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Abstract A linear oscillator subjected to multiplica-
tive Gaussian white noise in both frequency and input
signal fluctuation has been investigated in this paper.
We mainly focus on the studies of the stochastic res-
onance(SR). Using the properties of Brownian motion
and itô formula, we obtain the analytic expressions of
both the first-order and second-order moment of the
system’s stationary response. And the signal-to-noise
ratio is introduced to analyze the influence of fluctua-
tion in this system. It is worth mentioning that we solve
the generalized Langevin equation with mathematical
methods. Meanwhile, we discuss the variation of the
output amplitude with the parameters of the system.
We find that there is no SR in the first-order moment
expression, while both SR and inverse stochastic res-
onance phenomena exist in the second-order moment
expression, which have not been reported in the previ-
ous study.
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1 Introduction

The vibration phenomena widely exist in our daily life
as well as in various types of engineering systems [1–
3]. Among them, the simple harmonic vibration plays
a critical role in the study of the vibration phenomena.
So far, the dynamic behavior of harmonic oscillators
without noise has been widely studied [4]. However,
in natural science, especially in the study of vibration
phenomena, stochastic forces exist almost everywhere.
Thus, in order to describe the phenomenonmore realis-
tically, it is crucial to consider the effect of the stochas-
tic forces on natural phenomena. More precisely, the
stochastic forces, according to their origins, can be
divided into internal noise and external noise [5,6].
The internal noise, which usually appears as additive
noise, is caused by the irregular collisions of the inter-
nal molecules within the system. On the other hand, the
external noise, which usually appears as multiplicative
noise, originates from the fluctuation of external input
signal or parameters. By the way, compared with the
external noise, the influence of the internal thermal fluc-
tuation noise is generally small; therefore, the internal
noise can be ignored [5].

However, when considering the external noise of
the system, many researchers only focus on the multi-
plicative fluctuation of the system intrinsic parameters
[7–10], while we consider the multiplicative fluctua-
tion in the input signal as well. Moreover, the study
on the fluctuation of the system affected by multiplica-
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tive noisemainly focused on themultiplicative dichoto-
mous or trichotomous noise, and few studies analyze
the systemsfluctuated bymultiplicativewhite noise.As
a result, we take Gaussian white noise as multiplicative
fluctuation of frequency and input signal of the system.

As for a harmonic oscillator, the system can be
described by the Langevin equation. Thus, if we take
Gaussian white noise into account, the solution of the
equation can be described as a Wiener process. Bernt
Øksendal introduced Brownian motion and stochastic
calculus in 2003 [11]; thus, the solution of the system is
itô process precisely. And with the theory of stochastic
differential equation, that a function of an itô process Xt

and time t which is twice continuously differentiable
in Xt and once continuously differentiable in t satisfies
the conditions of itô formula [12], we can derive the
analytic expression of the displacement of the system.

In this paper, we study the phenomenon of stochastic
resonance (SR). The concept of SRwas first introduced
by Benzi [13] to explain the periodic recurrence of ice
ages on Earth in 1981. And the term SR is a nonlinear
synergistic effect of non-monotonicity among system
parameters, noise and periodic input signals of a phys-
ical system [14]. The phenomenon of SR shows that,
under certain conditions, when appropriately increas-
ing the input noise, the ordered component of the sys-
tem output will greatly increase instead of decreas-
ing. The phenomenon of SR has attracted considerable
interest due to many applications in biology [15–18],
physics [19,20], chemistry [21], signal detection and
recovery [22,23], circuit [24], molecular motor [25].
Thus, themathematical modeling and parameter analy-
sis of SR will be of great importance, which can poten-
tially provide theoretical support for applications. Li
et al. [26] hold the view that SR takes place only for
multiplicative colored noise, but disappears for white
noise, which is verified by us. However, we find that
SR occurs in the second-order moment solution. As we
change the parameters of the system, the phenomenon
of inverse stochastic resonance (ISR) [27,28] appears
instead of SR. The term ISR is similar to SR but con-
sists of an unexpected depression in the response of a
system under external noise [27]. Though we mainly
focus on SR instead of ISR, we hope our work could
be helpful in the research of ISR.

Before us, Zhang et al. [29] use Taylor series
to approximate the nonlinear expression of Gaussian
white noise to analyze the damped linear oscillator
model. Though their results go against that SR disap-

pears for white noise, they built a constructed role in
the study of linear system with Gaussian white noise.
Furthermore, Cao et al. [30] studied a linear system
driven by correlated Gaussian colored noise instead
of Gaussian white noise. And they focused on signal-
modulated noise, while we are going further, focusing
on frequency and input signal fluctuation of the system.
Thus, we would like to explore the SR phenomenon in
a linear oscillator subjected to multiplicative Gaussian
white noise in both frequency and input signal fluctua-
tion.

At last, the structure of this paper is as follows. In
Sect. 2, we provide the analytic expressions of both
the first-order and the second-order moment of out-
put signal amplitude. Furthermore, we obtain the ana-
lytic expression of the SNR. In Sect. 3, we propose the
numerical simulations based on analytic expressions.
At last, some discussions conclude this paper in Sect. 4.

2 System model

2.1 The expression of the first-order moment

We consider the generalized Langevin equation with
Gaussian white noise as follows

d

dt
Xt + (ω2 + ξt )Xt = (A0 + ηt ) cos(�t), (1)

where X (t) is the oscillator displacement, ω is the
frequency constant of the system, and A0 and � are
the amplitude and the frequency of the periodic cosine
wave input signal, respectively. ξt and ηt are Gaussian
white noise, satisfying

〈ξt 〉 = 0, 〈ξtξs〉 = D2
1δ(t − s),

〈ηt 〉 = 0, 〈ηtηs〉 = D2
2δ(t − s),

〈ξtηs〉 = D1D2δ(t − s), (2)

where D1 and D2 are the variances of the ξt and ηt ,
respectively. And we can learn from the theory of
stochastic differential equation (SDE) [11] that dGt ,
which is the differentiation of a Brownian motion Gt ,
can be written as

dGt = γt · dt, (3)
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where γt is Gaussian white noise. Thus, we can rewrite
Eq. (1) as follows

dXt = − ω2Xt dt + A0 cos(�t) dt − Xt dBt

+ cos(�t) dWt , (4)

where Bt and Wt are Brownian motions satisfying
Eq. (3). In particular, dBt = ξt · dt and dWt = ηt · dt .
Then, we simply multiply both sides of Eq. (4) by eω2t

to obtain

eω2t (dXt + ω2Xt dt) = d(eω2t Xt )

= eω2t (A0 cos�t dt − Xt dBt + cos(�t) dWt ),

(5)

and the integration of both sides of the above equation
is as follows,

eω2t Xt − X0 =
∫ t

0
eω2s(−Xs dBs

+ A0 cos�s ds + cos(�s) dWs).

(6)

In fact, since ω2 > 0, the initial displacement has little
effect on the stable displacement of the system, as time
t grows. Therefore, we obtain the following equation,
assuming that X0 = 0,

eω2t Xt = −
∫ t

0
eω2s Xs dBs

+ A0

∫ t

0
eω2s cos(�s) ds

+
∫ t

0
eω2s cos(�s) dWs, (7)

and then, take average of Eq. (7), and we acquire

〈Xt 〉 = A0e
−ω2t

∫ t

0
eω2s cos(�s) ds

= A1 cos(�t − φ0) − A1 cosφ0e
−ω2t , (8)

where A1/A0 = 1√
ω4+�2 and tanφ0 = �/ω2. And the

stationary solution 〈Xt 〉as satisfies

〈Xt 〉as = A1 cos(�t − φ0). (9)

From Eq. (9), we find that the amplitude of the
response is monotone with both � and ω. Thus, we
deduce that there is no SR phenomenon in the first-
ordermoment of the response, which is one of ourmain
results in this paper.

2.2 The expression of the second-order moment

Assume there exists a function f (t, xt ) = x2t , and obvi-
ously f (t, xt ) is twice continuously differentiable in xt
which is an itô process and once continuously differ-
entiable in time t . Then by itô formula [12], we have

x2t =
∫ t

0

∂ f

∂u
du +

∫ t

0

∂ f

∂xu
dxu

+ 1

2

∫ t

0

∂2 f

∂x2u
(dxu · dxu), (10)

and

dt · dt = dt · dBt = dt · dWt = 0,

dBt · dBt = D2
1 dt, dWt · dWt = D2

2 dt, (11)

dBt · dWt = D1D2 dt.

Thus, it can be obtained by Eqs. (4) and (11) that

dXt · dXt =D2
1X

2
t dt + D2

2 cos
2(�t) dt

− 2D1D2Xt cos(�t) dt, (12)

Inserting Eqs. (4) and (12) into Eq. (10) by substituting
dxt with dXt , and dxt ·dxt with dXt ·dXt , respectively,
Eq. (10) can be rewritten as

X2
t =2

∫ t

0
(−ω2X2

s ds + A0 cos(�s)Xs ds

− X2
s dBs + cos(�s)Xs dWs)

+
∫ t

0
(D2

1X
2
s ds + D2

2 cos
2(�s) ds

− 2D1D2Xs cos(�s) ds). (13)

After taking average of the above equation, we have

〈X2
t 〉 =(−2ω2 + D2

1)

∫ t

0
〈X2

s 〉 ds

+ 2A0

∫ t

0
〈Xs〉 cos(�s) ds
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+ D2
2

∫ t

0
cos2(�s) ds

− 2D1D2

∫ t

0
〈Xs〉 cos(�s) ds. (14)

Since 〈X2
t 〉 and 〈Xt 〉 are functions of t , then we can

take the differential of Eq. (14) by t and acquire

d

dt
〈X2

t 〉 =(−2ω2 + D2
1)〈X2

t 〉
+ D2

2 cos
2(�t)

+ 2(A0 − D1D2)〈Xt 〉cos(�t). (15)

The solution of Eq. (15) is convergent if and only if
2ω2 > D2

1. In the long-time limit(t → +∞), we then
obtain the expression of the stationary second-order
moment

〈X2
t 〉as = A2

√
R2
1 + R2

2cos(2�t − φ1 − φ2) + αs,

(16)

where

R1 = A2
1ω

2(1 − D1D2) + 1

2
D2
2,

R2 = A2
1�(1 − D1D2),

A2 = 1/
√

(2ω2 − D2
1)

2 + 4�2, (17)

tanφ1 = 2�/(2ω2 − D2
1), tanφ2 = R2/R1,

αs = R1/(2ω
2 − D2

1).

Additionally, Eq. (15) shows that the system is stable
if and only if

D2
1 < 2ω2. (18)

2.3 SNR

The influence of the external signal on the system
reflects on SNR. Then, the effect of frequency and input
signal fluctuation is going to be considered. It is crucial
that correlation function should be calculated, in order
to obtain the analytic expression of SNR. In Eq. (7),
replace t by t + τ(τ ≥ 0); we obtain the time-delay
model of Eq. (7)

eω2(t+τ)Xt+τ =eω2t Xt −
∫ t+τ

t
eω2s Xs dBs

+ A0

∫ t+τ

t
eω2scos(�s) ds

+
∫ t+τ

t
eω2scos(�s) dWs (19)

and take average of Eq. (19) to obtain

〈eω2(t+τ)Xt+τ 〉 = eω2(t+τ)〈Xt+τ 〉
= eω2t 〈Xt 〉

+ A0

∫ t+τ

t
eω2s cos(�s) ds. (20)

On the other hand, let E[X | F] represent the con-
ditional expectation of random variable X with a given
σ -algebra F , then

〈eω2(t+τ)Xt+τ Xt 〉 = E[eω2(2t+τ)Xt+τ Xt ]
= E[E[eω2(2t+τ)Xt+τ Xt | Ft ]]
= E[eω2t Xt E[eω2(t+τ)Xt+τ | Ft ]], (21)

where Ft = {eω2s Xs, s ≤ t} is a σ -algebra [11], and
since

eω2t (Xt − 〈Xt 〉) =eω2t Xt − A0

∫ t

0
eω2s cos(�s) ds

= −
∫ t

0
eω2s Xs dBs

+
∫ t

0
eω2s cos(�s) dWs, (22)

is a martingale [11],

eω2(2t+τ)〈Xt+τ Xt 〉 = 〈eω2(2t+τ)Xt+τ Xt 〉
= E[eω2t Xt E[eω2(t+τ)(Xt+τ − 〈Xt+τ 〉

+ 〈Xt+τ 〉) | Ft ]]
= E[eω2t Xt (E[eω2(t+τ)(Xt+τ − 〈Xt+τ 〉) | Ft ]

+ eω2(t+τ)〈Xt+τ 〉)]
= E[eω2t Xt (e

ω2t (Xt − 〈Xt 〉) + eω2(t+τ)〈Xt+τ 〉)]
= E[eω2t Xt (e

ω2t Xt + eω2(t+τ)〈Xt+τ 〉 − eω2t 〈Xt 〉)]
= E[eω2t Xt (e

ω2t Xt + A0

∫ t+τ

t
eω2s cos(�s) ds)]
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= e2ω
2t 〈X2

t 〉 + A0e
ω2t 〈Xt 〉

∫ t+τ

t
eω2s cos(�s) ds.

(23)

Divide both sides of Eq. (23) by eω2(2t+τ)

〈Xt+τ Xt 〉 = e−ω2τ 〈X2
t 〉

+ A0e
−ω2(t+τ)〈Xt 〉

∫ t+τ

t
eωs

cos(�s) ds

= e−ω2τ 〈X2
t 〉 + 〈Xt 〉(〈Xt+τ 〉 − e−ω2τ 〈Xt 〉)

= A2
1

2
{cos[�(2t + τ) − 2φ0] + cos(�τ)}

+ e−ω2τ (〈X2
t 〉 − 〈Xt 〉2). (24)

Therefore, we derive the correlation function from
Eq. (24)

C(τ ) = �

π

∫ π/�

0
〈Xt+τ Xt 〉 dt

= e−ω2τ D
2
2 + A2

1D1(D1 − 2D2ω
2)

2(2ω2 − D2
1)

+ A2
1

2
cos(�τ). (25)

On the other hand, when τ < 0, we can easily obtain

C(τ ) = �

π

∫ π/�

0
〈Xt+τ Xt 〉 dt

= eω2τ D
2
2 + A2

1D1(D1 − 2D2ω
2)

2(2ω2 − D2
1)

+ A2
1

2
cos(�τ). (26)

Thus, for any τ we have

C(τ ) = �

π

∫ π/�

0
〈Xt+τ Xt 〉 dt

= e−ω2|τ | D2
2 + A2

1D1(D1 − 2D2ω
2)

2(2ω2 − D2
1)

+ A2
1

2
cos(�τ). (27)

The power spectrum S(ω0) is calculated as the
Fourier transform of the correlation function. Then in
order to calculate the output SNR we break up S(ω0)

into two parts:

S(ω) = S0(ω0) + N (ω0), (28)

where

S0(ω0) = A2
1

2

∫ +∞

−∞
cos(�τ)e−iω0τ dτ

= A2
1

2
δ(ω0 − �), (29)

and

N (ω0) = D2
2 + A2

1D1(D1 − 2D2ω
2)

2(2ω2 − D2
1)

×
∫ +∞

−∞
e−ω2|τ |e−iω0τ dτ

= D2
2 + A2

1D1(D1 − 2D2ω
2)

(2ω2 − D2
1)

ω2

ω2
0 + ω4

.

(30)

Finally, the expression of the SNR is derived

SN R = A2
1

2N (ω0 = �)

= 1

2ω2

2ω2 − D2
1

D2
2 + A2

1(D
2
1 − 2D1D2ω2)

, (31)

where the parameters in Eq. (31) are introduced above.

3 Simulation

In order to verify the expression of the first-order
moment in Eq. (9) and the second-order moment in
Eq. (16), we use numerical simulation to approximate
the system model Eq. (1) and compare the simulation
results with the analytic results. The existence of noise
makes the output of the system unpredictable, and the
amplitude of the response is a random variable. Thus,
theMonte Carlo method is used under the same param-
eter conditions taking simulation times N = 200, sim-
ulation time t = 30s and time interval �t = 1e − 3s.
The average value of simulation times N is taken as the
steady-state response of the system.

When we do simulations on the numerical solution,
we set the initial value to zero regardless of the initial
value of the analytic solution. The first-order moment
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Fig. 1 When fixing parameters to � = 0.8, D1 = 1.1, D2 = 0.9, ω = 1, a the relationship between first-order moment analytic
solution and numerical solution, and b errors between first-order moment analytic solution and numerical solution
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Fig. 2 When fixing parameters to � = 0.8, D1 = 1.1, D2 = 0.9, ω = 1, a the relationship between second-order moment analytic
solution and numerical solution, and b errors between first-order moment analytic solution and numerical solution

analytic solution and the numerical solution of Eq. (1)
are shown in Fig. 1, which shows that the numerical
first-order moment solution is statistically consistent to
the analytic solution meaning that the initial value does
not affect our analysis of the results. Thus, it is certain
that the first-order moment of the analytic expression
is reliable.

Similarly, the initial value of second-order moment
of numerical solution is also set to zero. Then, we can

learn from Fig. 2 that the numerical solution of the
second-order moment expression is statistically con-
sistent to the analytic one. Thus, we can say that the
second-order moment of the analytic expression is reli-
able.
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Fig. 3 When fixing parameters to � = 0.8, D2 = 0.9, ω = 1, a the region of stability of the system versus D1 and ω, and b the
numerical solution of the second-order moment with D1 = 2
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Fig. 4 The amplitude versus ω while fixing, a � = 0.8 and D1 = 0.5; b � = 0.8 and D2 = 0.9. Specifically, the green points in both
a and b are the lower bounds of ω with different D1 satisfying Eq. (18)

According to Eq. (18), we obtain the stable region of
the system in Fig. 3a. Take D1 = 2 and Fig. 3b shows
that the output is unstable. And comparing to Fig. 2a
in which the parameters are identical to Fig.3a except
that D1 = 1.1, we verify the condition of stability of
the system.

However, it is difficult for us to tell if there is any SR
phenomenon directly in Eq. (16). Thus, we figure out
the parameters which influence the amplitude through

simulation. For some D1 and ω satisfying Eq. (18), the
peak appears. In particular, in Fig. 4, the green points
are lower bounds of ω satisfying D2

1 = 2ω2. In other
words, the figure is valid when ω is over the lower
bound.

From Eqs. (9) and (16), we obtain the first-order and
second-order moment response of the system model
Eq. (1). Equation (9) shows that the expression of
amplitude is monotone with � and ω, resulting in
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Fig. 5 The amplitude versus D2 while fixing, a � = 0.8 and ω = 0.9; b � = 0.8 and D1 = 1.1

Fig. 6 When fixing parameters to D1 = 1.1, � = 0.8, a the SNR versus ω and D2; b the projection of a to ω-SNR plane

the lack of SR phenomenon in the first-order moment
expression of the response. On the other hand, from
Figs. 4 and 5, we obtain both SR and ISR phenomenon.

From Eq. (31), we obtain the analytical expression
of SNR. In Fig. 6, we investigate that SNR versus both
ω and D2 has a peak, while � and D1 are fixed. In
other words, as D2 or ω increase, the SNR rises at
first and then falls. Since the system is under the syn-
ergy between each parameter, the noise does not only
restrain the system, but enhances the system under
some conditions.

4 Conclusion

In this paper, we investigate the phenomenon of
stochastic resonance(SR), inverse stochastic resonance
(ISR) and signal-to-noise ratio (SNR) in generalized
Langevin equation (GLE) subjected to a multiplicative
Gaussian white noise in both frequency and input sig-
nal fluctuation. We obtain the analytic response, which
is in both the first- and second-order moment of the
system. Then, we verify the analytic responses by com-
parison with the numerical stationary ones. Then, we
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find that SR phenomenon does not exist in the first-
order moment response in theory, while there are both
SR and ISR phenomenon existing in the second-order
moment response. Specifically, the output amplitude
versus ω presents one-peak oscillation. Since D1 has
strong relationships with ω, when fixing ω, the ampli-
tude versus D1 also presents one-peak oscillation. On
the other hand,while fixing D1 andω, the parameter D2

causes one-valley in the amplitude. Finally, in Fig. 6we
investigate the graphic of SNR versus ω and D2 with
fixed D1 = 1.1 and � = 0.8.

In summary, by adjusting the parameters properly,
we can control SR and ISR of the system. Additionally,
we expect that the model of Gaussian white noise in
both frequency and input signal fluctuation will find
ways to fit in applications of modern science.
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