presents the problem setup of
the kinematic model and path-tracking offset dynam-
ics model. The robust output feedback SM control
approaches are designed in Sect. 3. Some comprehen-
sive simulation results are given in Sect. 4 to validate
the effectiveness of developed guidance approaches.
The concluding remarks are provided in Sect. 5. An
“Appendix” is attached at the end of the paper, which
includes a definition and three key lemmas.

2 System description and modeling

2.1 Notation and problem formulation

The autonomous agricultural vehicle is simplified by
a bicycle model in this paper, and its path-tracking
model is depicted in detail in Fig. 1. The steering of
the vehicle is manipulated by the front wheels, which
can be denoted by a unique virtual wheel along the lon-
gitudinal axis of the vehicle for the sake of simplicity.
The vehicle is driven by the rear wheels of the agricul-
tural vehicle. The vehicle has a body coordinate frame
of O ′X ′Y ′ attached to the center point B of the rear
axle of the vehicle with coordinates ζ = (xt , yt )T in
global coordinate frame OXY . Some necessary vari-
ables appearing in the kinematic model and the offset
dynamics model are displayed in Table 1.

Generally, the control target for path-tracking prob-
lem of autonomous agricultural vehicles is to design
a suitable controller (i.e., front wheel steering angle
δ), which can ensure lateral deviation los and orienta-
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Fig. 1 Schematic diagram of path-tracking model

Table 1 Description of variables and points

Notation Description

A The center of the front wheels axle

P The orthogonal projection of b to the reference path

cd Curvature of the reference path

θt Orientation of the vehicle

v The drive velocity

θd The desired heading angle

δ The front wheel steering angle

los The lateral deviation (i.e., los = |PB|)
θos The orientation error (i.e., θos = θt − θd )

tion error θos approach to zero as closely as possible in
presence of the external disturbances and wheel slips.

2.2 Kinematic model

In this paper, all angles in Fig. 1 are defined to be pos-
itive in the counterclockwise direction. Based on the
modeling approach presented in [8], the ideal kine-
matic model of autonomous agricultural vehicles can
be established as follows

ẋt = v cos θt ,

ẏt = v sin θt ,

θ̇t = v

lt
tan δ (1)

where xt and yt denote the position variables of the
vehicle, θt denotes the orientation variable of the vehi-
cle, and δ represents front wheel steering angle, which
is considered as the only control quantity. It should be
noted here that the longitudinal velocity v is positive
if the vehicle is controlled to move forward, and vice
versa.

2.3 Offset model

In the light of the modeling method introduced in [16],
the widely-used path-tracking offset model of the agri-
cultural vehicles can be modeled as

l̇os = −σ |v| sin θos

θ̇os = v

lt
tan δ − σ |v| cd cos θos

1 + cdlos
(2)

where the variable σ denotes the direction parameter.
Specifically, assuming that the autonomous agricultural
vehicle follows the predefined path in a counterclock-
wise direction, then σ equals to +1. Also, assuming
that the autonomous agricultural vehicle follows the
predefined path in a clockwise direction, then σ equals
to −1. It should be noted that the absolute value of the
front wheel steering angle δ is bounded and satisfies
|δ| ≤ π

2 in many practical agricultural applications.
In order to address the path-tracking control problem
of autonomous agricultural vehicles, we will use offset
dynamics (2) to complete the design of path-tracking
control algorithm in the following section.

For a better interpretation, the vehicle is always con-
sidered to be moving forward, and the vehicle tracks
the predefined path in a clockwise direction. Under this
circumstances, the variable σ in (2) is equal to−1, and
the longitudinal speed v is deemed to be greater than
zero. On the basis of the above assumptions, by letting
x1 = los , x2 = v sin θos , u = tan δ, the path-tracking
dynamics (2) can be further expressed as follows:

ẋ1 = x2

ẋ2 =
v2cd

(
1 − x22

v2

)

1 + cd x1

+
v2

(
1 − x22

v2

) 1
2

lt
u + d0(t) (3)
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where x = [x1, x2] ∈ R
2 is the system state; u ∈ R is

the virtual controller; d0(t) is unknown additive distur-
bance, which may be caused by unmodeled dynamics,
unknownexternal disturbances,modeling uncertainties
and sliding effects. Here, the control target in the work
is to design an output-feedback control input u with
access to only the measured output variable x1 such
that the derived error variables x1 and x2 in system (3)
will be converge to the origin as much as possible.

In what follows, we will give the basic assumptions
about the unknown disturbance and desired path.

Assumption 1 The desired path and its first-order
derivative are smooth, bounded and known.

Remark 1 It is important to note that, the desired path
tracked by agricultural vehicles is generated by the path
planner of the navigation system. In practical agricul-
tural applications, the desired path either consists of
circular arcs with a given radius or straight lines to be
tracked at a specified reference velocity. Therefore, the
desired path and its first derivative are usually smooth,
bounded and known, which implies that Assumption 1
is reasonable.

Assumption 2 The unknown disturbance d0(t) and its
first-order derivatives ḋ0(t) are continuously bounded
functions, i.e., |d0(t)| ≤ Γ0 and

∣∣ḋ0(t)∣∣ ≤ Γ1, where
Γ0 and Γ1 are two positive constants.

Remark 2 It should be noted that Assumption 2 is
frequently-used when dealing with disturbance in most
practical scenarios, and similar assumptions can also be
found in the references [24,27]. The unknown distur-
bance d0(t) in system (3) may be caused by unmodeled
dynamics, unknown external disturbances, modeling
uncertainties and sliding effects. As amatter of fact, the
influence of d0(t) on the path-tracking system always
exists and is usually limited, which implies that d0(t)
can be regarded as a continuous and bounded signal.
Meanwhile, it is noted that the actual operating speed of
agricultural vehicles is usually slow, which will cause
the disturbance d0(t) to change slowly. Therefore, the
derivative of d0(t) can also be considered bounded. On
these basis, Assumptions 2 is reasonable.

It should be pointed out that only the lateral devi-
ation information can be obtained here, so we need
to reconstruct the unknown state x2 in system (3) by
designing a suitable state estimator. Consequently, in
order to facilitate the design of estimator to deal with

unknown system state x2, we can re-express the deriva-
tive of x2 as follows

ẋ2 = v2cd
1 + cd x1

− cd x22
1 + cd x1

+ d0(t) + v2

lt
u

+ v2

lt

[(
1 − x22

v2

) 1
2 − 1

]
u

= f (x1) + gmu + Δ (4)

where f (x1) = v2cd
1+cd x1

, gm = v2

lt
and the unknown

term Δ denotes the lumped disturbance, which can be
expressed as follows

Δ = − cd x22
1 + cd x1

+ v2

lt

⎡
⎣

(
1 − x22

v2

) 1
2

− 1

⎤
⎦ u + d0(t). (5)

In this situation, the original offset dynamics (3) can
be rewritten as follows

ẋ1 = x2

ẋ2 = f (x1) + gmu + Δ. (6)

Obviously, system (6) can be regarded as the strict-
feedback form. In what follows, we will design the
output feedback path-tracking controller based on sys-
tem (6), which not only greatly reduces the complex-
ity of control design, but also uses only system output
variable x1. Normally, the lumped disturbance Δ in
system (6) is required to further satisfy the following
assumption.

Assumption 3 Suppose that the lumpeddisturbanceΔ

is differentiable and bounded, and Δ̇ is also bounded.
i.e., there are two unknown positive constants Δ0 and
Δ1 such that |Δ| ≤ Δ0 and |Δ̇| ≤ Δ1, respectively.

Remark 3 Generally speaking, the system states x1 and
x2 change very slowly and are bounded. The virtual
control input u is always considered continuous and
bounded from a practical application point of view,
because u is related to the front wheel steering angle
andonly continuous control signals are allowed.Hence,
Assumption 3 is valid in practical scenarios.
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3 Design of output feedback controller

In this section, the output feedback SM controllers
are designed for system (6) subject to the unknown
bounded lumped disturbance. First of all, the second-
order RED is constructed to simultaneously reconstruct
the system full states in a finite time and provide an
estimate of the unknown lumped disturbance in sys-
tem (6). Then, two output feedback SM controllers are
proposed to address the path-tracking control issue for
autonomous agricultural vehicles without measuring
the orientation angle information. Finally, the observer
errors are taken into account during the stability anal-
ysis of the resulting closed-loop system.

3.1 Second-order RED

In order to reconstruct the unknown state x2 and esti-
mate the lumped disturbanceΔ in system (6), a second-
order RED is given base on [36] in the following form

˙̂x1 = L1
⌊
x1 − x̂1

⌉ 2
3 + x̂2

˙̂x2 = f (x1) + gmu + L2
⌊
x1 − x̂1

⌉ 1
3 + x̂3

˙̂x3 = L3
⌊
x1 − x̂1

⌉0
, (7)

where L1, L2 and L3 are positive observer parameters
which need to be properly selected; x̂1, x̂2 and x̂3 denote
the observed states of x1, x2 and Δ, respectively. Then,
a technical lemma will be presented in the following
text.

Lemma 1 Provided that the second-order RED is con-
structed as (7), then there exists a time instant T1 such
that the unknown state x2 and the unknown lump dis-
turbance Δ can be estimated by x̂2 and x̂3 respectively
when t ≥ T1.

Proof Define the error variables as e1 = x1 − x̂1, e2 =
x2 − x̂2 and e3 = −x̂3 + Δ. Then, taking the time
derivative of e1 along system (6) yields

ė1 = ẋ1 − ˙̂x1
= −L1

⌊
x1 − x̂1

⌉ 2
3 + x2 − x̂2

= −L1�e1� 2
3 + e2. (8)

Similarly, we can also easily obtain

ė2 = ẋ2 − ˙̂x2
= −L2

⌊
x1 − x̂1

⌉ 1
3 − x̂3 + Δ

= −L2�e1� 1
3 + e3. (9)

By Assumption 3, we have

ė3 = − ˙̂x3 + Δ̇

= −L3
⌊
x1 − x̂1

⌉0 + Δ̇. (10)

Then, the following error dynamics can be obtained as

ė1 = −L1�e1� 2
3 + e2

ė2 = −L2�e1� 1
3 + e3

ė3 = −L3�e1�0 + Δ̇. (11)

Evidently, using Assumption 3 to the third equation
of (11), we can easily obtain a differential inclusion as
follows

ė3 ∈ −L3�e1�0 + [−Δ1,Δ1]. (12)

This implies that the solutions of (11) can be under-
stood in the Filippov sense [37]. Thus, the finite-time
stability analysis of error dynamics (11) is not much
different from the main result presented in [38] and is
therefore omitted here for simplicity. As a result, it can
be inferred that the error variables e1, e2 and e3 will be
stabilized to the origin for t > T1 by choosing appro-
priate observer gains L1, L2 and L3. That is, once the
error variables e1, e2 and e3 converge to the origin, it
can be obtained that x1 = x̂1, x2 = x̂2 and x̂3 = Δ.
This completes the proof of Lemma 1. �	
Remark 4 On the basis of the research results given
in [36], it can be concluded that the observer parame-
ters Li (i = 1, 2, 3) have an impact on the smoothness
of the estimated state x̂i (i = 1, 2, 3). It follows from
[38] that in order to acquire the convergence of the
observation errors, the sufficiently large parameters Li

should to be selected. Actually, the possible selection
of these observer gains can be given as L1 = 6 3

√
L ,

L2 = 11 2
√
L and L3 = 6L , which can well guarantee
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the the finite-time stabilization of observation errors.
Here the variable parameter L is utilized to tune the
transient performance of online observation process.

Remark 5 The necessity and advantages of designing
a second-order RED in (7) can be summarized in the
following three aspects. Firstly, due to the fact that the
loss of GPS signal and the measurement noise of angle
sensor always exist in the automatic guidance system,
the measured heading deviation is usually inaccurate.
However, the state x2 in system (3) is obviously related
to the heading deviation, whichmeans that x2 cannot be
completely measurable. In this case, the state feedback
controller previously designed based on system (3)will
not work. Secondly, system (3) contains an unknown
lumped disturbance Δ, which causes serious negative
effects (i.e. destroying system dynamic and steady-
state performance) on the controlled system. Based on
these points, the second-order RED in this paper is con-
structed to simultaneously rapidly reconstruct the full
state variables of the system (3) and provides an accu-
rate estimate for the unknown disturbance Δ. Thirdly,
using second-order RED can theoretically achieve the
property of finite-time convergence, which ensures that
the precondition of separation principle can be trivially
satisfied. This indicates that the controller and second-
order RED can be designed independently.

3.2 Design of output feedback FOSM controller

Since system state x2 is not available, we will use the
observer state x̂2 obtained by the second-order RED (7)
in actual control. Note that the first step in designing a
SM controller is to select a suitable SM surface. Hence,
to achieve the control target of path tracking, we can
choose the SM surface s as follows

s = ζ x1 + x̂2 (13)

where ζ > 0 is a weight coefficient, which represent
the proportion of the lateral offset for the whole SM
surface. Taking the derivative of (13) along system (6)
and (7) produces

ṡ = ζ x̂2 + f (x1) + gmu + L2�e1� 1
3 + x̂3 + D1(t)

(14)

where gm = v2

lt
and D1(t) = ζe2. Note that the bound

of the observation error e2 is usually small due to the
finite-time convergence property of second-orderRED.
Therefore, we can find a positive real number D̄1 such
that |D1(t)| ≤ D̄1.

In view of the above detailed analysis, the output
feedback FOSM control law can be constructed as

u = − 1

gm

(
ζ x̂2 + f (x1) + L2�e1� 1

3

+
∫ t

0
L3 sign (e1) dτ + k1 · sign(s) + k2s

)
(15)

where k1 > D̄1 and k2 > 0.
Now, we will give the first main result of this work,

which can be expressed by the following theorem.

Theorem 1 Given path-tracking offset dynamic sys-
tem (6) with unknown bounded lumped disturbance Δ

under Assumption 3, the output feedback FOSM con-
troller (15) guarantees that the system states x1 and x2
will be asymptotically stabilized to the origin.

Proof : The detailed proof of Theorem 1 can be sum-
marized into three steps. The first step is that the output
feedback FOSM controller will be designed to finite-
time stabilize the sliding variable s. We then analyze
that the system states will not escape to infinity in a
finite time. Finally, the rigorous theoretical analysis is
given to demonstrate that the path-tracking errors are
asymptotically stabilized to the origin.

Step 1: Finite-time stability of sliding variable
Putting controller (15) into (14) gives

ṡ = −k1 · sign(s) − k2s + D1(t). (16)

We select a Lyapunov function candidate as V1(s) =
1
2 s

2. Then, differentiating the Lyapunov function V1(s)
along the SM dynamics (16) yields

V̇1(s) = s (−k1 · sign(s) − k2s + D1(t))

≤ − (
k1 − D̄1

) |s|. (17)

Note that k1 > D̄1 and k2 > 0. It can be shown
that V̇1(s) ≤ −
V

1
2 with 
 = √

2(k1 − D̄1) being a
positive constant. With the fact 0 < 1

2 < 1 and the
finite-time Lyapunov theory presented in [40] in mind,
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one can conclude that the sliding variable s is finite-
time stabilized to the origin.

Step 2: Finite-time boundedness of system states
We select a finite-time bounded function inspired by

[41] as

V1(x1, x2, s) = 1

2

(
x21 + x22 + s2

)
. (18)

Differentiating the function V1(x1, x2, s) along sys-
tem (6) and (16) yields

V̇1(x1, x2, s) = sṡ + x1 ẋ1 + x2 ẋ2

= −(k1|s| + k2s
2 − sD1(t)) + x1x2

+ x2(ė2 + ṡ − ζ ẋ1). (19)

Note that the uncertainties D1(t) and ė2 are bounded
satisfying |D1(t)| ≤ D̄1 and |ė2| ≤ η0 with η0 being
a positive constant. Therefore, it can be deduced from
(19) that

V̇1(x1, x2, s)

≤ |k1s| + k2s
2 + |D̄1s| + |x1x2| + |x2η0|

+ |k1x2| + k2 |x2s| + ∣∣D̄1x2
∣∣ + ζ x22

≤ k21 + s2

2
+ k2s

2 + D̄2
1 + s2

2
+ x21 + x22

2

+ η20 + x22
2

+ k21 + x22
2

+ k2
s2 + x22

2

+ x21 + D̄2
1

2
+ ζ x22

≤ Kv1V1(x1, x2, s) + Lv1 (20)

where Kv1 = max {4+2ζ+k2
2 , 2 + 3k2, 1} and Lv1 =

η20+2k1+2D̄2

2 are two positive constants. Then, it can be
concluded from (20) that

V1(x1, x2, s)

≤
(
V

(
x1(0), x2(0), s(0)

)
+ Lv1

Kv1

)
eKv1 − Lv1

Kv1
.

(21)

Therefore, it can be deduced from (21) that for any
bounded time T , the function V (x1, x2, s) is bounded
during [0, T ], which means that system states x1, x2
and sliding variable s will not diverge to infinity for
t ∈ (0, T ]. According to the definition of x1 and x2,

it can be obtained that the lateral deviation los and the
orientation error θos cannot escape to infinity in finite
time.

Step 3: Asymptotical stability of path-tracking errors
Since the sliding variable s converges to the origin

in finite time, there is a time instant T2 after finite time
t ≥ T2, s = 0 is hold. Then, it can be derived from (13)
that x̂2 = −ζ x1. Later, the following system dynamics
can be further presented as follows

ẋ1 = −ζ x1 + e2, x2 = −ζ x1 + e2. (22)

Meanwhile, from (11), the observer error e2 con-
verges to zero when t > T1. Hence, a time instant T
can be defined as T = max{T1, T2}, one has for t > T ,

ẋ1 = −ζ x1, x2 = −ζ x1, (23)

which implies that the system states x1 and x2 are
asymptotically stable by selecting a suitable positive
definite parameter ζ . By the fact that x1 = los and
x2 = v sin θos , it can also demonstrate that the output-
feedback FOSM controller (15) can ensure that both
lateral offset los and orientation error θos converge to
the origin in the presence of unknown bounded lumped
disturbances. �	

Obviously, it can be seen that the discontinuous
term existing in controller (15) can bring the undesir-
able chattering phenomenon, which may cause serious
damage to the actuator and even destroy the system
in a very short period. To alleviate the effect of chat-
tering, the signum function can be approximated by
the continuous hyperbolic tangent function such that
sign(s) = tanh(γ1s) where γ1 is a positive constant. In
addition, we can perform the inverse transformation of
the virtual control input u = tan δ, and then the actual
front wheel steering angle can be generated as follows

δ = arctan

(
− 1

gm

[
ζ x̂2 + v2cd

1 + cd x1
+ L2�e1� 1

3

+
∫ t

0
L3 sign (e1) dτ + k1 · tanh(γ1 · s) + k2s

])
.

It can be clearly observed from (22) that the system
state x1 is asymptotically stable only when the obser-
vation error e2 converges to zero for t > T1, which
means that the lateral offset cannot converge to zero by
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utilizing the output feedback FOSM control algorithm
during time interval (0, T1]. As a matter of fact, the
transient response of the lateral deviation has impor-
tant implications for the crossing and turning opera-
tions of agricultural vehicles. In the next section, we
will present a novel approach to further improve the
transient path-tracking performance using the output
feedback SOSM control strategy.

3.3 Design of output feedback SOSM controller

With the fact that e1 = x1 − x̂1 and e2 = x2 − x̂2, one
has

ẋ1 = x̂2 + e2

˙̂x2 = f (x1) + gmu + L2�e1� 1
3 + x̂3, (24)

where f (x1) = v2cd
1+cd x1

, gm = v2

lt
and x̂3 =∫ t

0 L3 sign (e1) dτ.

First of all, considering the path-tracking control
objective of agricultural vehicles, we can define lateral
deviation x1 as sliding variable s. Then, we can directly
calculate the two times derivative of the sliding variable
s along system (24) as

s̈ = f (x1) + gmu + L2�e1� 1
3 + x̂3 + ė2. (25)

Letting x̃ = (x1, e1), system (25) can be further
expressed as follows

s̈ = a(t, x̃) + b(t, x̃)u + ė2 (26)

where b(t, x̃) = gm , and a(t, x̃) is expressed as

a(t, x̃) = f (x1) + L2�e1� 1
3 +

∫ t

0
L3 sign (e1) dτ.

For the sake of facilitating the subsequent control
design, by setting s1 = s and s2 = ṡ1, then system (26)
can be described by

ṡ1 = s2

ṡ2 = a(t, x̃) + b(t, x̃)u + ė2. (27)

Next, the second result of this work is given by the
following theorem.

Theorem 2 Given path-tracking offset dynamic sys-
tem (6) with unknown bounded lumped disturbance Δ

under Assumption 3, if the output feedback SOSM con-
troller is constructed as

u = − 1

gm

(
β2

⌊
�ṡ� 3

2 + β
3
2
1 s

⌉ 1
3

+ f (x1) + L2�e1� 1
3

+
∫ t

0
L3 sign (e1) dτ + β3 · sign

(
�ṡ� 3

2 + β
3
2
1 s

) )

(28)

where the control gains β1 > 2, β3 ≥ η0 = sup(|ė2|)
and

β2 ≥ (1 + 32

27
+ c̃2) (29)

with c̃2 = 5
3 × 2

1
3 β

3
2
1 +

(
10
9 × 2

1
3 β

5
2
1

) 3
2
, then the sys-

tem states x1 and x2 will be finite-time stabilized to the
origin.

Proof : The detailed proof of Theorem 2 can also be
divided into three steps. First of all, the finite-time sta-
bility of the resulting closed-loop SM dynamics will
be validated by using the modified API technique [39].
Then, we will further analyze that the corresponding
system states are always bounded in a finite-time inter-
val. Finally, the finite-time stability of the path-tracking
errors will be verified to accomplish the proof.

Step 1: Finite-time stability of sliding variables
Let us select a Lyapunov function candidate as fol-

lows

V1(s1) = 3

7
|s1| 73 . (30)

Then, the time derivative of V1(s1) along SM
dynamics (27) can be calculated as

V̇1(s1) = �s1� 4
3 · s2

= �s1� 4
3 s∗

2 + �s1� 4
3 (s2 − s∗

2 ) (31)

where s∗
2 is a virtual control input to be determined

later.
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By letting ξ1 = s1, the virtual control law s∗
2 can be

designed as

s∗
2 = −β1�ξ1� 2

3 (32)

with β1 ≥ 2. Putting (32) into (31) yields

V̇1(s1) ≤ −2|ξ1|2 + �ξ1� 4
3 (s2 − s∗

2 ). (33)

In view of the virtual control law s∗
2 , we define ξ2 =

�s2� 3
2 −⌊

s∗
2

⌉ 3
2 and let the function V2(s1, s2) be defined

as

V2(s1, s2) = V1(s1) + W2(s1, s2) (34)

where W2(s1, s2) = ∫ s2
s∗2

⌊
�μ� 3

2 − ⌊
s∗
2

⌉ 3
2

⌉ 5
3

dμ. From

Propositions B.1 and B.2 given in [35], we can eas-
ily obtain that V2(s1, s2) is continuously differentiable
(i.e., C1) and positive definite function. Therefore, the
time derivative of the Lyapunov function V2(s1, s2)
along system (27) can be calculated as follows

V̇2(s1, s2) ≤ −2|ξ1|2 + �ξ1� 4
3 (s2 − s∗

2 )

+ ∂W2(s1, s2)

∂s1
ṡ1 + ∂W2(s1, s2)

∂s2
ṡ2

= −2|ξ1|2 + �ξ2� 5
3 ṡ2 + �ξ1� 4

3 (s2 − s∗
2 )

+ ∂W2(s1, s2)

∂s1
ṡ1. (35)

In the following, we will estimate the terms �ξ1� 4
3

(s2−s∗
2 ) and

∂W2(s1,s2)
∂s1

ṡ1 in inequality (35) step by step.

By the fact that 0 < 2
3 < 1, one can obtain from

Lemma A.1 that

�ξ1� 4
3 (s2 − s∗

2 ) ≤ |ξ1| 43
∣∣∣∣�s2� 3

2 · 23 − ⌊
s∗
2

⌉ 3
2 · 23

∣∣∣∣
≤ 2

1
3 |ξ1| 43 |ξ2| 23 . (36)

Applying Lemma A.2 to (36) gets

�ξ1� 4
3 (s2 − s∗

2 ) ≤ 1

2
|ξ1|2 + c2|ξ2|2 (37)

where c2 = 32
27 .

On the other hand, one has from Lemma A.1 that

∣∣∣∣∂W2(s1, s2)

∂s1
ṡ1

∣∣∣∣ ≤ 5

3
|s2 − s∗

2 ||ξ2|
2
3

∣∣∣∣∣∣
∂
⌊
s∗
2

⌉ 3
2

∂s1
ṡ1

∣∣∣∣∣∣

≤ 5

3
×2

1
3 |ξ2| 43

∣∣∣∣∣∣
∂
⌊
s∗
2

⌉ 3
2

∂s1
ṡ1

∣∣∣∣∣∣ . (38)

Taking s∗
2 = −β1�ξ1� 2

3 into account, it canbe shown
that
∣∣∣∣∣∣
∂
⌊
s∗
2

⌉ 3
2

∂s1

∣∣∣∣∣∣ ≤ β
3
2
1 . (39)

By using Lemma A.3, one can get from (39) that∣∣∣∣∣∣
∂
⌊
s∗
2

⌉ 3
2

∂s1
ṡ1

∣∣∣∣∣∣ ≤ β
3
2
1

(
|ξ2| 23 + β1|ξ1| 23

)
. (40)

Putting (40) into (38) produces

∣∣∣∣∂W2(s1, s2)

∂s1
ṡ1

∣∣∣∣ ≤ 5

3
×2

1
3 |ξ2| 43 β

3
2
1

(
|ξ2| 23 + β1|ξ1| 23

)
.

(41)

Applying Lemma A.2 for (41) leads to∣∣∣∣∂W2(s1, s2)

∂s1
ṡ1

∣∣∣∣ ≤ 1

2
|ξ1|2 + c̃2|ξ2|2 (42)

where c̃2 = 5
3 × 2

1
3 β

3
2
1 +

(
10
9 × 2

1
3 β

5
2
1

) 3
2

.

Substituting (37) and (42) into (35) gets

V̇2(s1, s2) ≤ − |ξ1|2 + (c2 + c̃2) |ξ2|2 + �ξ2� 5
3 ṡ2

≤ − |ξ1|2 + (c2 + c̃2) |ξ2|2

+ �ξ2� 5
3
[
a(t, x̃) + b(t, x̃)u + ė2

]
. (43)

Note that ė2 usually is bounded and satisfies |ė2| ≤
η0 with η0 being a positive constant. Design the con-
troller u as

u = − 1

gm

(
β2�ξ2� 1

3 + a(t, x̃) + β3 · sign(ξ2)
)

(44)

where β2 ≥ (1 + c2 + c̃2) and β3 ≥ η0.
Putting controller (44) into (43) arrives at

V̇2(s1, s2) ≤ −
(
|ξ1|2 + |ξ2|2

)
. (45)

By the definition ofW2(s1, s2) and Lemma A.2, one
has

W2(s1, s2) =
∫ s2

s∗2

⌊
�μ� 3

2 − ⌊
s∗
2

⌉ 3
2

⌉ 5
3

dμ
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≤ |s2 − s∗
2 ||ξ2|

5
3 = 2

1
3 |ξ2| 73 . (46)

A careful observation on V2(s1, s2) = V1(s1) +
W2(s1, s2) and (46) shows that

V2(s1, s2) = 3

7
|ξ1| 73 +

∫ s2

s∗2

⌊
�μ� 3

2 − ⌊
s∗
2

⌉ 3
2

⌉ 5
3

dμ

≤ 3

7
|ξ1| 73 + 2

1
3 |ξ2| 73

≤ 2
1
3

(
|ξ1| 73 + |ξ2| 73

)
. (47)

Letting λ = 2− 2
7 and ᾱ = 6

7 , it is clear that

V̇2(s1, s2) + λV ᾱ
2 (s1, s2) ≤ 0 (48)

With the fact 0 < ᾱ < 1 and the Lyapunov theory
presented in [40] in mind, it can be obtained that SM
dynamics (27) can be globally finite-time stabilized by
controller (44). It is noted that controller (44) can be
represented as (28). It also shows that system (27) can
be globally finite-time stabilized by controller (28).

Step 2: Finite-time boundness of system states
Define a finite-time bounded function inspired by

[41] for SOSM dynamics (27), which can be expressed
as follows

V (s1, s2) = 1

2
(s21 + s22 ). (49)

Differentiating the function V (s1, s2) along the
closed-loop system (27) and (28) yields

V̇ (s1, s2) = s1ṡ1 + s2ṡ2

≤ |s1s2| + s2
(
−β2�ξ2� 1

3 − β3 sign(ξ2) + ė2
)

. (50)

Note that ξ2 = �s2� 3
2 −⌊

s∗
2

⌉ 3
2 can be further rewrit-

ten as ξ2 = �s2� 3
2 + β

3
2
1 s1. Hence, one can conclude

from Lemma A.3 that

|ξ2| 13 =
∣∣∣∣�s2� 3

2 + β
3
2
1 s1

∣∣∣∣
1
3

≤ (|s2| 32 + β
3
2
1 |s1|

) 1
3 ≤ |s2| 12 + β

1
2
1 |s1| 13 . (51)

Taking |ė2| ≤ η0 into account, it can be shown that

V̇ (s1, s2) ≤ |s1s2| + β2s2

(
|s2| 12 + β

1
2
1 |s1|

)

+ |β3s2| + |η0s2| . (52)

By the fact that |s2| 12 < 1+|s2| and |s1| 13 < 1+|s1|,
one has

V̇ (s1, s2) ≤ s21 + s22
2

+ β2
1 + s22

2
+ β2s

2
2

+ β2β
1
2
1
s22 + s21

2
+ β2

3 + s22
2

+ s22 + η20

2
(53)

Next, we will rewrite inequality (53) in a compact
form as follows

V̇ (s1, s2) ≤ K̄v1V (s1, s2) + L̄v1 (54)

where the parameters K̄v1 = max{1 + β2β
1
2
1 , 3 + 3β2

+ β2β
1
2
1 } and L̄v1 = β2+β3

2+η0
2 are positive constants.

Thus, it follows from (54) that

V (s1, s2) ≤
(
V ((s1(0), s2(0)) + L̄v1

K̄v1

)
eK̄v1 − L̄v1

K̄v1
(55)

Therefore, it can be concluded from (55) that for
any finite time interval (0, T ], the function V (s1, s2) is
bounded, i.e., the sliding variables s1 and s2 will not
diverge to infinity during the time interval (0, T ]. In
addition, on the basis of the definition of s1 and s2, we
can obtain that the state variables x1 and x2 are bounded
during (0, T ], which also means that lateral deviation
los and orientation error θos will not diverge to infinity
in finite time.

Step 3: Finite-time stability of path-tracking errors
Note that the sliding variable s and its derivatives ṡ

finite-time converge to the origin, which implies that a
time instant Tσ can be found such that for t ≥ Tσ , s =
ṡ = 0 can be kept. By the definition of sliding variables
s1 and s2, we can define a time instant T as T ≥ Tσ . It
is clear that when t ≥ T , system (6) can be finite-time
stabilized under controller (28). Similarly, by the fact
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x1 = los , x2 = v sin θos , it can be concluded that both
lateral deviation los and orientation error θos converge
to the origin in finite time under the output feedback
SOSM controller (28). Hence, this accomplishes the
proof of Theorem 2. �	

In the same way, to reduce chattering problem in
the output feedback SOSM controller (28), the signum
function can also be approximated by the continu-
ous hyperbolic tangent function such that sign(ζ2) =
tanh(γ2ζ2)with γ2 being a positive constant.Moreover,
we can implement the inverse transformation of the vir-
tual control input u = tan δ, and then the actual front
wheel steering angle can be provided as follows

δ = arctan
(

− 1

gm

[
β2

⌊
�ṡ� 3

2 + β
3
2
1 s

⌉ 1
3 + v2cd

1 + cd x1

+ L2�e1� 1
3 +

∫ t

0
L3 sign (e1) dτ

+ β3 · tanh
(

γ2 ·
(

�ṡ� 3
2 + β

3
2
1 s

))])
.

Remark 6 To implement the derived output feedback
SOSM controller (28), some guidelines should be pro-
vided on how to select the control parameters in the
work. The parameter β1 should meet β1 ≥ 2 and can-
not be selected to be very small, because the conver-
gence performance of the sliding variable s1 is affected
by β1. When the value of β1 is selected smaller, it
means that the convergence performance of the sliding
variable s1 is slower. The parameter β2 should satisfy
β2 ≥ (1 + 32

27 + c̃2). And the parameter β3 should sat-
isfy β3 ≥ η0 to eliminate the adverse effects induced
by the derivative of estimation error e2. It seems that
the value of parameter β2 should be greater than a large
positive constant. The reason is that the control design
for the considered system utilizes a backstepping-like
technique, which usually causes the value of the param-
eter β2 to be overestimated. Actually, the predeter-
mined values of β2 could be gradually reduced until
a good performance of the resulting closed-loop sys-
tem is obtained.

Remark 7 In comparison with the output feedback
FOSM control method, the advantages of the output
feedback SOSM control method are described from
two aspects. On the one hand, the closed-loop path-
tracking offset dynamics under the derived output feed-
back SOSM controller will not only possess the strong

robust property that the conventional SMC could pro-
vide, but also achieve good dynamic performance. On
the other hand, the path-tracking error variables will be
finite-time stabilized rather than asymptotically con-
verge to the origin, because the stability of the track-
ing errors can be tested by utilizing the Lyapunov
approach.

4 Simulation results

To validate the effectiveness of the designed control
methods for the path-tracking problem of autonomous
agricultural vehicles, some comparative simulation
results will be presented in this section. For this pur-
pose, we will use the specified agricultural vehicle to
follow two different desired paths consisting of straight
lines and curves. One is an S-turn maneuver, and the
other is aMulti-maneuver. It should bementioned again
that the path-tracking control objective of autonomous
agricultural vehicles is to drive the vehicles to rapidly
track the path planned in advance and drive along the
specified path under the premise of ensuring stability.

In the following simulation, the wheelbase of the
simulated agricultural vehicle is set as 1.69 m, and the
maximum allowable threshold of the front wheel angle
is defined as no more than 3 rad. The initial states of
the simulated vehicle is set to be close to the reference
path, i.e., xt (0) = 0, yt (0) = 0.2 and θt (0) = 0. The
starting point of the reference path is taken as the origin
of the coordinate plane. The simulation is implemented
by utilizing the Euler method, and the sampling inter-
val is selected as 0.0001s. In addition, in order to test
the robustness of the proposed path-tracking control
schemes, we assume that the unknown additive distur-
bance in the path-tracking offset dynamics model (3)
are given as

d0 (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 ≤ t < 3
0.5, 3 ≤ t < 7
− t

10 + 0.5, 7 ≤ t < 10
0.5 sin

( t−2
4

)
, 10 ≤ t < 15

0.5 cos (π t) , t ≥ 15

(56)

On the other hand, in order to further show the supe-
riority of the designed path-tracking control strategies
in this paper, a PD-type controller for the path-tracking
error dynamics (3) proposed in [29] can also be tested
for comparison.

123



Output feedback sliding mode control for... 2441

u = lt
[ Ψ 3

1

(1 + x1cd)2

(
− ċd x1Ψ2 − Kd (1 − x1cd) Ψ2

− Kpx1 − cd (1 + x1cd) Ψ 2
2

)
− cdΨ2

1 + x1cd

]
(57)

where Ψ1 =
(
1 − x21

v2

) 1
2

and Ψ2 = x2
v

(
1 − x21

v2

)− 1
2

.

It should be noted that the control parameters Kp and
Kd are usually gradually tuned from small values to
appropriate values based on the trade-off between the
steady-state performance and transient response (e.g.,
tracking error, overshoot and settling time). As amatter
of fact, the following two situations should be empha-
sized. One is that the larger parameter kp may lead to
excessive and oscillated control response; The other is
that the larger parameter kd may make PD-type con-
troller be sensitive to external noise, resulting in high
frequency oscillation of the controlled system.

The control gains of the different controllers (15),
(28), (57) and observer (7) are shown in Table 2.

4.1 S-Turn simulation

In the first simulation case, the agricultural vehicle is
required to follow a clothoid curve at the reference
speed v = 1 m/s, which is planned to approach an
S-turn desired path.

Under the output feedback SM controllers (15) and
(28) and the PD-type controller (57), the comparative
simulation results for the lateral deviation and head-
ing error are presented in Fig. 2a, b. From those fig-
ures, it can be seen that under the SM controllers (15)
and (28), the path-tracking errors are stabilized, which
means that the vehicle can follow desired path, and
the vehicle is driven along the specified path. Since
the PD-type controller (57) does not have a good
anti-interference ability, it leads to unsatisfactory path-
tracking accuracy. It should be emphasized that under

the RED+SOSM controller (28), the transient perfor-
mance of path-tracking errors’ response is significantly
improved. As a matter of fact, the path-tracking error
dynamics can obtain faster response with lower steady-
state errors by using the RED+SOSM control method,
which is an important index to evaluate the path track-
ing results of agricultural vehicles in the actual oper-
ation scenarios. In addition, it is clear that there exist
small oscillations in the heading error within the first
few seconds by using the SM controllers (15) and (28).
This is because the gains L1, L2 and L3 of observer
(7) in this paper are chosen sufficiently large to obtain
shorter settling time and smaller tracking errors in the
steady state.

Figure 2c shows the front wheel steering angle in the
S-turn simulation. It can obviously be observed from
Fig. 2c that the control input is maintained in reason-
able regions and does not exceed the saturation limit.
Actually, the proposed SM controllers can achieve nice
tracking performance because the unknown lumped
disturbance Δ in the system (6) can be accurately esti-
mated by using the proposed estimator (7) and then be
compensated simultaneously. In addition, it can also be
seen from the simulations that the steady-state tracking
errors can be reduced by properly adjusting the control
gains in practical agricultural applications. However,
the excessive control gains may bring the undesirable
oscillations in the control signals, which is undoubtedly
harmful to the controlled system.

The path-tracking trajectory results are given in Fig.
2d. It can be observed that using SM controllers (15)
and (28) will evidently decrease the overshoots of
path-tracking errors and apparently improve the pre-
cision of path-tracking. Considering the great signifi-
cance of the transient response of lateral deviation for
autonomous agricultural vehicles in criticalmaneuvers,
such as changing lanes or turning around in the field,
the developed RED+SOSM control method can appar-
ently improve the operational efficiency of agricultural

Table 2 Control
parameters of different
controllers

Controllers Parameters

RED+FOSM controller L1 = 6 3
√
n, L2 = 11

√
n, L3 = 6n,

n = 4, ζ = 0.5, k1 = 0.1 k2 = 0.5

RED+SOSM controller L1 = 6 3
√
m, L2 = 11

√
m, L3 = 6m,

m = 6, β1 = 3, β2 = 3, β3 = 0.1

PD controller Kp = 6.9, Kd = 4.5
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Fig. 2 The simulation
results in the S-turn
maneuver: a the lateral
deviation; b the heading
error; c the steering angle; d
the path-tracking trajectory

(a) (b)

(c) (d)

vehicles. As a result, it can be concluded that the path-
tracking control method using RED+SOSM can retain
advantages of RED+FOSM controller, and the tran-
sient performance of path-tracking can be significantly
improved.

4.2 Multi-turn simulation

In the second simulation case, the vehicle is controlled
to track another realistic reference trajectory with two
circular arc, which is designed to approach an Multi-
turn desired path. Here, the reference speed is selected
as v = 3m/s, which can be regarded as the common
driving speed of the agricultural vehicle in actual agri-
cultural applications.

The numerical simulation results for lateral devi-
ation and heading error are plotted in Fig. 3a, b. It
can be clearly seen that the path-tracking errors can
be stabilized by controllers (15), (28) and (57). The
lateral deviation and heading error converge to zero
quickly based on the proposed control methods, which
is very significant for improving the tracking accu-
racy of autonomous agricultural vehicles. Compared

with the RED+SMC and PD control techniques, the
RED+SOSM control can obtain fast system response
and effectively reduce the steady-state error generated
during the path- tracking process. Similarly, it is not
difficult to find that there exists small oscillation in
the first few seconds of the heading error by using the
proposed control strategies. The reason for this phe-
nomenon is that we pursue shorter settling time and
smaller steady-state following error by adopting the
larger control gains.

The simulation results for the front steering angle
is displayed by Fig. 3c. It can be observed that the
three control inputs are maintained within acceptable
regions. A point should be mentioned is that under pro-
posed methods, the front steering angle can be kept at
reasonablemagnitudewithout exceeding the saturation
limit. Furthermore, the steady-state values of the front
steering angle in the Multi-turn simulation are smaller
than that in S-turn case.

Theglobal path-tracking trajectory results are shown
in Fig. 3d. It can evidently be observed that the over-
shoot of the global trajectory for path-tracking is
significantly alleviated using the proposed SM con-
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Fig. 3 The simulation
results in the multi-turn
maneuver: a the lateral
deviation; b the heading
error; c the steering angle; d
the path-tracking trajectory

(c) (d)

(a) (b)

trollers. Moreover, the path tracking target is accom-
plished satisfactorily using the proposed control meth-
ods, which illustrates that the actual operation qual-
ity of autonomous agricultural vehicles can be greatly
guaranteed.

5 Conclusion

In this paper,considering that the precision of currently
available sensors for vehicle heading angle measure-
ment is easily affected bymeasurement noise and vehi-
cle body vibration, the output feedback SM controllers
are proposed to control the vehicle to track the desired
path without using the vehicle heading deviation infor-
mation. The vehicle’s path-tracking offset dynamics
is first transformed into a strict standard form state-
space equation to facilitate controller design, where the
uncertainties are concentrated in an unknown nonlin-
ear function. Then, we introduce second-order RED
with attractive finite-time convergence to simultane-
ously reconstruct the unmeasured system state and esti-
mate the unknown lumped disturbance in the trans-
formed system.On this basis, twodifferent types of out-

put feedback SM control approaches are developed to
improve the path-tracking performance of autonomous
agricultural vehicles. The effectiveness of the designed
control approaches is confirmed by two kinds of com-
parative simulation results. In our future researchwork,
we hope to focus our efforts on experimental validation
of the obtained results in the paper.
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Appendix: A definition and three lemmas

At last, we list a definition and several helpful lemmas,
which play crucial roles in the stability analysis of the
SOSM dynamics derived in this paper.

Definition A.1 For α > 0, ∀x ∈ R, define �x�α =
|x |αsign(x), where sign(x) = 1 if x > 0, sign(x) = 0
if x = 0, and sign(x) = −1 if x < 0.

Lemma A.1 ([42]) Provided that a1 ∈ (0,+∞) and
a2 ∈ (0, 1], then for ∀x1, x2 ∈ R,

(i)
∣∣�x1�a1a2 − �x2�a1a2

∣∣ ≤ 21−a2 |�x1�a1 − �x2�a1 |a2;
(i i) 2

1− 1
a2 |x1 − x2|

1
a2 ≤

∣∣∣∣�x1�
1
a2 − �x2�

1
a2

∣∣∣∣ .

Lemma A.2 ([43]) Let mi > 0 for i = 1, 2, 3, 4. For
∀x1, x2 ∈ R, the following inequality holds:

m1|x1|m3 |x2|m4

≤ m2|x1|m3+m4 + m4

m3 + m4

×
( m3

(m3 + m4)m2

)m3
m4 m

m3+m4
m4

1 |x2|m3+m4

Lemma A.3 ([44]) Let c be a positive real number
with 0 < c ≤ 1. The following inequality holds for
∀xi ∈ R, i = 1, · · · , n

(|x1| + · · · |xn|)c ≤ |x1|c + · · · + |xn|c.
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