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Abstract This paper investigates the adaptive event-
triggered robust optimal control approach for discrete-
time switched systems subjected to input saturations
and exogenous disturbances. In the proposed approach,
a hybrid-policy controller is designed to optimize the
cost function, and an adaptive event-triggered mecha-
nism (ETM) is proposed to reduce the redundant com-
munication resources during control processes. Toward
this end, the input-to-state stability (ISS) property of
closed-loop systems is often employed to design the
event triggering condition. However, due to the uncer-
tainty induced by exogenous disturbances, the event
triggering condition is required to be considered to
ensure the asymptotic stability of uncertain switched
systems. Thus, by re-interpreting the ISS properties
of the underlying system more simply, the adaptive
ETM is designed with the help of the Lyapunov tech-
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nique. Then, the event-triggered robust optimal con-
troller design issues in the exogenous disturbance con-
text are considered to save the redundant commu-
nication resources of controller-to-actuator networks.
Specifically, an event-triggered robust optimal hybrid
control policy via adaptive dynamic programming
(ADP)methodology is designed, and its corresponding
convergence is proved via mathematical derivations.
Besides, the actor-critic structure is employed to obtain
the value function and constrained control law. Finally,
two simulation examples, including a nonlinear case
and an open-loop unstable linear case, are utilized to
demonstrate the validity of the proposed method.

Keywords Adaptive dynamic programming (ADP) ·
Event-triggered mechanism (ETM) · Uncertainties ·
Switched systems · Actuator saturations

1 Introduction

Switched systems are a class of special hybrid systems
that includes many subsystems with different dynam-
ics, whose decision variable consists of the continuous
control input and the discrete switching signal [1–3].
The control input is used to determine how to stabilize
the system state, and the switching signal is applied
to determine which subsystem is active. Switched sys-
tems have been attractingmany researchers for decades
due to thewidespread application, such as electrical cir-
cuits [4], chemical process control [5], hybrid electric
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vehicle [6], and sensor fault estimation [7]. For all we
know, uncertainties inducedbyexogenousdisturbances
widely exist in engineering practice. If these exogenous
disturbances are not well considered for the controller
design procedure, they will seriously affect the smooth
operation of industrial systems.As a result, it is nontriv-
ial to address robust control issues for switched systems
[8,9]. In addition, the actuator saturation phenomenon
is also pervasive due mainly to the actuators’ protec-
tion facilities or physical limits, where their adverse
effects will degrade the performance of switched sys-
tems and have a bad influence on the stability. Thus, it
is of tremendous significance to handle the controller
design problems considering the actuator saturation
phenomenon [6]. Nevertheless, in the existing litera-
ture, most research on uncertainties or actuator satu-
ration is restricted to the general discrete-time system,
which lacks the promotion to discrete-time switched
systems in the simultaneous presence of uncertainties
and actuator saturation issues. It is, of course, our first
motivation to fill this gap.

When it comes to the optimal controller design
procedure for discrete-time switched systems, one of
the basic ideas is to apply dynamic programming to
address the optimal control issues back-forward in
time. However, the main disadvantage of traditional
dynamic programming is that with the increase of
problem dimension, it will be difficult to solve in
calculation. For the sake of circumventing this dis-
advantage, adaptive dynamic programming (ADP) is
proposed to obtain feasible numerical solutions of
Hamilton–Jacobi–Bellman (HJB) equations using neu-
ral network approximation with time-forward manner
[10,11]. Currently, the main ADP structures include
heuristic dynamic programming (HDP), dual heuris-
tic programming (DHP), globalized dual heuristic pro-
gramming, and their action-dependent structures [12–
17]. Recently, considerable attention has been paid to
ADP-based optimal control for switched systems. For
instance, the two-stage ADP method has been pre-
sented to gain the hybrid state-feedback control policy
for infinite-horizon nonlinear switched systems in [18].
The two-stage DHPmethod has been used to cope with
the constrained optimal control issue for switched sys-
tems in [19]. An ADP-based method has been devel-
oped for solving the optimal switching control prob-
lem with fixed switching time in [20]. However, few
results have beenmade on the robust optimal controller
design issues for discrete-time switched systems sub-

ject to exogenous disturbances and actuator saturations,
which motivates us to study further.

Generally, the number of alternative switching
sequences in the optimal controller design proce-
dure will increase exponentially as switching moments
increase, which will result in a lot of computational
and communication burdens. To solve this knotty prob-
lem, the event-triggeredmechanism (ETM) serves as an
effective tool to implement sampling control operations
when certain triggering conditions are violated. Note
that the ETM has the advantages of saving commu-
nication resources as well as the closed-loop stability
will not be affected [21–23,25]. For this reason, more
and more research attention has been dedicated to the
event-triggered optimal control problems. For instance,
several ETM-based optimal control approaches have
been proposed in continuous-time nonlinear systems
without knowing internal dynamic information in [26–
28]. The event-triggered HDP strategy with the input-
to-state stability (ISS) analysis has been developed
for discrete-time affine nonlinear systems in [29]. The
event-triggered DHP approach has been implemented
to address the optimal control problems with fewer
communication resources [30,31]. Even so, due to the
strict conditions required for the ISS property of uncer-
tain systems [32], the event triggering conditions men-
tioned above cannot be applied to discrete-time uncer-
tain systems, let alone uncertain switching systems sub-
ject to actuator saturation. Naturally, themain objective
of the current study is to address such a knotty issue.

Summarized the discussions mentioned above, in
this paper, we endeavor to address the event-triggered
robust optimal control problem for discrete-time
switched systems in the simultaneous presence of
uncertainties and actuator saturation. Taking all these
engineering-oriented complexities into account, it is of
significance to address this control problem. The main
difficulties and challenges are given as follows: (1)How
to design a reasonable event triggering condition to
guarantee that the constrained uncertain switched sys-
tems are stable under this ETM? (2)How to tackle inde-
composable perturbation uncertainty existing in ISS
conditions to take full account of exogenous distur-
bances? (3) How to develop an effective approach to
obtain the robust optimal hybrid feedback control pol-
icy in the event triggering context? To overcome the
above challenges, the main contributions of this paper
are concluded as follows:
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(1) An adaptive event triggering condition is designed
for the uncertain switched systems with input sat-
uration, which could reduce the communication
burden meanwhile ensuring the underlying sys-
tem’s robustness. Compared with existing works
[18,19,33], the uncertainties induced by exoge-
nous disturbance are specially considered in the
adaptive ETM design for uncertain switched sys-
tems.

(2) The asymptotic stability for switched systemswith
uncertainties is proved by the Lyapunov approach
under the adaptive ETM. Benefiting from the
transformation of the indecomposable perturba-
tion uncertainty existing in ISS conditions, a more
relaxed sufficient condition compared with [32] is
given to facilitate the asymptotic stability proof.

(3) The neural network (NN)-based robust optimal
control approach is proposed to obtain the opti-
mal hybrid feedback control policy for uncer-
tain switched systems, and the convergence of
the proposed approach is analyzed. Compared
with [18,19], the weights of actor-critic NNs only
updated when the triggering rules are violated,
which reduces the computational burden of the
designed controller and saves the communication
resources during controller-to-actuator networks.

The rest of this paper is organized in the follow-
ing. In Sect. 2, the robust optimal control problem is
presented. In Sect. 3, an adaptive event triggering con-
dition is designed, and its corresponding asymptotical
stability analysis is given. In Sect. 4, the robust optimal
control algorithm is illustrated, and the convergence
of the suggested approach is analyzed. In Sect. 5, the
implementation of the critic-actor NNs is described. In
Sect. 6, two numerical examples are shown to verify the
validity of the proposed approach. Finally, the paper is
concluded in Sect. 7.

Notations: Ωv = {1, 2, · · · , M} denotes the sub-
systems index set, where M is the subsystem num-
ber for the switched systems. ‖ · ‖ denotes the norm
for real number or vector. Li = {1, · · · , Mi }, where
i ∈ {0, 1, 2, ...}. For positive integers A and B, the
mod(A, B) and �A� mean the remainder of A to B
and the largest integer that is less than or equal to A,
respectively. The gradient operator∇C(x) is defined as
∇C(x) = ∂C(x)

∂x , where C(x) is a differential function
with respect to x .

2 Problem formulation

The following discrete-time nonlinear switched system
with matched uncertainty is considered

x(k+1) = fv(k)(x(k))+gv(k)(x(k))(uv(k)(k)+�(k))

(1)

where x(k) ∈ R
n denotes the system state, and

uv(k)(k) ∈ R
m denotes the constrained control lawwith

u j
v(k)(k) ≤ |ū|, ∀ j ∈ {1, 2, · · · , m}, ū > 0 is the upper

bound of actuator saturation. �(k) denotes the uncer-
tain disturbance term. v(k) ∈ Ωv = {1, 2, · · · , M}
denotes the switching signal, where M is the number
of switched subsystem. Besides, fv : Rn → R

n and
gv : Rn → R

n×m are Lipschitz continuous in the com-
pact set Ωx ∈ R

n containing the origin.
For switched system (1), Assumptions 1 and 2 hold

throughout the paper.

Assumption 1 The switched system (1) is control-
lable, i.e., there is at least one set of hybrid control
policy Π∞

0 〈u, v〉, such that the switched system (1) is
stabilized.

Assumption 2 Suppose that the unknown disturbance
term �(k) is dependent on the x(k), and �(k) is
upper bounded by a differential function of x(k). There
exist ζ ∈ K∞ and Υ ∈ R+, such that ‖�(k)‖ =
ζ(‖x(k)‖) ≤ Υ ‖x(k)‖, ∀k ∈ Z+.

The event-triggered constrained state-feedback con-
trol law under ETM is defined as

uv(k)(k) = μv(k)(x(kt )), k ∈ [
kt , kt+1) (2)

where {kt }∞t=0 is themonotonically increasing triggered
instants sequence and x(kt ) is the sampled state at the
triggered instant kt . Note that kt = 0 when t = 0.
Next, we define the event-triggered gap between x(kt )

and x(k) as

e(k) = x(kt ) − x(k), k ∈ [
kt , kt+1) (3)

where the last sampled state x(kt ) holds by zero-
order holder. The event-triggered gap determines the
frequency of control and communication. Then, by
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substituting (3) into (2), the event-triggered constrained
control law is represented as

uv(k)(k) = μv(k)(x(k) + e(k)), k ∈ [
kt , kt+1) . (4)

Hence, the closed-loop switched system (1) could be
reformulated as

x(k + 1) = fv(k)(x(k)) + gv(k)(x(k))(μv(k)(x(k)

+e(k)) + �(k)). (5)

To cope with the matched uncertainty, a special cost
function should be devised to evaluate the performance
for the switched system. Here, the cost function is
defined as

J (x(k), v(k), uv(k)(k)) =
∞∑

�=k

M(x(�), v(�), uv(�)(�))

(6)

with

M(x(k), v(k), uv(k)(k)) = ρ(Υ ‖x(k)‖)2
+x(k)TQv(k)x(k) + W(uv(k)(k)) (7)

whereM is the utility function, ρ is a positive discount
factor, and Qv(k) ∈ R

n×n is the semipositive definite
matrix of the state penalty term. The positive definite
nonquadratic functional term W(u(k)) is employed to
evaluate the impact of constrained control law on cost
function, which is defined as

W(u(k)) =
∫ u(k)

0
ū(φ−1(s/ū))T Rv(k)ds (8)

where Rv(k) = diag{r1v(k), r2v(k), · · · , rm
v(k)} ∈ R

m×m

being a symmetric positive matrix, and φ(·) is a
bounded surjective function satisfying |φ(·)| ≤ 1 and
belonging to C p(p ≥ 1) and L2(Ω). Note that φ(s) ∈
L2(Ω) represents that

( ∫
Ω

φT (s)φ(s)ds
)1/2

< ∞ and∫
Ω

φT (s)φ(s)ds is the Lebesgue integral on [34,35].
Meanwhile, φ(·) is a monotonically increasing non-
linear odd function with its derivative bounded by
a scalar φm . Without loss of generality, we choose
φ(·) = tanh(·) in this paper.
Remark 1 In practice engineering, the matched uncer-
tainty caused by the exogenous disturbance exists
widely in industrial processes. It is well-known that
the uncertain term cannot be acquired precisely by the

sensors on industrial equipment, which is why the per-
turbation penalty term cannot be written as a form of
�k in the cost function. After repeated experiments and
tests, the upper bound of�k can be obtained as the form
in Assumption 2. Therefore, in this paper, the penalty
term ρ(Υ ‖x(k)‖)2 related with the upper bound of per-
turbance is inserted into the cost function to obtain the
robust optimal hybrid control policy.Agood robust per-
formance can be guaranteed by choosing a reasonable
discount factor ρ.

Definition 1 A sequence Π∞
0 (u, v) is considered as

admissible with respect to (6) if it could make the cost
function (6) finite for any initial state x(0), as well as
stabilize the switched system asymptotically.

In this paper, our goal is to seek the robust opti-
mal hybrid feedback control sequenceΠ∞

0 (u, v) in line
with Definition 1 to make the cost function (6) mini-
mum. From the definition of cost function (6), the value
function can be given by

V(x(k)) =
∞∑

�=k

{M(x(�), v(�), uv(�)(�))}. (9)

In light of the Bellman optimality principle [36], the
robust optimal value functionV∗(x(k)) can be obtained
as

V∗(x(k)) = min
v(k),uv(k)(k)

{M(x(k), v(k), uv(k)(k))

+V∗(x(k + 1))}. (10)

In Sect. 3, the event triggering condition will be
given under ISS attribute and the asymptotic stability
will be proved by the Lyapunov approach.

3 Stability analysis of event-triggered switched
systems

In this section, considering the uncertain discrete-time
systems with the ISS attribute, an event triggering
condition is designed to schedule the communication
between sensors and controllers. It is worthmentioning
that the stability of the system is critical for switched
systems, and thus, if the subsystem v cannot be sta-
ble with the event triggering condition, the ETM will
become meaningless. Therefore, how to employ the
Lyapunov method to explore the closed-loop switched
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system stability under the ETM is the main focus in
this section.

For closed-loop switched system (1), the event trig-
gering condition is defined as

‖e(k)‖ ≤ eT (11)

where eT means the threshold of the ETM, which can
be adaptively adjusted with the last sampled state and
the current state. Onlywhen condition (11) is triggered,
the robust hybrid control policy will be updated by the
ADP controller.

Remark 2 It is noteworthy that when condition (11) is
triggered, the system state information will be trans-
mitted into the ADP controller from the sensors, then
the robust hybrid control policy will be updated. In
otherwords, the robust optimal hybrid control approach
designed in Sect. 4 will be activated, the constrained
control law will be recalculated by the value itera-
tion method, and the switching signal will be updated
by minimizing the cost function. However, it should
be noticed that whether the subsystem is switched or
not depends on whether the cost function will become
smaller after switching. Therefore, the switching sig-
nal maybe not be changed. In other words, the sub-
system may not be switched when the event trigger-
ing condition is triggered, which is also called “quasi-
asynchronous switching” [33].

For the sake of focusing on the ETM design, sup-
pose that switched system (1) has a stabilized control
input uv(k)(k), and the closed-loop system is ISS con-
cerning e(k) and �(k) [32]. Therefore, based on the
related works on ISS and robust optimal control for the
discrete-time nonlinear systems with exogenous dis-
turbance [32,37,38,40], the following assumptions are
given before proceeding.

Assumption 3 [32]. For any v ∈ Ωv , switched system
(1) is ISS with e(k) and �(k) as inputs, and an ISS-
Lyapunov function V : Rn → R+ is admitted, such
that the following conditions satisfied:

(1) there exist K∞ functions α and α, such that

α(‖x(k)‖) ≤ V (x(k)) ≤ α(‖x(k)‖),∀x ∈ R
n;
(12)

(2) there exist positive constants α1, γ2, γ3, such that

V ( fv(x(k)) + gv(x(k))(μv(x(k) + e(k))

+ �(k))) − V (x(k))

≤ −α1V (x(k)) + max{γ2‖e(k)‖, γ3‖�(k)‖}.
(13)

The cyclic-small-gain theorem [41,42] has been
employed to deal with the term max{γ2‖e(k)‖, γ3‖�
(k)‖} in [32]. Loosely speaking, the closed-loop sys-
tems in [32] are stable only when the cyclic-small-gain
conditions hold,which limits the rangeof application of
ISS for discrete-time systems. By contrast, we do not
require the closed-loop systems to satisfy the cyclic-
small-gain condition in this paper, but use the vari-
able substitution method to tackle this term instead,
which relaxes the stability conditions for closed-loop
switched systems in a certain sense.

Here, the variable substitution method is applied to
(13) for dealing with the term max{γ2‖e(k)‖, γ3‖�
(k)‖}. We define κ(�1, �2) as a binary function which
is equal to 1 for �1 ≥ �2, otherwise 0. With the help of
the binary function, this term could be substituted by

max{γ2‖e(k)‖, γ3‖�(k)‖}
:= κγ2‖e(k)‖ + (1 − κ)γ3‖�(k)‖ (14)

where κ (γ2‖e(k)‖, γ3‖�(k)‖) is written as κ for con-
venience. Define α2 = κγ2, α3 = (1− κ)γ3, then (13)
is rewritten as

V ( fv(x(k)) + gv(x(k))(μv(x(k) + e(k))

+ �(k))) − V (x(k))

≤ −α1V (x(k)) + α2‖e(k)‖ + α3‖�(k)‖.
(15)

Consider that the term ‖�(k)‖ has an upper bound
functionΥ ‖x(k)‖ in Assumption 2, inequality (15) can
be contracted as

V ( fv(x(k)) + gv(x(k))(μv(x(k) + e(k))

+ �(k))) − V (x(k))

≤ −α1V (x(k)) + α2‖e(k)‖ + α3Υ ‖x(k)‖.
(16)

Assumption 4 [29]. For any v ∈ Ωv , there exist posi-
tive constants L1, L , such that the following properties
hold:

‖ fv(x(k)) + gv(x(k))(μv(x(k) + e(k)) + �(k))‖
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≤ L‖e(k)‖ + L‖x(k)‖ + L‖�(k)‖ (17)

α−1(x(k)) ≤ L1‖x(k)‖,∀x ∈ R
n (18)

where α is the K∞ function defined in Assumption 3.

According to Assumption 2, �(k) has an upper
bound functionΥ ‖x(k)‖, inequality (17) can be rewrit-
ten as

‖ fv(x(k)) + gv(x(k))(μv(x(k) + e(k)) + �(k))‖
≤ L‖e(k)‖ + L(1 + Υ )‖x(k)‖.

(19)

Assumption 5 For closed-loop system (1), suppose
that the next event-triggered error is upper bounded
by the next state value in metric space, i.e., ‖ek+1‖ ≤
χ‖ηk+1‖ with ek+1 = ηkt − ηk+1, for k ∈ [

kt , kt+1),
holds in the adaptive ETM, where χ ≥ 1 is a positive
scalar.

Remark 3 Note that (13) is transformed into (15) by
the variable substitution for two merits. One merit is
not to change its conservativeness after the transforma-
tion, it is clear that when κ equals 0 or 1, both sides of
(14) will be equivalent. For instance, when γ2‖e(k)‖
is larger than γ3‖�(k)‖, both sides of (14) will be
equal under κ = 0, then (13) is equivalent to (15).
Another merit is to provide convenience for the fol-
lowing asymptotic stability analysis by converting the
unsimplifiable terms max{γ2‖e(k)‖, γ3‖�(k)‖} into
terms (1 − κ)γ2‖e(k)‖, κγ3‖�(k)‖ that can be split.

Lemma 1 Under Assumptions 2–5, the event-trigge-
red gap for the closed-loop switched system should sat-
isfy the following condition:

‖e(k)‖ ≤ Lχ (1 + Υ )
1 − [

Lχ (2 + Υ )
]k−kt

1 − Lχ (2 + Υ )
‖x(kt )‖,

k ∈ [
kt , kt+1) . (20)

Proof Based on Assumptions 4–5, for each k ∈[
kt , kt+1), it is not difficult to see that

‖ek+1‖ ≤χ‖ηk+1‖
=χ‖ fv(x(k)) + gv(x(k))(uv(k) + �(k))‖
≤Lχ‖ek‖ + Lχ (1 + Υ )‖ηk‖
≤Lχ (2 + Υ )‖ek‖ + [Lχ (1 + Υ )]‖ηkt ‖ (21)

where Lχ = Lχ for brevity.

Therefore, by expanding (21), for k ∈ (kt , kt + 1),
it follows that

‖e(k)‖ ≤ Lχ (2 + Υ )‖e(k − 1)‖
+ Lχ (1 + Υ )‖x(kt )‖
≤ [

Lχ (2 + Υ )
]2 ‖e(k − 2)‖

+ L2
χ (2 + Υ )(1 + Υ )‖x(kt )‖

+ Lχ (1 + Υ )‖x(kt )‖
≤ [

Lχ (2 + Υ )
]kt ‖e(kt )‖

+ [
Lχ (2 + Υ )

]kt −1
Lχ (1 + Υ )‖x(kt )‖

+ [
Lχ (2 + Υ )

]kt −2
Lχ (1 + Υ )‖x(kt )‖ + · · ·

+ Lχ (1 + Υ )‖x(kt )‖

(22)

when k = kt , e(k) = 0. Hence, the event triggering
condition can be deduced by sum formula of geometric
series, one has

‖e(k)‖ ≤ Lχ (1 + Υ )
1 − [

Lχ (2 + Υ )
]k−kt

1 − Lχ (2 + Υ )
‖x(kt )‖.

The proof is thus completed. ��
Theorem 1 Consider event triggering condition (20)
and Assumptions 3–4, we define λ = Lχ (2 + Υ ) and
δ = α1 − α3L1Υ . If there exist 0 < λ < 1, 0 < δ < 1,
the positive number ξ ∈ (0, 1

k−kt
) and the following

inequality is satisfied, the switched nonlinear system is
asymptotically stable.

α2

δ2
≤ (1 − λ) [1 − ξ(k − kt )]

Lχ (1 + Υ )L1
, k ∈ [

kt , kt+1) . (23)

Proof Considering whether the event is triggered or
not, this proof is divided into two cases.

Case I: The event triggering condition is not be violated
at k ∈ (kt , kt + 1). According to inequalities (12) and
(18), we have

‖x(k)‖ ≤ α−1(V (x(k))) ≤ L1V (x(k)) (24)

Substituting (20) into (16) yields

V ( fv(x(k)) + gv(x(k))(μv(x(k)

+ e(k)) + �(k))) − V (x(k))

≤ α2Lχ (1 + Υ )
1 − λk−kt

1 − λ
‖x(kt )‖

− α1V (x(k)) + α3Υ ‖x(k)‖.

(25)
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According to (24), we rewrite (25) as

V (x(k + 1)) ≤ (1 − δ)V (x(k))

+ α2Lχ (1 + Υ )
1 − λk−kt

1 − λ
L1V (x(kt )).

(26)

Further, for k ∈ (kt , kt + 1), it is easy to see from (26)
that

V (x(k)) ≤ (1 − δ)V (x(k − 1))

+ α2Lχ (1 + Υ )
1 − λk−1−kt

1 − λ
L1V (x(kt )).

(27)

Substituting (27) into (26), we have

V (x(k + 1))

≤ (1 − δ)

[
(1 − δ)V (x(k − 1))

+ α2Lχ (1 + Υ )
1 − λk−kt

1 − λ
L1V (x(kt ))

]

+ α2Lχ (1 + Υ )

1 − λk−1−kt

1 − λ
L1V (x(kt )).

(28)

Hence, expanding (28) yields

V (x(k)) ≤ (1 − δ)k−kt V (x(kt ))

+ 1 − (1 − δ)k−kt

1 − (1 − δ)

1 − λk−kt

1 − λ
α2

× Lχ (1 + Υ )L1V (x(kt )).

(29)

Considering condition (23), we know

α2Lχ (1 + Υ )

δ(1 − λ)
L1 ≤ δ − δξ(k − kt ). (30)

Since δ ∈ (0, 1), we obtain

δ ≤ 1 − (1 − δ)k−kt . (31)

By virtue of (30) and (31), it follows that

α2Lχ (1 + Υ )

δ(1 − λ)
L1 ≤ 1− (1−δ)k−kt −δξ(k −kt ). (32)

Considering 1 − δ < 1 and 0 < λ < 1, then

1 − (1 − δ)k−kt < 1,

1 − λk−kt < 1.
(33)

With the aid of (32) and (33), it is clear that

1 − (1 − δ)k−kt

δ

1 − λk−kt

1 − λ
α2Lχ (1 + Υ )L1

+ (1 − δ)k−kt

≤ 1 − (1 − δ)k−kt − δξ(k − kt ) + (1 − δ)k−kt

= 1 − δξ(k − kt ).

(34)

Multiplying both sides of (34) right by V (x(kt )), we
obtain

1 − (1 − δ)k−kt

δ

1 − λk−kt

1 − λ
α2Lχ (1 + Υ )L1V (x(kt ))

+ (1 − δ)k−kt V (x(kt ))

≤ V (x(kt )) − δξ(k − kt )V (x(kt ))

(35)

To move on, we compare (29) with (35), have

V (x(k)) ≤ V (x(kt )) − δξ(k − kt )V (x(kt )), (36)

with k ∈ (kt , kt + 1).
Define a function H as

H(x(k)) = V (x(kt )) − δξ(k − kt )V (x(kt )). (37)

Then

0 < V (x(k)) ≤ H(x(k)). (38)

Taking the first-order difference of H(x(k)) yields

ΔH = H(x(k + 1)) − H(x(k)) = −δξV (x(kt )).

(39)

Thus, in light of (12) and (39), the following inequality
holds

ΔH ≤ −δξα(‖x(kt )‖) < 0. (40)

Since (39) and (40) hold, the switched system is asymp-
totically stable in this case.

Case 2: The event triggering condition will be violated
at k = kt . At this moment e(k) = 0, and (16) is rewrit-
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ten as

V ( fv(x(kt )) + gv(x(kt )) (μv(x(kt )) + d(kt )))

− V (x(kt )) ≤ −α1V (x(kt )) + α3Υ ‖x(kt )‖. (41)

According to (24) and (41), it follows that

V ( fv(x(kt )) + gv(x(kt )) (μv(x(kt )) + d(kt )))

≤ (1 − α1 + α3Υ L1)V (x(kt ))

= (1 − δ)V (x(kt )).

(42)

Define a function G as

G(x(kt )) = (1 − δ)V (x(kt )). (43)

Then

G(x(kt + 1)) = (1 − δ)V (x(kt + 1)). (44)

With the help of (43) and (44), the first-order difference
of G can be derived as

ΔG = G(x(kt + 1)) − G(x(kt ))

= (1 − δ)(V (x(kt + 1)) − V (x(kt ))).
(45)

On the basis of (42) and (45), it is not difficult to see
that

ΔG = (1 − δ)(V (x(kt + 1)) − V (x(kt )))

≤ −(1 − δ)δV (x(kt )).
(46)

Hence, by substituting (12) into (46), we have

ΔG ≤ −(1 − δ)δV (x(kt ))

≤ −(1 − δ)δα(‖x(kt )‖) < 0. (47)

Therefore, the switched system is asymptotically stable
in this case.

In conclusion, from the proof under two cases, it is
obvious thatwhen the sufficient condition inTheorem1
is satisfied, the switched system will be asymptotically
stable. This proof is thus completed. ��

Next, the non-trivial minimum triggering instant
will be analyzed to avoid the Zeno’s behavior. Accord-
ing to Theorem 1, it is not difficult to see that events
are triggered when

V (x(k)) = V (x(kt )) − δξ(k − kt )V (x(kt )), (48)

Let ϕ(k) = α2L1Lχ (1+Υ ) 1−λk−kt

1−λ
, and from (29), we

have

V (x(k)) ≤
(
δ − ϕ(k)

)
(1 − δ)k−kt + ϕ(k)

δ
V (x(kt )).

Similar with [43], the minimum k = k∗ is defined as
follows:

k∗ = argmin
k∈N{1 − δξ(k − kt )}

≥
(
δ − ϕ(k)

)
(1 − δ)k−kt + ϕ(k)

δ
.

As a result, the Zeno’s behavior will be avoided when
k∗ > 1, that is, the event triggering rule is non-trivial.
Therefore, δ, ξ and α2 should be selected properly to
guarantee k∗ > 1.

Remark 4 It should be noticed that the term max{γ2‖
e(k)‖, γ3‖�(k)‖} in (13) is converted to the terms α2

and α3 in (16) to facilitate the proof of asymptotical
stability for closed-loop nonlinear switched system. In
what follows, we will analyze the rationality of this
variable substitution inTheorem1. Firstly, it is assumed
that the condition (23) is true for α2 = γ2 and α3 = γ3.
Then, we can observe that the right-hand side of (23) is
a positive number and remains unchanged when other
parameters such as k and kt remain unchanged. Next,
we will discuss whether the condition (23) holds in two
cases of κ = 1 and κ = 0. i) If κ = 1, then α2 = γ2,
α3 = 0, the denominator δ2 on the left-hand side will
become larger, and its numeratorwill not change. Then,
the left-hand side of the inequalitywill become smaller,
and the condition (23) is satisfied. ii) If κ = 0, then
α2 = 0, α3 = γ3, the denominator on the left-hand
side stays unchanged, and the numerator is equal to
zero, therefore, the left-hand side will be equal to zero,
and the condition (23) is satisfied; in conclusion, as long
as the condition (23) holds for α2 = γ2 and α3 = γ3,
then the condition will be true for all cases discussed
above, and this variable substitution is reasonable for
the closed-loop switched systems with uncertainty.

In this section, we have introduced the event trig-
gering condition and related ISS attributes for closed-
loop switched systemswith uncertainty, where the vari-
able substitution method is utilized to tackle the uncer-
tain term in ISS assumption. Then, the asymptotical
stability for the closed-loop system has been deduced
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with a sufficient condition. It is worth mentioning that
the stability analysis studied here is focused on the
ETM applied into the closed-loop systems, rather than
the stability of the ETM-based ADP approach. In the
next section, we will introduce the ETM-based ADP
approach and the convergence proof of the proposed
algorithm.

4 ETM-based robust optimal hybrid feedback
control policy design and convergence analysis

In this section, the ETM-based ADP approach is
designed to achieve a robust optimal hybrid feedback
control policy. Besides, the convergence is proved for
closed-loop switched systems with input saturation
constraints.

4.1 ETM-based robust optimal hybrid control policy
design for switched systems

For closed-loop switched systems, an ETM-based
iterative ADP approach is proposed to achieve both
the constrained control law and the switching signal
simultaneously. The value function is initialized as
V0(x(k)) = V1

0 (x(k)) = 0. For v ∈ Ωv , l ∈ Li ,

∀x(k), the constrained control law μ
(l,v)
i (x(k)), i =

0, 1, 2, · · · , can be expressed as

μ
(l,v)
i (x(k))

= argmin{M(x(k), v(k), uv(k))

+ V l
i (x(k + 1))}

= −ūφ

(
1

2ū
R−1

v gT
v (x(k))∇V l

i (x(k + 1))

)
.

(49)

The constrained control law μ
(l,v)
i (x(k)) under the

ETM will not be updated during the triggered interval
(kt , kt+1). Therefore, the event-triggered control law is
defined as

μ
(l,v)
i (x(kt ))

= −ūφ

(
1

2ū
R−1

v gT
v (x(kt ))∇V l

i (x(kt + 1))

)
.

(50)

Then the corresponding value function at (i + 1)th
iteration is represented as

V l̂
i+1(x(k)) = M(x(k), v(k), μ

(l,v)
i (x(kt )) + V l̂

i

× (x(k + 1)) (51)

where l̂ = (l − 1)M + v. Then the iterative robust
optimal value function is defined as

Vi+1(x(k)) = min
l̂

{V l̂
i+1(x(k))}. (52)

Define

ιi (x(k)) = argmin
l̂∈L

{V l̂
i+1(x(k))} (53)

then the corresponding control law μi (x(k)) and
switching signal vi (x(k)) can be obtained as

μi (x(kt )) = μ
(�ιi (x(k))/M�+1,vi (x(k))
i (x(kt )), (54)

vi (x(k)) = mod(ιi (x(k)), M). (55)

4.2 Convergence analysis

The robust optimal hybrid feedback control policy has
beenobtained via the designed adaptive event-triggered
ADP approach. Next, the convergence analysis of the
proposed approach will be given as follows.

Theorem 2 In closed-loop switched systems (1), for
each iterative index i ∈ {0, 1, 2, . . .}, we assume
that the sequence {Vi (x(k))} is generated by (51)–
(52), and the associated hybrid control sequence πi =
〈μi (x(kt )), vi (x(k))〉 is obtained by (54)–(55), then the
following two properties hold:

(1) (boundedness) for any x(k) ∈ R
n, there always

exists a state-dependent upper bound V̆i (x(k)),
such that Vi (x(k)) ≤ V̆i (x(k)) holds, ∀k.

(2) (monotonicity) with the initial value function V0

(x(k)) = 0,∀k, the sequence {Vi (x(k))} is non-
decreasing.

Proof Let π̆i = 〈μ̆i (x(kt )), v̆i (x(k))〉 be any admis-
sible hybrid feedback control policy. According to
the definition for value function (9), the associated
V̆i+1(x(k)) after i th iteration is given by

V̆i+1(x(k)) = M(x(k), v̆i (k), μ̆i (x(kt )))

+ V̆i (x(k + 1)). (56)
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Then, with equations (51)–(52), the associated Vi+1

(x(k)) of control policy πi obtained by (54)–(55) after
i th iteration becomes

Vi+1(x(k)) = M(x(k), vi (k), μi (x(kt ))+Vi (x(k+1))

(57)

where μi (x(kt )) minimizes the right-hand term of
equation (56), therefore, Vi (x(k)) ≤ V̆i (x(k)), for any
k. This proves the boundedness of the iterative value
function.

Let π̆i = πi+1 = 〈μi+1(x(kt )), vi+1(x(k))〉, the
equation (56) can be formulated into the following
equation:

V̆i+1(x(k)) = M(x(k), vi+1(k), μi+1(x(kt )))

+V̆i (x(k + 1)) (58)

where V̆0(x(k)) = V0(x(k)) = 0.
In what follows, we will prove the monotonicity

of sequence {Vi (x(k))}. First, we prove V̆i (x(k)) ≤
Vi (x(k)) by mathematical induction. When i = 0, it is
obvious that

V1(x(k)) − V̆0(x(k))

= M(x(k), v1(k), μ1(x(kt ))) ≥ 0. (59)

Suppose that Vi (x(k)) − V̆i−1(x(k)) ≥ 0, it is not dif-
ficult to see from (57) and (58) that

Vi+1(x(k)) − V̆i (x(k))

= Vi (x(k + 1)) − V̆i−1(x(k + 1)) ≥ 0. (60)

Then, we can get a conclusion that V̆i (x(k)) ≤
Vi+1(x(k)) with mathematical induction. Therefore,
recalling the boundedness ofVi (x(k)) (i.e.,Vi (x(k)) ≤
V̆i (x(k))), we can derive that Vi (x(k)) ≤ V̆i (x(k)) ≤
Vi+1(x(k)),∀k and thus monotonicity is proved. ��

Theorem 3 The sequence {Vi (x(k))} generated by
(51)–(52) is convergent along with i → ∞, i.e.,
V∞(x(k)) = V∗(x(k)),∀k, where V∗(x(k)) is denoted
as the optimal value function under admissable hybrid
control policy.

Proof Let π̆i = 〈μ̆i (x(kt )), v̆i (x(k))〉 be any admiss-
able feedback control policy. Since the corresponding
iterative value function is V̆i (x(k)), then we have

V̆ i+1(x(k))

=M(x(k), v̆i (k), μ̆i (x(kt ))) + V̆i (x(k + 1))

=
i∑

j=i−1

M(x(k + i − j), v̆ j (k + i − j),

× μ̆ j (x((k + i − j)t )))

+ V̆i−1(x(k + 2))

= · · ·

=
i∑

j=0

M(x(k + i − j), v̆ j (k + i − j),

× μ̆ j (x((k + i − j)t )))

(61)

when i goes to infinity, the following equation holds:

lim
i→∞V̆i (x(k)) = lim

i→∞

i∑

j=0

M(x(k + i − j),

v̆ j (k + i − j), μ̆ j (x((k + i − j)t ))).

(62)

For the optimal value function V∗(x(k)), by recalling
definitions (9)–(10), yields

V∗(x(k)) = min
π̆

lim
i→∞V̆i (x(k)). (63)

From Theorem 2, the boundedness of the iterative
sequence Vi (x(k)) has been given, i.e., Vi (x(k)) ≤
V̆i (x(k)),∀k. Hence, for any state x(k) and i ∈
{1, 2, · · · }, it follows that

V∞(x(k)) = lim
i→∞Vi (x(k)) ≤ lim

i→∞V̆i (x(k))

≤ min
π̆

lim
i→∞V̆i (x(k))

= V∗(x(k)).

(64)

Then, in light of the optimal control theory, consid-
ering the definition of optimal value function, yields
V∗(x(k)) ≤ V∞(x(k)). Combining this and (64), it
holds that V∗(x(k)) = V∞(x(k)).

The convergence analysis of the designed approach
is thus completed. ��
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5 Implement of the event-triggered ADP approach
for switched systems

Based on universal approximation theorem [44] and
nonlinear systems Lipschitz continuous property, the
iterative value function (51) and constrained control
law (50) can be approximated via NNs with any pre-
cision. Hence, two NNs need to be established at each
iteration. One is a critic NN used to approach the

value function V l̂
i+1(x(k)), another one is an actor NN

to approach the event-based constrained control law
μi (x(kt )). Finally, the ETM-based robust optimal con-
trol algorithm is constructed to implement the proposed
ETM-based ADP approach for closed-loop switched
systems.

5.1 Critic network

The critic network’s input is the sampled state x(kt )

and its output can be represented as

Ṽ l̂
i+1(x(kt )) = (W l̂

c(i+1))
T ϕ(x(kt )) (65)

where l̂ = (l − 1) × M + v, W l̂
c(i+1) is the weight

of the critic NN, ϕ is the critic’s smooth and differen-
tiable polynomial activation function. The target value
function is denoted as

V l̂
i+1(x(kt )) =U (x(kt ), μ

(l,v)
i (x(kt )), vi (x(kt )))

+ Ṽ l̂
i+1(x(kt + 1)).

(66)

Define the critic NN’s approximating error function as

el̂
c(i+1)(x(k)) = Ṽ l̂

i+1(x(kt )) − V l̂
i+1(x(kt )). (67)

The objective of weight updating in the critic NN is to
minimize the following function

El̂
c(i+1)(x(k)) = 1

2
(el̂

c(i+1)(x(k)))2. (68)

By virtue of the gradient descent approach, the weight
updating rule of the critic NN can be given by

W l̂
c(i+1)( j + 1)

=

⎧
⎪⎨

⎪⎩

W l̂
c(i+1)( j) − αc

∂ El̂
c(i+1)(x(k))

∂Wl̂
c(i+1)( j)

, k = kt ,

W l̂
c(i+1)( j), kt < k < kt+1

(69)

where αc is the learning rate of the critic network.

5.2 Actor network

The actor NN is constructed to learn the constrained
optimal control law. The event-triggered state x(kt ) is
the actor NN’s input, and its output is given by

μ̃
(l,v)
i (x(kt )) = (W l̂

ai )
T σ(x(kt )) (70)

where l̂ = (l−1)×M+v,W l̂
ai is the actorNN’sweight,

σ is the actor’s smooth and differentiable polynomial
activation function. The target constrained optimal con-
trol law is

μ
(l,v)
i (x(kt ))

= −ūφ

(
1

2ū
R−1

v gT
v (x(kt ))

∂V l
i (x(kt + 1))

∂x(kt + 1)

)

.

The approximating error of the actor NN is defined as

e(l,v)
ai = μ̃

(l,v)
i (x(kt )) − μ

(l,v)
i (x(kt )). (71)

The objective of weight updating in the actor NN is to
minimize the following function

E (l,v)
ai = 1

2
e(l,v)

ai

T
e(l,v)

ai . (72)

By virtue of the gradient descent approach, the weight
updating rule of the actor NN is given by

W (l,v)
ai ( j + 1)

=
⎧
⎨

⎩
W (l,v)

ai ( j) − αa
∂ E (l,v)

ai (x(k))

∂W (l,v)
ai ( j)

, k = kt ,

W (l,v)
ai ( j), kt < k < kt+1

(73)

where αa is the learning rate of the actor network.

Remark 5 In this paper, the neural networks adopt the
form of multilayer perceptron with three layers in the
actor-critic structure (i.e., input layer-one hidden layer-
output layer). A literature research shows that numer-
ous ADP-related works have taken this multilayer per-
ceptron form with the polynomial function as the acti-
vation function, see, for instance, [11,45,46]. Gener-
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ally speaking, the activation function adopted is smooth
and differentiable to facilitate updating the gradient
vector of theweight parameter. Therefore, in this paper,
the neural network structures adopt the form of mul-
tilayer perceptron with the smooth and differentiable
polynomial activation function.

The detailed implement procedure of the event-
triggered robust ADP algorithm for uncertain switched
systems is described in Algorithm 1.

Algorithm 1 ETM-based Robust ADP Algorithm for
Switched Systems with Uncertainties
Step 1: Initializing the parameters: the initial state x(0), the trig-
gered instant k0, the simulation time T and the triggered state
x(k0). Besides, the parameters related to the event triggering
condition should also be reasonably initialized.
Step 2: Let iterative index i = 0 and V0(x(k)) = 0. For
each l = 1, 2, · · · , Mi , v = 1, · · · , M , calculate V0(x(k +
1)), μ0(x(k0)), v0(x(k)) according to (51)–(55).
Step 3: Determine whether the event triggering condition (20)
is satisfied or not. If the condition is satisfied, go through Step
4-Step 6, else jump to Step 7.
Step 4: Set i = i + 1, train the critic NN with (69) until conver-
gence and train the actor NN with (73) until convergence.
Step 5: Set the value functionV(x(k+1)) = V(x(k+1)), and the
hybrid control policy μ(x(k)) = μi (x(k)), v(x(k)) = vi (x(k)).
Step 6: Calculate the next state with (1).
Step 7: Let μ(x(k)) = μ(x(k − 1)), v(x(k)) = v(x(k − 1)) and
k = k + 1, then return to Step 2.

6 Simulation

In this section, two numerical examples, including non-
linear and linear cases, are demonstrated to verify the
suggested approach is effective. The first numerical
example is utilized to illustrate the robust optimal abil-
ity for nonlinear switched systems subjected to input
saturation. Another example is employed to show the
simple process of our approach for coping with linear
open-loop unstable switched systems.

6.1 Case 1: Nonlinear switched systems

6.1.1 Controlled objective and simulation setup

The following nonlinear switched system taking from
[19,33] is given by :

x(k + 1) = fv(x(k)) + gv(x(k))(uv(k) + �(k))

where two subsystems are considered, i.e., M = 2
and v(k) ∈ {1, 2}. The disturbance term �(k) =
εx2(k)sin(x1(k)2)cos(x2(k)), where ε is an unknown
random variable with ε ∈ [−0.5, 0.5].

In this case, the two subsystem dynamics are given
as follows, respectively.

f1(x(k)) = [
f 11 (x(k)) f 21 (x(k))

]T
,

g1(x(k)) = [
0 −x2(k)

]T ;
f2(x(k)) = [

f 12 (x(k)) f 22 (x(k))
]T

,

g2(x(k)) = [
0 −x2(k)

]T

where f 11 (x(k)) = −0.8x2(k), f 21 (x(k))

= sin(0.8x1(k) − x2(k)) + 1.8x2(k), f 12 (x(k)) =
0.5x21 (k)x2(k), f 22 (x(k)) = x1(k) + 0.8x2(k).

The state of switched systems is initialized with
x(0) = [−1.5, 0.5]T . The utility function is selected
as Q1 = Q2 = I2, R1 = R2 = 0.1, where I2
refers to the identity matrix with dimension 2. The
control input is constrained with |uv(k)| ≤ 0.5. Set
Υ = 1, Lχ = 0.14, then the event triggering condition
can be computed with (20):

‖e(k)‖ ≤ 1 − 0.42k−kt

0.58
0.28‖x(kt )‖, k ∈ [

kt , kt+1) .

Table 1 summarizes the parameters used in exam-
ple 1. Next, Algorithm 1 is implemented to obtain
the event-triggered robust optimal hybrid control pol-
icy, the simulation time steps T = 30, the critic
and actor networks all have three layers with a 2-
9-1 structure. The same activation function shares
between the critic and actor networks: ϕ(x) = σ(x) =
[x1, x2, x21 , x22 , x1x2, x31 , x32 , x21 x2, x1x22 ]. Initialization
weights of the critic and actor networks are randomly
selected from [-1, 1], the other parameters can be found
in Table 1.

6.1.2 Results and discussion section

To describe the effectiveness of the proposed control
approach, Fig. 1 shows that the curves of state trajec-
tory converge gradually with time. Besides, we com-
pare the proposed event-triggered ADP approach with
the classical time-triggered ADP method in [18]. In
the ETM-based method, the zero-order holder is uti-
lized to maintain the control input of the last trigger-
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Table 1 The parameters used in example 1

Parameters ρ αc αa ε Nc Na

Values 0.2 0.05 0.05 1 × 10−5 50 20

Parameters α1 γ2 γ3 L1 ξ χ

Values 0.04 0.078 0.1 25 0.01 1

∗ ρ is the discount factor for the disturbance penalty;
∗ αc and αa are, respectively, the learning rates for critic and
actor NNs;
∗ ε denotes the error accuracy of the critic and actor NN;
∗ Nc is the maximum iteration number of the critic NN Na is the
maximum iteration number of the actor NN;
∗ α1, γ2, γ3, L1, ξ , and χ are other parameters for the obtained
theorems

ing instant. In addition, the classical ADPmethod does
not consider the actuator constraint, and thus, the con-
troller design and cost function are different from our
approach. From Fig. 2, it is obvious that the classical
ADP method exceeds the lower limit at 0 − 2 s (so it
is reset to the lower limit value), which will reduce the
control performance and damage the life of the equip-
ment. In contrast, the proposed approach takes the actu-
ator saturation phenomenon into full consideration and
makes the controller operate safely and stably within
the upper and lower limits.

To further illustrate the control performance of the
proposed approach, we compare the event-triggered
optimal cost function with the random hybrid control
policy-induced cost function in Fig. 4. Since there are
total 2k switching sequences, we randomly selected
10 switching sequences for comparison. The results
show that compared with other switching control
strategies, the proposed robust optimal event-triggered
hybrid control approach can minimize the cost func-
tion, which further verifies the effectiveness of the pro-
posed method.

Figure 5 provides the comparison of the cumulative
number of the event triggering approach and time trig-
geringmethod, wherewe can observe that the proposed
ETM-based ADP triggers 15 times in total, which is
15 times less than the conventional time triggering
method. From Fig. 6, it is shown that the event trig-
gering threshold ‖eT ‖ is equal to zero at the beginning,
then increases gradually, and finally approaches zero as
the state gradually converges to zero. From the overall
numerical simulation results of Case 1, the proposed
ETM-based robust ADP algorithm for switched sys-
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Fig. 2 Event-triggered switching signal of Case 1

tems can indeed reduce the communication burden and
obtain a robust optimal control performance.

6.2 Case 2: booster converter system

6.2.1 Controlled objective and simulation setup

Further, a booster converter system as shown in
Fig. 7 is adopted to verify the effectiveness of the pro-
posed method. Consider the following system dynam-
ics adapted from [47]:
⎧
⎪⎪⎨

⎪⎪⎩

i̇l(t) = R

L
il(t) + (1 − v(t))

1

L
ec(t) + 1

L
(es(t) + �(t))

ėc(t) = (v(t) − 1)
1

C
il(t) − 1

R0C
ec(t)

(74)
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Fig. 5 Triggering Number of Case 1
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Fig. 6 The event triggering threshold of Case 1

Fig. 7 A booster converter

where il is the current through the inductor L , ec is the
voltage of the capacitorC , es is the input voltage and�

is the matched disturbance. The switching signal v(t)
is 1 or 2, which refers to the switch that is turned on at
time t . When S1 is turned on, S2 is turned off, and vice
versa.

Denote τ(t) = [il(t), ec(t)]T and u(t) = es(t).
With the Euler method and sampling time T, the
discrete-time version of the booster converter system
is given by

τ(k + 1) = fv(k)(τ (k))+ gv(k)(uv(k)(k)+�(k)) (75)

where

f1(τ (k)) = τ(k) − T

[
R
L
1

R0C

]

τ(k),

f2(τ (k)) = τ(k) − T

[
R
L
1

R0C

]

τ(k)

g1(τ (k)) = g2(τ (k)) = T

[
1

L

]
.
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Table 2 The parameters used in example 2

Parameters ρ αc αa ε Nc Na

Values 0.2 0.01 0.01 1 × 10−5 200 200

Parameters α1 γ2 γ3 L1 ξ χ

Values 0.02 0.05 0.08 20 0.03 1

The parameters in model (75) are selected as T =
0.1 s, R0 = 0.2 , L = 2 H, C = 4 F, and R = 5 .
And the desired state of the booster converter system is
given by τd = [−2, 1]T . The tracking error is defined
as x(k) = τ(k) − τd . Therefore, the error dynamics of
the booster converter system is

x(k + 1) = Fv(k)(x(k)) + Gv(k)(xk)(uv(k)(k) + �(k))

(76)

where

F1(x(k)) = x(k) − T

[
R
L
1

R0C

]

(x(k) + τd)

F2(x(k)) = x(k) − T

[
R
L
1

R0C

]

(x(k) + τd)

G1(x(k)) = G2(x(k)) = T

[
1

L

]
.

Setting the initial state of switched systems as
x(0) = [0, 0]T . The parameters in utility func-
tion are set as Q1 = diag{100, 200}, R1 = 400;
Q2 = diag{200, 300}, R2 = 50. The control input
is constrained with |uv(k)| ≤ 2, and �(k) =
εx1(k) sin(x1(k)2) cos(x2(k)), where ε is an unknown
random value selected in [-0.5,0.5]. Select Υ =
1, Lχ = 0.01, the event triggering condition is cal-
culated with (20):

‖e(k)‖ ≤ 1 − 0.3k−kt

0.7
0.2‖x(kt )‖, k ∈ [

kt , kt+1) .

Table 2 summarizes the parameters used in Case 2.
Next, we implement Algorithm 1 to obtain an event-
based robust optimal hybrid control policy, the total
simulation time steps T = 20. The structure of critic
and actor networks both are 2-5-1with three layers. The
activation functions of critic and actor NNs both are
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Fig. 8 State trajectory of Case 2

the same form ϕ(x) = σ(x) = [x1, x2, x21 , x22 , x1x2].
The initial weights are selected as the random val-
ues between [-1,1], the other parameters can refer to
Table 2.

6.2.2 Results and discussion section

To illustrate the effectiveness of the proposed control
approach, curves of the state for uncertain switched
systems are described in Fig. 8. It is not difficult to
see that the state trajectory goes to zero fastly and then
basically keeps zero. Figure 9 shows the event-based
switching signal. To clearly describe the validity of the
proposed control approach,we compare itwith the clas-
sical time triggering ADP method. The same network
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Fig. 9 Event-triggered switching signal of Case 2

123



378 S. Zhao, J. Wang

0 2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

C
on

tr
ol

 in
pu

t

The lower limit of control input
ETM based ADP with constraint
Classical ADP without constraint

Fig. 10 Comparision of the event-triggered constrained control
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Fig. 11 Triggering instants and triggering intervals of Case 2

structure and system state parameters are provided for
the two methods. As can be seen from Fig. 10, the clas-
sic ADP method does not consider actuator saturation
phenomenons at 0-0.2s, which exceeds the upper limit.
Due to the constraints of the actuator, we reset the val-
ues of the exceeding section to the upper limit. In prac-
tice, this is often one of the main reasons for the insta-
bility and performance degradation of the controlled
system. In contrast, our approach takes full account of
the saturation constraints and keeps the control input
within a safe domain.

The triggering instants and triggering interval of the
switched systems under the adaptive ETM are depicted
in Fig. 11. Moreover, Fig. 12 offers the comparison of
the cumulative number of the proposed event trigger-
ing approach and traditional time triggering method,
where we can find that the proposed ETM-based algo-
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Fig. 12 Triggering number of Case 2
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Fig. 13 The event triggering threshold of Case 2

rithm triggers 6 times in total, which is 14 times less
than the conventional time triggeringmethod. Figure 13
displays the trajectory of the triggering threshold. From
the overall results of Case 2, the proposed ETM-based
robust ADP approach can effectively reduce the com-
munication burden and improve computational effi-
ciency.

7 Conclusion

In this paper, an adaptive event-triggered robust opti-
mal control strategy has been proposed for discrete-
time nonlinear switched systems with input constraints
and uncertainties. First, an event triggering condition
has been introduced to determine the triggered instant
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for closed-loop switched uncertain systems. Then, by
re-interpreting the ISS properties of the underlying
system in a simpler manner, the adaptive ETM has
been designed with the help of the Lyapunov tech-
nique. Subsequently, an event-triggered robust opti-
mal control approach with ADPmethodology has been
proposed for constrained uncertain switched systems.
In addition, the actor-critic structure, respectively, has
been employed to obtain the value function and con-
strained control law. Finally, the validity of the pro-
posed approach has been demonstrated by two numer-
ical simulation examples.
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