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Abstract The work investigates the finite-time H∞
predictive control problem for stochastic networked
control systems (NCSs) with communication con-
straints. Firstly, by absorbing the phenomena of unmea-
surable state and missing measurements, the non-
fragile observer (NFO)-based networked predictive
control (NPC) strategy is obtained to dispose the time
delays andpacket dropouts (TD-PDs). To replace previ-
ous prediction strategy, a disturbance-based prediction
mechanism is adopted. Moreover, based on it, a novel
NPC system model is constructed, where the miss-
ing measurement is first considered in studying NPC
system with TD-PDs, sufficient conditions are derived
to ensure the closed-loop systems (CLSs) stochastic
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finite-time boundedness (SFTB) with a prescribed H∞
performance. Subsequently, criteria for co-designing
both the uniform NFO-based predictive controller and
the NFO are calculated based on the bounded TD-PDs.
Finally, an illustrative example clearly verifies the use-
fulness of the main result.

Keywords Finite-time H∞ predictive control ·
Stochastic networked control systems (NCSs) · Time
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1 Introduction

NCSs have been employed in the past few years for
their wide application in some areas, such as intelligent
transportation systems, telesurgery, telerobotics, and
other scientific areas. Compared with the traditional
control point-to-point hard connection, NCSs connect
the controller with sensors and actuators through the
network. Hence, NCSs own a lot of advantages, which
are recalled in [1–5]. However, NCSs also have short-
comings caused by the network, such as intermittent
packet dropouts (PDs), time delays (TDs), which can
degrade system performance and even cause instabil-
ity [6,7]. These two issues have been studied, and sev-
eral methods have been employed in recent years. To
deal with them, several interesting methods have been
developed, which could be divided into two classifi-
cations: one is model-based methods and the other
is data-driven methods [8]. Model-based approaches
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include time delay system approach [9,10], switched
system approach [11,12], stochastic system approach
[13,14], NPC approach [15–17], etc. The main steps
of time delay system method involve incorporating the
TD-PDs in the networked control loop into the sys-
tem input delay, permitting the closed-loop networked
system can be formed as a system with a time-varying
delay. More specially, we can construct an appropri-
ate Lyapunov–Krasovskii function and derive less con-
servative stability conditions for system stability when
using a time delay system approach. In [9], a novel
discrete orthogonal polynomials is proposed and gen-
eral summation inequalities are derived, then based on
it, the hierarchical stability criteria is developed. For
the linear discrete systems subject to an interval time-
varying delay, a new inequality is applied [10]. Another
important approach is theNPC scheme,which has been
proposed to actively control the system when suffering
from these two communication constraints. It is a com-
pensationmethod that can be used to deal with TD-PDs
[18–22]. NPC as a new approach in adaptation frame-
work, can predict the future system dynamics in a finite
horizon and takes the specialties of NCSs into a full
account. In recent years, it becomes more and more
popular because of its less conservative analysis and
design. In fact, this control is efficient for guaranteeing
the infinite time stability of the NPC systems, which is
a closed-loop system (CLS) that depends on predictive
control.

However, it is well-known that finite-time stability
(FTS) is a more representative of stability than infinite
time stability in engineering systems [23–25], and some
research on finite time control for NPC systems have
also been reported [26,27]. In [26], a novel predictive
networked controlmethods is derived, then novel finite-
time state-feedback and output-feedback stabilization
controllers are proposed to compensate the time delays
and data packet dropouts. In [27], by considering mod-
eling uncertainties, a sufficient condition is given to
ensure the FTS of the augmented CLS, where both
bilinear matrix inequality and linear matrix inequality
conditions are derived. But it must be noted that these
systems are both linear systems without considering
missing measurements.

We all know that actual systems always have some
stochastic elements. The mistakes of model parameter
identification could be represented by these stochastic
factors. As a result, the research on network control
of stochastic systems is both required and important in

practice. In the actual network, the measurement sig-
nal may be lost during network transmission because
of some complex situation, such as sensor aging, sen-
sor intermittent failure, bandwidth limitation, network
congestion or accidental loss of part of the collected
data [28–30]. In order to measure the internal state
completely and continuously, the observer-based con-
trol schemes are employed. After that, more and more
researchers have paid attention to the constructs of
state estimation and observer-based controller (OBC)
[31–33]. Although it is significant to complete state
estimation and OBC design, these methods cannot be
used to handle systems that are subject to small dis-
turbances, which is caused by those special factors we
mentioned above. Fortunately, when the NFO method
was proposed, the disturbance of the observer coeffi-
cients could be dealt with [34–36]. Through introduc-
ing Bernoulli distributions to describe missing mea-
surement, Wu et al. investigate the non-fragile guaran-
teed cost control for discrete-timeTakagi-Sugeno fuzzy
Markov jump systems with time-varying delays [34].
With the help of a simplified NFO, Liu et al. construct
a novel linear switching surface scheme for the uncer-
tain stochastic Markovian jump system [35]. Wang et
al. design the quantized H∞ controllers for a class of
nonlinear stochastic time-delay network-based systems
with probabilistic data missing [36].

However, the NFO method has not been applied
to the NPC systems, especially when designing NPC.
How to perfectly combine NFOwith predictive control
to obtain the CLSs and analyze of the system stabil-
ity is an open issue, which encourages us to shorten
such a gap. Additionally, it can be concluded that the
SFTB and H∞ performance problems have not been
discussed for stochastic NPC systems with external
disturbances, missing measurements [37,38], TD-PDs
[26,39,40], which deserves further investigation. Con-
sequently, there is an urgent need to address the SFTB
with H∞ performance problem for stochastic NPC
systems and develop a predictive disposition method
accordingly.

Summarizing the above discussion, we devote our-
selves to studying the SFTB with H∞ performance for
NCSs by utilizing aNFO-basedNPC scheme. Then,we
can dispose the TD-PDs well when the system is suf-
fering from exogenous disturbances and the available
probability information of the missing measurements.
The major contributions can be highlighted by the fol-
lowing three aspects:
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Fig. 1 Architecture of
stochastic NPC systems
with TD-PDs

(1) Considering themissingmeasurement phenomena,
the NFO is designed in one step prediction, and the
NFO-based NPC approach is proposed to actively
dispose of the TD-PDs, which can simplify the
CLSs obtained.

(2) Through the proposed NPC approach, a newmodel
of stochastic NPC system is established for the first
time by taking missing measurements, exogenous
disturbances, TD-PDs into consideration, which
can reflect more realistic dynamical behaviors.

(3) Sufficient conditions for SFTB with a desired H∞
performance are presented with the uniform con-
trollers and observers developed by Lyapunov the-
ory, which based on the bounded TD-PDs.

The remaining of this paper have been arranged.
In Sect. 2, a new NFO-based NPC scheme is pro-
posed to handle the predictive control problem, and
within the unavoidable communication constraints, a
new model of stochastic NPC system is established.
Section3 derives some sufficient conditions for ensur-
ingSFTBwith a prescribed H∞ performance.Then, the
desired controller and observer are obtained. Section4
provides a numerical example, and Sect. 5 concludes
this paper.

Notation: R
n stands for the n-dimensional

Euclidean space. Rn×m is the set of all n × m matri-
ces. E{·} denotes that mathematical expectation of “.′′.
x̂(� |χ) represents the prediction of current moment
χ to the moment � . ∗ indicates symmetric term. Q,
QT , Q−1, and Q > 0 denote the transpose of Q, the
inverse ofQ, andQ being a symmetric positive-definite
matrix, respectively. The vector x = col(x1, · · · , xn)
is given by [xT1 , xT2 , · · · , xTn ]T . diag{A, B} stands for
the block-diagonal matrix. λmax (P)(λmin(P)), respec-
tively, denote the largest (smallest) eigenvalue ofmatrix

P . I means the identity matrix. ⊗ represents the Kro-
necker product.

2 Problem formulation

As shown in Fig. 1, communication networks exist in
both the feedback channel and the forward channel.
Considering that the following discrete-time NCSs are
subject to missing measurements and exogenous dis-
turbances
⎧
⎪⎨

⎪⎩

x(k + 1) = Ax(k) + Bu(k) + Dw(k),

y(k) = α(k)Cx(k),

z(k) = Ex(k) + Fw(k),

(1)

where x(k) ∈ R
n means the system state, u(k) ∈ R

m

represents the control input, y(k) ∈ R
l denotes the

measured output, z(k) ∈ R
z means control output,

w(k) denotes the disturbance input vector and sat-
isfies

∑N
i=0 wT (k)w(k) ≤ d. Appropriately, dimen-

sional matrices A ∈ R
n×n , B ∈ R

n×m , D ∈ R
n×s ,

C ∈ R
l×n , E ∈ R

z×n and F ∈ R
z×s denote system

matrices, respectively. The random variable α(k) char-
acterizes the probabilistic missing phenomena. Also,
α(k) is Bernoulli-distributed white sequences, and its
probabilities are written by

Prob{α(k) = 1} = α, Prob{α(k) = 0} = 1 − α.

Remark 1 We should take the unmeasurable state and
missing measurements into account simultaneously. In
the actual network, the measurement signal may be lost
during network transmission because of some complex
situation [28]. The sensor output often suffers from
probabilistic signal losses such as channel congestion,
multi-path fading, transmission rejection, faulty net-
work hardware or drivers, and so on. A general model
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is the Bernoulli distribution model, where 0 means an
entire missing of signals and 1 represents the intact-
ness. NCSs (1) are more general than the systems in
[26].

Before proceeding further, it is assumed that:

Assumption 1 nb denotes the TDs in feedback chan-
nel and nw denotes the TDs in forward channel.
Besides, the PDs are represented as nl in two channels.
For generally speaking, PDs might be considered TDs
due to its consistency, and this treatment approach is
also specified in [21,26]. Additionally, the communica-
tion delay in the feedback channel and forward channel
are D1 = nb + nl and D2 = nw + nl , respectively.

Assumption 2 The data transmission mode is single
packet transmission. It is assumed that the TD-PDs are
bounded. D̄1 denotes the maximum value of D1, and
D̄2 denotes the maximum value of D2.

Actually, we desire to design the NFO to deal with the
missingmeasurement, and the NFO is given for system
(1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(k − D1 + 1|k − D1) =Ax̂(k − D1|k − D1 − 1)

+ Bu(k − D1)

+ Dw(k − D1)

+ (L + �L(k − D1))

× (y(k − D1) − ŷ(k − D1)
)
,

ŷ(k − D1) = α(k − D1)Cx̂(k − D1|k − D1 − 1),

(2)

where x̂(k − D1 + 1|k − D1) ∈ R
n is the one-step

prediction of state, ŷ(k − D1) stands for the observer
output. L denotes the observer gain, it can de derived
later in this paper. �L is the uncertain observer gain
and �L = MLQL(k)NL. QL(k) is a real uncertain
matrix with Lebesgue measurable element which sat-
isfies QL(k)T QL(k) ≤ I .

Then, the state predictions from time k −D1 + 1 to
k + D2 − 1 on the controller side is constructed by

x̂(k − D1 + ι|k − D1) =Ax̂(k − D1 + ι − 1|k − D1)

+ Bu(k − D1 + ι − 1)

+ Dw(k − D1 + ι − 1),

ι = 2, 3, . . . ,D1 + D2,

(3)

where x̂(k −D1 + ι|k −D1) ∈ R
n represents the state

prediction of ι step forward for the current time k−D1.

From (3), the predictive values are given as

x̂(k − D1 + 2|k − D1) =Ax̂(k − D1 + 1|k − D1)

+ Bu(k − D1 + 1)

+ Dw(k − D1 + 1),

x̂(k − D1 + 3|k − D1) =A2 x̂(k − D1 + 1|k − D1)

+ ABu(k − D1 + 1)

+ ADw(k − D1 + 1)

+ Bu(k − D1 + 2)

+ Dw(k − D1 + 2).

Thus, the state prediction of k +D1 to time k on the
controller side is calculated as

x̂(k|k − D1) =AD1−1 x̂(k − D1 + 1|k − D1)

+
D1∑

ι=2

AD1−ιBu(k + ι − D1 − 1)

+
D1∑

ι=2

AD1−ιDw(k + ι − D1 − 1).

(4)

According to (4), x̂(k+1|k−D1) can be represented
as

x̂(k + 1|k − D1) =Ax̂(k|k − D1) + Bu(k) + Dw(k)

=AD1 x̂(k − D1 + 1|k − D1)

+
D1∑

ι=2

AD1−ι+1Bu(k + ι − D1 − 1)

+
D1∑

ι=2

AD1−ι+1Dw(k + ι − D1 − 1)

+ Bu(k) + Dw(k).

Then, x̂(k + D2|k − D1) can be obtained as

x̂(k + D2|k − D1) =AD1+D2−1 x̂(k − D1 + 1|k − D1)

+
D1+D2∑

ι=2

AD1−ι+D2B

× u(k + ι − D1 − 1)

+
D1+D2∑

ι=2

AD1−ι+D2D

× w(k + ι − D1 − 1).
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Furthermore, x̂(k + D2|k − D1 + 1) is derived as
follows:

x̂(k + D2|k − D1 + 1) =AD1+D2−2

× x̂(k − D1 + 2|k − D1 + 1)

+
D1+D2∑

ι=3

AD1−ι+D2B

× u(k + ι − D1 − 1)

+
D1+D2∑

ι=3

AD1−ι+D2D

× w(k + ι − D1 − 1).

(5)

Denote e(k − D1 + 1) = x(k − D1 + 1) − x̂(k −
D1 + 1|k − D1), then substitute (2) into (5), we have

x̂(k + D2|k − D1 + 1) =x̂(k + D2|k − D1)

+ AD1+D2−2

× (L + �L(k − D1 + 1))

× α(k − D1 + 1)Ce(k − D1 + 1).

(6)

Then, the state prediction of k − D1 to k + D2 can
be derived as follows:

x̂(k + D2|k − D1) =x̂(k + D2|k − D1 + 2)

− AD1+D2−3(L + �L(k − D1 + 2))

× α(k − D1 + 2)Ce(k − D1 + 2)

− AD1+D2−2(L + �L(k − D1 + 1))

× α(k − D1 + 1)Ce(k − D1 + 1)

· · ·
=x̂(k + D2|k + D2 − 1)

−
D1+D2−2∑

i=0

Ai

× (L + �L(k + D2 − i − 1))

× α(k + D2 − i − 1)

× Ce(k + D2 − i − 1).

By employing the designed NPC scheme, the state
prediction x̂(k|k − D1 − D2) on the actuator side at
time k, the following is obtained:

x̂(k|k − D1 − D2) =x̂(k|k − 1) −
D1+D2−2∑

i=0

Ai

× (L + �L(k − i − 1))

× α(k − i − 1)Ce(k − i − 1).

The control input has not been updated since the
state prediction of the current time is delivered to the

actuator. In this note, we are interested in designing the
following appropriate controller:

u(k) = u(k|k − D1 − D2) = Kx̂(k|k − D1 − D2),(7)

where the controller gain K can be generated by the
finite-time control theory. Based on the above analysis,
the CLSs can be obtained as
{
x(k + 1) = Γ x(k) + Θ(D1,D2)E(k) + Dw(k),

E(k + 1) = ΛE(k),
(8)

where

Γ = A + BK, E(k) = [e(k)T , e(k − 1)T ,

. . . , e(k − D1 − D2 + 1)T ]T ,

e(k) = x(k) − x̂(k|k − 1),

Θ(D1,D2) = −BK [ In (L+�L(k−1))α(k−1)C

A(L+�L(k−2))α(k−2)C ···
AD1+D2−2(L+�L(k−D1−D2+1))

×α(k−D1−D2+1)C ] ,

Λ = diag{A − (L + �L(k))α(k)C,

A − (L + �L(k − 1))α(k − 1)C, · · · ,

A − (L + �L(k − D1 − D2 + 1))

× α(k − D1 − D2 + 1)C}.

Remark 2 This new prediction strategy makes a con-
tribution to the model of CLSs simpler. If we use the
previous NPC scheme [16,17], then one-step predic-
tion is obtained as follows:

x̂(k − D1 + 1|k − D1) =Ax̂(k − D1|k − D1 − 1)

+ Bu(k − D1)

+ (L + �L(k − D1))

× (y(k − D1)

− α(k − D1)

× Cx̂(k − D1|k − D1 − 1)
)
.

Similar to the previous derivation, we derive

x̂(k|k − D1 − D2) =x̂(k|k − 1) −
D1+D2−2∑

ι=0

× Aι(L + �L(k − ι − 1))

× α(k − ι − 1)Ce(k − ι − 1)

+
D1+D2−2∑

ι=0

AιDw(k − ι − 1).
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Hence, the CLSs can be described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) =(A + BK)x(k) − BK

× (e(k) +
D1+D2−2∑

ι=0

Aι

× (L + �L(k − ι − 1))

× α(k − ι − 1)Ce(k − ι − 1)

−
D1+D2−2∑

ι=0

AιDw(k − ι − 1)
)+ Dw(k),

e(k − j − 1) =(A − (L + �L(k − j))α(k − j)C
)

× e(k − j), j = 0, 1, . . . ,D1 + D2 − 1.

(9)

Compared with (8),
∑D1+D2−2

ι=0 AιDw(k− ι−1) as
an extra item exists in CLSs (9), which will increases
the complexity of (9). Even if (9) can be integrated,
additional conditions w(k − ζ + 1) = ℵw(k − ζ ),
ζ = 0, 1 . . . ,D1 + D2 − 1 are required. Due to the
matrix ℵ, it will increase the conservativeness of the
system. In addition, if we cannot find such a matrix,
it may be impossible to get the CLS like (8), not to
mention the corresponding controller and observer.

We addedDw(k−D1) to the above analysis tomake
the one-step prediction more general and the resulting
CLSs more simple. The new NPC scheme is inspired
by [15–17], but it is different from these ones.

Denoting variable x̄(k) = col
(
x(k), E(k)

)
, (8) is

reformulated as follows:
{
x̄(k + 1) = Āx̄(k) + D̄w(k),

z(k) = Ēx̄(k) + F̄w(k),
(10)

where

Ā =
[
Γ Θ(D1,D2)

0 Λ

]

, D̄ = [DT 0 · · · 0]T ,

Ē = [E 0 · · · 0] , F̄ = F.

In order to study system (10) over a finite time inter-
val, we must recall some definitions and lemmas as
follows:

Definition 1 [41] Given positive scalars 0 < c1 < c2,
d > 0, γ > 0, and N ∈ Z

+, a positive define matrix

̄, if

τ1 : E
{
x̄ T (0)
̄x̄(0) ≤ c1

}
⇒ τ2 : E

{
x̄ T (k)
̄x̄(k)

}
≤ c2,

holds, (10) is said to be SFTB.

Remark 3 In fact, it should be indicated that if the aug-
mented system (10) is SFTB, then NCSs (1) is also

SFTB. The reason for this conclusion is as follows. Due
to 
̄ = diag{
,
, . . . ,


︸ ︷︷ ︸
D1+D2+1

} = I(D1+D2+1) ⊗
, 
 > 0,

we can use simple derivation to getE
{
xT (k)
x(k)

}
<

E
{
x̄ T (k)
̄x̄(k)

} ≤ c2. That is to say, we can have
the conclusion that the (1) is SFTB with respect to
(c1, c2,
, N , d).

Definition 2 [42] For given scalars 0 < c1 < c2, d >

0, γ > 0, and N ∈ Z
+, a positive define matrix 
̄, if

E

{
N∑

k=0

zT (k)z(k)

}

< γ 2
E

{
N∑

k=0

wT (k)w(k)

}

,

holds, under the zero-initial condition and wT (k)w(k)
< d, the CLSs (10) can be said to be SFTB with a
prescribed H∞ performance index γ .

Lemma 1 [43] Given matrices W = WT , H and
U of appropriate dimensions, if the condition of
�T (k)�(k) ≤ I satisfies all �(k), the following
inequality is true

W + H�(k)U +UT�T (k)HT < 0,

if and only if for some ε>0, W+ε−1HHT+εUTU <0.

On the basis of the previous statement and analy-
sis, we design a NFO-based predictive controller for
(1) such that these requirements are met. First, the con-
cerned system is SFTB and have a H∞ performance
with respect to (c1, c2, I(D1+D2+1)⊗
̄, N , d). Second,
communication delays are disposed well.

3 Main results

The SFTB and SFTB with H∞ performance problems
for (10) are given. Further, sufficient conditions are
derived under communication constraints. Due to the
different TD-PDs, we first chooseD1 +D2 = 2 which
is the minimum value of the sum of TD-PDs.

3.1 Stability Analysis

Theorem 1 For given the TDs D1, PDs D2, c1 < c2,
N , d, matrices K and L, and positive definite matrices

. The concerned system (10) is SFTB with respect to
(c1, c2, I3 ⊗ 
, N , d) if there exist a constant β ≥ 1,
matrices P > 0, Q > 0 satisfying
[ÃTPÃ − βP ÃTPD̄

∗ D̄TPD̄ − βQ

]

< 0, (11)

σ̄Pc1 + σQd < β−Nc2σP . (12)
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Proof To begin with, we construct Lyapunov func-
tional candidate

V (x(k)) = x̄ T (k)P x̄(k), (13)

Along the trajectory of (10), we calculate V (x(k +
1)) and its mathematical expectation. It yields that

E {V (x(k + 1))} =x̄ T (k)ÃTPÃx̄(k)

+ 2x̄ T (k)ÃTPD̄w(k)

+ wT (k)D̄TPD̄w(k),

where

Ã =
[
Γ Θ̃(D1,D2)

0 Λ̃

]

,

Λ̃ =
[A − α(L + �L(k))C 0

0 A − α(L + �L(k − 1))C

]

,

Θ̃(D1,D2) = −BK [In α(L + �L(k − 1))C
]
.

Then,

E {V (x(k + 1))} − βV (x(k)) − βwT (k)Qw(k)

= x̄ T (k)(ÃTPÃ − βP)x̄(k) + 2x̄ T (k)ÃTPD̄w(k)

+ wT (k)
(
D̄TPD̄ − βQ

)
w(k)

= ηT (k)ϒη(k),

where

ηT (k) = [x̄ T (k) wT (k)],
ϒ =

[ÃTPÃ − βP ÃTPD̄

∗ D̄TPD̄ − βQ

]

.

Thus, it is noticed from (11) that

E {V (x(k + 1))} − βV (x(k)) + βwT (k)Qw(k) < 0.

Let σQ = λmax (Q) and according to the above rela-
tion, we get

E {V (x(k + 1))} < βE {V (x(k))} + βσQE

{
wT (k)w(k)

}
.

Note that β ≥ 1, we readily infer that

E {V (x(k))} <βk (E {V (x(0))}

+σQE

{
k−1∑

l=0

βl−k+1wT
k−l−1wk−l−1

})

≤βk (
E {V (x(0))} + σQd

)

≤βN (
E {V (x(0))} + σQd

)
.

Denoting P̃ = 
̄−1/2P
̄−1/2, σ̄P = λmax (P̃), σP
= λmin(P̃), it indicates that

E {V (x(0))} = E

{
x̄ T (0)P x̄(0)

}

≤ λmax (P̃)E
{
x̄ T (0)
̄x̄(0)

}

= λmax (P̃)E
{
x̄ T (0)(I3 ⊗ 
)x̄(0)

}
≤ σ̄Pc1.

(14)

Notice that

E {V (x(k))} = E

{
x̄ T (k)P x̄(k)

}

≥ λmin(P̃)E
{
x̄ T (k)
̄x̄(k)

}

≥ σPE
{
x̄ T (k)
̄x̄(k)

}
.

(15)

Hence, taking (12)–(15) into consideration, it fol-
lows that

E

{
x̄ T (k)
̄x̄(k)

}
= E

{
x̄ T (k)(I3 ⊗ 
)x̄(k)

}

≤ βN (σ̄Pc1 + σQd)

σP
< c2.

(16)

It is clear from (16) that E
{
x̄ T (k)
̄x̄(k)

} ≤ c2.
According to Definition 1, one can conclude that SFTB
of the CLSs (10) have been achieved. That proof is now
complete. �

3.2 Guaranteed Performance Analysis

The analysis of the H∞ performance are conducted,
and sufficient conditions which ensure (10) is SFTB
are also provided.

Theorem 2 For given the TDs D1, PDs D2, c1 < c2,
N , d, matrices K and L, and positive definite matri-
ces 
. The concerned system (10) is SFTB and pos-
sesses a prescribed H∞ performance with respect to
(c1, c2, I3 ⊗ 
, N , d) if there exist a scalar β ≥ 1,
matrices 
 and P > 0 satisfying
[
Π(1) Π(2)

∗ Π(4)

]

< 0, (17)

σ̄Pc1 + βd < β−Nc2σP , (18)

where

Π(1) =
[P − 
 − 
T 0

∗ −I

]

, Π(2) =
[
Ã 
D̄
Ē F̄

]

,

Π(4) = diag{−βP,−β I }.
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Proof Based on Theorem 1, construct Lyapunov func-
tional candidate and obtain

E {V (x(k + 1))}
−βV (x(k))−βwT (k)w(k) + zT (k)z(k)

= ζ T (k)ℵζ(k),

(19)

where

ζ T (k) = [x̄ T (k) wT (k)],
ℵ =

[ÃTPÃ + ĒT Ē−βP ÃTPD̄ + ĒT F̄

∗ D̄TPD̄+F̄T F̄ − β I

]

.

By using the basic inequality μT ν + νTμ ≤
μTQμ+ νTQ−1ν (where μ and ν are vectors of com-
patible dimensions), we can achieve P − 
 − 
T ≥
−
P−1
T . By substituting it into (17), we have
⎡

⎢
⎢
⎣

−
P−1
T 0 
Ã 
D̄
∗ −I Ē F̄

∗ ∗ −βP 0
∗ ∗ ∗ −β I

⎤

⎥
⎥
⎦ < 0. (20)

If we pre- and post-multiply the inequality (20) with
diag{
−TP, I, I, I }, then we get
⎡

⎢
⎢
⎣

−P 0 PÃ PD̄

∗ −I Ē F̄

∗ ∗ −βP 0
∗ ∗ ∗ −β I

⎤

⎥
⎥
⎦ < 0. (21)

From (17) and Schur complement, we derive

E {V (x(k + 1))} <βE {V (x(k))}
+ βE

{
wT (k)w(k)

}

− E

{
zT (k)z(k)

}
.

(22)

It follows from (22) that

E {V (x(k))} < βE {V (x(k − 1))}
+ βE

{
wT (k − 1)w(k − 1)

}

− E

{
zT (k − 1)z(k − 1)

}

< · · ·
< βk

E {V (x(0))} + β

× E

⎧
⎨

⎩

k−1∑

ξ=0

βξw(k − ξ − 1)Tw(k − ξ − 1)

⎫
⎬

⎭

− E

⎧
⎨

⎩

k−1∑

ξ=0

βξ z(k − ξ − 1)T z(k − ξ − 1)

⎫
⎬

⎭
.

(23)

From the zero initial condition and V (x(k)) ≥ 0,
we can obtain the following inequality:

βE

⎧
⎨

⎩

k−1∑

ξ=0

βξw(k − ξ − 1)Tw(k − ξ − 1)

⎫
⎬

⎭

> E

⎧
⎨

⎩

k−1∑

ξ=0

βξ z(k − ξ − 1)T z(k − ξ − 1)

⎫
⎬

⎭
.

(24)

Using β ≥ 1, it is deduced that

E

⎧
⎨

⎩

k−1∑

ξ=0

z(k − ξ − 1)T z(k − ξ − 1)

⎫
⎬

⎭

< E

⎧
⎨

⎩

k−1∑

ξ=0

βξ z(k − ξ − 1)T z(k − ξ − 1)

⎫
⎬

⎭

< βE

⎧
⎨

⎩

k−1∑

ξ=0

βξw(k − ξ − 1)Tw(k − ξ − 1)

⎫
⎬

⎭

< βk
E

⎧
⎨

⎩

k−1∑

ξ=0

w(k − ξ − 1)Tw(k − ξ − 1)

⎫
⎬

⎭
.

(25)

According to (25), we can easily get that

E

{
N∑

k=0

zT (k)z(k)

}

< γ 2
E

⎧
⎨

⎩

N∑

ξ=0

wT (k)w(k)

⎫
⎬

⎭
, (26)

with γ = √βN+1. This completes the proof. �

3.3 Observer-Based NPC and Observer Design

Note that Theorem 2 is not suitable for designing the
NPC controller and observer. It needs to be linearized.
By Lemma 1, we present an equivalent statement of
Theorem 2 as follows:

Theorem 3 For given the TDs D1, PDs D2, scalars
ε1 > 0, ε2 > 0, α > 0, c1 < c2, N , and d, and
positive definite matrices 
. Consider the concerned
system (10) with respect to (c1, c2, I3 ⊗ 
, N , d) is
SFTB and possesses a prescribed H∞ performance, if
there exist scalarsβ ≥ 1 and σ1 ≤ 1, proper symmetric
matrices P , 
11, 
22, 
33, matrices Z1, M1, Y1 and Y2
satisfy the following LMIs:

[
Φ̃(1) Φ̃(2)

∗ Φ̃(4)

]

< 0, (27)
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11B = BZ1, σ1
 < P < 
, c1 + βd < β−Nσ1c2, (28)

where

Φ̃(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Φ11 P12 P13 0 Φ15 Φ16 Φ17 
11D∗ Φ22 P23 0 0 Φ26 0 0
∗ ∗ Φ33 0 0 0 Φ37 0
∗ ∗ ∗ −I E 0 0 F
∗ ∗ ∗ ∗ Φ55 Φ56 Φ57 0
∗ ∗ ∗ ∗ ∗ Φ66 Φ67 0
∗ ∗ ∗ ∗ ∗ ∗ Φ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −β I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Φ̃(2) =

⎡

⎢
⎢
⎢
⎢
⎣

BM1ML 0
0 
22ML
33ML 0
0 0
0 0
0 0
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

Φ̃(4) = diag{−ε2 I, −ε1 I }, Φ11 = P11 − 
11 − 
T
11,

Φ15 = 
11A + BM1, Φ16 = −BM1,

Φ17 =
[BT 
T

11 αCT MT
2−I 0

0 −I

]

,

Φ22 = P22 − 
22 − 
T
22, Φ26 = 
22A − αY1C,

Φ33 = P33 − 
33 − 
T
33, Φ37 = 
33A − αY2C,

Φ55 = −βP11, Φ56 = −βP12, Φ57 = −βP13,

Φ66 = −βP22 + ε1α
2CT NT

LNLC, Φ67 = −βP23,

Φ77 = −βP33 + ε2α
2CT NT

LNLC.

Meanwhile, the controller gain matrix and the NFO
gain matrix can be achieved as

K = Z−1
1 M1, L = 
−1

22 Y1. (29)

Proof First, (17) can be reorganized as

Ξ + Γ1QL(k)Γ2 + Γ T
2 QT

L(k)Γ T
1

+ Γ3QL(k)Γ4 + Γ T
4 QT

L(k)Γ T
3 < 0,

where

Ξ =

⎡

⎢
⎢
⎣

P − 
 − 
T 0 
Ǎ 
D̄
∗ −I E F

∗ ∗ −βP 0
∗ ∗ ∗ −β I

⎤

⎥
⎥
⎦ ,

Ǎ =
⎡

⎣
A + BK −BK −αBKLC

0 A − αLC 0
0 0 A − αLC

⎤

⎦ ,

Ã = Ǎ +
⎡

⎣

11BKML

0

33ML

⎤

⎦ QL
[
0 0 −αNLC

]

+
⎡

⎣
0


22ML
0

⎤

⎦ QL
[
0 −αNLC 0

]
,

Γ1 = [MT
LKTBT
T

11 0 MT
L
T

33 0 0 0 0 0
]T

,

Γ2 = [0 0 0 0 0 0 −αNLC 0
]
,

Γ3 = [0 MT
L
T

22 0 0 0 0 0 0 0
]T

,

Γ4 = [0 0 0 0 0 −αNLC 0 0
]
.

According to Lemma 1, there exist ε1 > 0, ε2 > 0
such that Ξ + ε−1

2 Γ1Γ
T
1 + ε2Γ

T
2 Γ2 + ε−1

1 Γ3Γ
T
3 +

ε1Γ
T
4 Γ4 < 0. Note that

P =
⎡

⎣
P11 P12 P13

∗ P22 P23

∗ ∗ P33

⎤

⎦ , 
 =
⎡

⎣

11 0 0
0 
22 0
0 0 
33

⎤

⎦ . (30)

In what follows, by using Schur complement, we
can get
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 0 Ξ13 
11D̄ 
11BKML 0
∗ −I E F 0 
22ML
∗ ∗ Ξ33 0 
33ML 0
∗ ∗ ∗ −β I 0 0
∗ ∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ ∗ −ε1 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

where

Ξ11 = diag{P11 − 
11 − 
T
11,P22 − 
22 − 
T ,

P33 − 
33 − 
T
33},

Ξ13 =
⎡

⎣

11(A + BK) −
11BK −α
11BKLC

0 
22(A − LC) 0
0 0 
33(A − LC)

⎤

⎦ ,

Ξ33 =
⎡

⎣
−βP11 −βP12

∗ −βP22 + ε1α
2CT NT

LNLC
∗ ∗

−βP13

−βP23

−βP33 + ε2α
2CT NT

LNLC

⎤

⎦ .

Note that 
 is non-singular. One can see that from
(27)–(28) which contains an equation constraint. In
order to treat 
11B = BZ1, we should use the inequal-
ity to approximate the equation, which is proposed in
[32]. As a result, the (17)–(18) feasibility problem has
been transformed into the (27)–(28) feasibility prob-
lem. Then, we denote Z1K = M1 and 
22L = Y1.
It is not difficult to obtain K and L. Furthermore, by
taking P = 
1/2P̃
1/2 into account, we can have
σ1
 < P < 
 if λmin(P̃) > σ1, λmax (P̃) < 1. From
the above analysis, we can get (18). Now, the proof is
completed. �
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Remark 4 The existence problem given in the condi-
tion can be interpreted as the indefinite solution (or
infinitely many solutions) of Y1 and Y2 in the simula-
tion. When the condition is met, Y1 = Y2 is selected
to obtain the unique solution of L. In Theorem 3, con-
ditions 
22L = Y1 and 
33L = Y2 can exist inde-
pendently. We can get the observer L of (29) if the
two conditions can be combined. We hypothesis that

33 = 
22 and Y2 = Y1, then the uniform observer
can be obtained successfully. This assumption played
a considerable part in obtaining reasonable observer.

Remark 5 Some sufficient conditions are provided to
guarantee the closed-loop system is SFTB in Theo-
rem 3, and the desired controller and observer exist. It
should be noticed that the condition in Theorem 3 is
dependent on the scalars ε1, ε2, α, β, c1, c2, N , d and
σ1. If we fix some positive values for ε1, ε2, α, then the
conditions of Theorem 3 can be formally expressed as
an LMI feasibility problem with P , 
11, 
22, 
33, Z1,
M1, Y1, Y2, σ1 as optimization parameters. As previ-
ously stated, this enables the finite-time control prob-
lem to be incorporated into the general framework of
multi-objective synthesis.

For fixed ε1, ε2, α, c2, N and d, the maximum allow-
able value of β decreases as the value of σ1 decreases
or c1 increases. When ε1, ε2, α, c1, N , d are given,
the minimum allowable value of c2 for different β and
σ1 can be calculated. As a result, when the condition
in Theorem 3 is used, it is reasonable to study these
parameters (ε1, ε2, α, β, c1, c2, N , d and σ1) together
in some specifics.

For different TD-PDs conditions, we should obtain
the sufficient conditions of SFTB with H∞ perfor-
mance. Similar to the result in Theorem3, aNFO-based
controller and the corresponding observer are designed
to guarantee that stochastic NPC systems are SFTB and
have H∞ performance.

Corollary 1 For given the TDs D1, PDs D2, scalars
ε1 > 0, ε2 > 0, α > 0, c1 < c2, N , d, and positive
define matrices
. Consider the concerned system (10)
with respect to (c1, c2, I(D1+D2+1) ⊗
, N , d) is SFTB
and possesses a prescribed H∞ performance, if there
exist constants β ≥ 1 and σ1 ≤ 1, proper symmetric
matrices P , 
i i , i ∈ {1, 2, . . . ,D1 +D2 +1}, matrices
Z1, M1, M2, Y j , j ∈ {1, 2, . . . ,D1 + D2} satisfy the
following LMIs:

[
Φ(1) Φ(2)

∗ Φ(4)

]

< 0, (31)


11B = BZ1, σ1
 < P < 
,

c1 + βd < β−Nσ1c2, (32)

where

Φ(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

BM1AD1+D2−2ML BM1AD1+D2−3ML
0 0
0 0
...

...
0 
(D1+D2)(D1+D2)ML


(D1+D2+1)(D1+D2+1)ML 0
0 0
...

...
0 0

··· BM1ML 0
··· 0 
22ML··· 
33ML 0

. . .
...

...
0 0 0··· 0 0··· 0 0
. . .

...
...··· 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Φ(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11 P12 ··· P1(D1+D2+1) 0
∗ Φ22 ··· P2(D1+D2+1) 0

...
...

. . .
...

...∗ ∗ ··· Φ(D1+D2+1)(D1+D2+1) 0
∗ ∗ ··· ∗ −I∗ ∗ ··· ∗ ∗∗ ∗ ··· ∗ ∗
...

...
. . .

...
...∗ ∗ ··· ∗ ∗∗ ∗ ··· ∗ ∗

Φ1(D1+D2+3) Φ1(D1+D2+4)
0 Ψ2(D1+D2+4)

...
...

0 0
E 0

Φ(D1+D2+3)(D1+D2+3) Φ(D1+D2+3)(D1+D2+4)

...
...∗ ∗∗ ∗

··· Φ1(2D1+2D2+3) 
11D

··· 0 0
. . .

...
...··· Φ(D1+D2+1)(2D1+2D2+3) 0

··· 0 F
··· Φ(D1+D2+3)(2D1+2D2+3) 0

. . .
...

...··· Φ(2D1+2D2+3)(2D1+2D2+3) 0
··· ∗ −β I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Φ(4) = diag{−ε(D1+D2) I, . . . , −ε2 I, −ε1 I },
Φ1(l+D1+D2+2) = 
11A + BM1, l = 1,

Φ1(l+D1+D2+3) = −BM1, l = 1,

Φ1(l+D1+D2+4) =
[

(Al−1)TBT 
T
11 αCT MT

2−I 0
0 −I

]

,
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l = 1, . . . ,D1 + D2 − 1,

Φll = Pll − 
ll − 
T
ll ,

l = 1, . . . , 2D1 + 2D2 + 3,

Φ(l+1)(l+5) = 
(l+1)(l+1)A − αYlC,

l = 1, . . . ,D1 + D2 + 1,

Φ(l+D1+D2+2)(l+D1+D2+2) = −βPll , l = 1,

Φ(l+D1+D2+2)(l+D1+D2+2) = −βPll

+εl−1α
2CT NT

LNLC, l = 2, . . . ,D1 + D2 + 1,

Φ(l+D1+D2+2)(l+D1+D2+3) = −βPl(l+1),

l = 1, . . . ,D1 + D2,

Φ(l+D1+D2+2)(l+D1+D2+4) = −βPl(l+2),

l = 1, . . . ,D1 + D2 − 1, · · · ,

Φ(l+D1+D2+2)(l+2D1+2D2+2) =−βPl(l+D1+D2), l=1.

Furthermore, the controller gainmatrix andobserver
gain matrix are given by

K = Z−1
1 M1, L = 
−1

22 Y1. (33)

The matrix Ā, P , and 
 is as follows:

Ā =
⎡

⎢
⎣

A+BK −BK −BKLC ···
0 A−LC 0 ···
0 0 A−LC ···
...

...
...

. . .
0 0 0 ···

−BKAD1+D2−2LC
0
0
...

A−LC

⎤

⎥
⎦ ,

P =
⎡

⎢
⎣

P11 P12 ··· P1(D1+D2+1)

∗ P22 ··· P2(D1+D2+1)

...
...

. . .
...

∗ ∗ ··· P(D1+D2+1)(D1+D2+1)

⎤

⎥
⎦ ,


 =
⎡

⎢
⎣


11 0 ··· 0
0 
22 ··· 0
...

...
. . .

...
0 0 ··· 
(D1+D2+1)(D1+D2+1)

⎤

⎥
⎦ .

(34)

Proof The P and 
 are shown above. This corollary
is the extension of Theorem 3, and there is still an
existential problem with obtaining the corresponding
unique observer when D1 + D2 is fixed. Similar to
the process of Theorem 3 and from (31–32), we let
Z1K = M1,
i iL = Y j , i ∈ {2, . . . ,D1+D2+1}, j ∈
{1, 2, . . . ,D1 +D2}. If we find matrices 
22 and Y1 to
meet all constraints of 
i iL = Y j , i ∈ {2, . . . ,D1 +
D2 + 1}, j ∈ {1, 2, . . . ,D1 + D2}, we can get the
unique L. In addition, different matrix gain L and K
can be obtained because of different D1 + D2. �

Remark 6 It is obvious that we have solved the prob-
lems of SFTB and H∞ performance of stochastic NPC
systems with unavoidable constraints. From Theorem
3 and its corollary, we use the slacking variable 
 to
achieve the controller and observer co-designed. Since
there are a few results in the existing literature con-
cerned with unavoidable constraints of stochastic NPC
systems simultaneously [19,20], the result of Theorem
3 and Corollary 1 fills this gap and is also the main
contribution of this paper.

Remark 7 In ourwork, the feasible solution is obtained
by utilizing E

{
x̄ T (k)
̄x̄(k)

} ≤ (D̄1 + D̄2 + 1)c4. As
we know, D̄1 + D̄2 is the upper bound of D1 + D2.
Meanwhile, a feasible solution based on D1 + D2 has
also been developed for further study. Furthermore, for
each value ofD1 +D2, we can have the corresponding
K andL. Thatmeans that different TD-PDs have differ-
ent effects on the transient performance of the system.
Due to Corollary 1, a uniform K̄ and L̄ has been pro-
vided to achieve SFTBwith a desired H∞ performance
for each NPC system.

Remark 8 In this paper, controllers and observers are
designed for the fixed upper bounds of TD-PDs. If
the upper bound is given, the corresponding controller
and observer are calculated. It is observed that our
method can be used to deal with the random delays
and time-varying delays. The reason is that both these
two kinds of communication delay have upper bounds
in real-world application systems. Most of the options
for dealing with the random delays and time-varying
delays assume that delay is bounded [17,18]. Thus,
the proposed method is valid in practice. However, the
upper bound cannot be exhausted in different occasions
and applications. Hence, our simulation results provide
some cases.

Remark 9 The total number of variables in Theorem 1
and Theorem 1 in [21] are calculated as

N̂ = (n(n + 1)/2)(D1 + D2 + 1) + s(s + 1)/2

and

Ň = (n(n + 1)/2)(i + 1)

+s(s + 1)/2, ı ∈ 0, 1, . . . ,D1 + D2,

respectively, where i stands for the subsystem mode.
The number of subsystem is determined by D1 + D2.

Due to D̄1+D̄2, there is an upper bound on the com-
putation complexity of these two theorems. The value

123



1466 T. Jiang et al.

is (n(n+1)/2)(D̄1+D̄2+1)+s(s+1)/2. Furthermore,
we can see the solution of N̂− Ň = (n(n+1)/2)(D1+
D2 − i), i ∈ 0, 1, . . . ,D1 + D2. Three cases should
be discussed. Case 1: when i > D1 + D2, we can get
N̂ < Ň , our result is more efficient than the result in
[21]. Case 2: when i = D1 + D2, we can get N̂ = Ň .
Case 3: when i < D1 + D2, the result is N̂ > Ň .
For Cases 2–3, even though our results are the same or
have more computation complexity than the results in
[21], the cone complementary algorithm used in [21]
has some disadvantages. It requires more computing
time and is memory consuming, which is mentioned
in Remark 4 in [21]. In conclusion, our approach is
obviously more effective than the approach in [21].

4 Illustrative examples

To verify the result proposed in the work, a numerical
example is exploited to demonstrate the effectiveness
of the proposed design. A servo motor control system
is chosen [17], and discrete-time model of this system
can be presented by

A =
⎡

⎣
1.12 0.213 −0.335
1 0 0
0 1 0

⎤

⎦ , B =
⎡

⎣
1
0
0

⎤

⎦ ,

C = [0.0541 0.1150 0.0001
]
, D =

⎡

⎣
0.1
0
0

⎤

⎦ ,

E = [0.04 0.01 0.01
]
, F = [0.1 0 0

]T
.

In this section, the success probabilities of the
stochastic variable α is measured to be 0.6. Thus, in
the following description, we use

√
x̄(0)T 
̄x̄(0) to

represent E
{√

x̄(0)T 
̄x̄(0)
}
, and use

√
x̄ T (k)
̄x̄(k)

to indicate E

{√
x̄ T (k)
̄x̄(k)

}
. First, a case where

there are no PDs in two channels that is consid-
ered. To put it more simply, nl = 0. Then, we
investigate the second situation of (1) with PDs,
which will have an impact on the system stability.
As a result, the next two cases will be examined.
Case AWithout PDs.

We first show the co-design method of K and L.
We consider nb = nw = 1, nl = 0, D1 + D2 =
nb + nl + nw + nl = 1 + 1 = 2. Then, it is
selected that 
̄ = I , N = 10, d = 0.6, σ1 = 0.01,
β = 1.01, c1 = 2.5. The external disturbance is

Fig. 2
√
x̄(k)T 
̄x̄(k) trajectory (D1 + D2 = 2)

defined as w(k) = e−0.4k sin(k), and it is checked that
∑10

k=0 wT (k)w(k) = 0.5312 < d = 0.6. In this simu-
lation, we take D̄1 + D̄2 is 7 [17]. Applying Theorem
3, the matrices K and L are obtained by

K = [−0.3594 −0.1468 −0.0407
]
,

L = [13.0726 8.6996 10.4610
]T

,

with a minimum H∞ performance index γ = 1.0563.
Besides, considering that the initial states are given as
xT (0) = [ 0.5 −0.8 0.5 ] and eT (0)= [ 0.5 −0.8 0.5 ],
then we have

√
x̄(0)T 
̄x̄(0) <

√
c1 = 1.5811. Fur-

thermore, the minimum values of c2 = 68.6194 is
obtained.

The simulation results are figured in Figs. 2, 3, 4, 5, 6
and 7. From Fig. 2, we can claim that

√
x̄(k)T 
̄x̄(k)

is smaller than
√
c2 = 8.2837 over the time period

[0, 10], which indicates that the augmented state of (10)
couldbeSFTBwith aprescribedH∞ performance level
γ by the NPC strategy proposed.

Figure 3 includes the system state and errors. The
maximum value of

√
x(k)T
x(k) is 1.9519 due to

x1(k) = 0.7811, x2(k) = 1.0069, x3(k) = 1.4785
at k = 4. And the maximum value of

√
x̄(k)T 
̄x̄(k) is

1.9525. We can conclude that the maximum value of√
x(k)T
x(k) is no bigger than the maximum value of√
x̄(k)T 
̄x̄(k), which verify Remark 3. The state tra-

jectory is shown in Figs. 4, 5, 6 and 7. Figures 4, 5, 6
and 7 show the phase portrait and projective portrait,
respectively. Based on Figs. 5, 6 and 7, the response of
the state is within a circle with a radius of 8.2837, and
finally reaches the center of the circle. It is clear that the
overshoot of

√
x(k)T
x(k) is smaller than

√
c2. From
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Fig. 3 State and errors (D1 + D2 = 2)

Fig. 4 Phase portrait in (x1, x2, x3) space (D1 + D2 = 2)

Fig. 5 Projective portrait in (x1, x2) plane (D1 + D2 = 2)

Fig. 6 Projective portrait in (x1, x3) plane (D1 + D2 = 2)

Fig. 7 Projective portrait in (x2, x3) plane (D1 + D2 = 2)

Fig. 8
√
x̄(k)T 
̄x̄(k) trajectories for different D1 + D2
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Fig. 9
√
x̄(k)T 
̄x̄(k) trajectories ofCase 1&Case6 (D1+D2 =

2)

Figs. 3, 4, 5, 6 and 7, we can see that the state x(k) of
(10) could converge to the steady state. Therefore, it
is found that the stochastic NPC systems are stabilized
by the proposed NPC scheme.
Case BWith PDs.

Next, we show how TD-PDs affect the performance
of control. We consider different values of TD-PDs
in this proposal,

√
x̄(k)T 
̄x̄(k) trajectories are derived

using the samebasic parameters.With these conditions,
the second simulation results are drawn as solid lines
in many colors, which shown in Fig. 8. This diagram
shows that the bigger sum of TD-PDs, the bigger over-
shoot magnitude of

√
x̄(k)T 
̄x̄(k). Moreover, by com-

paring Figs. 8 and 2, it is observed that in the second
situation, the transient performance has been degraded
in comparison with that achieved in the first situation.

According to Figs. 2, 8, and Table 1 for various
D1 + D2, the system states begin within

√
c1 and are

limited within
√
c2. As shown in Fig. 2 and 8, the

simulation results verify that the system is SFTB with
respect to the chosen parameters. Table 1 shows the
NFO gain and predictive controller gain, which have
been calculated by the condition of terminal bound
c2. Cases 1–5 show the obtained K and L accord-
ing to x̄ T (k)
̄x̄(k) ≤ (D1 + D2 + 1)c4. Case 6
shows the obtained K̄ and L̄ based on x̄ T (k)
̄x̄(k) ≤
(D̄1+D̄2+1)c4. Figures 9, 10, 11, 12, 13 and 14 depict
the comparison of Case 6 with Cases 1–5, respectively.
Aswe know, poor transient performancemeans that the
overshoot magnitude is bigger. From the pictures, the
overshoot magnitude of x̄ T (k)
̄x̄(k) with K̄ and L̄ is

Fig. 10
√
x̄(k)T 
̄x̄(k) trajectories of Case 2 & Case 6, 1 (D1 +

D2 = 3)

Fig. 11
√
x̄(k)T 
̄x̄(k) trajectories of Case 3 & Case 6, 1 (D1 +

D2 = 4)

just equal to the overshoots for which the correspond-
ing controller and observer of Cases 1–5 are utilized.
That is to say, along with the K̄ and L̄, the system tran-
sient also possesses good performance compared with
the ones wementioned before. Indeed, it has beenmen-
tioned in Remark 7. When K and L are calculated by
the fixed D1 + D2 = 2, the system transient perfor-
mance is worse than that of Cases 2–6 systems with
the controller and observer. Actually, we can reach the
same conclusion for any fixed D1 + D2, such as 3, 4,
and so on. Therefore, it is of great significance for the
uniform controller and observer.

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14
demonstrate that transient performance and the needed
index γ of the closed-loop NPC systems is guaranteed,

123



Finite-time H∞ predictive 1469

Table 1 Predictive controller gain and NFO gain for different sums of TD-PDs

Different sum of TD-PDs Predictive controller gain NFO gain

Case 1: D1 + D2 = 2 K = [−0.3594 −0.1468 −0.0407
] L = [ 13.0726 8.6996 10.4610

]T

Case 2: D1 + D2 = 3 K = [−0.3575 −0.1433 −0.0374
] L = [ 12.8393 8.5739 10.4960

]T

Case 3: D1 + D2 = 4 K = [−0.3648 −0.1402 −0.0349
] L = [ 12.6488 8.4499 10.5444

]T

Case 4: D1 + D2 = 5 K = [−0.3645 −0.1382 −0.0331
] L = [ 12.5962 8.4277 10.5501

]T

Case 5: D1 + D2 = 6 K = [−0.3661 −0.1281 −0.0199
] L = [ 12.7055 8.5446 10.4902

]T

Case 6: D1 + D2 = 7 K̄ = [−0.3651 −0.1360 −0.0294
] L̄ = [ 12.5255 8.3916 10.5608

]T

Fig. 12
√
x̄(k)T 
̄x̄(k) trajectories of Case 4 & Case 6, 1 (D1 +

D2 = 5)

Fig. 13
√
x̄(k)T 
̄x̄(k) trajectories of Case 5 & Case 6, 1 (D1 +

D2 = 6)

Fig. 14
√
x̄(k)T 
̄x̄(k) trajectories of Case 6 & Case 1 (D1 +

D2 = 7)

and the TD-PDs are actively disposed by a uniform
controller and observer when the system is suffering
from communication constraints.

5 Conclusion

We made one of the first attempts in this paper to
investigate finite-time H∞ predictive control problems
for stochastic NCSs with unavoidable communication
constraints. First, due to the unmeasurable state and
missing measurements, the NFO has been constructed.
Then, a NFO-based NPC scheme has been found to be
efficient in terms of achieved the proposed prediction
strategy. Moreover, a novel model of NPC systems has
been built, reflecting the effects of the proposed NPC
and communication delay. The SFTB of the resulting
systemwith TD-PDswith a desirable H∞ performance
criterion is derived. Moreover, the uniform controller
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gain and observer gain are obtained with the aid of the
bounded TD-PDs, which can be well-handed.

There are several possible avenues for future
research. On the one hand, only a few cases are given
in the simulation, other cases can be extended by the
method in the paper. On the other hand, it will be inter-
esting to see if the existing solution to the NPC can be
extended to NCSs that are subject to cyber-attacks and
whose network security is threatened. Another consid-
eration is extending the proposed method to switched
systems and Markovian jump systems.
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