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Abstract Low-speed and heavy-load gears generate

a lot of heat during meshing transmission, which leads

to thermal deformation of the gears and affects the

transmission performance of the gear system. It is of

great significance to explore the influence law of

temperature effects on the nonlinear dynamics of the

gear system. Based on the principle of thermal

deformation, taking into account the temperature

effect and nonlinear parameters, including time-vary-

ing meshing stiffness, tooth side clearance as well as

comprehensive errors, a nonlinear dynamic model of

the gear system of spur cylindrical gear system is

established. The Runge–Kutta method is used for

numerical solution, the effect of temperature variation

and time-varying stiffness coefficient on the bifurca-

tion characteristics of the gear system is analyzed by

combining bifurcation diagram, maximum Lyapunov

index diagram, phase diagram and Poincare section

diagram. The results show that the gear system

exhibits complex nonlinear dynamics with the con-

sideration of temperature effects, including four states

of single-fold periodic motion, multi-fold periodic

motion, and bifurcation and chaotic motion. The

influence of temperature variation on the nonlinear

characteristics of the gear system is closely related to

the value of the time-varying stiffness coefficient. The

effect of temperature variation on the bifurcation

characteristics of the system is obvious when the value

of the time-varying stiffness coefficient s is in the

range of 0.4\ s\ 0.8. The relevant conclusions can

provide references for the design of gear systems

under special working conditions.

Keywords Temperature effect � Nonlinear
dynamics � Bifurcation diagram � Largest Lyapunov
exponent graph � Time-varying meshing stiffness

1 Introduction

Gear system is a kind of transmission mechanism with

high efficiency, stable operation and high transmission

accuracy, which is widely used in aerospace, high-

speed trains, power generation and other industries.

During the operation of a gear system, nonlinear

excitation can cause the system to enter an unsta-

ble state of motion and can even lead to an increase in

error and noise as well as premature failure of the gear.

Therefore, the study of the dynamic characteristics of

the gear system and the analysis of the influence law of

each parameter on the stability of the system can not
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only improve the accuracy of the gear system, but also

improve the working condition of the gear, thus

extending the gear life.

Gearing systems are widely applied in a variety of

fields, and a number of scholars have conducted

nonlinear dynamics studies on gearing systems for

different application scenarios. Wang et al. [1] devel-

oped a torsional nonlinear dynamics model of an aero-

engine drive train, solved and analyzed the dynamic

response using Runge–Kutta method, and proved the

existence of different nonlinear dynamic characteris-

tics of the gear system by bifurcation diagram and FFT

spectrum. Zhao et al. [2] studied gear systems in wind

turbines and showed that meshing shock stresses and

time-varying meshing stiffness have an effect on

dynamic transmission errors. Hou et al. [3] developed

a nonlinear model of the gear-rotor of a geared

turbofan engine and they used bifurcation chart,

maximum Lyapunov index chart, and Poincare

cross-section chart to illustrate the nonlinear response

and analyze the effect of damping on the kinematic

state of the system. Low-speed and heavy-load gears

are mainly used in the coal mining industry. As a result

of the harsh working environment, the gear system

generates violent vibration during operation, which

affects the life of the gears, Jiang et al. [4] developed a

nonlinear dynamics model of the coal mining machine

gear system and studied the dynamic response of the

gear system by numerical analysis methods. Chen

et al. [5] established a nonlinear dynamics model of

the coal mining machine gear system with consider-

ation of thermal deformation. They obtained the

influence of temperature on the nonlinear character-

istics of the system. Low-speed heavy-duty gears are

prone to abnormal gear system operation due to their

harsh operating environment, so it is essential to

investigate their nonlinear dynamics. Aiming to

investigate the nonlinear dynamics of gear systems

more deeply and improve the stability of gear systems,

a number of scholars have used different approaches to

establish dynamics models to study gear systems.

Huang et al. [6] used the concentrated mass approach

to model the dynamics of a gear system with multiple

clearances. They investigated the effects of excitation

frequency, gear clearance and other parameters on the

nonlinear dynamic characteristics of the system.

Zhang et al. [7] developed a dynamics model based

on Hertz contact theory and fractal theory. They

obtained the effect law of parameters like tooth side

clearance and time-varying meshing stiffness on the

change of system motion state by considering various

factors. Wang et al. [8] developed the vibration

equation of the gear train according to Newton’s

law. They obtained the effect of random parameters on

the dynamic response of the gear system under

different operating conditions by solving it. Geng

et al. [9] developed a nonlinear dynamics model with

consideration of surface friction, time-varying tooth

gap and meshing stiffness to study the bifurcation

properties of the gear system in depth by bifurcation

diagrams and spectrograms. Liu et al. [10] studied the

nonlinear characteristics of a gear system under

constant and variable excitation. They showed the

influence of gear speed on the dynamic characteristics
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Fig. 1 Cantilever beam model
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of the gear system using bifurcation diagrams. Liu

et al. [11] developed a nonlinear dynamics model

considering thermal deformation and analyzed the

effect of temperature variation on the nonlinear

dynamic properties of the system using spectrograms,

and the results indicated that the vibration displace-

ment and load of the system are enhanced at higher

temperatures. Wang et al. [12] developed a gear

system model with consideration of tooth clearance,

load distribution, time-varying meshing stiffness, etc.

The analysis using numerical analysis showed that

periodic, quasi-periodic and chaotic motion states

exist in the gear system, and the rotational speed has

obvious influences on the vibration characteristics.

Wang et al. [13] developed dynamic equations with

consideration of nonlinear factors such as torque

fluctuation, mesh damping ratio, and excitation fre-

quency, and analyzed the dynamic properties of the

gear system with different tooth clearances for

changes in the mesh damping ratio using the bifurca-

tion chart, phase chart, and Poincare chart of the

system. Xiang et al. [14, 15] proposed a transverse

torsion model for a multistage transmission system

and analyzed the nonlinear dynamic response using

excitation frequency and support stiffness as bifurca-

tion factors, and the findings showed that the system

exhibits diverse motion states under the variation of

support stiffness, and the motion at low and high

excitation frequencies and the route into the chaotic

state are different. Li et al. [16] considered the

dynamic response of a single-degree-of-freedom sys-

tem with nonlinear stiffness and damping. They

described the effects of amplitude and relative phase

for two types of excitation as well as bifurcation

analysis. Neumeyer et al. [17, 18] derived approximate

steady-state vibration amplitudes by using the method

of varying amplitudes, which is in good agreement

with the results of numerical integration, and obtained

approximate analytical steady-state solutions and

consequent stability by varying the amplitudes. Zhu

et al. [19] developed dynamic equations with multiple

tooth gaps and time-varying meshing stiffness. They

analyzed the influence of tooth gaps on the dynamic

properties of the gear set by combining the time-

domain chart, phase chart and Poincare section chart.

For gears in extreme operating conditions and preci-

sion transmission mechanisms, changes in tempera-

ture and power loss can cause changes in tooth side

clearance, which can affect the dynamic performance

of gears [20]. Most of the existing studies have ignored

the effect of temperature, and rarely considered the

effect law of temperature on the nonlinear properties

of gear systems. And studies on the bifurcation

properties of the system considering parameters

including temperature variation, time-varying stiff-

ness and engagement damping simultaneously are

lacking.

In this paper, a nonlinear dynamics model of gear

system considering temperature effect is established

based on the principle of thermal deformation, and

considering the time-varying meshing stiffness, tooth

side clearance and meshing error etc. And the

bifurcation characteristics of nonlinear systems are

analyzed by bifurcation diagram, maximumLyapunov

index diagram, time-domain diagram, phase diagram,

spectrum diagram and Poincare cross-section diagram

to study the influence law of temperature variation,

time-varying meshing stiffness and other factors on

the bifurcation characteristics of the system, which

provides a reference for the design and application of

gear systems under special working conditions.

2 Nonlinear dynamics model of multi-factor gear

system considering temperature effect

The gear system consists of several gear pairs and

drive shafts, bearings and other parts of the mechan-

ical system, under the action of dynamic excitation

will produce dynamic response, generate vibration and

noise, and the system is subject to dynamic excitation

is not only related to the structure of the gear itself,

geometric characteristics and error state, etc., but also

f
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Fig. 2 Nonlinear function of tooth side clearance
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related to the excitation of other parts in the gear

system. Therefore, to analyze the nonlinear dynamics

of the gear system, it is necessary to start from the

system as a whole and establish an overall vibration

analysis model.

2.1 Time-varying meshing stiffness of gears

The potential energy approach is used to assume the

gear model as a cantilever beam model, and the time-

varying meshing stiffness of normal teeth is deter-

mined by considering the Hertzian contact effect, the

bending effect and the axial compression effect. The

cantilever beam model is shown in Fig. 1.

When the gear teeth are engaged, the tooth

deformation at the line of engagement at point P

under the action of the engagement force F is subject

to three influencing factors: (1) local stiffness due to

Hertzian contact Kh; (2) the basic deflection of the

tooth, including the bending stiffness Kb, the shear

stiffness Ks and the axial compression stiffness Ka; (3)

deflection due to gear tooth flexibility Kf.

1

Kb
¼

Z d

0

ðx cos a1 � h sin a1Þ2

EIx
dx

1

Ks
¼

Z d

0

1:2 cos2 a1
GAx

dx

1

Ka
¼

Z d

0

sin2 a1
EAx

dx

1

Kh
¼ 4ð1� v2Þ

pEB
1

Kf
¼ df

F

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð1Þ

where d is the distance from the point of load action

along the tooth height direction; a1 is the pressure

angle; h is the distance from the point of load action

along the tooth width; E is Young’s modulus of

elasticity; Ix,Ax are the cross-sectional moment of

inertia and integral cross-sectional area, respectively,

for gear teeth without cracks, Ix,Ax follows the whole

tooth integral,Ix ¼ 1
12

hx þ hxð Þ3B,Ax ¼ ðhx þ hxÞB; G
is the shear modulus,G ¼ E

2ð1þvÞ; v is the Poisson’s

ratio; B is the tooth width; df is the deformation of the

gear base body caused by the load.

The combined time-varying rigidity of a single pair

of teeth meshing is expressed as:

Ke ¼
1

1
Kh
þ 1

Kb1
þ 1

Ks1
þ 1

Ka1
þ 1

Kf1
þ 1

Kb2
þ 1

Ks2
þ 1

Ka2
þ 1

Kf2

ð2Þ

In the formula: Kb1 ,Kb2 is the bending stiffness of

the driving wheel and the driven wheel;Ks1 ,Ks2 is the

shear stiffness of the driving wheel and the driven

wheel; Ka1 ,Ka2 is the axial compression stiffness of the

driving wheel and the driven wheel; Kf1 ,Kf2 is the

deflection generated by the gear base bodies of the

driving wheel and the driven wheel.

When a gear meshes, its meshing rigidity is not a

fixed number, but is continuously varying with time,

and this variation is called the time-varying rigidity,

and the excitation phenomenon that it causes is called

the rigidity excitation of the gear teeth. Since the

transmission of gears is a periodic motion, the meshing

rigidity is a periodic function with certain regularity.

The stiffness of each discrete point is found in turn and

combined to obtain the stiffness function k(t) for a

single pair of teeth in one meshing period. In the

meshing of the identical gear pair, the variation

frequency of the stiffness is the same as the frequency

of the inner excitation so that it can be represented as a

Fourier series expansion:

kðtÞ ¼ km þ
X1
i¼1

ai cosðixhtÞ þ bi sinðixhtÞ½ �

¼ km þ
X1
i¼1

ki cosðixhtÞ
ð3Þ

e(t)

k(t) ch

rb1

rb2

¦ È2

T2

¦È1

T1

Fig. 3 Dynamics model of spur gear system
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In the formula, km is the average meshing stiffness,P1
i¼1

ki cosðixhtÞ ði ¼ 1; 2; 3 � ��Þ is the harmonic com-

ponent, xh is the gear meshing frequency.

If the first-order harmonic component of the

stiffness is taken, the time-varying meshing stiffness

is:

kðtÞ ¼ km þ ka cosðxhtÞ ð4Þ

In the formula, ka is the fluctuation amplitude of

gear meshing stiffness.

2.2 Gear side clearance

The gear side clearance function is the nonlinear

meshing force displacement function of the gear in the

presence of side clearance [21], which is a segmented

function. Assuming a side gap of 2b, the segmentation

function f ðxðtÞÞ can be expressed as:

f ðxðtÞÞ ¼ f ðxðtÞÞ
km

¼
xðtÞ � b xðtÞ[ b
0 xðtÞj j\b
xðtÞ þ b xðtÞ\� b

8<
: ð5Þ

If the gap is symmetrical, then f ðxðtÞÞ is shown in

Fig. 2:

Changes in the parameters of the gear pair cause

variations in the motion process of the gear, while

changes in temperature cause changes in the tooth side

clearance in response. For spur gears, the reduction in

tooth side clearance due to temperature changes

during gear operation Db1 is [22]:

Db1 ¼ DT1c1ð1þ DT1c1Þmpþ ½mDT1c1ðz1
þ z2Þ sin a�=2 ð6Þ

where: z1 and z2 are the numbers of teeth of the main

wheel and driven wheel, respectively; m is the gear

modulus; a0 is the angle of engagement after thermal

deformation; a0 ¼ arccosða cos a=a0Þ; DT1 is the tem-

perature rise of the gears; c1 is the coefficient of linear
expansion of the gear.

Therefore, the tooth side clearance is redefined

under the influence of temperature variation as:

2b0 ¼ 2b� Db1 ð7Þ

where: 2b0 is the tooth side clearance considering the

temperature change.

Then the tooth side clearance function including the

temperature effect f 0ðxðtÞÞ is:

f 0ð�xð�tÞÞ ¼
�xð�tÞ � b0 �xð�tÞ[ b0

0 �xð�tÞj j\b0

�xð�tÞ þ b0 �xð�tÞ\� b0

8<
: ð8Þ

2.3 Engagement error and engagement damping

The transmission error of the gear static can be

expressed in the Fourier series as [23]:

Fig. 4 a Bifurcation diagram of the gear system with gear temperature (s = 0.1) b Maximum Lyapunov Index Diagram
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eðtÞ ¼ em þ
X1
h¼1

½e2h cosðnxhtÞ þ e2hþ1 sinðnxhtÞ�

ð9Þ

where em is the averaged meshing error, xh is the

excitation frequency of the meshing error. Consider-

ing only the first order, taking em = 0, the static

engagement error expression can be reduced to:

eðtÞ ¼ ea cosðxht þ u0Þ ð10Þ

where ea is the error magnitude.

In the meshing line direction, the movements of the

two gears are defined as x1, x2, and x1 represent the

movements of the driving wheel, x2 represents

follower wheel displacement. Obtains:

x1 ¼ r1h1
x2 ¼ r2h2

(
ð11Þ

The dynamic transmission error of the gear system

is:

xdðtÞ ¼ x1 � x2 ð12Þ

Using x(t) to express the integrated transmission

error of the system, then x(t) is the difference between

the dynamic transfer error and the static transfer error.

Then:

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 5 Motion characteristics of the gear system at a temperature rise of 50 �C (s = 0.1)
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xðtÞ ¼ x1 � x2 � eðtÞ ð13Þ

The engagement damping is obtained by taking the

empirical formula [24]:

ch ¼ 2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmI1I2

r2b1I1 þ r2b2I2

s
ð14Þ

where: rb1, rb2 are the base circle radius of the master

and follower wheels, respectively; I1, I2 are the

rotational inertia of the driving and driven wheel,

respectively; n is the damping ratio, usually takes the

value of 0.03 * 0.17.

2.4 Model establishment

The gear system has an overall mass concentration in

the working process, so the concentrated mass method

can be used to model the nonlinear dynamics of the

gear system. The main method is to equate the gear

system as a mass block with only mass and no

consideration of elasticity and spring with only

elasticity and no consideration of mass. It is assumed

that the stiffness of the shaft in the gear system is large

enough; the frictional influence of the bearing is not

considered; and the direction of the force acts on the

meshing line all the time. Then the kinetic model of a

pair of cylindrical gear pairs is presented in Fig. 3.

In the figure: rb1 and rb2 are the radii of the base

circle of the master and driven wheel, respectively; T1
and T2 are the torques applied to the main driven

wheel, respectively; h1 and h2 are the torsional

vibration displacement of the two gears, respectively;

e(t) is the static transmission error of gear meshing; ch
is the damping coefficient in gear meshing; k(t) is the

time-varying meshing stiffness of the gear.

According to the dynamics model of the gear

system shown in the figure, the differential equations

of motion of the system model can be obtained from

Newton’s laws of mechanics as:

T1 ¼ I1€h1 þ rb1ch½rb1 _h1 � rb2 _h2 � _eðtÞ� þ kðtÞrb1f ðrb1h1 � rb2h2 � eðtÞÞ
�T2 ¼ I2€h2 � rb2ch½rb1 _h1 � rb2 _h2 � _eðtÞ� � kðtÞrb2f ðrb1h1 � rb2h2 � eðtÞÞ

(

ð15Þ

Fig. 6 a Bifurcation diagram of the gear system with gear temperature (s = 0.6) b Maximum Lyapunov Index Diagram

Table 1 Dynamic state of the gear system with the change of temperature rise DT1

DT1 DT1 \ 26 �C 26 �C\DT1 \ 50 �C 50

�C\DT1 \ 80 �C
DT1 = 80 �C 80�C\DT1 \ 200 �C

Gear system dynamic

state

Two times

periodic

Four times periodic Two times periodic Chaotic state Two times periodic
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where: T1 and T2 are the external moments acting on

the master and driven gears; I1 and I2 are the rotational

inertia of the master and driven gears.

Dividing both ends of the first equation in Eq. (15)

by rb1 and both ends of the second equation by rb2 at

the same time:

�T1=rb1 ¼ðI1=r2b1Þrb1€h1 þ ch½rb1 _h1 � rb2 _h2 � _eð�tÞ�
þ kð�tÞ �f ðrb1h1 � rb2h2 � eð�tÞÞ

� �T2=rb2 ¼ðI2=r2b2Þrb2€h2 � ch½rb1 _h1 � rb2 _h2 � _eð�tÞ�
� kð�tÞ �f ðrb1h1 � rb2h2 � eð�tÞÞ

8>>>><
>>>>:

ð16Þ

Order:

m1 ¼ I1=r
2
b1; m2 ¼ I2=r

2
b2

F1 ¼ T1=rb1; F2 ¼ T2=rb2

(
ð17Þ

A transformation of Eq. (16) yields:

F1 ¼ m1 €x1 þ ch½ _x1 � _x2 � _eðtÞ� þ kðtÞf ðx1 � x2 � eðtÞÞ
�F2 ¼ m2 €x2 � ch½ _x1 � _x2 � _eðtÞ� � kðtÞf ðx1 � x2 � eðtÞÞ

(

ð18Þ

where:m1, m2 are the equivalent masses of the master

and follower gears, respectively;F1, F2 are the

circumferential forces along the meshing line of the

master and driven gears, respectively.

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 7 Motion characteristics of the gear system at a temperature rise of 20 �C (s = 0.6)
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Multiplying the first equation in Eq. (18) by m2=m1

and subtracting the second equation yields:

m2=m1 � F1 þ F2 ¼m2ð€x1 � €x2 � €eðtÞ þ €eðtÞ
þ ðm1 þ m2Þ=m1 � ch½ _x1 � _x2 � _eðtÞ�f
þ kðtÞf ðx1 � x2 � eðtÞÞ

�
ð19Þ

Then multiply both ends of Eq. (19) by m1

m1þm2
at the

same time, and make me ¼ m1m2

m1þm2
, then the analytical

model for the dynamics of the gear pair expressed in

Eq. (15) can be adapted as:

me
€xþ ch _xþ kðtÞf ðxÞ ¼ me

m1

F1 þ
me

m2

F2 � me €eðtÞ

ð20Þ

Order:

Fm ¼ me

m1

F1 þ
me

m2

F2; Fh ¼ �me €eðtÞ; ð21Þ

Then:

me
€xþ ch _xþ kðtÞf ðxÞ ¼ Fm þ Fh ð22Þ

where me is the equivalence mass of the gear pair, Fm

is the outer excitation of the gear system, Fh is the

internal excitation of the gear system. In a system of

gears, both its external and internal excitation can be

represented as a periodic function of time, then:

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 8 Motion characteristics of the gear system at a temperature rise of 42 �C (s = 0.6)
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FmðtÞ ¼ Fm0 þ ~Fm sinðxmt þ /mÞ ð23Þ

eðtÞ ¼ ~e sinðxht þ /hÞ ð24Þ

Substituting Eqs. (4), (23) and (24) into Eq. (20)

yields:

me
€xþ ch _xþ ðkm þ ka cosðxhtÞÞf ðxÞ
¼ Fm þ me ~ex

2
h sinðxht þ /hÞ ð25Þ

To facilitate the computational study of the dynam-

ics of the gear system, the dynamics equations need to

be dimensionless. Define the quantization time as

t ¼ x0t, x0 is the intrinsic frequency of the gear

dynamics model, the solution formula is x0¼
ffiffiffiffiffi
km

me

q
.

Introducing displacement nominal scales bc, then the

other variables can be defined by t and bc, Assuming

constant average meshing stiffness, x ¼ x=bc [25].

Order:

xh ¼
xh

x0

;xm ¼ xm

x0

;Fm ¼ Fm

bcmex2
0

;Fh ¼
~e

bcmex2
0

; n

¼ ch
2mex0

; s ¼ ka
km

ð26Þ

This leads to the dimensionless analytical model of

the nonlinear dynamics of the gear system considering

the temperature effect as:

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 9 Motion characteristics of the gear system at a temperature rise of 120 �C (s = 0.6)
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€xðtÞ þ 2n _xðtÞ þ ½1þ s cosxht�f 0ðxðtÞÞ
¼ Fm þ Fhx

2
h sinðxht þ /hÞ ð27Þ

where, n is the damping factor, x(t) is the transfer error

of dimensionless processing, s is the ratio of the

engagement rigidity fluctuation to the average com-

ponent, which is the time-varying rigidity factor, Fm is

the average load, Fhx2
h sinðxht þ /hÞ is the internal

load, f 0ðxðtÞÞ is the dimensionless nonlinear displace-

ment function considering the temperature response.

3 Analysis of nonlinear dynamics

According to the results after normalization of the

equation magnitudes, it can be seen that the dynamics

model of the gear is a multivariate nonlinear system,

and it is difficult to analyze the influence of each factor

on the stability of the system simultaneously. The

literature [26] used the Sobol’s method of global

sensitivity analysis based on variance to investigate

the influence of various factors on the dynamic

properties of the system, and the results indicated that

the tooth side clearance has an enormous influence on

the system motion characteristics. The literature [27]

used the incremental harmonic balance method

(IHBM) to analyze the influence of dynamic tooth

gap, time-varying rigidity, excitation force amplitude

and damping ratio on the dynamic properties of the

gear pair system. The findings showed that the time-

varying meshing rigidity, damping ratio and tooth gap

have the most significant effects on the nonlinear

characteristics of the system.

The gear system analyzed in this paper is an

involute spur gear system, and the dynamic properties

of the gear system will be investigated from three

aspects: tooth side clearance, time-varying meshing

rigidity and meshing damping ratio. The following

system parameters were selected [28]: average load

Fm = 0.1, damping ratio n = 0.05, error magnitude

Fh = 0.05, initial tooth side clearance b = 0.5, dimen-

sionless frequency xh = 1.

3.1 The influence of temperature on system

characteristics

The working environment of the gear system is

complex and there are many external influencing

factors, for example, when the gear is operating at high

speed, the working temperature of the gear system will

increase due to power loss. In addition, gearboxes are

designed for ambient temperature conditions, but the

ambient temperature varies from region to region, so it

is necessary to analyze the effect of temperature

changes on the gear system.

The bifurcation diagram and the maximum Lya-

punov index diagram are reliable tool diagrams for

observing the dynamic response of the system. When

the time-varying stiffness coefficient s is small, keep

s = 0.1 constant, and the bifurcation diagram and the

Fig. 10 a Bifurcation diagram of the gear system for the variation of the readily variable stiffness coefficient s (DT1 = 50 �C)
b Maximum Lyapunov Index Diagram
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maximum Lyapunov index diagram of the gear system

when the temperature rise is varied from 20 to 200 �C
are shown in Fig. 4.

As shown in the figure, when the time-varying

stiffness coefficient is small, the kinematic character-

istics of the gear system are relatively stable with the

constant change of temperature, and it has been

maintained in a state of cyclic motion, and its

maximum Lyapunov index in general has been kept

in a negative state. The temperature rise is now taken

as 50 �C. The simulation obtains the time domain

diagram, phase diagram, spectrum diagram and Poin-

caré cross section of the gear system, as shown in

Fig. 5. As can be seen from Fig. 5, when the

temperature rise is 50 �C, the time domain diagram

of the gear system is a periodic curve with regular

peaks, the phase diagram is a single closed loop, the

spectrum diagram shows an isolated peak straight line,

and the Poincaré cross-sectional diagram aggregates

to a single point, indicating that the system is in a

stable single-fold periodic motion. The results show

that when the time-varying stiffness coefficient is

small, the temperature has less influence on the system

characteristics. The gear system keeps a single-fold

cycle motion with the change of gear temperature rise.

When the time-varying stiffness coefficient s is

large, s = 0.6 is taken, and other parameters of the

system are kept constant to obtain the bifurcation

diagram and the maximum Lyapunov index diagram

of the gear system when the gear temperature rise

varies from 20 to 200 �C, as shown in Fig. 6. The

dynamic state of the gear system with the change of

temperature rise is shown in Table 1.

As shown in Fig. 6, for a time-varying stiffness

factor of s = 0.6, the gear system exhibits two times

the proposed periodic motion when the gear temper-

ature risesDT1 \ 26 �C. As shown in Fig. 7, when the
temperature rise DT1 = 20 �C, the time domain dia-

gram presents a periodic curve with regular peaks, the

phase diagram is a closed curve band with a certain

width, and the Poincare diagram is composed of two

point sets, so the system is in two times anthropomor-

phic periodic motion state at this time. In Fig. 6, with

the increase of gear temperature rise, the gear system

first bifurcates from two times the proposed periodic

motion to four times the proposed periodic motion,

and the time domain diagram, phase diagram and

Poincare section diagram atDT1 = 42 �C are shown in

Fig. 8, The time domain diagram shows a periodicT
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curve with regular peaks, the phase diagram is a closed

curve band, and the Poincare diagram consists of four

point sets, so the system is in four times the proposed

periodic motion at this time; The system then enters

into a two-fold periodic motion, Fig. 9 shows the time

domain diagram and phase diagram of the gear system

at DT1 = 120 �C, the time domain diagram shows a

periodic curve with regular peaks, and the phase

diagram is a closed curve band, while there are only

two points on the Poincare section diagram, so the

system is in a twofold periodic motion at this time. As

can be seen, the variation of the system motion

characteristics with gear temperature rise obtained in

Figs. 7, 8, 9 remains consistent with the results

presented in the bifurcation diagram and the maximum

Lyapunov index diagram shown in Fig. 6.

The results show that the temperature variation has

a greater impact on the motion characteristics of the

gear system when the time-varying stiffness factor is

significant, and the gear system undergoes a ‘‘ two

times—four times—two times’’ cyclic motion varia-

tion with the change of temperature rise.

From the above analysis, it can be obtained that the

change of gear temperature has different effects on the

system motion characteristics under different time-

varying stiffness coefficients. Therefore, for some gear

systems with special working conditions, reasonable

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 11 Dynamic characteristics of the gear system with time-varying stiffness coefficient s = 0.2 (DT1 = 50 �C)
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gear system parameters are very important for the

system motion characteristics.

3.2 Effect of time-varying stiffness coefficients

on system characteristics

The time-varying stiffness coefficient s reflects the

variation of the meshing stiffness with time and is one

of the internal excitation parameters affecting the

dynamic characteristics of the gear system. The

dynamic characteristics of the gear system are ana-

lyzed with the time-varying stiffness coefficient s as

the control parameter, taking the gear temperature rise

as 50 �C and other parameters of the system as

constant. Figure 10 shows the bifurcation diagram and

the maximum Lyapunov exponent for the variation of

the readily variable stiffness coefficient s. The dynam-

ical states of the gear system with the change of the

variable stiffness coefficient s are shown in Table 2.

Figures 11, 12, 13, 14, 15 show the phase diagram,

Poincare mapping and time domain spectrum of the

system when the time-varying stiffness coefficient

takes different values, which can explain the dynamics

of the gear system in more detail when the time-

varying stiffness coefficient is varied.

As shown in Fig. 10, the gear system exhibits

different motion states when the time-varying stiffness

factor s is varied. As the time-varying stiffness

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 12 Dynamic characteristics of the gear system with time-varying stiffness coefficient s = 0.39 (DT1 = 50 �C)
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coefficient s increases from 0 to 0.386, the gear system

is in single-cycle motion, when its maximum Lya-

punov index is less than 0; Fig. 11 shows the time

domain diagram, phase diagram and Poincare section

diagram at s = 0.2. The time domain diagram presents

a periodic curve with regular peaks, the phase diagram

is a closed curve, and the Poincare section diagram

shows a point, indicating that the system is in a single

period motion at this time. When s[ 0.386, the gear

system first enters a short period three motion, then

becomes a period twomotion, and then changes from a

period two to a period four motion, and the maximum

Lyapunov exponent goes through a ‘‘negative-zero-

negative–positive’’ change; Fig. 12 shows the

kinematic characteristics at s = 0.39, the time domain

diagram is a periodic curve with regular peaks, the

phase diagram has a three-loop winding closed curve,

and the Poincare section diagram also has three

discrete points, indicating that the system is in a

period three motion at this time. The kinematic

characteristics at s = 0.45 are shown in Fig. 13, the

phase diagram is a closed curve with a certain width,

and the Poincare cross section consists of two point

sets, proving that the system is in a two-fold proposed

periodic motion at this time. According to the

bifurcation diagram, when the time-varying stiffness

coefficient s[ 0.464 increases further, the gear sys-

tem first enters the chaotic motion state, then enters the

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 13 Dynamic characteristics of the gear system with time-varying stiffness coefficient s = 0.45 (DT1 = 50 �C)
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two-fold period motion, and then enters the chaotic

state again, and its maximumLyapunov exponent goes

through the change of ‘‘positive-zero-negative–posi-

tive.’’ When s = 0.56, the kinematic characteristics of

the gear system are shown in Fig. 14, the time domain

diagram is a periodic curve with regular peaks, the

phase diagram has a two-loop winding closed curve,

and the Poincare section diagram has two point sets, so

the system is in a two-fold periodic motion at this time.

The time-varying stiffness coefficient s continues to

increase, and when s = 0.75, the system motion

characteristic diagram is shown in Fig. 15, the time

domain diagram is a curve without obvious periodic-

ity, the phase diagram does not repeat and fills a

certain closed area, and the Poincare section diagram

consists of patches of dense points, so the system

enters a complex chaotic motion phase.

The results show that the time-varying stiffness

coefficient has a significant influence on the system

characteristics. With the change of the time-varying

stiffness coefficient, the gear system has the motion

states of single-cycle, multi-cycle and chaotic motion.

When the gear system is in a chaotic state, the degree

of collision of gears becomes violent, and the long-

term chaotic motion will aggravate the gear wear and

reduce the gear life, so the appropriate time-varying

stiffness coefficient should be selected to avoid

entering the chaotic state when working.

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 14 Dynamic characteristics of the gear system with time-varying stiffness coefficient s = 0.56 (DT1 = 50 �C)
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(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 15 Dynamic characteristics of the gear system with time-varying stiffness coefficient s = 0.75 (DT1 = 50 �C)

Fig. 16 Plot of the

maximum Lyapunov index

of the system for

simultaneous changes in

temperature and meshing

stiffness coefficient
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Figure 16 shows the maximum Lyapunov index

diagram of the gear system for simultaneous changes

in temperature and stiffness coefficients to reflect the

bifurcation characteristics of the gear system. From

Fig. 16, it can be seen that when the time-varying

rigidity factor s\ 0.4, the maximum Lyapunov index

of the system has remained negative with the change

of temperature, indicating that the gear system has

been in a stable state of motion. And when the time-

varying stiffness coefficient s[ 0.4, the maximum

Lyapunov index of the system varies with tempera-

ture, indicating that the gear system is in different

states of motion at different temperatures. The results

show that when the value of the time-varying stiffness

coefficient of the gear system is small, the effect of

temperature change on the motion state of the system

is smaller. With the increase of the time-varying

stiffness coefficient, the effect of temperature change

on the system motion state is gradually significant.

3.3 Effect of the change of meshing damping

on the dynamic characteristics of the system

Damping can reduce the vibration of gear systems by

dissipating energy during transmission. The dynamic

properties of the gear system are studied by taking the

gear temperature rise as 50 �C and other parameters of

the system as constant, and the mesh damping ratio n
as the control parameter. Figure 17 shows the bifur-

cation chart and the maximum Lyapunov index of the

gear system with the variation of the mesh damping

ratio n. The dynamical states of the gear system with

the change of the meshing damping ratio n are shown

in Table 3.

From the bifurcation diagram shown in Fig. 17, the

gear system is in a complex chaotic motion when the

meshing damping ratio is taken as n\ 0.03. When the

meshing damping ratio rise to a value of

0.03\ n\ 0.148, the gear system is in twice the

periodic motion. When the damping ratio rises to a

value n[ 0.148, the system is in a stable single-cycle

motion. In the Maximum Lyapunov Exponential

chart, the exponential goes through a ‘‘positive-zero-

Fig. 17 a Bifurcation diagram of the gear system with the variation of the meshing damping ratio (DT1 = 50 �C) b Maximum

Lyapunov Index Diagram

Table 3 Dynamic state of the gear system with the change of meshing damping ratio n

n n\ 0.03 0.03\ n\ 0.148 n[ 0.148

Gear system dynamic state Chaotic state Two times periodic Single times periodic
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negative’’ change, which is consistent with the vari-

ation of the movement state presented in the bifurca-

tion chart. Figure 18 shows the time domain plot,

phase diagram, FFT spectrum and Poincare cross

section of the gear system when the mesh damping

ratio takes different values.

As shown in Fig. 18, when n = 0.01, the time

domain diagram of the gear system is a non-periodic

curve, the phase plane graph does not duplicate and

covers a closed area, the FFT diagram is a consecutive

frequency band, and the Poincare section graph

consists of pieces of dense points, therefore, the

system behaves as a complicated chaotic movement at

this point. As shown in Fig. 19, when n = 0.08, the

time domain diagram is periodic, the phase plane

graph is a closed curve band, and the FFT graph is

discrete, so the motion characteristic of the system is

periodic motion, and because the Poincare cross-

section diagram contains two points, the system is two

times periodic motion at this time. As shown in

Fig. 20, when n = 0.18, the time domain diagram of

the system has a certain periodicity, the phase plane

diagram is a closed band of curves, the FFT graph is

discrete, and the Poincare graph is constituted by only

one point, therefore, the system shows a steady and

regular single-fold periodic movement at this point.

The results indicate that with the increase of the

mesh damping ratio, the motion state of the gear

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 18 Dynamic characteristics of the gear system with the mesh damping ratio n = 0.01 (DT1 = 50 �C)
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system gradually tends to be stable; a larger mesh

damping ratio can make the gear system maintain a

stable cyclic motion state, reduce the vibration during

gearing and prolong the service life of the gear system.

4 Conclusion

In this paper, based on the principle of thermal

deformation, a nonlinear dynamics model of the gear

system considering the temperature effect is estab-

lished, and the bifurcation characteristics of the

nonlinear system are analyzed by bifurcation diagram,

maximum Lyapunov exponent diagram, time domain

diagram, phase diagram, spectrum diagram and Poin-

care cross section diagram, and the following conclu-

sions are obtained.

(1) The simulation reveals the effect law of tem-

perature on the bifurcation characteristics of the

system under different time-varying stiffness

coefficients. For the dynamics model estab-

lished in this paper, when the time-varying

stiffness coefficient takes a small value

(s = 0.1), the effect of temperature variation

on the system motion is small, and the gear

system keeps a stable single-fold cycle motion

as the temperature increases. When the time-

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 19 Dynamic characteristics of the gear system with the mesh damping ratio n = 0.08(DT1 = 50 �C)
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varying stiffness factor is significant (s = 0.6),

the effect of temperature variation on the system

motion is more significant. The system under-

goes a ‘‘two times—four times—two times ’’

periodic motion change with the increase of

temperature, and there is a bifurcation

phenomenon.

(2) The effect of the time-varying stiffness coeffi-

cient on the bifurcation characteristics of the

gear system at a fixed temperature rise

(DT1 = 50 �C) is analyzed. As the time-varying

stiffness coefficient increases, the gear system

moves from a single-cycle motion to a brief

period three motion, which then changes to a

period twomotion. The system then undergoes a

bifurcation into a period four motion, then

enters a brief chaotic state, and following the

system changes again into a period two motion.

As the time-varying stiffness coefficient contin-

ues to increase, the gear system finally enters a

chaotic state.

(3) The dynamical properties of the gear system are

studied when the meshing damping ratio is used

as a bifurcation parameter under the condition

that the temperature variation is kept constant

(DT1 = 50 �C). The findings indicate that the

kinematic state of the system gradually stabi-

lizes with the increase of the meshing damping

(a) Time domain diagram (b) Phase diagram

(c) FFT spectrogram (d) Poincare diagram

Fig. 20 Dynamic characteristics of the gear system with the mesh damping ratio n = 0.18(DT1 = 50 �C)
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ratio. A larger damping ratio can keep the

system in a steady state of movement, reduce the

vibration generated by the operation of the gear

system, and extend its life of the gear system.
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