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Abstract This study considers a novel nonlinear

system, namely a cable-stayed beam with a tuned mass

damper (cable-beam-TMD model), allowing the

description of energy transfer among the beam, cable

and TMD. In this system, the vibration of the TMD is

involved and one-to-one-to-one internal resonance

among the modes of the beam, cable and TMD is

investigated when external primary resonance of the

beam occurs. Galerkin’s method is utilized to dis-

cretize the equations of motion of the beam and cable.

In this way, a set of ordinary differential equations are

derived, which are solved by the method of multiple

time scales. Then the steady-state solutions of the

system are obtained by using Newton–Raphson

method and continued by pseudo-arclength algorithm.

The response curves, time histories and phase portraits

are provided to explore the effect of the TMD on the

nonlinear behaviors of the model. Meanwhile, a

partially coupled system, namely a cable-beam-TMD

model ignoring the vibration of the TMD, is also

studied. The nonlinear characteristics of the two cases

are compared with each other. The results reveal the

occurrence of energy transfer among the beam, cable

and TMD.

Keywords Cable-stayed beam � Tuned mass

damper � Internal resonance � Nonlinear behavior �
Energy transfer

1 Introduction

Cable-supported systems [1, 2], especially cable-

stayed bridges, are extensively used in cross-sea or

cross-valley projects throughout the world [3]. With

the continuous progress and improvement of technol-

ogy, the span of cable-stayed bridges has exceeded one
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thousand meters. The ensuing problem is that the

nonlinear dynamics of the cable-stayed bridge are

more prominent, which has received a considerable

number of attentions.

Due to the complexity of the dynamics of the cable-

stayed bridge, the researches on nonlinear dynamics of

the cable-stayed bridge are mainly devoted to substruc-

tures, such as the cable [4, 5] and cable-stayed beam [6].

Cable dynamics has a long and rich history and can be

traced back to the classic monograph by Irvine [7].

Afterwards, cable’s problems have been widely studied

by many researchers in the last few decades [8–13].

Although a single-cable model can reveal some char-

acteristics of the cable-stayed bridge, however, it cannot

consider the coupling interaction between the cable and

bridge deck. Therefore, the attention is paid to cable-

stayed beam and quite a few studies are carried out

[14, 15]. Fujino et al. [16] established a cable-beam

model considering three degrees of freedom (DOFs) and

proposed the concepts of global mode and local mode.

Meanwhile, the 1:1:2 internal resonance among differ-

ent modes were observed experimentally. Gattulli and

co-workers [17–19] used a localization factor to recog-

nize the global mode and local mode and the nonlinear

behaviors of the cable-stayed beam were analyzed in

detail. They found that for a highly tensioned cable-

stayed beam, the global modes exhibit softening

characteristics, while the local modes show hardening

behaviors.

The researches mentioned above reveal that the

cable-stayed beam is prone to vibration under the action

of ambient excitation [20]. To suppress the vibration, a

damper is usually installed near the lower end of the

cable. The simplest model to describe the fact is a taut

cable with a viscous damper. Krenk [21] studied the

model by expressing the solutions with damped com-

plex-valued modes. In this way, a simple iterative

solution of the characteristic equation for all complex

eigenfrequencies was proposed. Thereafter, Krenk and

Nielsen [22] considered a shallow cable with a viscous

damper by taking the sag of the cable into account.

Main and Jones [23] investigated the complex eigen-

value problem of a taut cable with a linear damper.

Different from the work of Krenk, the solutions were

obtained without approximation. In addition, Main and

Jones [24] also considered a taut cable with a nonlinear

damper, in which they pointed out that the nonlinear

damper might have a potential superiority in terms of

vibration suppression compared with the linear damper.

Using the harmonic balance method, Xu and Yu

[25, 26] explored the nonlinear behaviors of inclined

sag cables with oil dampers. The results show that the

oil dampers can effectively suppress both the in-plane

vibration and non-planar vibration of the cable. How-

ever, the suppression effectiveness of the viscous

damper is limited because the damper is usually placed

at a distance of 2–5% from the lower end of the cable.

To overcome this geometric limitation, it is recom-

mended to install a TMD on the cable, i.e., cable-TMD

model. Cai et al. [27–29] conducted a detailed analysis

on the model. The rule of damping redistribution to

each mode of the cable was studied. The results show

that various parameters have a large impact on the

modal damping of the system. Recently, Su et al. [30]

investigated the one-to-one internal resonance between

the cable and TMD by considering the vibration of the

TMD. The energy transfer between the cable and TMD

was revealed.

Nevertheless, the above studies assume that the

lower end of the cable is fixed and the motion of the

bridge deck is not taken into account. In practical

engineering, the bridge deck will inevitably be

involved in the movement of the cable and damper,

thus affecting the suppression effect of the damper.

Luo et al. [31] analyzed the effects of different

parameters on the modal damping of a cable-damper

system under the excitation of bridge deck. Liang et al.

[32] concluded that as the span of the cable-stayed

bridge increases, the vibration of the beam became one

of the main factors affecting the suppression effec-

tiveness of the damper on the cable. However, these

studies are mainly concerned with complex eigen-

value problem of the system. To better understand the

vibration suppression, it is important to study the

nonlinear characteristics of the structures [33]. Actu-

ally, as a member installed on the cable, the damper is

necessarily involved in the coupled interaction

between the cable and beam. Nevertheless, the

researches that the damper participates as a DOF in

the coupled vibration of the cable-beam model have

hardly been seen. Moreover, will the damper take part

in the energy transfer between the beam and cable

while consuming energy? Relevant studies have never

been reported. On the other hand, the cable-cantilever

beam model is suitable for the construction state of the

cable-stayed bridge, but it is more reasonable to use

the cable-stayed beam model to simulate the comple-

tion state of the cable-stayed bridge.
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Based on the above research background, the

motivation of this work is to explore the dynamic

behaviors of the beam, cable and TMD and their

energy transfer in the system of a cable-stayed beam

with a TMD. The one-to-one-to-one internal reso-

nance among the beam, cable and TMD is considered

while the external primary resonance occurs. The

novelty here stays in considering a fully coupled and

internally resonant nonlinear system, namely the

cable-beam-TMD model (Case 1), such to allow the

description of energy transfer among the beam, cable

and TMD. Meanwhile, the cable-beam-TMD model

without the vibration of the TMD (Case 2), which

corresponds to considering only energy consumption,

is also examined. The two cases are compared with

each other to reveal the role of the TMD in not only

energy consumption but also energy transfer.

The remainder of the paper is organized as follows.

In Sect. 2, the cable-beam-TMD model is presented.

The corresponding ODEs are derived and solved by

perturbation technique. Section 3 is devoted to numer-

ical results and discussions. Conclusions are given in

Sect. 4.

2 Governing equations and perturbation

technique

The problem under consideration is depicted in Fig. 1.

In the figure, two Cartesian coordinates, namely,

s�o�y� and x�o�1y
�
1, are established to describe the

motion of the cable and beam. The beam is subjected

to a harmonic loading F�
1ðs�Þ cosX�t, which can excite

only the first mode of the beam. F�
1ðs�Þ describes the

spatial distribution of the harmonic load and X� is the

frequency. The length of the beam and cable is L and

lc, respectively. l�1(l�2) is the distance between the TMD

and upper (lower) end of the cable. h is the acute angle

between axes of the cable and beam. The cable and

beam are coupled with each other at the node s�1. M�
d ,

K�
d and C�

d represent the mass, spring stiffness and

damping coefficient of the TMD, respectively. For the

sake of simplicity, the following assumptions are

made: (a) the ratio of the sag to length of the cable is

small; (b) the axial vibration of the beam and the

longitudinal inertia force of the cable are negligible;

(c) ignore the contribution of the tension of the cable to

the axial force of the beam; (d) the shear strain,

torsional and shear rigidities of the beam are negligi-

ble; (e) the vibration amplitude of the beam is much

smaller than that of the cable. Hence, the effect of the

transverse movement of the beam on the cable is

assumed to be vertical dragging.

Based on the above assumptions, the equations of

motion of the beam [14], cable and TMD can be

derived according to the extended Hamilton’s princi-

ple [34], i.e.

qbAb €v
�
b þ l�b _v

�
b þ EbIbv

00 00 �
b

� EbAb
1

L

ZL

0

1

2
v02�b ds�

0
@

1
Av00�b ¼ p�bðs�; tÞ

ð1Þ

Fig. 1 A cable-stayed beam model with a TMD: cable-beam-TMD model
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qcAc €v
�
c þ l�c _v

�
c � Hcv

00�
c þ EcAc v00�c þ y00�c

� �
e�cðtÞ

� �
¼ �f �ðtÞdðx� � l�1Þ

ð2Þ

K�
d ½v�cðl�1; tÞ � v�d� þ C�

d½ _v�cðl�1; tÞ � _v�d� �M�
d €v

�
d ¼ 0

ð3Þ

where the subscripts b, c and d denote beam, cable

and TMD, respectively. q, A, l�, E, and I are mass per

unit volume, cross-sectional area, damping coefficient

per unit length, Young’s modulus and second moment

of area, respectively.Hc is the initial force of the cable.

v�b and v�c are planar transverse displacements of the

beam and cable, respectively. v�d is the displacement of

the TMD along the y�1 axis. The dot and primes

represent differentiations with respect to time t and

local abscissae x� and s�, respectively. dðÞ denotes

Kronecker delta function. e�cðtÞ is the extensional

strain in the cable motion and is defined as

e�cðtÞ ¼
u�cðlc; tÞ

lc
þ 1

lc

Zlc

0

y0�c v
0�
c þ 1

2
v02�c

� �
dx� ð4Þ

where u�c is the axial displacement of the cable. y�c is

the static equilibrium configuration of the cable, which

is described through a parabola according to assump-

tion (a), namely

y�cðx�Þ ¼ 4d�c
x�

lc
� x�

lc

� �2
" #

ð5Þ

where d�c is the cable sag and is determined by

d�c ¼
qcAc1l2c cos h

8Hc
(1 is the gravity acceleration).

According to Fig. 1, the boundary conditions of the

system can be written as follows

v�bð0; tÞ ¼ v�bðL; tÞ ¼ 0 ð6Þ

v00�b ð0; tÞ ¼ v00�b ðL; tÞ ¼ 0 ð7Þ

v�cð0; tÞ ¼ 0 ð8Þ

The displacement relationship at the node s�1 (see

Fig. 1) is

u�cðlc; tÞ ¼ �v�bðs�1; tÞ sin h ð9Þ

Substituting Eqs. (9) into (4) may yield

e�cðtÞ ¼ � v�bðs�1; tÞ sin h
lc

þ 1

lc

Zlc

0

y0�c v
0�
c þ 1

2
v02�c

� �
dx�

ð10Þ

Additionally, in Fig. 1, p�bðs�; tÞ is the total load

acting on the beam, which contains two parts. The first

part is the force contributed by the cable. The second

part is the external harmonic loading. Hence, the

expression of p�bðs�; tÞ is

p�bðs�; tÞ ¼ dðs� � s�1ÞEcAce
�
cðtÞ sin hþ F�

1ðs�Þ cosX�t

ð11Þ

In Eq. (2), f �ðtÞ is the force applied to the cable by

the TMD and its expression is

f �ðtÞ ¼ K�
d ½v�cðl�1; tÞ � v�d� þ C�

d ½ _v�cðl�1; tÞ � _v�d� ð12Þ

In the following, several non-dimensional quanti-

ties are introduced to obtain the non-dimensional

forms of the equations of motion of the system.

x ¼ x�

lc
, s ¼ x0t, yc ¼ y�c

lc
, dc ¼ d�c

lc
, l1 ¼ l�

1

lc
, l2 ¼ l�

2

lc
,

vc ¼ v�c
lc

, cc ¼ L
lc
, lc ¼

l�c
qcAcx0

, kc ¼ EcAc

Hc
, b2

c ¼
qcAcx2

0
l2c

Hc
,

f ðtÞ ¼ f �ðtÞ
qcAcx2

0
lc
, wc ¼ EcAc

qbAbx2
0
L
, vb ¼ v�b

L , s ¼ s�

L ,

lb ¼
l�b

qbAbx0
, X ¼ X�

x0
, b4

b ¼
qbAbx2

0
L4

EbIb
, pb ¼ p�b

qbAbx2
0
L
,

F1ðsÞ ¼ F�
1
ðs�Þ

qbAbx2
0
L
, gb ¼ AbL

2

Ib
, x0 ¼ 1:0rad � s�1, vd ¼ v�d

lc
,

Md ¼ M�
d

qcAc
, Kd ¼ K�

d

qcAcx2
0

, Cd ¼ C�
d

qcAcx0
, x2

d ¼ Kd

Md
,

nd ¼ Cd

2Mdxd
.

In this way, Eqs. (1)–(3), (5) and (10) are rewritten as

€vb þ lb _vb þ
1

b4
b

v0000b � gb
b4
b

Z 1

0

1

2
v02b ds

� �
v00b

¼ dðs� s1ÞwcecðsÞ sin hþ F1ðsÞ cosXs ð13Þ

€vc þ lc _vc �
1

b2
c

v00c þ kc v00c þ y00c
� �

ecðsÞ
� �

¼ �ðKd½vcðl1; sÞ � vd� þ Cd½ _vcðl1; sÞ � _vd�Þdðx
� l1Þ

ð14Þ

x2
d½vcðl1; sÞ � vd� þ 2ndxd½ _vcðl1; sÞ � _vd� � €vd ¼ 0

ð15Þ

ycðxÞ ¼ 4dcx 1 � xð Þ ð16Þ
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ecðsÞ ¼ �ccvbðs1; sÞ sin hþ
Z1

0

y0cv
0
c þ

1

2
v0 2
c

� �
dx

ð17Þ

A discrete model of the continuum system is

obtained by assuming the planar transverse displace-

ment of the beam to be the following form

vbðs; sÞ ¼ /bðsÞgðsÞ ð18Þ

Nevertheless, following assumption (e), the non-

dimensional expression of the planar transverse dis-

placement of the cable is

vcðx; sÞ ¼ �ccvbðs1; sÞx cosðhÞ þ /cðxÞqcðsÞ ð19Þ

where the first term at the right hand reflects the

dragging effect of the beam on the cable and the

second term denotes the pure modal displacement of

the cable. Moreover, gðsÞ and qcðsÞ are generalized

coordinates. /bðsÞ and /cðxÞ are the shape functions.

In this paper, the sine function sinðpsÞ is utilized for

/bðsÞ. With regard to /cðxÞ, the reference [35] verifies

that the change of the mode shapes caused by TMD

will tend quickly to zero as the mass ratio of TMD to

cable tends to zero. For a small value of the ratio (the

ratio in this paper is 5%), such a difference is ignorable

and mode shapes of the cable without the TMD could

be considered to be a good approximation of the mode

shapes of the cable with the TMD. Hence, the sine

function sinðpxÞ is also adopted for /cðxÞ, which is

used in many previous studies [30, 36–38]. Substitut-

ing Eqs. (18) and (19) into Eqs. (13) and (14) and using

the Galerkin’s method, the following ODEs can be

obtained

€gþ lb _gþ b11gþ b12g
2 þ b13g

3 þ b14qc þ b15gqc
þ b16q

2
c þ b17 cosðXsÞ

¼ 0

ð20Þ

€qc þ b21qc þ b22 _qc þ b23 _gþ b24 €gþ b25gþ b26g
2

þ b27gqc þ b28q
2
c þ b29g

2qc þ b210gq
2
c þ b211q

3
c

þ b212vd þ b213 _vd
¼ 0

ð21Þ

Similarly, substituting Eqs. (18) and (19) into

Eq. (15), the ODE of the TMD can be derived

€vd þ x2
dvd þ b31 _vd þ b32gþ b33qc þ b34 _gþ b35 _qc

¼ 0

ð22Þ

In Eqs. (20)–(22), bij (i = 1, 2, 3, j = 1, 2, 3,…,13)

are Galerkin integral coefficients and they are reported

in Appendix A. It can be seen that there exists terms

related to the beam in Eq. (22). This will affect the

nonlinear characteristics of the TMD, which in turn

has an influence on the nonlinear behaviors of the

beam and cable.

In the following, the MTS method is utilized to

solve the ODEs. To this end, a small bookkeeping

parameter e and new independent time variables Tn ¼
ensðn ¼ 0; 1; 2Þ are introduced. In this way, the

derivatives with respect to time s can be written as

d

ds
¼ o

oT0

dT0

ds
þ o

oT1

dT1

ds
þ o

oT2

dT2

ds
þ � � �

¼ D1
0 þ eD1

1 þ e2D1
2 þ � � �

d2

ds2
¼ ðD1

0 þ eD1
1 þ e2D1

2 þ � � �Þ2

¼ D2
0 þ 2eD1

0D
1
1 þ 2e2D1

0D
1
2 þ � � �

ð23Þ

where Dr
n is a differential operator and it is defined

as Dr
n ¼ or=oTn (r = 1,2 and n = 0, 1, 2). In order to

balance the damping, excitation and nonlinear terms,

the coefficients in Eqs. (20)–(22) are reordered.

Correspondingly, Eqs. (20)–(22) are rewritten as

€gþ e2lb _gþ x2
bgþ eb12g

2 þ e2b13g
3 þ eb14qc

þ eb15gqc þ eb16q
2
c þ e2b17 cosðXsÞ

¼ 0 ð24Þ

€qc þ x2
cqc þ e2b22 _qc þ e2b23 _gþ e2b24 €gþ eb25g

þ eb26g
2 þ eb27gqc þ eb28q

2
c þ e2b29g

2qc

þ e2b210gq
2
c þ e2b211q

3
c þ eb212vd þ e2b213 _vd ¼ 0

ð25Þ

€vd þ x2
dvd þ e2b31 _vd þ eb32gþ eb33qc þ e2b34 _g

þ e2b35 _qc
¼ 0

ð26Þ

where x2
b ¼ b11 and x2

c ¼ b21 are natural frequen-

cies of the beam and cable, respectively. Following the

principle of MTS method, a second order approxima-

tion is sought and the solutions for g, qc and vd are

uniformly expanded in power series of e, i.e.
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g ¼
X3

i¼1

ei�1giðT0; T1; T2Þ þ Oðe3Þ

qc ¼
X3

i¼1

ei�1qciðT0; T1; T2Þ þ Oðe3Þ

vd ¼
X3

i¼1

ei�1vdiðT0; T1; T2Þ þ Oðe3Þ

ð27Þ

Substituting Eq. (27) into Eqs. (24)–(26) and

equating the terms of like order in e lead to order e0,

ðD2
0 þ x2

bÞg ¼ 0

ðD2
0 þ x2

cÞqc1 ¼ 0

ðD2
0 þ x2

dÞvd1 ¼ 0

ð28Þ

order e1,

ðD2
0 þ x2

bÞg2 ¼ �ðb12g
2
1 þ b14q1 þ b15g1qc1 þ b16q

2
c1 þ 2D1

0D
1
1g1Þ

ðD2
0 þ x2

cÞqc2 ¼ �ðb25g1 þ b26g
2
1 þ b27g1qc1 þ b26q

2
c1

þ b212vd1 þ 2D1
0D

1
1qc1Þ

ðD2
0 þ x2

dÞvd2 ¼ �ðb32g1 þ b33qc1 þ 2D1
0D

1
1vd1Þ

ð29Þ

order e2,

ðD2
0 þ x2

bÞg3 ¼ �b17 cosðXT0Þ � 2b12g1g2 � b13g
3
1

� b14qc2 � b15g2qc1 � b15g1qc2 � 2b16qc1qc2 � D2
1g1

� lbD
1
0g1 � 2D1

0D
1
2g1 � 2D1

0D
1
1g2

ðD2
0 þ x2

cÞqc3 ¼ �ðb25g2 þ 2b26g1g2 þ b27g2qc1

þ b27g1qc2 þ 2b28qc1qc2 þ b29g
2
1qc1

þ b210g1q
2
c1 þ b211q

3
c1 þ b212vd2 þ D2

1qc1 þ b23D
1
0g1

þ b22D
1
0qc1 þ b213D

1
0vd1 þ 2D1

0D
1
2qc1

þ 2D1
0D

1
1qc2 þ b24D

2
0g1Þ

ðD2
0 þ x2

dÞvd3 ¼ �ðb32g2 þ b33qc2 þ D2
1vd1 þ b34D

1
0g1

þ b35D
1
0qc1 þ b31D

1
0vd1 þ 2D1

0D
1
2vd1

þ 2D1
0D

1
1vd2Þ

ð30Þ

The solutions of system (28) are

g1 ¼ A1ðT1; T2Þexp(ixbT0Þþcc ð31Þ

qc1 ¼ A2ðT1; T2Þexp(ixcT0Þþcc ð32Þ

vd1 ¼ A3ðT1; T2Þexp(ixdT0Þþcc ð33Þ

where AmðT1; T2Þ(m = 1,2,3) denote complex

amplitudes which will be determined by solving the

higher order Eqs. (29) and (30). cc represent the

complex conjugates of the preceding terms and

i ¼
ffiffiffiffiffiffiffi
�1

p
. Substituting Eqs. (31)–(33) into Eq. (29)

yields

ðD2
0þx2

bÞg2 ¼�b12 expð2iT0xbÞA2
1�b14 expðiT0xcÞA2

�b15 expðiT0ðxbþxcÞÞA1A2�b16 expð2iT0xcÞA2
2

�b15 expðiT0ðxb�xcÞÞA1B2�2ixbexpðiT0xbÞD1
1A1

�b12A1B1�b16A2B2þcc

ð34Þ

ðD2
0þx2

cÞqc2¼�b25 expðiT0xbÞA1�b26 expð2iT0xbÞA2
1

�b27 expðiT0ðxbþxcÞÞA1A2�b28 expð2iT0xcÞA2
2

�b212 expðiT0xdÞA3�b27 expðiT0ðxb�xcÞÞ
A1B2�2ixcexpðiT0xcÞD1

1A2�b26A1B1

�b28A2B2þcc

ð35Þ

ðD2
0 þ x2

dÞvd2 ¼ �b32 expðiT0xbÞA1

� b33 expðiT0xcÞA2

� 2ixd expðiT0xdÞD1
1A3 þ cc ð36Þ

where BmðT1; T2Þ is the complex conjugate of

AmðT1; T2Þ and (T1,T2) has been dropped for simplic-

ity. Considering one-to-one-to-one internal resonance

of the system when external primary resonance of the

beam occurs, the nearness of the frequencies can be

described by introducing the following relationships

X ¼ xb þ e2r1;xb ¼ xc þ er2;xd ¼ xc þ er3

ð37Þ

where r1 is external detuning parameter and r2 and r3

are internal detuning parameters. Substituting Eq. (37)

into Eqs. (34)–(36) and eliminating the corresponding

secular terms (letting the secular terms equal to zero),

the 1st-order solvability condition can be obtained as

follows

ib14 expð�iT1r2ÞA2 � 2xbD
1
1A1 ¼ 0 ð38Þ

ib25 expðiT1r2ÞA1þ ib212 expðiT1r3ÞA3�2xcD
1
1A2¼0

ð39Þ

ib32 expðiT1ðr2�r3ÞÞA1þ ib33 expð�iT1r3ÞA2

�2xdD
1
1A3¼0

ð40Þ

Meanwhile, the solutions for g2, qc2 and vd2 are

obtained after eliminating the secular terms. The

resulting solutions and Eqs. (31)–(33) are substituted

into Eq. (30) and in the final, the following equations

can be derived
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ðD2
0 þ x2

bÞg3 ¼ � 1

2
b17 expðiT0XÞ � ilbxb expðiT0xbÞA1

þ expðiT0xbÞC14A
2
1B1 þ expðiT0xcÞC15A1A2B1

þ expð�iT0ðxb � 2xcÞÞC16A
2
2B1

þ expðiT0ð2xb � xcÞÞC17A
2
1B2 þ expðiT0xbÞC18A1A2B2

þ expðiT0xcÞC19A
2
2B2 � 2ixb expðiT0xbÞD1

2A1

� expðiT0xbÞD2
1A1 þ NST1 þ cc

ð41Þ

ðD2
0 þ x2

cÞqc3 ¼ �ib23xb expðiT0xbÞA1 þ b24x
2
b expðiT0xbÞA1

� ib22xc expðiT0xcÞA2 � ib213xd expðiT0xdÞA3

þ expðiT0xbÞC24A
2
1B1 þ expðiT0xcÞC25A1A2B1

þ expð�iT0ðxb � 2xcÞÞC26A
2
2B1

þ expðiT0ð2xb � xcÞÞC27A
2
1B2 þ expðiT0xbÞC28A1A2B2

þ expðiT0xcÞC29A
2
2B2

� 2ixc expðiT0xcÞD1
2A2 � expðiT0xcÞD2

1A2 þ NST2 þ cc

ð42Þ

ðD2
0 þ x2

dÞvd3 ¼ �ib34xb expðiT0xbÞA1

� ib35xc expðiT0xcÞA2

� ib31xd expðiT0xdÞA3 � 2ixd

expðiT0xdÞD1
2A3

� expðiT0xdÞD2
1A3 þ NST3 þ cc

ð43Þ

According to Eqs. (38)–(40), the expressions of

D1
1Am and D2

1Am can be solved. Substituting the results

into Eqs. (41)–(43) yields

ðD2
0 þ x2

bÞg3 ¼ � 1

2
b17 expðiT0XÞ � ilbxb expðiT0xbÞA1

þ expðiT0xbÞC11A1 þ expðiT0xcÞC12A2

þ expðiT0xdÞC13A3 þ expðiT0xbÞC14A
2
1B1

þ expðiT0xcÞC15A1A2B1

þ expð�iT0ðxb � 2xcÞÞC16A
2
2B1

þ expðiT0ð2xb � xcÞÞC17A
2
1B2 þ expðiT0xbÞC18A1A2B2

þ expðiT0xcÞC19A
2
2B2 � 2ixb expðiT0xbÞD1

2A1 þ NST1 þ cc

ð44Þ

ðD2
0 þ x2

cÞqc3 ¼ �ib23xb expðiT0xbÞA1 � ib22xc expðiT0xcÞA2

� ib213xd expðiT0xdÞA3 þ expðiT0xbÞC21A1

þ expðiT0xcÞC22A2 þ expðiT0xdÞC23A3

þ expðiT0xbÞC24A
2
1B1 þ expðiT0xcÞC25A1A2B1

þ expð�iT0ðxb � 2xcÞÞC26A
2
2B1

þ expðiT0ð2xb � xcÞÞC27A
2
1B2 þ expðiT0xbÞC28A1A2B2

þ expðiT0xcÞC29A
2
2B2 � 2ixc expðiT0xcÞD1

2A2

þ NST2 þ cc

ð45Þ

ðD2
0 þ x2

dÞvd3 ¼ �ib34xb expðiT0xbÞA1

� ib35xc expðiT0xcÞA2

� ib31xd expðiT0xdÞA3 þ expðiT0xbÞC31A1

þ expðiT0xcÞC32A2 þ expðiT0xdÞC33A3

� 2ixd expðiT0xdÞD1
2A3 þ NST3 þ cc

ð46Þ

where NSTm denote non-secular terms. The coeffi-

cients Cij(i = 1,2,3, j = 1,2,3,…,9) are reported in

Appendix B. Eliminating the secular terms in

Eqs. (44)–(46) may yield the 2nd-order solvability,

namely

�1

2
b17 expðiT0XÞ� ilbxbexpðiT0xbÞA1þexpðiT0xbÞC11A1

þexpðiT0xcÞC12A2þexpðiT0xdÞC13A3

þexpðiT0xbÞC14A
2
1B1þexpðiT0xcÞC15A1A2B1

þexpð�iT0ðxb�2xcÞÞC16A
2
2B1þexpðiT0ð2xb�xcÞÞC17A

2
1B2

þexpðiT0xbÞC18A1A2B2þexpðiT0xcÞC19A
2
2B2

�2ixbexpðiT0xbÞD1
2A1¼0

ð47Þ

� ib23xb expðiT0xbÞA1 � ib22xc expðiT0xcÞA2

� ib213xd expðiT0xdÞA3 þ expðiT0xbÞC21A1

þ expðiT0xcÞC22A2

þ expðiT0xdÞC23A3 þ expðiT0xbÞC24A
2
1B1

þ expðiT0xcÞC25A1A2B1 þ expð�iT0ðxb � 2xcÞÞC26A
2
2B1

þ expðiT0ð2xb � xcÞÞC27A
2
1B2 þ expðiT0xbÞC28A1A2B2

þ expðiT0xcÞC29A
2
2B2 � 2ixc expðiT0xcÞD1

2A2 ¼ 0

ð48Þ

� ib34xb expðiT0xbÞA1 � ib35xc expðiT0xcÞA2

� ib31xd expðiT0xdÞA3 þ expðiT0xbÞC31A1

þ expðiT0xcÞC32A2 þ expðiT0xdÞC33A3

� 2ixd expðiT0xdÞD1
2A3 ¼ 0

ð49Þ

In order to solve Eqs. (47)–(49), the following polar

transformation is introduced

AmðT1; T2Þ ¼
1

2
amðT1; T2Þ expðiUmðT1; T2ÞÞ ð50Þ

where am and Um are the amplitude and phase angle of

Am. Substituting Eq. (50) into the 1st-order and 2nd-

order solvability conditions and separating the real and

imaginary parts, respectively, the autonomous modu-

lation equations can be obtained as follows
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D1
1a1 ¼ b14a2 sin a2

2xb
ð51Þ

D1
1a1 ¼ � b14a2 cos a2

2xba1

ð52Þ

D1
1a2 ¼ � b25a1 sin a2

2xc
� b212a3 sin a3

2xc
ð53Þ

D1
1a2 ¼ r2 �

b25a1 cos a2

2xca2

þ b14a2 cos a2

2xba1

� b212a3 cos a3

2xca2

ð54Þ

D1
1a3 ¼ � b32a1 sinða2 � a3Þ

2xd
þ b33a2 sin a3

2xd
ð55Þ

D1
1a3 ¼ r3 �

b25a1 cos a2

2xca2

þ b32a1 cosða2 � a3Þ
2xda3

þ b33a2 cos a3

2xda3

� b212a3 cos a3

2xca2

ð56Þ

D1
2a1 ¼ � lba1

2
� b17 sin a1

2xb
� C12a2 sin a2

2xb

þ ðC17 � C15Þa2
1a2 sin a2

8xb
� C19a

3
2 sin a2

8xb

� C16a
2
2a1 sin 2a2

8xb
� C13a3 sinða2 � a3Þ

2xb

ð57Þ

D1
2a1 ¼ r1 þ

C11

2xb
þ C14a

2
1

8xb
þ C18a

2
2

8xb
� b17 cos a1

2xba1

þ C12a2 cos a2

2xba1

þ ðC15 þ C17Þa1a2 cos a2

8xb

þ C19a
3
2 cos a2

8xba1

þ C16a
2
2 cos 2a2

8xb
þ C13a3 cosða2 � a3Þ

2xba1

ð58Þ

D1
2a2 ¼ � b22a2

2
� b23xba1 cos a2

2xc
� b213xda3 cos a3

2xc

þ C21a1 sin a2

2xc
þ C24a

3
1 sin a2

8xc
þ ðC28 � C26Þa1a

2
2 sin a2

8xc

þ C27a2a
2
1 sin 2a2

8xc
þ C23a3 sin a3

2xc

ð59Þ

D1
2a2¼�C11

2xb
þC22

2xc
�C14a

2
1

8xb
þC25a

2
1

8xc
�C18a

2
2

8xb

þC29a
2
2

8xc
þb17 cosa1

2xba1

þC21a1 cosa2

2xca2

þC24a
3
1 cosa2

8xca2

�C12a2 cosa2

2xba1

�ðC15þC17Þa1a2 cosa2

8xb

þðC26þC28Þa1a2 cosa2

8xc
�C19a

3
2 cosa2

8xba1

þC27a
2
1 cos2a2

8xc

�C16a
2
2 cos2a2

8xb
�C13a3 cosða2�a3Þ

2xba1

þC23a3 cosa3

2xca2

þb23xba1 sina2

2xca2

þb213xda3 sina3

2xca2

ð60Þ

D1
2a3 ¼ � b31a3

2
� b34xba1 cosða2 � a3Þ

2xd

� b35xca2 cos a3

2xd
þ C31a1 sinða2 � a3Þ

2xd

� C32a2 sin a3

2xd
ð61Þ

D1
2a3¼

C22

2xc
� C33

2xd
þC25a

2
1

8xc
þC29a

2
2

8xc
þC21a1 cosa2

2xca2

þC24a
3
1 cosa2

8xca2

þC26a1a2 cosa2

8xc

þC28a1a2 cosa2

8xc
þC27a

2
1 cos2a2

8xc
�C31a1 cosða2�a3Þ

2xda3

�C32a2 cosa3

2xda3

þC23a3 cosa3

2xca2

þb23xba1 sina2

2xca2

�b34xba1 sinða2�a3Þ
2xda3

þb35xca2 sina3

2xda3

þb213xda3 sina3

2xca2

ð62Þ

where a1¼T2r1�U1, a2¼T1r2þU1�U2 and

a3¼T1r3�U2þU3. According to the method of

reconstitution [10, 39], the equilibrium solutions are

obtained by applying the vanishing of the variations of

amplitude and phase on the actual non-dimensional

timescale s [10], i.e.

_am ¼ eD1
1am þ e2D1

2am

_am ¼ eD1
1am þ e2D1

2am
ð63Þ
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where e is set equal to unity [40]. In particular, letting

the coefficients b212 and b213 in Eqs. (51)–(62) equal to

zero, the modulation equations of the beam and cable

corresponding to Case 2 can be obtained and for the

sake of simplicity, they are not presented in this paper.

Substituting Eqs. (51)–(62) into Eq. (63) and letting

_am ¼ _am ¼ 0, the equilibrium solutions of the system

can be sought by Newton–Raphson method and

continued by pseudo-arclength algorithm [41]. The

stability of the equilibrium solutions are evaluated by

checking the eigenvalues of Jacobin matrix of the

linearized system [42].

3 Numerical results and discussions

In this part, numerical results are discussed according

to the theoretical solutions in the previous section. The

corresponding parameters of the beam, cable and

TMD are selected as follows. For the beam: the length

is 300 m; mass per unit length is 48872 kg/m; cross-

sectional area is 6.23m2; the second moment of area is

3.2 m4; Young’s modulus is 200Gpa and the damping

coefficient lb is 0.03. For the cable: the length is

200 m; mass per unit length is 48.62 kg/m; cross-

sectional area is 3.0 9 10-3 m2; Young’s modulus is

195Gpa; the initial force is 3.5 9 106 N; damping

coefficient lc is 0.03; the angle between the cable and

beam is 48�. The lower end of the cable is anchored at

a distance of 24% from the right side of the beam (i.e.,

s1 = 0.76). For the TMD: the stiffness of the spring is

9724 N/m; the mass is 486.2 kg (the mass ratio of

TMD to cable is 5%); damping ratio nd is 0.03. The

TMD is installed at a distance of 4% from the lower

end of the cable. In the following figures, SN and HB

denote saddle-node and Hopf bifurcations,

respectively. In addition, stable solutions are depicted

by solid lines, while unstable solutions are described

by dashed lines.

3.1 Nonlinear behaviors of case 1: the cable-

beam-TMD model

Figure 2 shows the frequency–response curves of the

system when the excitation amplitude F = 0.001. The

direct integration of Eqs. (20)–(22) is also performed

by employing Runge–Kutta method. The correspond-

ing results, represented by ‘star’ symbol, are utilized to

verify the correctness of the perturbation solutions.

There is a perfect agreement between the results of the

two methods. It can be seen from Fig. 2 that the system

exhibits a softening characteristic, because the

response curves bend to the left. The bending of the

curves results in the multivaluedness of the solutions.

There are two peaks in each response curve, which

makes the curve look like a ‘saddle’. The left peak is

commonly seen in a typical response curve of a cable,

while the right one is related to internal resonance

between the cable and TMD. Although the beam is not

in direct contact with the TMD, the existence of the

TMD still in turn has an obvious impact on the

nonlinear behaviors of the beam through the internal

resonance, since there is also a peak in the response

curve of the beam. It can be concluded that the energy

transfer between the beam, cable and TMD occurs

near the right peak. When the excitation frequency

(i.e., r1) is increased from a relatively small value, the

response amplitudes increase correspondingly and

lose their stabilities via the saddle-node (SN1), at

which a jump up to the upper branch from the lower

branch will take place. From this point on, the

response amplitudes begin to decrease until they reach

(a) (b) (c)

Fig. 2 The frequency–response curves of the system with F = 0.001, r2 = 0.67 and r3 = – 0.44: a for beam, b for cable, c for TMD
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the bottom of the ‘saddle’. With the further increase in

r1, the amplitudes gradually increase up to the right

peaks and then reduce. On the contrary, if the

excitation frequency decreases from a relatively large

value, the amplitudes increase to the right peaks first

and then decrease to the bottom of the ‘saddle’. As r1

is decreased further, the amplitudes increase accord-

ingly until SN2 is reached. At this point, the jump

phenomenon (from the upper branch to the lower

branch) triggered by SN2 will happen. Thereafter, the

amplitudes decrease slowly with decreasing r1.

Apart from the response curves, there are many

other tools to study the nonlinear characteristics of the

system, such as time-histories, phase portraits and

Poincare sections, which can be obtained easily by

integrating Eqs. (20)–(22) directly via Mathematica

software. Figure 3 illustrates the time-histories, phase

portraits and Poincare sections of the system with

excitation amplitudes F = 0.001. For the sake of

simplicity, only r1 = – 0.2 is given for an example.

The initial values are chosen to be g ¼ 0:0001,

_g ¼ 0:01, qc ¼ 0:0001, _qc ¼ 0:01,vd ¼ 0:0001,

_vd ¼ 0:01. As can be seen in Fig. 3, the responses

finally reach the steady state over an enough period of

time. After reaching the steady state, the responses of

the beam and cable are nearly synchronous (almost

same phase), while those of the cable and TMD differ

by a p phase. The phase portraits indicate that the

periodic motions are described by one circle and there

(a) (a) (a)

(b) (b) (b)

(c) (c) (c)

Fig. 3 Time-histories, phase portraits and Poincare sections of the system when r1 = – 0.2 and F = 0.001: a for beam, b for cable, c for

TMD
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is only one clustered point in Poincare sections, which

represents period-1 vibration.

Figure 4 shows the force-response curves of the

system with external detuning parameter r1 = – 0.5, 0

and 0.5, respectively. As can be seen in the figure, the

multivalued phenomenon exists only when r1 = –

0.5. In this circumstance, as excitation is increased

from zero, the response amplitudes increase until they

reach SN1. At this point, any slight increase in F will

cause a jump from the lower branch to the upper

branch. Afterwards, the response amplitudes increase

with the further increase in excitation. Reversely, if the

excitation is decreased from a relatively large value,

the response amplitudes decrease correspondingly and

the jump phenomenon triggered by SN2 will occur.

When external detuning parameter is 0 and 0.5, the

curves are relatively simple and a nearly linear

relationship between the response and excitation can

be observed. What’s more, although the excitation is

directly applied to the beam, the response of the cable

is larger than those of the beam and TMD, because the

parametric and forced vibration of the cable is

triggered by the motion of the beam as shown in

Eq. (21).

Figure 5 gives the frequency–response curves of

the system with different excitation amplitudes. The

excitation amplitudes are chosen to be 0.0005, 0.001

and 0.0015, respectively. Meanwhile, the results

obtained by Runge–Kutta method when F = 0.0005

and 0.0015 are also given. To make the graphs clear,

the numerical results when F = 0.001 are not drawn in

Fig. 5, since they have been presented in Fig. 2. The

same reason, the saddle-nodes on the curves when

F = 0.001 are not marked either. It can be seen that the

agreement between the numerical results and pertur-

bation solutions is satisfactory. Comparing the

response curves under different excitation amplitudes,

it is observed that the responses become larger when

the system is subjected to a bigger excitation, because

the system can attain more energy from external

excitation. As the excitation amplitudes increase, the

distance between the lower and upper branches

expands, which indicates that the increase in excita-

tion may lead to a larger resonance region. If the

(a) (b) (c)

Fig. 4 Force-response curves of the system with different external detuning parameters when r2 = 0.67 and r3 = – 0.44: a for beam,

b for cable, c for TMD

(a) (b) (c)

Fig. 5 The frequency–response curves of the system with different excitation amplitudes when r2 = 0.67 and r3 = – 0.44: a for beam,

b for cable, c for TMD
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excitation amplitude is relatively small (i.e.,

F = 0.0005), there are only stable solutions and the

softening characteristic is weak. When F = 0.001, the

softening characteristic is a little stronger compared to

F = 0.0005. Additionally, there exist unstable solu-

tions, which are connected to the stable solutions

through two saddle-nodes (SN1 and SN2, see Fig. 2).

If one goes on increasing the value of F (i.e.,

F = 0.0015), the softening characteristic becomes

much stronger and the unstable regions expand. On

the upper branch of the curve, the saddle-node

vanishes, while a Hopf-bifurcation point (HB)

appears, via which the stability of the solution

changes. Observing Fig. 5c, it can be seen that if the

excitation frequency is relatively small (r1\ – 0.55),

the response amplitude decreases with the decrease in

r1 when F = 0.0015, which is different from those in

Fig. 5a, b.

If the excitation amplitude is chosen to be a bit

larger, namely, F = 0.003, an interesting phenomenon

can be observed, as shown in Fig. 6. There are more

bifurcation points on the response curves. In a small

region near the right peak in Fig. 6a, two SNs (SN2

and SN3) appear. This actually leads to a double-jump

phenomenon [30]. Imagine that the excitation fre-

quency is increasing from a relatively small value and

after the jump triggered by SN1, the response of the

beam will vary along the curve in Fig. 6a until it

reaches SN2, at which a jump from the upper to the

lower will occur (as shown by the arrows in the

enlarged part). On the other hand, if the excitation

frequency is decreased from a value far above xb, a

jump from the upper to the lower triggered by SN3

takes place (see the arrows in the enlarged part). The

double-jump phenomena can also be observed in

Fig. 6b, c. Nevertheless, the jump triggered by SN3 in

Fig. 6b, c is from the lower to the upper, which is

different from Fig. 6a. Hence, the jump triggered by

SN3 in Fig. 6a can be referred to as a reverse jump.

Observing Fig. 6b (or Fig. 6c) can find that the left and

right peaks exhibit different nonlinear characteristics

because the left peak bend to the left and the right bend

a little to the right. Recall that there are no bends of the

right peaks in Fig. 5 and it can be concluded that a

larger excitation may result in the nonlinearity of the

right peak. Moreover, the value of right peaks of the

cable and TMD in Fig. 6 increase sharply compared

with Fig. 5. This indicates that more energy is

transferred to the cable and TMD through internal

resonance, which should attract our attention in

practical engineering.

To explore the effect of the TMD on the nonlinear

behaviors of the system, Fig. 7 gives the frequency–

response curves of the system with different spring

stiffness of the TMD. It should be noted that the

bifurcation points are not marked in the figure,

because they are not our focus. The phenomena as

shown in Fig. 7 are very interesting. First, it can be

seen that with the increase in stiffness, the values of

the left peaks increase, while those of the right peaks

decrease. The reason may be that as spring stiffness is

increased, the absolute value of external detuning

parameter (i.e., r1) corresponding to the left peaks

becomes smaller, which implies a stronger relation-

ship for the primary resonance. Meanwhile, the

increase in spring stiffness leads to the increase in

cable’s frequency, which further results in a smaller

difference between the frequencies of the beam and

cable (i.e., a smaller internal detuning parameter r2).

This means that the internal resonance relationship

between the beam and cable will become stronger. In

summary, stronger resonance relationships allow the

(a) (b) (c)

Fig. 6 The frequency–response curves of the system with F = 0.003, r2 = 0.67 and r3 = – 0.44: a for beam, b for cable, c for TMD
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system to obtain more energy from external excitation.

Hence, the values of the left peak increase with the

increase in spring stiffness.

On the other hand, as spring stiffness is increased,

the internal resonance relationship between the cable

and TMD is stronger, because the absolute value of

internal detuning parameter r3 is smaller. As men-

tioned before, the right peaks are related to the internal

resonance between the cable and TMD, but why the

right peaks become smaller rather than larger? It is

because the external detuning parameters (i.e., r1)

corresponding to the right peaks are bigger with the

increase in spring stiffness. In this case, the primary

resonance relationship is weaker and the energy

transferred to the system from external excitation is

limited. In other words, there is no enough energy

input to maintain the large vibrations of the beam,

cable and TMD at this time. Therefore, the right peaks

decrease with the increase in spring stiffness although

a stronger internal resonance relationship between the

cable and TMD exists.

Another interesting phenomenon is that both of the

left and right peaks move to the right with the increase

in spring stiffness and it seems that the whole curves

shift to the right. Although the response amplitudes

with different spring stiffness have various relation-

ships when excitation frequency belongs to different

range, there exists a minimum value between the left

and right peaks. This may be used to control the

associated vibration, but it is difficult to implement.

After all, the cable-stayed bridge may be subjected to

multi-frequency excitation in practical engineering.

Observing Fig. 7b, c, two fixed points marked by ‘A’

and ‘B’ can be seen, which is first found by Den Hartog

[43]. In other words, regardless of the change in spring

stiffness, the response curve has to pass through the

point ‘A’ (or ‘B’). In addition, when spring stiffness is

relatively small, i.e. Kd = 140, there are unstable solu-

tions only on the right peaks. With the increase in

stiffness, the response curves go through a variation

process that unstable solutions on the right peaks

vanish, while those on the left peaks appear. The

process is continuous, since at a certain value of

stiffness (i.e., Kd = 165), there is only stable solutions

on the response curves, which is the transition of the

process.

(a) (b) (c)

Fig. 7 The frequency–response curves of the system with different spring stiffness when F = 0.001: a for beam, b for cable, c for TMD

(a) (b) (c)

Fig. 8 The frequency–response curves of the system with different damping ratios of the TMD when Kd = 200 and F = 0.001: a for

beam, b for cable, c for TMD
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Figure 8 presents the frequency–response curves of

the system with different damping ratios of the TMD.

On the whole, the response amplitudes decrease with

the increase in damping ratio, because a greater

damping can consume more energy. Different from

Fig. 7, both of the left and right peaks decrease, which

indicates that the TMD has a good suppression on the

vibration of the system. It is obvious that the damping

of the TMD has a higher effect on the right peaks,

since the right peaks nearly vanish when the damping

ratio is increased to a relatively large value. From

Fig. 8, it can be seen that as the damping ratio is

increased, the unstable solutions disappear and the

softening (hardening) characteristic becomes weaker.

Moreover, two fixed points ‘C1’ and ‘C2’ are found in

Fig. 8a, which is similar to the result in the reference

[30].

Recall that the dynamic characteristics of the left

and right peaks in Fig. 7 change with the variation of

spring stiffness. Then what will happen if one changes

the spring stiffness in Fig. 8? To explore this question,

Figs. 9 and 10 give the frequency–response curves of

the system with different damping ratios of the TMD

when Kd = 165 and 140, respectively. It can be seen

from Fig. 9 that the damping has a great impact on

both the left and right peaks and as the damping is

increased, both peaks become much smaller. The

responses of the points ‘D1’ and ‘D2’ are almost the

same, which indicates that Kd = 165 may be near the

optimal value for vibration suppression of the cable.

Letting the responses of the two points ‘D1’ and ‘D2’

be equal, the parameters of the TMD can be further

optimized [43]. In Fig. 10, the position of the lower

fixed point ‘E1’ moves to the left and the damping has

a larger impact on the left peaks, which is different

from Fig. 8. Comparing Figs. 8, 9 and 10, it seems that

the dynamic behaviors of the left and right peaks

exchange when spring stiffness reaches a certain

value.

In order to explore the nonlinear behaviors of the

system near the fixed point, Fig. 11 is plotted.

Figure 11 illustrates the time-histories and phase

portraits of the beam near the point ‘C2’ in Fig. 8

when damping ratios of the TMD are different. The

initial values are all g ¼ 0:0001, _g ¼ 0:01,

qc ¼ 0:0001, _qc ¼ 0:01,vd ¼ 0:0001, _vd ¼ 0:01.

(a) (b) (c)

Fig. 9 The frequency–response curves of the system with different damping ratios of the TMD when Kd = 165 and F = 0.001: a for

beam, b for cable, c for TMD

(a) (b) (c)

Fig. 10 The frequency–response curves of the system with different damping ratios of the TMD when Kd = 140 and F = 0.001: a for

beam, b for cable, c for TMD

123

144 X. Su et al.



Although the same initial values are chosen for the

three damping ratios, however, the process through

which the response reaches steady state is not iden-

tical. In addition, the ‘beat vibration’ [44] can be

observed at the beginning of the oscillation because

the frequencies of the cable and beam are close. After

the steady state is reached, there exists a phase shift

among the time-histories with different damping

ratios, which may be the consequence of the TMD

participating in coupling vibration. Furthermore, the

steady-state responses are not symmetric about g = 0.

In other words, the positive amplitudes are almost the

same for different damping ratios. However, there

exists a slight difference among the negative ampli-

tudes. This can also be verified by phase portraits.

As shown in Fig. 11b, the phase portraits can be

divided into four quadrants marked with ‘1, 2, 3 and

4’, which corresponds to the segments ‘1, 2, 3 and 4’

on the response curves, respectively. Only the arcs

located in the fourth quadrant overlap each other. This

indicates that when the responses are located in the

fourth quadrant, the derivatives of the responses (i.e.,

the velocity or the tangent to the response correspond-

ing to the segment ‘4’) are also the same for different

damping ratios, which is very interesting. The circles

in Fig. 11b are not real ellipses, since they are not

symmetric about the origin. The steady responses are

not composed of a single harmonic wave, which is

verified by the power spectrum. Figure 12 presents the

power spectrum of the beam near the fixed point. For

the sake of simplicity, only the case that damping ratio

equal to 0.03 is given. As shown in the figure, two

frequency components can be observed, one of which

is extremely large (0.94 Hz), while the other one is

very small (1.89 Hz). Noticing that the excitation

frequency is 0.94 Hz, it can be learnt that in addition to

the excitation frequency, twice the excitation fre-

quency is also excited, which can be ignorable.

3.2 Compared with case 2: the cable-beam-TMD

model without the vibration of the TMD

As known, the motion of the TMD actually adds one

more DOF to the cable-beam-TMD model compared

with the cable-beam system, which may cause the

nonlinear behaviors of the model to differ significantly

from those of the cable-beam system. Then how much

does the motion of the TMD influence the nonlinear

behaviors of the cable-beam system? To answer this

question, this part discusses Case 2, namely, the cable-

beam-TMD model without the vibration of the TMD

(vd = 0), which corresponds to considering only

energy consumption. This can be achieved easily by

letting the coefficients b212 and b213 in Eq. (21) equal

to zero. Another reason for selecting Case 2 is based

(a) (b)

Fig. 11 The time-histories and phase portraits of the beam with different damping ratios of the TMD when F = 0.001: a time-histories,

b phase portraits

Fig. 12 Power spectrum of the beam near the fixed point with

damping ratio = 0.03 and F = 0.001
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on the following consideration. The spring stiffness

will increase the fundamental frequency of the cable

and to maintain the internal resonance conditions, the

spring and damping of the TMD are retained.

Keeping our original intention in mind, Fig. 13

shows the comparison between the frequency–re-

sponse curves with/without the vibration of the TMD.

It can be seen that equipping the cable-beam system

with a TMD cannot completely suppress the vibration

of the beam and cable. The suppression effect of the

TMD varies with different regions of excitation

frequency, which may be caused by complex ways

of energy transfer. Although there are two peaks on

each curve of both cases, these peaks are fundamen-

tally different. To explain this, let’s turn our attention

to Fig. 14, which gives the numerical solutions by

directly integrating the Eqs. (20)–(22) of both cases. It

should be noted that the detuning range of excitation

frequency in Fig. 14 is extended to [–3, 3]. As can be

seen, there are actually three peaks in Case 1, but no

matter how to increase the range of excitation

frequencies, there are still only two peaks in Case 2.

For the sake of description, the peaks are labelled with

‘I, J, K, L and M’, respectively.

First of all one can affirm that the peak ‘I’ of the

beam (cable) disappears in Case 2, since the TMD

don’t vibrate and there is no internal resonance

(energy transfer) between the cable and TMD in Case

2. Hence, the peaks ‘K’ and ‘M’ may correspond to the

peaks ‘J’ and ‘L’, respectively. In other words, the

TMD changes the positions of the peaks. This is not

strange because the coefficients b212 and b213 have an

(a) (b)

Fig. 13 Comparison between the frequency–response curves with/without the vibration of the TMD when F = 0.001: a for beam, b for

cable

(a) (b)

Fig. 14 Comparison between the frequency–response curves with/without the vibration of the TMD when F = 0.001 by directly

integrating ODEs: a for beam, b for cable
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obvious influence on the values of C13 and C21 to C23

as shown in Appendix B. Moreover, the value of the

peak ‘M’ is smaller than that of the peak ‘L’, showing

a good effect of vibration suppression. Compared with

the peak ‘J’, the value of the peak ‘K’ is much smaller

in Fig. 13a, while it is opposite in Fig. 13b. This

means that more energy is transferred to the cable and

TMD from the beam. Due to the offset of the positions

of the peaks, one peak (peak ‘M’) disappears in our

considered range of excitation frequency in Fig. 13. It

can be learnt from the above phenomena that the TMD

can reduce the peak values and even make some peaks

disappear. But on the other hand, it is noted that the

TMD may also lead to new peaks. In other words,

TMD has both advantages and disadvantages from a

nonlinear point of view. To further explore the

difference between the two cases, Figs. 15 and 16

present the comparison between the force-response

curves of the beam and cable. It can be seen that there

are significant differences between the two curves in

each graph except Figs. 15c and 16c. This means that

in both cases, the response versus the excitation

amplitude may exhibit completely different nonlinear

behaviors, which may be caused by the TMD being

involved in the vibration. When the excitation fre-

quency is distinct, the suppression effect of the two

cases on the system is also different. For example, the

suppression effect of Case 2 is better when r1 = – 0.5

and 0.5. However, when r1 = 0, the suppression effect

of Case 1 is better. The reason may be that the energy

transfer among the beam, cable and TMD occurs. It

can be learnt from above phenomena that the motion

of the TMD has a great impact on the nonlinear

behaviors of the system through internal resonance

and energy transfer. Additionally, in Figs. 15b and

16b, a saddle-node bifurcation (SN4) that doesn’t

change the instability is observed. As mentioned in the

reference [41], the half-branches meeting at SN4 are

saddles and unstable nodes, both of which are all

unstable. The similar phenomenon is also reported in

the reference [30].

Figure 17 compares the time-histories and phase

portraits when there is (no) vibration of the TMD. The

initial values is the same with those in Fig. 3 and for

the sake of simplicity, only the case that r1 = – 0.2 is

considered. It can be seen that there are obvious

(a) (b) (c)

Fig. 15 Comparison between the force-response curves of the beam when there is (no) vibration of the TMD: a r1 = – 0.5, b r1 = 0,

c r1 = 0.5

(a) (b) (c)

Fig. 16 Comparison between the force-response curves of the cable when there is (no) vibration of the TMD: a r1 = – 0.5, b r1 = 0,

c r1 = 0.5
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differences between Fig. 17a, b. For example, the

time-histories of the two cases in Fig. 17a are not

synchronous. However, those in Fig. 17b are nearly

synchronous, which may cause the phase portraits to

look like a concentric ellipse. The above phenomena

imply that the vibration of the TMD has different

impacts on the nonlinear behaviors of the beam and

cable.

4 Conclusions

Considering the vibration of the TMD, a cable-stayed

beam with a TMD is studied. First, Galerkin’s method

is employed to discretize the differential equations of

motion of the beam and cable, through which a set of

ODEs are obtained. To solve the ODEs, the method of

MTS is utilized and in this way, the modulation

equations of the system are derived. Then, one of the

stable solutions is sought by using Newton–Raphson

method. Starting with the stable solution, the fre-

quency/force-response curves are obtained by pseudo-

arclength algorithm. The time-histories, phase por-

traits and Poincare sections are also presented to

explore the effect of the TMD on the nonlinear

behaviors of the system. Meanwhile, another case, i.e.,

the cable-beam-TMD model without the vibration of

the TMD, is also investigated to reveal the role of the

TMD in energy transfer. Finally, some interesting

conclusions are drawn as follows.

1. Although there is no direct contact between the

beam and TMD, there are still two peaks in the

frequency–response curves of the beam. This

indicates that the TMD has a significant influence

on the nonlinear behaviors of the beam and energy

transfer occurs among the beam, cable and TMD

through internal resonance.

2. The increase in excitation amplitude will result in

softening characteristic being stronger. With the

increase in excitation amplitude, the saddle-node

on the upper branch of the curve disappears, while

a Hopf-bifurcation point arises. When excitation

amplitude is relatively large, the right peaks

exhibit nonlinearity and a reverse jump is

observed. Meanwhile, the right peaks of the cable

and TMD increase sharply.

3. With the increase in spring stiffness, both of the

left and right peaks move to the right and their

nonlinear characteristics are changed. The influ-

ence of the damping on the peaks is different for

distinct spring stiffness. Despite the variation in

spring stiffness and damping ratio of the TMD,

(a) (a)

(b) (b)

Fig. 17 Comparison of the time-histories and phase portraits of the system with r1 = – 0.2 and F = 0.001 when there is (no) vibration

of the TMD: a for beam, b for cable
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fixed points are found in the frequency–response

curves.

4. TMD cannot completely suppress the vibration of

the beam and cable from a nonlinear point of view.

The suppression effect of the TMD varies with

different regions of excitation frequency and the

existence of the TMD changes the positions of the

peaks. Although TMD can reduce the peak values

and even eliminate some peaks, however, new

peaks may also be introduced at the same time.
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Appendix A

The expressions of the Galerkin integral coefficients in

Eq. (20) are given as follows

b11 ¼ x2
b ¼

1R 1

0
/2
bðsÞds

R 1

0
/bðsÞ/0000

b ðsÞds
b4
b

"

þccwc/
2
bðs1Þ sin h cos h

Z 1

0

y0cðxÞdx

þccwc/
2
bðs1Þ sin2 h

�
;

b12 ¼ � c2
cwc/

3
bðs1)cos2h sin h

2
R 1

0
/2
bðsÞds

;

b13 ¼ � gbR 1

0
/2
bðsÞds

R 1

0
/0
bðsÞ/0

bðsÞds
R 1

0
/bðsÞ/00

bðsÞds
2b4

b

;

b14 ¼ �
wc/bðs1)sinh

R 1

0
y0cðxÞ/0

cðx)dxR 1

0
/2
bðsÞds

;

b15 ¼
ccwc/

2
bðs1)sinh cos h

R 1

0
/0
cðxÞdxR 1

0
/2
bðsÞds

;

b16 ¼ �
wc/bðs1)sinh

R 1

0
/0
cðxÞ/0

cðxÞdx
2
R 1

0
/2
bðsÞds

;

F ¼
Z 1

0

F1ðsÞ/bðsÞds;

b17 ¼ �FR 1

0
/2
bðsÞds

:

The expressions of the Galerkin integral coeffi-

cients in Eq. (21) are given as follows

b21 ¼ x2
c ¼

1R 1

0
/2
cðxÞdx

Kd/
2
cðl1Þ

�

�
kc

R 1

0
y0cðxÞ/0

cðxÞdx
R 1

0
y00c ðxÞ/cðxÞdx

b2
c

�
Z 1

0

/cðxÞ/00
cðxÞ

b2
c

dx

#
;

b22 ¼ 1R 1

0
/2
cðxÞdx

lc

Z 1

0

/2
cðxÞdxþ Cd/

2
cðl1Þ

	 

;

b23 ¼ 1R 1

0
/2
cðxÞdx

�cclc/bðs1Þ cos h½

Z 1

0

x/cðxÞdx� Cdl1cc/bðs1Þ/cðl1Þ cos h




b24 ¼ �
cc/bðs1Þ cos h

R 1

0
x/cðxÞdxR 1

0
/2
cðxÞdx

;

b25 ¼ 1R 1

0
/2
cðxÞdx

kccc/bðs1Þ cos h
R 1

0
y0cðxÞdx

R 1

0
y00c ðxÞ/cðxÞdx

b2
c

"

þ
kccc/bðs1Þ sin h

R 1

0
y00c ðxÞ/cðxÞdx

b2
c

� Kdl1cc/bðs1Þ/cðl1)cosh

#
;

b26 ¼ � 1R 1

0
/2
cðxÞdx

kcc2
c/

2
bðs1Þ cos2 h

R 1

0
y00c ðxÞ/cðxÞdx

2b2
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;
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b27 ¼ 1R 1

0
/2
cðxÞdx
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R 1

0
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cðxÞdx

R 1
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#
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0
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0
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b211 ¼ � 1R 1

0
/2
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R 1

0
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cðxÞdx
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0
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;

b212 ¼ � Kd/cðl1ÞR 1

0
/2
cðxÞdx

;

b213 ¼ � Cd/cðl1ÞR 1

0
/2
cðxÞdx

;

The expressions of the Galerkin integral coeffi-

cients in Eq. (22) are given as follows

b31 ¼ 2ndxd;

b32 ¼ l1ccx
2
d/bðs1Þ cos h;

b33 ¼ �x2
d/cðl1Þ;

b34 ¼ 2l1ccndxd/bðs1Þ cos h;

b35 ¼ �2ndxd/cðl1Þ;

Appendix B

The expressions of the coefficients in Eq. (47) are

defined as follows

C11¼
b14b25

4xbxc
;

C12¼� b14r2

2xb
;

C13¼
b14b212

4xbxc
;

C14¼� 3b13 þ
10b2

12

3x2
b

þ 2b15b26

x2
c

� b15b26

4x2
b � x2

c

;

C15¼
2b12b15

x2
b

� b15b27

xbðxb � 2xcÞ
þ 4b16b26

x2
c

þ 2b12b15

ð2xb � xcÞxc
� 2b12b15

xcð2xb þ xcÞ
� b15b27

xbðxb þ 2xcÞ
;

C16¼� 2b16b27

xbðxb � 2xcÞ
� b15b28

3x2
c

þ b2
15

ð2xb � xcÞxc

� 2b12b16

�x2
b þ 4x2

c

;

C17¼� b12b15
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x2
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þ b2
15
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;
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x2
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3x2
c
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�x2
b þ 4x2

c

;

The expressions of the coefficients in Eq. (48) are

defined as follows

C21¼b24x
2
b þ

b25r2

2xc
þ b212b32

4xcxd
;
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;
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The expressions of the coefficients in Eq. (49) are

defined as follows

C31 ¼ b32r2

2xd
� b32r3

2xd
þ b25b33

4xcxd
;

C32 ¼� b33r3

2xd
þ b14b32
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;

C33 ¼ b212b33

4xcxd
:
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