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Abstract In this article, the motion of three degree-
of-freedom (DOF) dynamical system consisting of a
triple rigid body pendulum (TRBP) in the presence of
three harmonically external moments is studied. In
view of the generalized coordinates of the system,
Lagrange’s equations are used to obtain the governing
system of equations of motion (EOM). The analytic
approximate solutions are gained up to the third
approximation utilizing the approach of multiple
scales (AMS) as novel solutions. The solvability
conditions are determined in accordance with the
elimination of secular terms. Therefore, the arising
various resonances cases have been categorized and
the equations of modulation have been achieved. The
temporal histories of the obtained approximate solu-
tions, as well as the resonance curves, are visually
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displayed to reveal the positive effects of the various
parameters on the dynamical motion. The numerical
results of the governing system are achieved using the
fourth-order Runge-Kutta method. The visually
depicted comparison of asymptotic and numerical
solutions demonstrates high accuracy of the employed
perturbation approach. The criteria of Routh—Hurwitz
are used to investigate the stability and instability
zones, which are then analyzed in terms of steady-state
solutions. The strength of this work stems from its uses
in engineering vibrational control applications which
carry the investigated system a huge amount of
importance.

Keywords Nonlinear dynamics - Vibrating
systems - Resonance - Perturbation approaches -
Stability

1 Introduction

Due to their widespread applicability in everyday life,
pendulum models have piqued the curiosity of many
scholars in recent decades, particularly the first two
decades of this century. However, the dynamics of
many different types of pendulums were examined
using various methods whether they are analytical or
numerical.
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In [1], the authors examined the instability posi-
tions of an inverted pendulum, in which if its pivot is
harmonically pushed up and down with suitable fre-
quency and amplitude, then its instability position can
be abolished. The parametric pendulum is used in [2]
to show how non-harmonic perturbations can be used
to flip from one dynamic state to the other without
changing the system’s intrinsic characteristics. In [3],
the authors investigated the motion of a simple
pendulum as a dynamical model with single general-
ized coordinate to examine its periodic movement on
an elliptic route. On the other hand, the chaotic motion
of 2-DOF weakly nonlinear spring pendulum system
for a fixed and moving suspension point is examined in
[4] and [5], respectively, to reveal their chaotic
behaviors near resonance with respect to the used
parameters. The ASM [6] is used in [7] to explore the
stability of a nonlinear spring pendulum, in which the
improvement of this work is investigated in [8] when
the pendulum is subjected to an external force.

Numerous publications, such as [9-13], have
investigated various routes of the suspension points
for the linear and nonlinear elastic pendulums with
various DOFs. In [9], the suspension point of a damped
elastic pendulum (EP) moves in a circular path. The
obtained results are generalized in [10] for an elliptic
route of this point, in which the approximate solutions
(AS) of some special cases are obtained. In [11], the
authors considered such a problem when the pivot
point has a trajectory of Lissajous curve, while the
general outcomes of this work are found in [12] for the
planar motion of an EP connected with a rigid body to
produce a dynamical model with 3 DOFs on the same
route of its suspension point. A special case of these
results is found in [13] for a fixed point of suspension.
The cases of linear and nonlinear damped EP carrying
arigid body, when the pivot point has a path of ellipse,
is examined in [14, 15], respectively. The AMS is used
in these works to gain the AS of the governing system
of motion. Therefore, the requirements of solvability
are obtained through the conditions of eliminating
secular terms and the possible resonance cases are
characterized. The vibrational motion of a rigid body
regarding the equilibrium position is investigated
numerically in [16] using the framework of ode45
solver of the Runge—Kutta method [17] from fourth
order. Recently, a comparison between numerical
solutions (NS) and the AS for the motions of rigid
bodies pendulum is examined in [18, 19] to highlight
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the good reliability between them and to explore the
high accuracy of the adopted perturbation approach.
Moreover, the conditions of Routh—Hurwitz [20] have
been used to ensure that steady-state solutions are
stable and to evaluate their different stability regions.

On the other hand, the employment of the absorbers
in the configuration of various constructions of
dynamical models has piqued the interest of many
researchers, e.g., [21-26] due to their applications in
the vibrational control of engineering industries. In
[21], the authors investigated how a longitudinal
absorber may stabilize and regulate the vibration of a
ship roll motion through the examination of the
behavior of 3-DOF nonlinear spring pendulum. The
behavior of a 2-DOF tuned absorber has been studied
in [22] when the rotation of its suspension point is on
an elliptic trajectory. The frequency response’s equa-
tions are used to analyze the steady-state solutions
around the chosen resonance situation, in which the
conditions of stability have been established. The
influence of the existence of a damped nonlinear EP on
the behavior of this problem is regulated in [23]. The
stability analysis for the motion of a transverse
absorber linked with a nonlinear elastic spring,
according to the examined three cases of the system’s
resonance, is presented in [24]. The vibrational
analysis problem of a connected inverted pendulum
with a passive mass for a spring absorber is addressed
in [25]. In [26], the authors demonstrated how to
modify automatically the rotating speed of a 2-DOF
pendulum absorber by determining the phase between
the primary structure’s vibration and the absorber
vibration, in which the response of absorber’s speed
has been implemented.

Furthermore, there are other types of pendulums
that have been studied in [27-32]. The motion of a
double pendulum under the influence of a vibrating
force and a gravity one in the situation of a vibrating
point of suspension is investigated in [27]. The
parametrically driven double pendulum and its bifur-
cation structure at tiny oscillation amplitudes are
investigated in [28], while the resonance and non-
resonance cases of a double pendulum are discussed in
[29]. However, the motion of a system comprising of
two attached physical pendulums swinging along
horizontal axes is investigated in [30]. Examinations
of the experimental and numerical results for the
motion of a triple pendulum were investigated in
[31-34]. In [31], numerical simulation of generic
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mechanical model with rigid motion limiters as well as
the stability and bifurcation analysis is presented. On
the other hand, the experimental rig and its corre-
sponding dynamical model of the triple pendulum are
provided in [32]. The piston-connecting rod—crank-
shaft system of a single-cylinder combustion engine is
described in [33] as a particular case of a triple
pendulum with barriers. High consistency between the
experimental results and the numerical one for the
motion of the same model is presented in [34]. The
bifurcations and stability of high-frequency periodic
motions with limited amplitude are also addressed, as
well as the stability criteria. Recently, the stability
analysis of un-stretched double pendulum and triple
one when they are subjected to external harmonic
moments and force are investigated in [35] and [36],
respectively. The stability and instability zones for
different parameters of the frequency responses are
estimated.

This paper focuses on the motion of a plane
dynamical system consisting of a TRBP with 3 DOFs
under the impact of three harmonic external moments
as a novel dynamical model. The governing system of
motion, which is made up of a set of three second-
order nonlinear differential equations, is derived using
Lagrange’s equations. The analytic approximation
solutions strategy of this system, as novel solutions, is
based on the use of the AMS. The prerequisites for
solvability are met by removing secular terms. As a
result, the arising resonance cases are identified, and
the equations modulation are obtained. The frequency
responses curves and the time histories of the derived
solutions are drawn to highlight the good effects of
various parameters on the motion. The fourth-order
Runge—Kutta method is utilized to obtain the numer-
ical results of the governing system. The juxtaposition
of the analytical and numerical results demonstrates
that the perturbation technique used is extremely
accurate. The stability and instability domains are
evaluated using Routh—Hurwitz conditions, and the
steady-state solutions are analyzed.

2 Dynamical modeling

The investigated dynamical model in this work
consists of three rigid bodies attached with each other
and moving in a vertical plane under the influence of a
gravity field with acceleration g as shown in Fig. 1.

N

Fig. 1 Dynamical motion

The physical quantities e; (j =1,2,3) and [ (k =
1,2) refer to the distance between the bodies gravity
centers z; and the rotation centers O;, and the link
lengths of the first two pendulums, respectively.
Furthermore, the mass and the moments of inertia of
Jjth links regarding to z; (orthogonal to the movement
xy plane) are represented by m; and J;, respectively.
The excitation moments operating on the links of the
pendulums at O; are denoted by M;(r) = fjcosQ;t
(where f; and €; are the amplitudes and frequencies of
these moments), and the angular position’s variables
are denoted by ; (j = 1,2,3). It is supposed that the
resistance moments at O; have a viscous damping with
coefficients c;.

Based on the above description, the kinetic energy
T and the potential one V of the system can be stated as
follows

1 o . . .
T= Emw%w% + Emz[l%‘//% + €353 + 2L exy i, cos(y — )]
1 . . ) o
T5ms (B0 + By + 3073 + 2hesiais cos(, — )
+ 20Dy, cos(Wy — ) + 2liesr s cos(y — )]
1 . 1 . 1 .
+ zjll//% + EleP% + E«ISIP%,
V = —mgejcosyy; —mag(excos iy, + Ij cos ;)
—mzg (ezcosys + Ijcosy; + L cosy,).

(1)

The governing system of EOM can be constructed
using the below Lagrange’s equations [37]
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d (oL oL
ds (a%) %Y, o .
(2)

where ; and % are the generalized coordinates and
their corresponding velocities, while the generalized
forces Q; have the forms

01 = ficos(Qut) — c1h, — e2(h, — ),
01 = foc0s(Qat) + oty — (c2 + c3)y + esphs,
03 = f3 cos(Qat) + 31, — 303
(3)

Let us proceed with the dimensionless representa-
tions of the parameters we will be using

mye + (my + m3) 3 mye3 + msl3

B = ) By = ;
Iz I
m3e% myesxly + mslily
B3 = 7 ) 1= Jiv
3 21
. moerly + mzl s . mzeslr o mzesl;
M=y s M= M=
2 3 21
mses3ln msesl
M, = J ) M3 = J )
22 3
o  Mmigeg 2 Mages o mzges
(}J] - J ] (1)2 - J I 603 - J ]
2 b2} 23
2 2
2 _ 0 e S (m3 + ma)gh
W =2 Ty PrT T
Wi w1 201
_ magh O Y
S 7 1=—, Pb=—
Jzzu)l w1 [OF]
Q3 Fe1 C1
Py =— 1=7—7=, G
w1 J, o7 J
C2 Cc3 C
C2 ’ - =
1 )
Jlel J720J1 Jzzwl
Cc3 ¢
Hy = ) T=w
JZ3CO]

(4)

Making use of (1), (2), (3), and (4), we can get the
following EOM in its dimensionless forms

AY' +BY +Cy* +D=F, (5)

where
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" ;j / l//il n” w : Z
lﬂ = I E lp = l//2 , l// = Wz )
3 ¥ Y32

(6)

1+ B Nicos(py — ) Micos(fy —3)
A= Nycos(Y, =) 1+B: M; cos(y, — y3)
Mscos(yy —W3) Nicos(fs —ihy) 1+ B3

Ci+C -G 0
B = —H C3 + Hy _C3 )
0 —H M
Nysin(y, —y,) M, sm —

0
C= ( Nysin(y, — ) 0O M, sin(
Mysin(y3 — ) Nasin(Ys — ) 0

(L+81)siny,
D= | (0*+8)siny, |, F =
@ sin

frcos Pyt
f3cos P3t

N CO%P]'C)

(7)

The foregoing set of Eq. (5) provides three second-
order nonlinear differential equations in terms of

lpj (] = 17273)

3 The recommended method

The goal of the present section is to use the AMS to
acquire the AS of the preceding governing EOM and
to classify the different resonances cases. To achieve
this aim, the trigonometric function of y; (j = 1,2, 3)
can be approximated in the neighborhood of static
equilibrium position up to the third order. Therefore,
the system of EOM (5) can be rewritten as follows

(1+ By} + —[9<w2 (3 = 2) + (U - 6)(¥3 — 6N,
+%[9<w%—> X (3= 2) + ] — 6)(2 — O
5~ 63— 2) — pal} —2) x (43— 6)My2?

s W = )W = 2) — s}~ 2) (W3
p

+(14+8)) x (1//1 7€1> +(C1 + C)Y, — oy = ficos Py,

6)|M 13"

(8)
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(1 + B + 5 DA — 2)(03 = 2)+ o 03 — 6)(U3 — O)N:

+ 3 902 —2) % (93 = 2) + s (U3 — )03 — O)IMa4

1
_E[

o (U2 — 6)(UE —2) Yol — 23— 6)May3” + (o +51)

Ui (0 = 6) (W3 —2) — Y (Wi —2) x (Y3 — 6)]N2y17 9)

3
< (0= 22) + (ot bl — ¥l + € = ocos P,

(1 4+ B + 5 D3 = 2)(03 = 2)+ o Y3 — 6)(W3 — 6N

$ 32907 —2) % (93 = 2) + s (93— )3 — O)Ms

~ a3~ 63— 2) — da(¥3 — 2) x (92 — ) N2> (10)
LW — )W —2) (]~ 2) (03— 6) sy

3
#0(1s=2) ~ atvl ~ ¥5) = cosPac

It is crucial to realize that the vibration amplitudes;
specially the generalized coordinates must be formu- 0(t, ¢)
lated in terms of a tiny parameter 0<e< <1.

10, (10, 11, 72) + O(&?),

~
w | w

Therefore, new variables 0, ¢, and y can be introduced _
as follows o(t,¢) = g, (10,11, 12) + O(&?), (12)
k=1
¥y = eb(se), - k—1 3
x(t,8) =) & y(ro,t1,72) + O().
Wz = gqﬁ(r;g% (11) =1
Vs = ex(t). Here, 19 =1, 7, = ¢, and T, = &%t are distinct

Now, we can seek for these variables as power
series of ¢ according to the following series [6]

timescales in which 7, represent a fast scale while 1,
and 1, are the slow ones. Consequently, the derivatives
regarding ¢ can be transformed into the scales 19, 7y,
and 7, using the following operators
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d 0 o  , 0 %y 0%y -0 - 0%
— =4 S 2 1 X1 1
TR ) T =25 B o2 Mz
e @ o’ o’ GR 2
= t2 2—— ) +0(&). 070, | . 0 . O
d? 973 + 8610611 T (612 * 610612) +0() ~Mr,— o Tl 3% Nza_ro-
(13) (20)
Taking into account the smallness of the parameters Order of &3
Bj,N;,M;,S1,S>,f;, and C; as below
B;=¢B,, Ni=¢N;, M,=¢cM;, S;=¢S;, S»=:¢S. 0°0; = 6201 0, - 06,
I 2 o = 7? oot L 22 = o3 T o2 0190t~ 0100714
fj"zsf]"v q:3Cj7 My =l B = (/:1’2’3) 2 2
14 —2B Sl 6 0z -N S
(14) Yoror, o o
where the parameters BNJ',}\/],Mj,gl,fz,ﬁ [y, [y, and N 2 iy 6 P15 62;{1
C’j are unity-order parameters. o 0100711 B 6 ! 010014
Making use of (11)-(14) into (8)—(10), and then 103 5 0
equaling the coefficients of equal powers of ¢ to +8 1~ 5102
construct the sets of the following partial differential ~ - (00, 00,
equations (PDE): — G+ G) (al + 610>
Order of &: d 0
+ G, < (d + 4)2) +f, cos Py 1,
0L g, o, 15 om0
2 Th= (15) (1)
¢, ¢y, P D¢ ¢,
o T =0 (16) Tz t =37 =250, ™ 2onon
B 62 B 62 B 62
1 ~2B:3 (é)l ~ B aq;z_N2 a(232
o2 F @ty =0 (17) 7007 T3 2
70 2 2
~ 070 ~ 0
) SNy L SR
Order of &-: 0100711 otg
2
%0, 20, - %0, - _op, O +, pEye
— 240, =2 —-B - N M 1
o T enon  Clog o ftn S
o -S Ly 2
— M, —71 — 810, + G+ %, (18) 2 4 fo (61: +61'0
o2 ol P
00 + (@ +C —1+—2)
(C] + C2) arl (:ul 3)(6 7 6‘50
0
o1 6)/2)
+ C; (——i—— + £, cos P,
62¢2—|—a)2¢ ) 62¢1 B‘ 62¢1 N 6 01 ot 0 ’
ot 27 0o, e Codd (22)
- %y, 00,
- M 3 — Sy + iy 5%
¢1 671
— C;
(fiy +C3) — o 0 67:0
(19)
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o 93 2 62}{1 6271 6272
Y= ——= —2 — —2—"=
6 tEn a‘rf 07907, 01901
62}’ 5 6272 > 62452
— ZB —=—N
610611 3 61(2) 3 613
- ¢, - %0, . 0
—2N — My —2 —2My———
36’[06’[1 3 6‘[% a’C()a’El

6 0ty 019
0 0
(2

1 0 0y
+—W2X? i ( 71+ Az)

on, o > + £ cos P31.

(23)

The preceding Eqgs. (15)-(23) constitute a system of
nine linear PDE, which can be solved in the order they
appeared. Therefore, the first group of Egs. (15)—(17)
have the general solutions that can be represented in
the following ways

01 =A™ +Aje™, (24)
b1 = Ase 1 Eyeiom, (25)
/(1 = A3ei1UTo —|—Z3e_iwro. (26)

Here A; (j = 1,2,3) and A; are unknown complex
functions and the corresponding complex conjugate,
respectively.

Inserting (24)—(26) into (18)—(20) and canceling the
terms that lead to secular ones to get the following
conditions

0A
Zi#—i— [S1 — Bi +i(Ci + C,)]A; =0, (27)
1

oAy . - o
2iw¥2 + S5 — Byo® + i (i, + C3)]A, =0, (28)
1

ZiW% + (iwCs

— Byw*)A; = 0. (29)
T1

As a result, the solutions of second order can be

written as follows

(N]G)+lC1)wA2 i +M1w A3 270 +ee,

0> = 1— o? -

(30)

(Mzw +1i C3)1DA3 70

(N2 + l:ul)Al l‘L'() +

92 = -1 w? — w?
+ cc,
(31)
(N3CO + l/l )(UA2 zwr M3Al i‘c
X2 = w2_0i2 0+ 2_ 0+CC7
(32)

where cc denotes the preceding terms’ complex
conjugates.

Making use of the solutions (24)—(26) and (30)-
(32) into Eqgs. (21)—(23), one obtains the requirements
for deleting secular terms from the approximation of
order three in the forms

0%A, 0A, 0A,
4+ 2i— +2iB—
61% + l612+ ! 1611
_ [(1\711\72 + Nifly + NGy — Goiy) (33)
o? -1
MM 1 0A,;
1 L1 CAAL + (Gl + C)=HA =0,
-1 2 oty
o’y 0A, - 0A,
2io—+ 2i B—
2 %, T
_ [(N1]\7260 +lw]\7262 +éz/:t1 +l']\71/1160>0)2
N (34)
(MyN3w + iMy iy + iN3C3)®
+ @2 — o2
1, = A
—w ArA C3)—|A, =0
o0 A, 2+ (i + 3)611] 2 =0,
0%As 043 ~ 0A3 0A3
2i B— 2iwB
oa THOBig tAvBip g
M1M3w 1 s
11— +§WA3A3
(in3C~3 + M2N3w2 + iw ‘L~42M2 — é3ﬂ2)w2
—+ o — o A3:0
(35)

Thus, the third-order approximations 03, ¢5, and y;
have the forms
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73 + 3 ~ 2
93 =2 [—( lle %eiwfo le %eiw‘to _ C2C0 A2 e[‘U)‘L'O‘|

1 —w?)?0n (1 — @?)? 01 (1 — ?)?
- a)3A2 ~ ~ M1w4A3 :
—Bi|———5 X (Mo + C)e"™ + ———=¢'7™
[y e T
iw[\71 6A2 iwt
——Z¢
(1 — (1)2) 611
iWMl % oty w3A2M1 (N~3(,{) + llaZ) eiw‘co (36)
(1 —@?) oty (1 — w?)(w? — v?)
| Myo?a, . N iC))wAs
+Sl 1@ 32 2177 _|_( 10+ 1 2)260 zew)ro
(- o) (- o)

(lNl(J) Cg)(l) A2 emm T iM11D3A3 0
(1-a?)? (1- o)

71 oA (Moo — C3)icPAs fi
— C - LT 1T I S ¥ a8 ()
h—wmne - - | 20-m)°

1
48A% 3110 . (Cl + Cz)

¢ _ (iNZ .ul)aAl no (lMZw C1>w 0A; Iwrn 1= 4217\73(0 %ei“”o 21M3 aAl ”0 +— 1 A3 3imtg
3 (?— 1) n (0? — @)’ £ < (@ - ?) 0 (w? —1) 01, 48
7 PIRY - P
(NZ + l.ul)Al m» + (MZW +1i C%)w A? mm - (N3UJ — ,u2)33(20 A2 eimro — B3M3A12 EiTU
(@ — 1) (@ — ) (@ —?) (@~ 1)
B N2M1m A3 eilmo + ) (ia)N; ,le)(u 6A2 l(UTo T iMz bAl lfo
(1 - @?)(w? — w?) (@? — w2)2 aTl (w? — )2 aTl
2i]\72 0A; ZiWMZ 0A3 0 M2M3Al i (1\72 + il V-
YA irg 23 oy 2SO i HI)N3 it
+< T hon . @ @@ “ @ -t
+ Lo g, (N2+iﬂ1)12“1 o (Myw + iC3)mAs ,mo] . L 042 o, N — f)Are™
48 (@ —1) (? - o) M@ —w?) or (@ — )2 1)
a7 3 - ~ L .
—h [(wz - 0 %eim = %3&?3_ = em] | B0 = B A2 i, | iMsArE™
1 - (@ —a?)? (@ — 1)
_ Ly, iM3A, . -
— H 0 — o) ons + P2 -1 e _ fzeP3m (M3N1 w + lCz)(U o
( ) 011 (@ = 1)( ) Aze
£ . 20— P (1-o?)(@ - ?)
Syl (38)
(lNz ,u )A| it (iMzw - 63)13143 o . .
— (i +G) (@ — 11)2 e o) B The unknown functions A;(j =1,2,3) can be

determined by looking at the conditions (27)—(29)
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Fig.2 Temporal variation of the amplitude a;, a,, and a3, a a; at (= 0.3829,0.4062, 0.4690),b a; at (=
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Fig. 3 Temporal variation of the modified phase 0,0, and 03 when a—c 0, at o(=

0.3829,0.4062, 0.4690), g-i 05 at w(= 0.3829,0.4062, 0.4690)

0.3829,0.4062, 0.4690),d-f 0, at w(=
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and (33)—(35). Therefore, the required AS can be
obtained easily after substituting the solutions (24)—
(26), (30)—(32), (36)—(38), and series (12) into
hypothesis (11).

As previously stated, dealing with the AMS neces-
sitates the employment of an unlimited number of
separate timescales rather than a single time variable.
The solvability constraints, which demand the
removal of secular elements from fast time variables,
are regarded as the appropriate tax for this flexibility.
The fast timescale constrains the structure of the
estimated solutions. It is also crucial to double-check
that the requirements of the solvability for different
orders are consistent. The amplitudes of “free”
resonant phrases that emerge in each expansion order
are limited by these requirements. The analysis may
provide inaccurate results or only allow simple
solutions if the restrictions are not fulfilled. It should
be noted that alternative free amplitude options may
yield contradicting findings [38].

4 Resonance requirements and equations
of modulation

The categorizations of resonance cases that may
emerge in the second or third-order solutions, as well
as the consideration three of these cases, are both
significant aspects of this section. It is well known that

()

v .

(c) 0.15;

0.10f
0.05
¥

-0.05
—0.10f

— 0 = 0.3829

@ = 0.4062

the resonance cases occur if the denominators of these
parts tend to zero [39]. Therefore, it might be
categorized as:

(i) When p; = 1,p» = w, and p3 =~ @, there is a
main primary external resonance.

(ii)) When w =~ 1,w =~ w, and w = 1, there is an
internal resonance.

It is noted that, if any one of the resonance cases is
met, we should expect that the studied model’s
behavior will be challenging. Furthermore, the
approach described above is valid if the vibrations
have values other than that of the resonance. There-
fore, we will investigate the three primary external
resonances that occur at the same instant to remedy
this problem. To pursuit of this objective, it is critical
to employ the dimensionless detuning parameters
0;(j =1,2,3) that detect the distance between the
oscillations and the stern resonance. Then we will be
able to write

Pir=140, Ph=w+0, P3;=w+ 03, (39)

Then, we can formulate these parameters in terms
of ¢ according to

O']‘ZS&j (]:1,2,3) (40)

Inserting (39) and (40) into (18)—(23) and deleting
the terms that yield secular ones, to gain the conditions
of solvability as follows.

(b)

0.04
0.02

v,
-0.02
-0.04

@ = 0.4690

Fig.4 Time histories of the AS ,,/,, and /5 when a , at (= 0.3829,0.4062, 0.4690),b y, at w(= 0.3829,0.4062, 0.4690),c Y5

at w(= 0.3829,0.4062, 0.4690)
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(a) ¥
0.002
0.001

© ¥
0.10f
0.05 (i

-0.05f)
-0.10]

(b)

0.04}f
0.02}

-0.02f
—0.04f

v,

—AS
NS

Fig. 5 Comparison between the AS and the NS of the variable y/,,V,, and /3 when o = 0.3829

Fig. 6 Comparison
between the AS and the NS
of the variable ¥, ¥,, and
Y3 when o = 0.4062

(@) y

0.003
0.002§
0.001

~0.001
~0.002}
—0.003f
—0.004

Conditions of the second-order approximation

A 1 oo
a_nl = 5;[Bi = S = i(Ci + C)JAy, (41)
A 1 . A
?12 = 5o B0 = S — (i + G4y, (42)
oAy 1 o

3 _ — (B3w — ifi,)WA;3. (43)

ot 2iw

Conditions of the third-order approximation

b)) v,

0.04f
0.02f

-0.02}
—0.04}

—
—NS
oA, 1 (. 3.
216—12—1{5‘? —|—2Bl (Sl —§B1>
. - AM\M
1 (Ci + G)[4iS; — 3(C, + )] + wzl_ 13
+ 21 [Nl (N2 +ifty) + iN,Cp — Cz,ul]

- ZAlgl}Al —‘%e‘i&lr' = 0,
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Fig. 7 Consistency
between the AS and the NS
of the variable ¥, ¥,, and
Y3 when o = 0.4690

@ ¥

-/ PR O O G
21wa—T2 — 1{232(52 — EBzw ) + Esz
N LAY -
(1 + G| 72 =3 + C)
40° S~ - L3 34~
+ o [(Mao(N30 + ifiy) + (i”'N; — °C3) )]
_ 4[((/:2 + ia)Nl)wzﬁl e iNzéz]
1—w?
2 24 A f2 6272
— 2z A2A2}A2 - ze 0,
(45)
_0Ay 1 o 5
21wa—r2 ~1 {B;(4iwji, — 3B3w*)
4w*M N;C
o 1N3G
T
4 P .
T Ao [Myo” (N3o + ifl,)
+ @ C3(iN3 — fip)] — 20°A3A3 }As
—%e"@” =0. (46)

It is clear that the functions A; (j = 1,2,3) can be
determined using the forgoing criteria (41)—(46) which
can be represented in the following polar form [40]

1 .
Aj(t1,12) = Edj(fl 0)eVi) g = ed,
)i(T1,72) = 6571 — ‘//j(fl7fz); (47)
o, =¢6; (j=1,2,3),

@ Springer

(b)

—-0.02}
—0.04}

—AS
-—NS

where 0; are the modified phases, ; are the phase
angles and g; are the amplitudes.

Making use of (47) into (41)-(46), and then
distinguishing the real parts and the imaginary ones
of the resulted equations to acquire the following
modulation equations of six ordinary differential
equations from first order

2
% _ % [4(1\/11\’2 +w1124171V112 —mG) 80, +%
—Bi(4—3B)) +$1(2B + 51 —4) +3(C1 + C)*] +

da; _ay [CiN2 + Ny + NGy
w?—1

fi

—cos 0,
2 1

fi.
dr 2 + (81 =G +C2)] + 251n01,
4oy _ax [4(N1N2w2 + G’ i 4 MM, — Capp)
r 8

wr—1 @? — w?

a0? )
+ 5 —8w62+n1+n2—3(C3+,u1)

+%cos 0,,

day _a [(CZNZ + Ny )o?

S < (Mo + N3y 00?
s 22 ASGCEUNLACY o7 el
& =3 + (w )(C3+Cz)+

1—w? @2 — w?

+ L sin 0,,
2w

dr 8

d0; a3 | M\ Msa* A(@PNsMy — G, a%wz
=% +2=
1 - @? w? — w?

+ B3@*(4 — 3B3) + 313 — 8o +f§3cos 03,

da3 _ az f3 .
o %["3 + (B3 — o)1) Togn 03,

(48)

where
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0.02-0.01

— (¥ =0.4690 —— ¥ =10.3829

© %

//7/5 -
iz
it

W

[
1

{
A\

|
|

‘ \\ \

N7
e

ﬁ§\\\\\\
2

\\i‘ Q \‘;"%

=0.4062

Fig. 8 Phase planes for the solutions \/,,/,, and /5 when (= 0.3829,0.4062, 0.4690)

3
n = Bzwz <1 — 432),

S B
n2232(—2+—2—1>,

42 2
_ (N3G3 + ioMy)) &’
n3y = 5 5 .
w? — @

Referring to the preceding system (48), the time
histories of its solutions a; (j = 1,2,3) and 0; are
graphed in Figs. 2 and 3, respectively. These figures are
calculated at (= 0.3829,0.4062, 0.4690) and
according to the following data
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B; =0.202, B, =0.0168, B3 =0.00187,

N; =0.649, N, =0.0357, N3 =0.0075,

M; =0.1159, M, = 0.00375, M3 = 0.01275,
C; =0.0000761, C, =0.0000304,

C3; = 0.0000609, f1 =0.02, f, =0.05,
fr=1, u, =0.0000167, wu, =0.0000670,

o =-0.1, 00=0.2, o3 =0.3.

Periodic waves can be seen while looking at the
potions (a), (b), and (c) of Fig. 2, where the amplitudes
of these waves decrease and the number of oscillations
increase in addition to the increasing of their wave-
lengths with the increment of the values of w. The
variation of 0; has an increasing manner when time
goes on as shown in parts of Fig. 3. These observations
are constituting with the nature of the equations of the
previous system (48). Therefore, the behavior of a; and
0; is influenced with the distinct values of w.

The variation of the obtained AS for y; (j = 1,2,3)
via dimensionless time 7 is plotted in portions (a), (b),
and (c) of Fig. 4. Periodic waves are produced which
encapsulates the characteristics of the obtained
stable solutions. Some wave packets, characterizing
the behavior of these solutions, have been obtained.
These solutions are verified through the comparison
with the NS of the original regulating system of
Egs. (8)—-(10) using the fourth-order Runge—Kutta

method when = 0.3829,w = 0.4062, w =
0.4690, ¥, (0) = 0.0001,y/(0) = 0, ,(0) = 0.0002,
¥5(0) = 0.00001, 5(0) = 0.3, and ¥/5(0) = 0 (with
the consideration of the same values of other param-
eters) as graphed in parts of Figs. 5, 6, and 7,
respectively. The good matching between them
explores the high precision of the used perturbation
method. The relations between the AS and their first-
order derivatives are plotted in Fig. 8 to graph the
phase planes figures when o takes different values. It
is notable that we have closed trajectories which
confirm that the gained AS have a stable behavior,
which is predicted before, during the tested interval of
time.

5 Steady-state solutions

The goal of this section is to investigate the dynamical
system’s vibrations under examination the steady-
state case. To accomplish this purpose, we consider

the null value of the first derivatives of the modified

phases 0; and amplitudes a; in Eq. (48), ie., % =

% =0 (j = 1,2,3) [41]. Therefore, the next set of six
algebraic equations regarding the variables 6; and g; is

yielded

(b) 005
0.04

0.03
2
0.02

0.01

Fig. 9 Amplitudes’ (@ T
resonance curves a; (j = 0.001 f—————————— -
1,2,3) as a function of o3 at 0.000
w = 0.4062 -0.001
@ -0.002
-0.003
-0.004
-0.005}
-1.0 -0.5 0.0
O3
© 19
0.8
0.6
a3 o4

——0,=-0.1, 6;=0.2
_O'l=0,o':=0
0,=0.1,0,=-0.2

..
.....
.......

~1.0
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Fig. 10 Curves of (a) T : (b) 0.030f '
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Fig. 12 Resonance curves
of aj(a3); (j=1,2,3) at
o = 0.4002, 0, =

—0.1, 6, = 0.2, and
C,(=0.005,0.01,0.1)

Fig. 13 Resonance curves
of aj(03); (j=1,2,3) at
o = 04002, 0 =

—0.1, 0, = 0.2 and

C>(= 0.002,0.004,0.006)
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Fig. 14 Resonance curves of a;(03); (j=1,2,3) at = 0.4062,0; = —0.1, 6, = 0.2, and C3(= 0.004,0.006, 0.008)
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@ .000691536 (b) 5
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a, 0.000691534 0.04
0.000691533 Uy 003 e
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Fig. 15 Resonance curves of aj(o3); (j=1,2,3) at w =0.3829, 6; = —0.1, o, = 0.2, and C;(= 0.005,0.01,0.1)
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Fig. 16 Resonance curves
of aj(a3); (j=1,2,3) at
= 0.3829, 0, =

—0.1, 6, = 0.2, and

C>(= 0.002,0.004,0.006)

Fig. 17 Resonance curves
of a;(a3); (j=1,2,3) at
w=0.3829, 0, =

—0.1, 0, = 0.2, and

C5(= 0.004, 0.006,0.008)

@ Springer

@ o010k T (b) 0.050p—————r—r=
0.00095 0.045
0.00090}
a1 0.00085 a, 0.040
0.00080
0.00075 0.035
0.00070} peesenae femnenen
-1.0 -0.5 0.0 0.5 1.0 0.030 foceeeeeemaaaaaas
oy -1.0 -05 0.0 0.5 1.0
O3
(¢) 1.0F ) 5
"
0.8} :'II
0.6f i
as HE
0.4f H y
Y
0.0 " e tmemees.
-1.0 -05 0.0 0.5 1.0
O3
C,=0.002 C,=0.004 C,=0.006
0.0014
@) 0.0012 (®) 4.0202874 e S
’ 0.0292874
0.0010 0.0292874
o008y 00 0.0292874
@ 0.0006 2 0.0292873F— .l
0.0004 0.0292873
0.0002 0.0292873
0.0000 0.0292873 R e
-1.0 -0.5 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0
o3 O3
(c¢) 1.0f i
0.8
0.6} HE
as : ':
0.4f R
0.2 ,__._J u,
0.0 : o o ST 2
-1.0 -0.5 0.0 0.5 1.0
O3
C,=0.004 C,=10.006 C,=0.008



The stability of 3-DOF triple-rigid-body pendulum system near resonances

1357

(a) 0.0F (b) '
f_ { 0.06f
—0.2} : 0.05f
i H 0.04f
1 —0-4' ': (lz 0.03; """""""""
ol : 0.02f
: 0.01f
-0 -05 00 05 10 R S Sy
o .
©) 10 H
.
0.8 0
0.6 H
asz l: !
0.4 ;
0.2 —J %,
0.0 L LD
1.0  -05 0.0 0.5 1.0
O3
C,=0.005 C,=0.01 ¢,=0.1

Fig. 18 Resonance curves of a;(g3); (j = 1,2,3) at w = 0.4690,6; = —0.1, g, = 0.2, and C; (= 0.005,0.01,0.1)
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Fig. 19 Resonance curves of a;(03); (j=1,2,3) at = 0.4690,0; = —0.1, 6, = 0.2, and C,(= 0.002,0.004, 0.006)
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Fig. 20 Resonance curves of aj(03); (j = 1,2,3) at w = 0.4690,0; = —0.1, 6, = 0.2, and C3(= 0.004,0.006, 0.008)
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Table 1 Critical and peaks
fixed points when detuning
parameters o; have different

values at w = 0.4062

Figure Peaks points Critical points 0 (j=1,2,3)
Figure 9a - (—0.07,0.00103442) a1(=-0.1,0,0.1),
a2(=—-0.2,0,0.2)
(—0.07,0.00173997)
(—0.07, —0.00547301)
Figure 9b - (—0.07,0.0496125)
(—0.07,0.00472759)
(—0.07,0.00225665)
Figure 9c (—0.0689, 1.036) (—0.07,0.492666)
Figure 10a - (—0.07,0.000691537) o1(=-0.1,0,0.1),
a3(= —0.002,0,0.002)
(—0.07,0.00173997)
(—0.07, —0.00547301)
Figure 10b (0.1287,0.0253) (—0.07,0.0336113)
Figure 10c - (—0.07,0.999864),
(—0.07,1.02406),
(—0.07,1.04689)
Figure 11a (0.1004,0.3401) (—0.07,0.00117769) o2(= —0.02,0,0.02),
a3(= —0.003,0,0.003)
Figure 11b - (—0.07,0.00472759),
(—0.07,0.00530889),
(—0.07,0.00426102)
Figure 11c - (—0.07,1.02406),

(—0.07,1.0583),
(—0.07,0.98983)

Table 2 Critical and peaks fixed points when damping coefficients C; have different values at @ = 0.4062

Figure Peaks points Critical points Ci(j=1,2,3)
Figure 12a - (—0.07,0.00103440)(—0.07,0.00103442) C,(=0.005,0.01,0.1)
Figure 12b - (—0.07,0.0496125)
Figure 12¢ (—0.02203, 1.026) (—0.07,0.492666)
Figure 13a - (—0.07,0.00103442) C,(= 0.002,0.004,0.006)
Figure 13b - (—0.07,0.0496125)
Figure 13a (—0.02203, 1.026) (—0.07,0.492666)
Figure 14a - (—0.07,0.00103442) C3(=0.004,0.006, 0.008)
Figure 14b - (—0.07,0.0496125),
(—0.07,0.0496126),
(—0.07,0.0496127)
Figure 14c (—0.02203, 1.026) (—0.07,0.492666)
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Table 3 Critical and peaks

Critical points Ci(j=1,2,3)

(—0.07,0.000691537),
(—0.07,0.000691553)
(—0.07,0.0292873)
(—0.07,0.454438)
(—0.07,0.000691537)
(,

(,

(_

C,(=0.005,0.01,0.1)

C>(= 0.002,0.004, 0.006)
0.07,0.029873)
0.07,0.454438)
0.07,0.000691537)

(—0.07,0.0292873),

(—0.07,0.0292874)

(—0.07,0.454439)

C3(= 0.004,0.006,0.008)

Critical points Ci(j=1,2,3)

. 4 Figure Peaks points
fixed points when damping
coefficients C; have Figure 15a _
different values at
o = 0.3829
Figure 15b -
Figure 15¢ (—0.02203,1.026)
Figure 16a -
Figure 16b -
Figure 16¢ (—0.02203,1.026)
Figure 17a -
Figure 17b -
Figure 17¢c (—0.02203, 1.026)
Table 4 Critical and peaks Figure Peaks points
fixed points when damping
coefficients C; have Figure 18a -
different values at
o = 0.4690
Figure 18b -
Figure 18c (—0.02138,1.026)
Figure 19a -
Figure 19b —
Figure 19¢c (—0.02138,1.026)
Figure 20a -
Figure 20b -
Figure 20c (—0.02138, 1.026)

(—0.07,0.00648686),
(—0.07,0.00648444)
(—0.07,0.328121)

(—0.07,0.454438)

(—0.07,0.00648688)
(—0.07,0.0328121)
(_
(_

C1(= 0.005,0.01,0.1)

C>(=0.002,0.004, 0.006)

0.07,0.454955)

0.07,0.0648693)
(—0.07,0.0328121),
(—0.07,0.0328122)
(—0.07,0.454654),
(—0.07,0.454655)

C3(=0.004,0.006, 0.008)

a? 3 S, B
ficosO = —a {201 +n +§]+Bl<1 731> +5 (Z‘+7‘71>

e sz],

CoNy
w?—1

fisin 0, :*al{ +(51*1)(C1+C2)]y
a% 2 3 2
frco80r = —ar | 2w, + ns +n5+§u) +m +nsz(C3+,u,)‘ s

3
- 3
frsinly = —ay {2(002 +ns + ng +%wz +ny+ny _Z<C3 +,u1)2].

1 —@? 8 4
f3 sinf; = 7&3(}13 + ,u233 — yzw),

M Mot 2 3 3
f3c0593:7a3{2m03+ 170 +n6+ﬁm2+—u§+33m2<17133)],

(49)

where

NN+ MM, — C1 G

n4 602 1 )
~ (NiN20? — py Cy) 0?
ns = )
1 — w?
o (N?,MQCOZ - u2C3)602
ne — w2 — a)2 .

Elimination of the modified phases 0; from the
previous system produces three nonlinear algebraic
equations of amplitudes g; and the frequency response
functions that are clarified by the detuning parameters
a; as follows
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Table 5 Critical and peaks
fixed points when detuning

parameters o; have different Figure 21a _
values at w = 0.4690

Figure Peaks points Critical points 0 (j=1,2,3)
0.07,0.00648693), o1(=-0.1,0,0.1),
0.07,0.00648663), a2(=—-0.2,0,0.2)

0.07,0.00137394)

(,
(,
(,
Figure 21b - (—0.07,0.328121),
(—0.07,0.00301757),
(—0.07,0.00158162)
Figure 21c (—0.02138, 1.026) (—0.07,0.454955)
Figure 22a - (—0.07,0.00137394), o1(= —0.1,0,0.1),
(—0.07,0.0034863), a3(= —0.002,0,0.002)
(—0.07,0.00648693)
Figure 22ab (0.2329, —0.06461), (—0.07,0.00228992)

(0.3093,0.01063)

Figure 22ac -

(—0.07, 1.04756),
(—0.07,1.02335),
(0.07,0.999136)

Figure 23a (—0.06815,0.3073) (—0.07,0.301986) a2(= —0.02,0,0.02),

a3(= —0.003,0,0.003)
—0.07,0.00301757),
—0.07,0.00331889),
—0.07,0.00276641)
—0.07,1.02335),
—0.07,1.05966),
—0.07,0.987042)

—~ o~ o~~~

Figure 23b -
Figure 23c -
I a 3 S, B
fi=ai{ _201 +ny +§1+31(1 *131> +5 (X+77 1)
3 > [oN 2
-3 +c2)2} +L022jl + (8= 1)(C +c2)] 3

- aZ 3 2
2 =d{|200, +ny +ny +ns +ns+§zw2 _Z(C3 ‘*‘ﬂl)z}

3 2
+ {20)02 +ny+ny+ns+ne —Z(C3+H1)2] 1

c 2
. 11’[1/‘431774 a2 3 3

2 2 3.2 2 2
f37a3{_2wa3+ 1 > +n6+§w +—u; +Bsw (1 —-B3

+ (1 + 1By — o)’}
(50)

It is important to note that the case of steady-state
solutions is considered an important part for the

@ Springer

stability’s examination. Therefore, to study the behav-
ior near a neighborhood region of fixed points, let us
consider the following substitutions into the above
system of Eqs. (48) [42, 43]

ay = ajo + aiy, as = axy + asy,

az = azy + as, (51)
0y = 010 + 011, 0 = 09 + 021,

03 = 030 + 031,

where ajo, 0jp are the solutions at the steady state of
(49) and a;1, 0;; are the corresponding tiny perturba-
tions. Therefore, the linearized system of (48) has the
form
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— ) = 0.3829

@ = 0.4062

@ = 0.4690

Fig. 24 a Variation of u; via time 7, b variation of v; versus time 7, ¢ projections of the modulation equations’ paths on the u;v, plane

when w(= 0.3829,0.4062, 0.4690)

doy;  an 3
Y _dn i,y B(1-2B
ao ar 2 [01+n1+ 1( 2 1)
11 3 , 3
+S <_1+EB]+ZS‘> _Z(C‘+C2) +§a$0a”]
—%011 sin 01()7
dayy _an [ GV,
fu_du Ci+C) (s — 1
2 _w2—1+( 1+ G)(S )}
+}%0“c05010A
do [ 1 2 3
aonil:%_20'2+6(112+n3+n4)+%0w*@(c3+,u1)2)],
dayg _an _wz(czNz+H1N1)+sz2(Mz +Ns)
dr 2 | 1 —w? w? — w?
S
+(C3 +H1)<—2— 1)} +f—2921 cos 0,
0] 2m
d031 asy [ M|M3w3 n3 3u§0 3
T _dnly 2% pm(1-28
B T T e T T TS
3 f .
+@H§} *%031“1030-,
daz;  as [ng Bs 5
a1 L T ) 5 )| 4+ 2205, cos 0.
dr 2 _m+u2<w )} +2w 31 €08 T30

The solutions of the previous system can be
achieved if we represent a;; and 0;; exponentially as
in the forms gie’”, where g (k=1,2,...,6) are
constants and 1 denotes the unknown perturbations’
associated with their eigenvalues. The roots’ real parts
of the following characteristic equations should not be
positive value, if the solutions at steady state ajo and
0jo are stable asymptotically [44]

P T2 4T 4 T2 4 T2+ TsA+ T =0. (53)

Here I'y are functions of the unperturbed parame-
ters ajo, 0j, and g;(see Appendix1).

The Routh—Hurwitz criteria [20] provide the nec-
essary and sufficient requirements for steady-state
solutions that can be expressed as follows
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I >0,
o, —T;3>0,
[0 -5 T30, + 15 >0
[0 — T30, — T3T% — T4 T3Ts + [sTL T
+ 2 T4Ts — T2 4+ T — IT6ls > 0,
[ T30 s — T,TsT3 — T205T s
— 52 4 T30 + 210 T ls — T2 — I LI5T
+ 3T + [IT6T3 Ty + 22T, 5T
— 3T T'sT3T — 312 > 0,
[(Ty Doy s — Ty[sT2 — T305Ts — [ T3003
+ o302 2T T2 — T3 — L0057
+ T30 + D06y + 21 To s T
— 30 [sT3T0 — I5T%) > 0.
(54)

R

6 Analysis of system’s stability

In the present part of this section, the dynamical
motion of the considered TRBP system in the presence
of external moments M; (j=1,2,3) is examined
using the linear stability analysis. The stability
requirements are performed besides the modeling of
the nonlinear system’s equations. Some parameters,
such as detuning parameters ¢; and the natural
frequencies 1, @, have been discovered to play a key
role in undermining the stability requirements. A
customized process with different system parameters
has been used to plot the stability graphs of the system
(48). The amplitudes a; of the fluctuations versus time
are plotted for distinct parametric regions, see Figs. 9,
10,11, 12,13, 14, 15,16, 17, 18, 19, 20, 21, 22, and 23
that are drawn to show the impact of the o; values on
the possible fixed points.

Opverall, the areas of stable and unstable fixed points
under the present constraints of the selected values of the
impacted parameters, lie in the range g; < — 0.07 and
—0.07 <y, respectively. It is important to note that the
solid curves reflect the domain of stable fixed points,
whereas the dashed curves denote the unstable ranges.

(b)

— ) = 0.3829

@ = 0.4062

@ = 0.4690

Fig. 25 a and b Variation of u; and v, via time 7, ¢ projections of the modulation equations’ paths on the u;v, plane when

(= 0.3829,0.4062, 0.4690)
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()

(b)

— 0 = 0.3829

@ = 0.4062

@ = 0.4690

Fig. 26 a and b Variation of u3 and v3 via time 7, ¢ projections of the modulation equations’ paths on the u3v; plane when

(= 0.3829,0.4062, 0.4690)

No peaks are observed in the planes a;o3 and a,03
except for three critical fixed points, as shown in parts
(a) and (b) of Fig. 9, while there exist one peak and
one critical fixed points in the plane aso3 when v =
0.4062 at (6 = —0.1,03 = 0.2), (6, = 63 = 0), and
(61 =0.1,05 = —0.2). It is clear from the third
equation in the system (50) that a3 is a function of
03, SO we get a curve as shown in Fig. 9c, this means
that a3 changes with g3, while we get straight lines as
shown in Fig. 9a and b. This means that the value of a;,
ap are invariant with respect to g3 because they are
functions of ¢; and o, as observed in the first and
second equations of the system (50), respectively. A
closer look at Fig. 10 reveals that it is graphed when
(61 =0.1,05 = —0.002), (o = —0.1,03 = 0.002),
and (o7 = o3 = 0). Several critical points are drawn
in part (a). The drawn curve in part (b) includes one
peak at the point (0.1287,0.0253) and one critical
fixed point in the plane ayg; at w = 0.4062. On the
other hand, there exist three critical fixed points in
Fig. 10c at the same considered values of the detuning
parameters.

Curves of Fig. 11 are plotted when (o, = 0.02, 03 =
—0.003), (02 = —0.02,03 =0.003), and (07 = 03

= 0), the peak fixed point appears in the plane a;o;
of frequency response as in part (a). There are three
critical fixed points are observed in the planes of
frequency responses apo; and aszo; as shown in
Fig. 11b and c.

No peaks are observed in the planes a;03 and a,03
except for two and one critical fixed points, as shown
in portions (a) and (b), respectively, of Fig. 12. In
Fig. 13, there is one critical fixed point in the plane
ayos and ayo3 while there exist one peak and one
critical fixed points in the plane aszo3 of Figs. 12, 13,
14. Moreover, three critical fixed points are observed
in the plane ayo3 of Fig. 14 when o = 0.4062 at
C,(=0.005,0.01,0.1),C2(= 0.002,0.004,0.006),-

oy = —0.1, and 6, = 0.2.

Several critical points are drawn in the planes a0
and ayo3, as shown in portions (a) and (b), respec-
tively, of Figs. 15, 16 and 17, while there exists one
peak and one critical fixed points in the plane asos
when o =0.3829 at C;(=0.005, 0.01,0.1),
C>(= —0.002,0.004,0.006),-

o1 = —0.1, and 6, = 0.2.

There are two critical fixed points in the plane a; 03

of Fig. 18 while there exists one critical fixed point in
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part (b) and one peak and one critical fixed points in
part (¢) at @ = 0.4690, C;(= 0.005,0.01,0.1). In
Fig. 19, the one peak and one critical fixed points
exist in the plane a3o; while there is one critical fixed
point in the plane aro3 and a;03 when o =
0.4690, C>(= —0.002,0.004,0.006). There are one
and two critical points in parts (a) and (b) of Fig. 20,
respectively. There exists two critical points and one
peak in part (¢) at @ = 0.4690 and C;(= 0.004,
0.006,0.008).

No peaks are observed in the planes a;03 and a,03
except for three critical fixed points, as drawn in parts
(a) and (b) of Fig. 21, while there exists essential one
peak and one critical fixed points in the plane azos
when @ = 0.4690 at (0 = —0.1,03 =0.2), (0y =
a3 =0), and (o7 =0.1,03 = —0.2). A closer exam-
ination of the curves of Fig. 22 shows that it is graphed
when (g =0.1,03 = —0.002), (0, = —0.1,03 =
0.002), and (6, = o3 = 0). Several critical are drawn
in part (a). The drawn curve in part (b) includes two
peaks and one critical fixed point in the plane a,0, at
o = 0.4690. On the other hand, there are three crucial
critical fixed points in Fig. 22c at the same considered
values of the detuning parameters.

Curves of Fig. 23 are drawn when (o, = 0.02, 03 =
—0.003), (0, = —0.02,03 =0.003), and (0, = 03
= 0), the peak fixed point appears in the plane a0,
of frequency response as in part (a). There are three
observed fundamental critical fixed points in the
planes of frequency responses a>o and azo; as shown
in Fig. 23b and c. Tables 1 and 5 show the relation
between the critical and peaks fixed points and the
values of the parameters g}, and w, while Tables 2, 3, 4
show the relation between the critical and peaks fixed
points at the considered values of the parameters C;
and o, respectively (Table 5).

7 Nonlinear analysis

This section examines the stability of the nonlinear
amplitude of Eq. (48) as well as exhibiting its
characteristics. Therefore, the following transforma-
tions are considered [45, 46]

1. . Lidn g
Aj:E[uj(’fl,fz)+le(T1,T2)}€ o (]:17273)7
u; = &uj, v; = &vj,

(55)

where u; and v; are the real and imaginary parts of the
amplitudes A;, respectively.

Substituting (14) and (87) into (33)—(35), and
consequently separating real and imaginary part to
yield
dvi 1 3 1

1
E+E(MT+M1V%)+E[GI 7ZB%+ZS%

1 1 3 )
+§(Bl 7S1) +§BIS1 7Z(C1 + Cz)
+ (M\M3 + N\Ny — Copiy)] uy

Ny + NGy
w? —1

w? —1

1 1
—3 S$1(Cr+ Cy) + +5(C1+C2)

Vi +‘5 =0,

du 1 1
d_‘L'1+o-] Vi +§(B] —Sl)vl _E(Cl —|—C2)u|
1
+E(v?+vl u%)
11 3 1 3
+5 {ZS% —ZB%-i‘EBlSl _Z(Cl +G)°

M\M35 + NN, — Cz,ul}
+ 14

w?—1

u1:0,

1 Ny + N C
+§ {S1(C1 +C2)+M}

w?—1

w%+0’2u2w+%(32w2 —S82)uz +%w(C3 + 1) v2
+ %aﬂ(u; +uyv3) + % [ﬁsg - %ngz + %Bz S,
2 2 2 2 _
- % (€54 1) +2 (Nll\lfzi“wz o) | @ (Mzgj(f — )y,
3 3
_% %(Q ) L@ (Nllﬂlt)ivzcz) ® (N;l;i*'wﬁjzﬂz) v +%: 0,
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1
CL)% — 0V +§(B2CU2 — Sz) V)

1
o(Cs + )y — — 0> (v} + v 13)

16

M1 3 1 3
—— 82 "Bl +-ByS, — =
G2 g Ry
2(N1 Ny * — Co py) n w* (M N3ow? — C3 #2)} v

1 —w? w? — w?

(C3 + /41)2

N — 1] —

+
g

(1)3(N] Hy + N2C2)

Sy
—(C
a)< 34 1) +

N =

+ 1 — w?

MQZO,

dV3 1
WE+§wM2v3+
1(3 1
+§[Z,u§—ZB§w2+

1
sz(ug + uz v%)
@M\ M; @?
1 — w?
@ (M, p, + N3 C3)
P

02 — o2

V3 +%

2

0,

[33 @ Wy +

du3+l
W— T u
dr 27

1
- sz("g +v3u3)

wz(Mz Nyw? — C3 W)

4
b wM1M3
PR A g
@’ (M i + N3 C3)
02 — o2

02 — 2

M3—O.

@ (N3 iy + M, p1y)
o2 — o2

(Ma N3 @* — C3 1) + 03 w} us

— O'3w:| V3

The adjusted amplitudes were then verified over
time in various parametric zones, and the amplitudes’
characteristics are depicted in phase plane curves as
illustrated in Figs. 24, 25 and 26. The values of the
parameters are set to the values listed below

g =-0.1, 0,=0.2, 03=0.3,

w(= 0.3829,0.4062, 0.4690), u;(0) =1,
v1(0) =0.8, u(0)=1.5,

v(0) =04, u3(0)=1.5 v3;(0)=0.5.

Portions (a) and (b) of Figs. 24, 25 and 26 describe
the variation of the adjusted phases via the dimen-
sionless time 7, while parts (c) of the same figures rep-
resent the projections of the modulation equation
trajectories on the plane u;v; when w have the above
different values. The plotted curves of the waves

illustrating the time histories of u; and v; behave
periodic attitudes. The oscillation number increases
with the increase in the frequency value w, while the
wavelengths decrease. However, the raising of w
values leads to increase in the amplitudes behavior as
shown in Fig. 26. The plotted closed curves in parts
(c) indicate that the above modulation system behaves
in a stable manner.

8 Conclusion

An externally influenced TRBP dynamical system with 3
DOFs has been investigated as a novel model. The
regulating nonlinear differential equations are derived
using Lagrange’s equations from second kind. The
strategy of the approximate analytic solutions up to the
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third-order of approximation is investigated using the
MSA. The prerequisites for solvability are met by
removing secular terms. The emerging resonance cases
are detected, and the equations of modulation are
achieved. The frequency responses curves and time
histories of the obtained new results are visually
displayed to emphasize the beneficial effects of the
various parameters on the motion. The numerical results
of the motion’s governing system are gained using the
Runge—Kutta fourth-order method. The comparison
between both results demonstrates that the used pertur-
bation technique is extremely accurate. The steady-state
solutions are investigated, and the zones of stability and
instability are evaluated using Routh-Hurwitz condi-
tions. This work is significant because of its applications
in engineering vibrational control, which gives the
researched system a lot of weight.
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Appendix 1
Fl _ l *Z(dg + d5 + dg) n sin 0|0f1 + sin 920f2 + sin 030ﬁ;
2 aio was waszp
1
F2 = 4— [2&)@(*26{10030614(16 — a20a30(d7d9 + d2d5 + (dz + dj)dg
wwapa20d3o
—2dids — (dy + ds + ds) sin O10f1)) + @ sin Oxoaz (—2(d2 + ds + ds)aio
+ sin O10f1 )f2 + sin O30 (wazo(—2(d2 + ds + dg)aio + sin O10f1) sin Oxaiaf2)f3],
1
I3 = [4ww(2d,d5(ds + ds)azpasy + sin 010(—dadsaz
8wwayparaso
-+ a20(7d7d9 -+ dzd5(1 + dg)(lm)fl + 2w sin 920a30(72d1d3 — (dz
+ds + dg) sin elofl )fZ + sin 030(260(120(*2dld3 — (dz +ds + dg) sin 0le1)
-+ sin 0]0 sin 920f1f2)f3 + 2a10(4ww(d4d6(d2 —+ dg)d:;() + az()((dg + d5)d7d9
— d2d5d8a30)) + 2w sin 020(—d7d9 + dzds(l + dg)ag())fz + sin 030(—2d4d6w
+ 2(d5d2 +dg (d2 —+ d5)wa20 — (dz +ds + dg) sin ()zqu) 3)},
1
Ijy=———— [4wwd4d6ago(2d1d3 + (dz + dg) sin 010f|)
8wwaypaaso
+ 2w sin (‘)20(2d1d3 (dj + dg)a30 + sin 910(*0’7619 + (d2d5 + (dz
+ d5)dg)a30)f] )f2 + sin 030(*2d4d660 sin qufl + sin 02()(*2d]d3
= (d2 +ds + ds) sin O10f1)f2)fs + 2wa20(4d1dsw(drdy — dsdsas)
+ 2w sin 01o((d2 + ds)d7dy — dadsdgaz)fy + sin 030 (2d1d3(ds + dg)
+ (d2d5 + (dz =+ d5)d8) sin 01Qf1 )f}) + 2a10(4ww(d4d6d7d9
— dz (d5d7d9612() + d4d6d3a30)) + 2@ sin 020((d2 + d5)d7d9
— d2d5dga30)f2 -+ sin H30(2d4d6(d2 =+ dg)(i) — 2d2d5d8wa20
— 2d2d5dgu)a20 + (d2d5 + (dz + d5)dg) sin gzqu)f:;)],
1 .
F5 = [4wwd4d6(—2d1d3d8a30 -+ sin 910(d7d9 — d2d36130) 1)
wwaipaxazo
+ 2w sin 020(2d] d3 (d7d9 — d5dg£l30) + sin 0]0(((12 + d5)d7d9 - dzdjdg(l_go) 1)f2
+ sin 030(2d4d60)(2d1d3 + (d2 + ds) sin 010f1) + sin 920(2d1d3 (d5 + dg)
+ (d2d5 + (dz + ds)dg) sin 01Qf1 )fz) 3 — 2d5wa20(2d1d3 + d2 sin 010f1)(2d7d9w
~+ dg sin 930](:7,) — 2d26110(2d4d660 + ds sin 920f2)(2d7d9w ~+ dg sin 930}%)],
—1 . . .
F6 B S —— [(Zdl d3 + d2 S H]Qﬂ )(2d4d660 + d5 S 920f2)(2d7d9w + dg S 03Qf3)}
8wwa10a20a30
1
where dz = Efl cos 09,
— ng  3ayp 1 1 3
di=o+5+"+5Bi1{ 1= B dy = 03 + 5 (m +m +ns+ng) = o (Cs +y)?
51 Bl Sl 3 2 3(,0612
4242 2+ C 20
+z( +2+4> g(C1 G TR
N,C, 1
dy = —(C1+Cy)(S; — 1
2 2(w2—1)+2(1+ 2)(S1— 1),
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1

@?*(CoNy + pyNy)

S
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s 2( +w>(ﬂ1+cs)+

Mzwz(Mz +N3)
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2(1 — w?)

:fz cos O
2w
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3wa? 1 3 3
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