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Abstract In the experiment, we observed such a

phenomenon: the alternating normal force changes the

vibration state of a friction system. A single-degree-

of-freedom mathematical model was used in this paper

to discuss the effects of a constant and alternating

normal force on the stick–slip vibration characteristics

for different dynamic and static friction coefficients.

Under the condition that the applied constant normal

force continues to increase, the vibration amplitude of

the system, the amplitude of the limit cycle, and the

adhesion time of the system increase. When the

difference between the dynamic and static friction

coefficients (DSFCs) is small, the system has a

complete and clear limit cycle. When the dynamic

friction coefficient is reduced, the difference between

DSFCs increases, and the limit cycle of the system is

deformed. The friction system has more abundant

dynamic vibration characteristics under an alternating

normal force than a constant normal force. The

vibration state of the system presents a single-cycle

stick–slip vibration when the alternating normal force

excites the multi-order harmonic response of the

friction system, and the excitation frequency of the

alternating normal force is the same as the main

response frequency of the system with the highest

energy or the low-order even-order main frequency. In

contrast, the system exhibits various vibration modes

when the excitation frequency of the alternating

normal force is dissimilar to the main frequency of

the system’s highest energy response or is consistent

with the odd-order main frequency. In addition,

increasing the difference between DSFCs or using

very high excitation frequencies and excitation ampli-

tudes increases the likelihood of the system entering a

chaotic vibration state.

Keywords Single-degree-of-freedom model �
Stick–slip � Alternating normal force � Vibration

characteristics

1 Introduction

As a vibration phenomenon with significant nonlinear

characteristics, stick–slip is an important aspect of

friction-induced vibration [1–3]. For a single-degree-

of-freedom (DoF) system, the stick–slip phenomenon

occurs when the coefficient of static friction is higher

than the coefficient of kinetic friction [4, 5]. Stick–slip

vibration can have positive effects, i.e., the stick–slip

vibration of a string instrument can produce beautiful

music [6], or a friction damper can help reduce

vibration [7]. However, stick–slip vibration typically
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has adverse effects, such as the groaning noise of a

brake system [8, 9].

In recent years, many scholars have carried out

multi-angle studies on the stick–slip phenomenon.

Popp et al. [10] used a discrete model with low degrees

of freedom and discovered the potential bifurcation

and chaos of the stick–slip system. Velde et al. [11]

proposed a mathematical model of the stick–slip

phenomenon caused by deceleration. They verified

that deceleration motion caused stick–slip and ana-

lyzed the influence of different parameter combina-

tions, e.g., the damping coefficient, deceleration,

stiffness, on predicting the occurrence of stick–slip.

Li et al. [12] used the mass–damper–spring system to

study the influence of the lateral runout of the elastic

disk on the in-plane stick–slip vibration characteris-

tics. Numerical simulation results showed that the

contact separation of the disk and the slider signifi-

cantly affected the stick–slip vibration and exhibited

nonlinear dynamic behavior. Lisowski et al. [13]

studied a two-degree-of-freedom nonlinear torsional

model with elastic barriers. They showed that this

torsional friction behavior can affect the characteris-

tics of the friction system.

And Pascal et al. [14] established a two-DoF model

considering dry friction and harmonic loads and

discussed the stability of the three motion trajectories.

Wang et al. [15] experimentally analyzed the influence

of different damping alloys as friction pair materials

on stick–slip vibration; the results showed that Mn–Cu

damping alloys and aluminum alloys provided the best

suppression of stick–slip oscillations. The study also

revealed different wear behaviors and clarified the

correlation between different wear behaviors and the

stick–slip oscillations. Nakano [16] examined the

conditions for stick–slip occurrence based on a single-

DoF system with Coulomb friction and expressed the

difficulty of stick–slip occurrence by two dimension-

less parameters. These results show that velocity,

damping coefficient, stiffness, load and other param-

eters can affect the stick–slip vibration.

The use of low-DoF models to explore the effects of

various parameters on system vibration characteristics

has been widely adopted in previous studies

[10, 17–22]. McMillan [17] explored the effects of

conveyor belt speed and initial conditions on the

induced squeal by using a spring–mass–conveyor belt

single-DoF model. Marin et al. [18] studied the effects

of some main parameters on the phase-plane and

phase-space motion states of the stick–slip vibration of

the single-DoF and two-DoF models through standard

circuit simulation software. Oestreich et al. [19]

studied the effect of simple harmonic excitation

frequency on system bifurcation and chaos through a

single-DoF model. The results showed that changing

external excitation frequency changed the dynamics of

period-doubling bifurcation to chaos.

Both numerical simulation and experimental stud-

ies have shown that the difference between DSFCs is

related to the unstable mechanism of frictional motion

[23–28]. Ozaki et al. [23] carried out a numerical

analysis of stick–slip instability using a single-DoF

model. The authors verified that a change in the

friction coefficient had a substantial impact on stick–

slip instability and discussed the system’s dynamic

characteristics, such as the quality, stiffness, and

driving speed. On the other hand, Lee et al. [24]

experimentally investigated the effects of tangential

contact stiffness, volume stiffness, relative sliding

velocity, and the difference between DSFCs on the

intensity and frequency of stick–slip. The test results

showed that the intensity and frequency of stick–slip

during low-speed braking were substantially affected

by all factors.

Researchers have discussed the stick–slip vibration

mechanism and the influence of various factors on

stick–slip vibration using theoretical analyses and

experimental studies. However, most of these studies

used the ideal state of the friction system variables,

whereas the parameters change in real time under

actual working conditions. For example, the external

load of the friction system changes dynamically [29].

Simplifying the variables to the ideal state is conve-

nient for research, and the results are more consistent.

However, the conclusions are only suitable for guiding

theoretical research and may not be applicable to

practical conditions.

The normal force is the excitation input of frictional

self-excited vibration and has a crucial influence on

the vibration characteristics [30–34]. And any slight

changes of normal force may cause changes in the

vibration characteristics. Maegawa et al. [35] studied

the effects of non-uniform normal loads on the

precursory events of stick–slip vibration by means of

experiments and numerical simulation. Pilipchuk et al.

[36] designed a two-degree-of-freedom experimental

device considering the effects of gravity and geomet-

ric nonlinearity and established a corresponding
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mathematical model. The influence of the normal

force and the speed of the moving belt on the dynamic

characteristics of the system during the braking

process were explored. The experimental results

showed that under the influence of the above two

factors, the dynamic response of the system underwent

a qualitative transition, namely the appearance of the

densifying spectral bend in the final stages of the

deceleration process, and this phenomenon could be

regarded as an indicator of the appearance of squeal.

The results calculated by the mathematical model had

a good qualitative match with the experimental results.

Liu and Ouyang [37] designed a two-degree-of-

freedom test rig too in which the varying normal

force was coupled with the tangential friction-induced

vibration of a pin in sliding contact with a rotating

disc. The disc surface was treated to possess sectors of

different friction properties, and this was found to be

capable of reducing the stick–slip vibration of the pin.

And Krallis et al. [38], Papangelo et al. [39] and

Pasternak et al. [40] investigated the impact of

changing normal forces on stick–slip vibration

through a single-DoF mathematical model. To

expand, Krallis et al. [38] and Papangelo et al. [39]

discussed the critical conditions for the transition

between general sliding friction vibration and stick–

slip vibration of the friction system on the basis of

keeping the static friction coefficient equal to the

dynamic friction coefficient. And the influence of

parameters such as the amplitude and frequency of the

normal force on the critical conditions for the transi-

tion of these two states was studied. Pasternak et al.

[40] were more inclined to explore how to apply

alternating normal forces to eliminate or reduce stick–

slip vibration, that is, to change from a stick–slip

vibration state to a general sliding friction state. The

scope of these papers is between the general sliding

friction vibration state and the stick–slip vibration

state, and does not consider that the application of

alternating normal force will cause the stick–slip

vibration to evolve into a more complex vibration of

multiple vibrations state and chaotic vibration state.

Few studies have reported the stick–slip vibration

characteristics of friction systems under dynamic

loads. Therefore, research on the influence and

mechanism of an alternating normal force on the

stick–slip vibration characteristics can provide theo-

retical support and guidance for minimizing the

damage caused by stick–slip vibration under actual

working conditions. Therefore, this paper uses a

discrete mathematical model to investigate the effect

of real-time varying dynamic loads and different

friction coefficients on the stick–slip vibration char-

acteristics. The results are compared with the stick–

slip vibration behavior of a system under a constant

force. The dynamic load is designed as a normal force

that changes according to the sine law, and different

amplitudes and frequencies of the normal force are

evaluated in the simulation. The time-domain and

frequency-domain characteristics of the stick–slip

vibration of the friction system under an alternating

normal force are evaluated using bifurcation diagrams,

phase-space diagrams, spectrograms, and Poincaré

diagrams for different excitation amplitudes and

excitation frequencies to determine the potential

vibration states of the system.

2 Single-degree-of-freedom mathematical model

This paper uses the classic undamped single-DoF

lumped-mass model to analyze the influence of the

alternating normal force on stick–slip vibration. A

qualitative analysis is carried out of the dynamic

characteristics of the system’s stick–slip vibration

under an alternating normal force. It should be pointed

out that the friction disk in the test equipment (Fig.1) is

in rotation and thus the motion of the mass block is

largely in one (circumferential) direction, which can

be modeled as a translation. As shown in Fig. 2, the

concentrated massm is connected to the fixed wall by a

spring of stiffness k1 and is simultaneously subjected

to the normal force FN and the frictional force between

the rigid conveyor belt and the mass moving at a

constant speed v0. It is assumed that the mass and the

conveyor belt remain in contact without separation.

Since this article focuses on the influence of the

alternating normal force on the stick–slip vibration

performance of the friction system, the basic param-

eters in the single-DoF model are set to constants

(m = 1 kg, k1 = 1 N/m, v0 = 1 mm/s) except the nor-

mal loading force FN. The parameters were selected

based on theoretical research [10]. The Coulomb

friction model with constant dynamic and static

friction coefficients is used to determine the influence

of the alternating normal force on the stick–slip

motion. Among various influencing factors, the fric-

tion coefficient has the most considerable effect on the
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vibration behavior [23–28]. Since it is impossible to

evaluate if the friction coefficient has a considerable

effect on the vibration behavior of the system under an

alternating normal force, we select two groups of

dynamic and static friction coefficients. The first group

includes the static friction coefficient ls = 0.4 and the

dynamic friction coefficient lk = 0.2; the second

group consists of the static friction coefficient us = 0.4

and the dynamic friction coefficient lk = 0.1. The

simulation calculation is conducted using MATLAB

software. The influences of the excitation amplitude

(Fx) and the excitation frequency (x) of the alternat-

ing normal force on the stick–slip vibration are

investigated.

According to Newton’s second law, the dynamic

equation of a single-DoF system in the x-direction is

expressed as:

m€xþk1x¼Ff ð1Þ

The friction force Ff is the product of the friction

coefficient and the normal contact force FN between

the mass m and the conveyor belt, where Ff = lFN

FN ¼ F0 þ Fx sinðxtÞ ð2Þ

The ode45 solver in MATLAB is used to solve the

time-domain response signal of the system. Due to the

interface stick–slip dynamic behavior of the system,

the switch model algorithm [41] is used to solve the

response of the non-smooth system. It is assumed that

the relative speed between the mass and the conveyor

belt is vr; its expression is shown in Eq. (3):

vr¼v0 � _x ð3Þ

If vrj j[ 1, where 1 is the set minimum error value

(10–6), relative sliding occurs between the friction

block and the conveyor belt, and the system is in the

slip state. The expression of the dynamic friction force

Ff-slip is shown in Eq. (4):

Ff�slip ¼ lkFN ð4Þ

If vrj j\1 and the spring force is less than the

friction force, the mass and the conveyor belt remain

relatively static, and the friction system is in the stick

state. The static friction force Ff-stick is the

Fig. 1 The test device: a object picture and b schematic diagram

Fig. 2 The single-DoF mathematical model
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combination of the spring force and the maximum

static friction force Fmf-stick. Two conditions can occur,

as shown in Eq. (5):

Ff�stick ¼ k1x Spring force�Fmf�stick

�lsFNsgnðvrÞ Spring force[Fmf�stick

�

ð5Þ

3 Test equipment, results and discussion

3.1 Test equipment and parameters

The experiment is conducted on the CETR-UMT-3

multifunctional friction and wear testing machine

using a typical pin-disk surface contact mode. The

equipment consists of a test device and a signal

acquisition device. The friction block sample and the

friction disk sample are attached to the test device with

a friction block clamp and friction disk clamp,

respectively. The friction block consists of composite

material, with dimensions of 9 mm 9 9 mm 9 15

mm and roughness of 0.4 lm. The friction disc is

forged steel with a diameter of 25 mm, a thickness of

3 mm, and roughness of 0.06 lm. The friction radius

between the friction block and the friction disc, i.e.,

the distance between the two components, is 6.1 mm.

The normal force and friction force during the test are

measured by the built-in two-dimensional force sensor

(sensitiveness: 0.025 N; range 5 * 500 N) inside the

CETR, and the data are stored in the computer that

controls the CETR machine. The tangential vibration

velocity of the friction block is measured by a laser

vibrometer (model: Polytec PDV-100; sensitivity: 8

mv/mm/s; range: ± 500 mm/s; frequency response:

0.5 * 22 kHz). The measured data are collected by

an 8-channel data acquisition instrument (DH5922N),

and the sampling frequency is 10 kHz. The normal,

tangential, and radial vibration acceleration signals of

the friction block are measured by a three-dimensional

acceleration sensor (model: KISTLER 8688A50;

sensitiveness: 100 mV/g; frequency response:

0.5 * 5 kHz), and the measured data are collected

by the 8-channel data acquisition instrument; the

sampling frequency is 10 kHz. The test is conducted in

a dry environment under standard atmospheric pres-

sure (room temperature: 24 * 27�C relative humid-

ity: 60 ± 10%).

The test is divided into two parts. First, a constant

normal force of 160 N, 180 N, and 200 N is applied.

Second, an alternating normal force is applied with the

following parameters: median force F0 = 180 N,

amplitude Fx = 20 N, and excitation frequencies of

0.25 Hz, 0.5 Hz, 1 Hz, and 2 Hz (the relationship

between the excitation frequency f and the excitation

angular frequency x is: f = x/2p). In the process of

test, the rotation speed of the friction disc remains

constant at 2.5 rpm, the duration of each group of tests

is 2 min, and each set of tests is repeated 3 times.

3.2 Test results and discussion

The tangential velocity signal measured by the laser

vibrometer is integrated in the frequency domain to

obtain the tangential displacement signal. Figure 3

shows the phase diagrams of the system in the

stable phase of 50 s–52 s under three constant normal

forces. The velocity in the stick stage is not constant,

but there are slight fluctuations due to the inevitable jit-

ter of the test equipment during the test. Under the

condition that the applied constant normal force

continues to increase, the displacement of the system

in the stick state increases. After the displacement

reaches the maximum value, it decreases, and with the

rapid decrease in speed, the displacement increases

rapidly. Since the rotation speed of the friction disc is

constant, the greater the normal force, the greater the

frictional force of the friction interface is. Thus, the

system must accumulate more tangential elastic

potential energy to overcome the frictional force.

Therefore, since the maximum static friction of the

interface has not been exceeded by the elastic potential

energy, the tangential displacement of the system

continues to increase, and more kinetic energy is

accumulated for release in the slip phase. As a result,

the speed amplitude of the system increases in the slip

phase, corresponding to an increase in the amplitude

of the middle limit cycle, as shown in Fig. 3.

Figure 4 shows the tangential vibration accelera-

tion signal and the root-mean-square (RMS) value of

the system in the stable phase of 50 s–52 s under the

constant normal force. The tangential acceleration

signal of the system exhibits periodic relatively

constant values and peaks. When the acceleration is

zero, the friction block and the friction disc are in a

relatively static state, and a sudden change in accel-

eration means that the friction block and the friction
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disc are in a sliding state. Under the constant normal

force, the acceleration amplitude depends on the

magnitude of the applied normal force. The greater the

applied normal force is, the greater the acceleration

amplitude is, i.e., the system is transitioning to a more

intense stick–slip vibration state. The acceleration

RMS increases with an increase in the normal force.

Figure 5 exhibits the phase diagram in the

stable phase of 50 s–55 s under the four excitation

frequencies. The amplitude of the limit cycle of the

system is significantly lower under the alternating

normal force than the constant normal force, and the

shapes of the limit cycle are different. Limit cycles

exist in the system at excitation frequencies of

0.25 Hz, 0.5 Hz, and 1 Hz, but the form is different.

This result shows that the system exhibits periodic

stick–slip motion in these three states, but the motion

patterns are different. There is no limit cycle at an

excitation frequency of 2 Hz, and the motion trajec-

tories are complex. Figure 5 exhibits that the motion

state changes from stable periodic stick–slip vibration

to irregular vibration as the frequency of the applied

alternating force increases.

Figure 6 shows the tangential vibration accelera-

tion signal and the RMS value of the acceleration

when the system is in the stable phase of 50 s–55 s

under the four excitation frequencies. At excitation

frequencies of 0.25 Hz, 0.5 Hz, and 1 Hz, a phe-

nomenon similar to that of applying a constant normal

force is observed, i.e., the tangential acceleration

signal of the system exhibits relatively constant values

interrupted by periodic peaks, and the system is in the

stick–slip–stick vibration state. However, the differ-

ence is that the stick–slip vibration period becomes

shorter, and the magnitude of the vibration reduces

with an enlargement in the excitation frequency. The

RMS values are similar at excitation frequencies of

0.25 Hz, 0.5 Hz, and 1 Hz (Fig. 6b), indicating sim-

ilar vibration intensities of the system. In contrast, the

tangential vibration acceleration signal of the system

is more complex at an excitation frequency of 2 Hz,

exhibiting a more chaotic vibration signal. Thus, the

acceleration of RMS value is significantly higher at

2 Hz than at the other three excitation frequencies,

indicating that the vibration intensity and shape of the

system are not solely stable stick–slip vibrations.

Figure 6 indicates that increasing the excitation

Fig. 3 The phase diagram of the system under a constant force a 160 N, b 180 N, c 200 N [42]

Fig. 4 a Acceleration

signal and b acceleration

RMS value of the system

under a constant force
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frequency of the alternating normal force causes the

system to change from stable stick–slip vibration to

unstable friction vibration.

4 The stick–slip vibration characteristics obtained

from a single-degree-of-freedom theoretical

model

4.1 The stick–slip vibration characteristics

of the system under a constant normal force

The first set of dynamic and static friction coefficients

(ls = 0.4, lk = 0.2) is selected to research the stick–

slip vibration characteristics of the system under a

constant normal force. Figure 7 exhibits the phase

diagram and bifurcation diagram under different

constant normal forces. The external normal force

gradually increases from 10 to 40 N in steps of 5 N. As

the constant normal force increases, stick–slip vibra-

tion appears in the system, and the amplitude of the

limit cycle of the stick–slip vibration increases

sequentially. It is manifest from Fig. 7b that under

the condition that the normal force keeps increasing,

the balance point of the mass block produces a slight

offset, whose value is calculated according to Eq. 6.

Under the condition that the normal force keeps

increasing, the offset and the amplitude of the mass

Fig. 5 The phase diagram

of the system under an

alternating force a 0.25 Hz,

b 0.5 Hz, c 1 Hz, d 2 Hz

Fig. 6 a Acceleration

signal and b acceleration

RMS value of the system

under the alternating force
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increase. The reason is that an increase in the normal

force increases the maximum static friction force,

inducing the system to generate a greater spring force

to get over the static friction force. The force

ultimately promotes an increase in the adhesion time

of the mass, which stores and releases more energy in a

single cycle.

xs ¼ lkFN=k1 ð6Þ

The differential equations of the system are solved

by MATLAB’s ode45 solver. The initial parameter

values are different; therefore, the system requires a

different number of steps to reach a stable state. In this

paper, the duration of each calculation is 100p s, and

the results of the first 300 s are shown in the graph.

Only the data after t1 (62.8 s) are selected for the

frequency-domain analysis to prevent an influence of

the initial value on the analysis of the system motion

state. Figure 8 exhibits the time-domain and fre-

quency-domain signals of the stick–slip vibration of

the friction system under normal forces of 20 N and

25 N.

Under a constant normal force, the time–velocity

curve of the mass shows a constant single-periodic

motion state, and as the normal force increases, the

amplitude and period of the system vibration increase.

The frequency spectrum of the vibration velocity in

t1 * 300 s exhibits that the fundamental frequency of

the system response reduces with an increase in the

normal force. When the normal force is 20 N (25 N),

the system produces a multi-order harmonic response

with a fundamental frequency of 0.0855 Hz

(0.0738 Hz). Table 1 lists the fundamental frequencies

of the system responses under different constant

normal forces. As the normal force increases, the

fundamental frequency of the vibration response

decreases, and the vibration period of the system

increases.

Figure 9 shows the displacement–velocity two-

dimensional phase diagram of the mass, the three-

dimensional phase-space diagram expanded according

to the motion cycle (the polar diameter and polar angle

of the two-dimensional polar coordinate system,

respectively, represent the displacement and the

motion period, and the Z axis represents the speed),

and the Poincaré cross-section based on the projection

of the three-dimensional phase-space trajectory on a

plane with a polar angle of p and parallel to the Z-axis

(O in the figure represents the pole of the polar

coordinates, and h represents the polar angle). The

Poincaré cross-section diagram is used to distinguish

the periodic motion, quasi-periodic motion, chaotic

motion, and other motion behaviors of the system

according to the dynamic differential equations of

nonlinear systems. Under the constant normal force,

the motion state of the system shows stable single-

periodic stick–slip vibration. The two-dimensional

phase diagram indicates a single-periodic limit cycle,

which is expanded in the three-dimensional phase-

space with only one motion trajectory; thus, only one

point is shown in the Poincaré cross-section in Fig. 9c.

Therefore, under the constant forces of 20 N and 25 N,

the mass exhibit single-periodic stick–slip motion.

4.2 The stick–slip vibration characteristics

of the system under an alternating normal

force

Figure 10 shows the bifurcation and corresponding

Lyapunov exponent of the displacement of the mass

with the frequency of excitation at a median alternat-

ing normal force of F0 = 25 N and an amplitude of

Fx = 5 N. As the excitation frequency increases, the

Fig. 7 a Phase diagram and

b bifurcation diagram of the

system under different

constant forces
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mass exhibits multiple motion states, such as chaos,

single-periodic vibration, and multi-periodic vibra-

tion. According to the criterion of Lyapunov exponent

for periodic, chaotic, and other forms of motion of the

system [43, 44], the bifurcation diagram is divided into

seven regions. In regions ’I’, ’III’ and ’V’, the motion

state of the system is disordered; in regions ’II’, ’IV’,

and ’VI’, the system is in a single-periodic motion

state; in region ’VII’, the system exhibits multiple

motion states. Bifurcation phenomena are observed

near critical points, such as sudden boundary changes

and jumps. For example, when the excitation fre-

quency is 0.62 rad/s (the critical point of regions ’II’

and ’III’), the single-periodic motion state of the mass

block suddenly changes.

Further, we discuss the stick–slip vibration charac-

teristics of the friction system for different frequen-

cies. An excitation frequency of x = 0.27 rad/s is

selected in the chaotic stage, and x = 0.5 rad/s is

selected in the single-periodic stage, and

x = 0.69 rad/s and x = 1.65 rad/s are chosen in

multiple vibration stage.

Figure 11 displays the phase diagram, phase-space

diagram, and Poincaré cross-section diagram of the

stick–slip vibration of the friction system at different

frequencies. At x = 0.27 rad/s, a single limit cycle

with multiple loops is observed in the phase diagram.

As the calculation time increases, the number of loops

increases, and the phase-space trajectory becomes

more chaotic. Multiple discrete points are observed,

and the system is in chaotic stick–slip motion at this

Fig. 8 a Vibration velocity

time-domain signal and

b FFT analysis results of the

friction system under

constant forces of 20 N and

25 N

Table 1 The basic frequency of the stick–slip vibration response of the friction system under different constant normal forces

Normal force /FN Response fundamental frequency Normal force / FN Response fundamental frequency

10 N 0.1243 Hz 30 N 0.0661 Hz

15 N 0.1010 Hz 35 N 0.0583 Hz

20 N 0.0855 Hz 40 N 0.0505 Hz

25 N 0.0738 Hz – –
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time. At x = 0.5 rad/s, the phase diagram exhibits a

single-periodic limit cycle, the phase-space diagram

has only one trajectory, and only one point is visible in

the Poincaré cross-section diagram. Under these

circumstances, the system is in a single-periodic

stick–slip motion state. At x = 0.69 rad/s, the system

is in a two-periodic vibration state. The phase diagram

and phase-space diagram show an additional trajec-

tory, and the Poincaré cross-section diagram exhibits

two discrete points. At x = 1.65 rad/s, the Poincaré

cross-section depicts a straight line, and the system is

in a quasi-periodic stick–slip state.

Figure 12 shows the external excitation signal,

vibration velocity signal, and fast Fourier transform

(FFT) analysis results of the system for four excitation

frequencies. The value of t1 is the same in Fig. 12 and

Fig. 8. In Fig. 12c, the left Y-axis depicts the FFT

results of the speed signal, and the right Y-axis shows

the stress vibration frequency (dashed line). The

friction system produces multiple main response

frequencies at an excitation frequency of 0.27 rad/s

and a frequency of 0.0430 Hz. The highest response

frequency of the system is 0.0725 Hz, and the

vibration behavior of the mass is complex. At

0.5 rad/s, the friction system produces a multi-order

harmonic response with a fundamental frequency of

0.0796 Hz. At this time, the excitation frequency is

consistent with the response frequency of the system

with the highest energy, and the system is in a single-

cycle stick–slip state (Fig. 10). At 0.69 rad/s, the

excitation frequency is 1.5 times of the response

frequency of the system with the highest energy. At

this time, the system is in a two-periodic stick–slip

state. At 1.65 rad/s, the excitation frequency is in

keeping with the third-order vibration frequency

component of the system’s response fundamental

frequency, and the system is in a quasi-periodic stick–

slip motion state.

Further, we select an excitation frequency in each

region in Fig. 10 and calculate the response frequency

of the system with the highest energy. The frequency

data are exhibited in Table 2. The excitation frequency

of 0.67 rad/s in area ’III is greater than the highest

response frequency but less than the second-order

response frequency of the system. The value is three-

half of the main frequency of the highest response of

the system. At this time, area ’III’ is the transition area

between the single-periodic stick–slip motion areas

’II’ and ’IV’. In area ’IV’, the excitation frequency is

1 rad/s, which is consistent with the second-order

response frequency of the system. The system is in a

single-periodic stick–slip state. In region ’V’, the

Fig. 9 a Phase diagram, b phase-space diagram, and c Poincaré cross-section diagram of the system under different normal forces
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excitation frequency is 1.7 rad/s, which is consistent

with the third-order response frequency of the system.

However, Fig. 10 exhibits that the system is in a multi-

periodic stick–slip motion state at this time. In area

’VI’, the excitation frequency is 2.25 rad/s, which is

consistent with the fourth-order response frequency of

the system; the system is still in a single-periodic

stick–slip motion state. In area ’VII’, the excitation

frequency is 3.15 rad/s, which is equal to the fifth-

order response frequency of the system. As the

excitation frequency increases, the system goes

through different vibration states, including single

cycle, multi-periodic, quasi-periodic, and chaotic

vibration states.

These results show that the condition of the system

is chaotic vibration when the excitation magnitude is

constant, the excitation frequency does not cause a

harmonic response of the system, and the excitation

frequency is not a multiple of the main frequency of

the system with the highest energy response. When the

excitation frequency causes a harmonic response of

the system, the system is in a single-cycle motion state

if the excitation frequency is in keeping with the main

frequency of the system with the highest energy

response or an even-order multiple (second-order,

fourth-order) of the main frequency. The system can

have various vibration states if the frequency is the

same as the dominant frequency of the highest odd-

order (third-order) of the system, or the excitation

frequency is greater than the dominant frequency of

the higher-order (fifth-order) response of the system.

Figure 13 shows the bifurcation and corresponding

Lyapunov exponent of the displacement with the

excitation frequency for an excitation amplitude of

Fx = 10 N. Increasing the excitation amplitude

increases the displacement extremum of the

Fig. 10 a Bifurcation

diagram and

b corresponding Lyapunov

exponent diagram of the

system displacement with

the excitation frequency at

an excitation amplitude of

5 N
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bifurcation diagram of the system, which agrees with

the results in Fig. 7. The bifurcation diagram is

divided into three regions, and the main frequency of

the system response at different excitation frequencies

is analyzed. The results are listed in Table 3. In area

’I’, the excitation frequency is selected as 0.15 rad/s

for analysis. This excitation does not cause a harmonic

response of the system and is less than the main

frequency response of the system with the highest

energy. The motion state of the system is disordered.

In area ’II’, the excitation frequency is selected as

0.55 rad/s for analysis. The excitation frequency is in

keeping with the dominant frequency of the system’s

highest energy response, and the system is in a single-

periodic stick–slip state. Two excitation frequencies

(1.35 rad/s and 4.15 rad/s) are selected in area ’III’ for

Fig. 11 a Phase diagram, b phase-space diagram, and c Poincaré cross-section diagram of the system for different excitation

frequencies
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analysis. At 1.35 rad/s, the excitation frequency is

equal to the third-order response frequency of the

system; at 4.15 rad/s, the excitation frequency is in

keeping with the seventh-order response frequency of

the system. In area ’III’, the motion state of the system

changes from the stable single-periodic motion in the

previous stage to a variety of motion states including

chaotic motion. The periodic motion regions and the

chaotic regions can also be clearly distinguished from

the Lyapunov exponent diagram (Fig. 13). These

results indicate that an increase in the excitation

amplitude of the alternating normal force increases the

area where the system is in multiple vibration states;

the system is more likely to be in a state of chaotic

motion.

Fig. 12 a Normal force time-domain diagram, b velocity time-domain diagram, and c frequency spectrum diagram of the system for

different excitation frequencies
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The influence of the excitation amplitude value on

the system motion state is analyzed for an excitation

frequency of 0.5 rad/s. The bifurcation diagram of the

mass displacement response is shown in Fig. 14. The

bifurcation graph is divided into two regions. In region

’I’, the system is in a multi-periodic stick–slip motion

state, and the excitation frequency does not cause a

higher energy response frequency of the system. In

Table 2 Response frequency of the system for different excitation frequencies

Area Excitation

frequency x(rad/s)

Excitation

frequency (Hz)

The main frequency with

the highest energy (Hz)

Median force: 25 N Excitation amplitude: 5 N I 0.20 0.0318 0.0732

II 0.52 0.0828 0.0828

III 0.67 0.1066 0.0720

IV 1.00 0.1592 0.0796

V 1.70 0.2706 0.0902

VI 2.25 0.3581 0.0901

VII 3.15 0.5013 0.1003

Fig. 13 a Bifurcation

diagram and

b corresponding Lyapunov

exponent diagram of the

system displacement with

the excitation frequency at

an excitation amplitude of

10 N
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region ’II’, the system is in a single-periodic stick–slip

motion status, and the excitation frequency is in

keeping with the response frequency of the system

with the highest energy (see Table 4 for the details).

Figure 15 exhibits the bifurcation diagram of the

displacement response of the mass with the excitation

amplitude at an excitation frequency of 1.65 rad/s.

Similarly, the bifurcation graph is divided into three

regions. The vibration form of the friction system is

Table 3 Response frequency of the system for different excitation frequencies

Area Excitation

frequency x (rad/s)

Excitation

frequency (Hz)

The main frequency with

the highest energy (Hz)

Median force: 25 N Excitation

amplitude: 10 N

I 0.15 0.0239 0.0743

II 0.55 0.0875 0.0875

III 1.35 0.2149 0.0716

4.15 0.6605 0.1247

Fig. 14 Bifurcation

diagram of the system

displacement with the

excitation amplitude value

at an excitation frequency of

0.5 rad/s

Table 4 Response frequency of the system for different excitation amplitudes

Area Excitation

amplitude Fx(N)

Excitation

frequency x(Hz)

The main frequency with

the highest energy(Hz)

Median force: 25 N Excitation

frequency 0.5 rad/s

I 0.8 0.0796 0.0756

II 5.0 0.0796 0.0796

10.0 0.0796 0.0796
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more complex for the excitation frequency of

1.65 rad/s than of 0.5 rad/s. In area ’I’, the system is

in a state of multi-periodic stick–slip motion. At this

time, the external excitation frequency does not cause

a multi-order harmonic response of the system and a

higher energy response of the main frequency. In area

’II’, the system is in a single-periodic stick–slip state,

and the excitation frequency is equal to the fourth-

order response frequency of the system. The displace-

ment response of the mass undergoes abrupt changes

and increases at the critical points of regions ’II’ and

’III’. In area ’III’, the system is in a variety of vibration

states prior to a normal force of 13.1 N. Subsequently,

the system begins to bifurcate into two motion states,

which can be approximated as a combination of two

multi-periodic motions.

Different excitation amplitude values in area ’III’

are chosen to calculate the response frequency of the

system, as listed in Table 5. A state of motion exists

where the excitation frequency stimulates the har-

monic response of the system and is in keeping with

the third-order response frequency. A harmonic

response whose excitation frequency does not affect

the system is also observed, resulting in a state of

motion in keeping with the highest response frequency

of the system. In addition, the friction system also has

a two-periodic-like motion state in which two multi-

periodic motions are combined, and the excitation

frequency of the system is in keeping with the second-

order response frequency of the system. At the same

excitation amplitude, increasing the excitation fre-

quency complicates the system’s vibration form, and it

becomes more difficult to transition to a single-

periodic stick–slip state.

5 Influence of an alternating normal force

on the system vibration characteristics

for different friction coefficients

5.1 The stick–slip vibration characteristics

of the system under a constant normal force

Figure 16 exhibits the phase diagram and bifurcation

diagram of the vibration response of the friction

system under different constant normal forces for the

coefficients ls = 0.4 and lk = 0.1. As the normal force

increases, a slight deviation of the system equilibrium

point occurs in the positive tangential direction, and

the vibration amplitude of the mass limit cycle

increases. In addition, the displacement of the mass

shows a significant increase in the negative tangential

direction (minimum point of displacement). It is

manifest from Fig. 16(a) that the vibration form of

the friction system does not change significantly when

the constant normal force is changed. However, the

Fig. 15 Bifurcation

diagram of the system

displacement with the

excitation amplitude at an

excitation frequency of

1.65 rad/s
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motion form of the mass of the friction system changes

after increasing the difference between the dynamic

and static friction coefficients from (ls = 0.4, lk-

= 0.2) to (ls = 0.4, lk = 0.1). The reason is that an

increment in the difference between DSFCs increases

the negative displacement of the mass, affecting the

compression state of the tangential spring as the mass

changes from the slip state to the stick state. When the

external force generated by the spring is much greater

than the dynamic friction force, the mass has faster

acceleration in the positive tangential direction,

increasing the speed of the mass, as shown in

Fig. 16(a).

Figure 17 exhibits the time-domain diagram and

frequency-spectrum diagram of the vibration velocity

of the friction system at normal forces of 20 N and

25 N. Increasing the difference between DSFCs does

not change the motion state; the system has the stick

and slip motion states. At a normal force of 20 N

(25 N), the system’s vibration response frequency is a

multi-order harmonic response with a fundamental

frequency of 0.0738 Hz (0.0637 Hz). Figure 18

shows the phase diagram, phase-space diagram, and

Poincaré cross-section diagram of the vibration

response of the friction system under the two normal

forces. The phase diagram exhibits a single limit cycle,

and the phase-space diagram depicts a single motion

trajectory, but the limit cycle and phase-space trajec-

tory are slightly deformed. The Poincaré cross-section

diagram shows only one discrete point.

5.2 The stick–slip vibration characteristics

of the system under an alternating normal

force

Figure 19 shows the bifurcation and corresponding

Lyapunov exponent of the vibration response of the

mass of the friction system with the excitation

frequency for coefficients ls = 0.4 and lk = 0.1. The

median force is F0 = 25 N, and the excitation

Table 5 Response frequency of the system for different excitation amplitudes

Area Excitation

amplitude Fx(N)

Excitation

frequency x(Hz)

The main frequency with the

highest energy(Hz)

Median force: 25 N Excitation

frequency: 1.65 rad/s

I 1.0 0.2626 0.1472

II 2.8 0.2626 0.1313

III 4.2 0.2626 0.0875

5.1 0.2626 0.0875

7.5 0.2626 0.0915

8.5 0.2626 0.0875

10.0 0.2626 0.2626

11.5 0.2626 0.2626

14.0 0.2626 0.1313

Fig. 16 a Phase diagram

and b bifurcation diagram of

the system vibration

response under different

constant normal forces
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amplitude is Fx = 5 N. When the difference between

DSFCs (ls = 0.4, lk = 0.1) is increased, the vibration

state of the system is similar to that at ls = 0.4 and

lk = 0.2, exhibiting periodic motions and chaotic

vibration states. However, the chaotic vibration range

is significantly increased, and this phenomenon can be

seen more clearly from the Lyapunov exponent

diagram. In Fig. 10b, there are regions where the

Fig. 17 a Time-domain

diagram and b frequency

spectrum diagram of the

system vibration response

under a constant normal

force

Fig. 18 a Phase diagram, b phase-space diagram, and c Poincaré cross-section diagram of the system under a constant normal force
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Lyapunov exponent is continuously equal to zero,

while in Fig. 19b there are only a few points where the

Lyapunov exponent is equal to zero, that is, most of the

frequency range under study leads to a Lyapunov

exponent greater than zero. When the excitation

frequency is in the range of 0.32 rad/s–0.78 rad/s,

the system exhibits two distinct regions of vibration

magnitudes. When the excitation frequency is within

the range of 0 rad/s–0.32 rad/s and 0.78 rad/s–5 rad/s,

the range of the vibration magnitude changes slightly.

The excitation frequencies of 0.51 rad/s, 1.25 rad/s,

and 3.98 rad/s are selected for further analysis.

Figure 20 shows the phase diagram, phase-space

diagram, and Poincaré cross-section diagram of the

mass motion of the friction system for excitation

angular frequencies of 0.51 rad/, 1.25 rad/s, and

3.98 rad/s. At 0.51 rad/s, a single limit cycle with

multiple loops occurs in the phase diagram, and the

phase-space trajectory shows very chaotic conditions.

The Poincaré cross-section diagram shows irregularly

distributed points. Under these circumstances, the

system is in a chaotic vibration state. At 1.25 rad/s,

there is a stable three-loop limit cycle in the phase

diagram of the friction system; correspondingly, there

are three motion trajectories in the phase-space

diagram and three discrete points on the Poincaré

cross-section diagram. At this time, the system is in a

three-periodic vibration state. The vibration type of

the friction system at 3.98 rad/s is similar to that at

0.51 rad/s. There is a single limit cycle with multiple

loops in the phase diagram, and the phase-space

trajectory is chaotic. Multiple discrete points are

randomly distributed in the Poincaré cross-section

diagram, and the system is in a state of chaotic

vibration.

Fig. 19 a Bifurcation

diagram and

b corresponding Lyapunov

exponent diagram of the

vibration displacement of

the friction system with the

excitation frequency at an

excitation amplitude of 5 N
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Figure 21 shows the normal force time-domain

diagram of the friction system, the vibration velocity

time-domain signal, and the FFT analysis results for

excitation frequencies of 0.51 rad/s, 1.25 rad/s, and

3.98 rad/s. The meaning of t1 in Fig. 21 is consistent

with that in Fig. 8, and the details of the graph in

Fig. 21c are consistent with that in Fig. 8c. At an

excitation frequency of 0.51 rad/s, the excitation

frequency does not cause a harmonic response of the

system, and the system has multiple response main

frequencies. At 1.25 rad/s, the excitation frequency

stimulates a multi-order harmonic response of the

system and is consistent with the third-order response

frequency of the friction system. At 3.98 rad/s,

although the excitation frequency stimulates a multi-

order harmonic response of the system, it is equal to

the high-order response of the system, and the

vibration state of the system is disordered. Increasing

the difference between the friction coefficients from

(ls = 0.4, lk = 0.2) to (ls = 0.4, lk = 0.1) results in

the deformation of the limit cycle of the mass

movement and an increase in the range in which the

system is in a state of chaotic vibration.

Figure 22 shows the bifurcation diagram of the

displacement response of the mass with the excitation

amplitude at an excitation frequency of 0.5 rad/s. The

bifurcation graph is decomposed into four sections:

’I’, ’II’, ’III’, and ’IV’. In area ’I’, the system diverges

from a single cycle to multiple cycles and finally

enters a chaotic state as the excitation amplitude

enhances. The excitation amplitude values of 1.8 N,

2.8 N, and 3.6 N are chosen to calculate the response

frequency of the system. In area ’I’, the external

excitation frequency does not cause a higher response

Fig. 20 a Phase diagram, b phase-space diagram, and c Poincaré cross-section diagram of the system for different excitation

frequencies
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frequency of the system (see Table 6), and the system

remains in a state of chaotic motion. In area ’II’, the

system has a smaller vibration amplitude. The exci-

tation amplitude values of 5.8 N, 6.9 N, and 7.8 N are

chosen to calculate the response frequency of the

system. At this time, the external excitation frequency

does not produce a harmonic response and a higher

energy response frequency (see Table 6) of the system.

In area ’III’, the system enters a single-cycle motion

state, and the external excitation frequency is consis-

tent with the response frequency of the system with the

highest energy (see Table 6). As the excitation

amplitude value further increases, the system bifur-

cates into a two-period motion state in area ’IV’, and

the external excitation frequency remains the same as

the response frequency of the system with the highest

energy. These results show that increasing the

difference between DSFCs increases the likelihood

of the system being in a multi-period vibration state or

chaotic motion state. When the excitation amplitude

value is very large, the system may branch into a

multi-periodic vibration state, even if the external

excitation frequency is consistent with the main

response frequency of the system with the highest

energy.

Further, we discuss the influence of the change of

friction coefficient on the stick–slip vibration charac-

teristics of the system under the action of alternating

normal force, and select F0 = 25 N, the excitation

amplitude Fx = 5 N, the excitation frequency

x = 2.5 rad/s. The static friction coefficient is kept

constant at 0.4, and the kinetic friction coefficient

increases from 0.05 to 0.4. The bifurcation diagram of

the system vibration displacement response with the

Fig. 21 a Normal force time-domain diagram, b velocity time-domain diagram, and c frequency spectrum diagram of the system for

different excitation frequencies
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dynamic friction coefficient is shown in Fig. 23. It can

be seen that with the increase in the kinetic friction

coefficient, the vibration displacement response of the

system gradually evolves from an irregular chaotic

motion state to a periodic motion state, and the larger

the kinetic friction coefficient is, the more obvious this

periodicity is. In the region where the coefficient of

kinetic friction is less than 0.077, the fluctuation range

of the displacement response is much larger than in

other regions. These results show that increasing the

difference between DSFCs increases the likelihood of

the system being in chaotic motion state.

6 Conclusion

The experiments demonstrated that an alternating

normal force changed the vibration state of the system.

We selected two sets of dynamic and static friction

coefficients and used a single-DoF model to

Fig. 22 Bifurcation

diagram of the system

displacement with the

excitation amplitude at an

excitation frequency of

0.5 rad/s

Table 6 Main response frequency of the system for different excitation amplitudes

Area Excitation amplitude

Fx(N)

Excitation

frequency(Hz)

The main frequency with the highest

energy(Hz)

Median force: 25 N Excitation

frequency: 0.5 rad/s

I 1.8 0.0796 0.0637

2.8 0.0796 0.0637

3.6 0.0796 0.0637

II 5.8 0.0796 0.2188

6.9 0.0796 0.0637

7.8 0.0796 0.1591

III 8.9 0.0796 0.0796

10.5 0.0796 0.0796

12.6 0.0796 0.0796

IV 14.2 0.0796 0.0796
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investigate the influence of the normal force on the

vibration characteristics of the system. The system had

more abundant dynamic vibration characteristics

under an alternating normal force than a constant

normal force. Furthermore, the effects of different

excitation amplitudes and excitation frequencies on

the alternating normal force on the system’s vibration

characteristics were obtained. The main conclusions

are as follows:

1. For both sets of dynamic and static friction

coefficients, as the constant normal force

increased, the vibration amplitude of the system,

the amplitude of the limit cycle, and the adhesion

time of the system increased. When the difference

between DSFCs was small, the system had a

complete and clear limit cycle. Reducing the

coefficient of dynamic friction led to an increase in

the difference between DSFCs, and the limit cycle

of the system was deformed.

2. Under the influence of changing excitation fre-

quency and excitation amplitude, the system

might be in a single-periodic, multi-periodic, and

chaotic stick–slip vibration state. When the exter-

nal excitation frequency caused a harmonic

response of the system and was consistent with

the system’s highest energy response frequency or

coincided with the low-order even-order (second-

order, fourth-order) main frequency, the system

was in a single-cycle stick–slip vibration state.

When the excitation frequency was different from

the system’s highest energy response frequency,

or when the excitation frequency was in keeping

with the odd-order main frequency of the system,

the system could enter various vibration states. In

addition, when the excitation frequency and

excitation amplitude were very too high, the

system could enter multiple vibration states

earlier.

3. Under the influence of changing excitation fre-

quency and excitation amplitude, the system was

more likely to enter a chaotic vibration state or

period-doubling bifurcation state when there was

a large difference between DSFCs.

Acknowledgements The authors are grateful for the

Independent Research Projects of State Key Laboratory of

Traction Power (2020TPL-T06), the Financial Support of the

National Natural Science Foundation of China (No. 51822508),

and the Sichuan Province Science and Technology Support

Program (No. 2020JDTD0012).

Funding The Independent Research Projects of State Key

Laboratory of Traction Power (2020TPL-T06), the Financial

Support of the National Natural Science Foundation of China

(No. 51822508), the Sichuan Province Science and Technology

Support Program (No. 2020JDTD0012).

Fig. 23 Bifurcation

diagram of system

displacement response with

dynamic friction coefficient

123

The effect of dynamic normal force 91



Data availability The data used in this research work are

available from the authors by reasonably request.

Declarations

Conflict of interest The authors declare that they have no

conflict of interest.

References

1. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal,

and chaos, Part I: mechanics of contact and friction. Appl.

Mech. Rev. 47, 209–226 (1994)

2. Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111,

1525–1548 (2002)

3. Lima, R., Sampaio, R.: Parametric analysis of the statistical

model of the stick-slip process. J. Sound Vib. 397, 141–151

(2017)

4. Lima, R., Sampaio, R.: Construction of a statistical model

for the dynamics of a base-driven stick-slip oscillator.

Mech. Syst. Signal Proc. 91, 157–166 (2017)

5. Du, Z.W., Fang, H.B., Zhan, X., Xu, J.: Experiments on

vibration-driven stick-slip locomotion: a sliding bifurcation

perspective. Mech. Syst. Signal Proc. 105, 261–275 (2018)

6. Woodhouse, J.: The acoustics of the violin: a review. Rep.

Prog. Phys. 77, 115901 (2014)

7. He, B.B., Ouyang, H.J., He, S.W., Ren, X.M.: Dynamic

analysis of integrally shrouded group blades with rubbing

and impact. Nonlinear Dyn. 92, 2159–2175 (2018)

8. Bettella, M., Harrison, M.F., Sharp, R.S.: Investigation of

automotive creep groan noise with a distributed-source

excitation technique. J. Sound Vib. 255, 531–547 (2002)

9. Jearsiripongkul, T., Hochlenert, D.: Disk brake squeal:

modeling and active control. 2006 IEEE Conference on

Robotics, Automation and Mechatronics. (2006)

10. Popp, K., Stelter, P.: Stick-slip vibrations and chaos. Philos.

Trans. R. Soc. A 332, 89–105 (1990)

11. VanDeVelde, F., DeBaets, P.: Mathematical approach of the

influencing factors on stick-slip induced by decelerative

motion. Wear 201, 80–93 (1996)

12. Li, Z.L., Ouyang, H., Guan, Z.Q.: Friction-induced vibra-

tion of an elastic disc and a moving slider with separation

and reattachment. Nonlinear Dyn. 87, 1045–1067 (2017)

13. Lisowski, B., Retiere, C., Moreno, J.P.G., Olejnik, P.:

Semiempirical identification of nonlinear dynamics of a

two-degree-of-freedom real torsion pendulum with a

nonuniform planar stick–slip friction and elastic barriers.

Nonlinear Dyn. 100, 3215–3234 (2020)

14. Pascal, M.: Sticking and nonsticking orbits for a two-de-

gree-of-freedom oscillator excited by dry friction and har-

monic loading. Nonlinear Dyn. 77, 267–276 (2014)

15. Wang, X.C., Mo, J.L., Ouyang, H., Huang, B., Lu, X.D.,

Zhou, Z.R.: An investigation of stick-slip oscillation of Mn-

Cu damping alloy as a friction material. Tribol. Int. 146,

106024 (2020)

16. Nakano, K.: Two dimensionless parameters controlling the

occurrence of stick-slip motion in a 1-DOF system with

Coulomb friction. Tribol. Lett. 24, 91–98 (2006)

17. McMillan, A.J.: A non-linear friction model for self-excited

vibrations. J. Sound Vib. 205, 323–335 (1997)

18. Marin, F., Alhama, F., Moreno, J.A.: Modelling of stick-slip

behaviour with different hypotheses on friction forces. Int.

J. Eng. Sci. 60, 13–24 (2012)

19. Oestreich, M., Hinrichs, N., Popp, K.: Bifurcation and sta-

bility analysis for a non-smooth friction oscillator. Arch.

Appl. Mech. 66, 301–314 (1996)

20. Andreaus, U., Casini, P.: Dynamics of friction oscillators

excited by a moving base and/or driving force. J. Sound Vib.

245, 685–699 (2001)

21. Popov, V.L., Starcevic, J., Filippov, A.E.: Influence of

ultrasonic in-plane oscillations on static and sliding friction

and intrinsic length scale of dry friction processes. Tribol.

Lett. 39, 25–30 (2010)

22. Wei, D.G., Song, J.W., Nan, Y.H., Zhu, W.W.: Analysis of

the stick-slip vibration of a new brake pad with double-layer

structure in automobile brake system. Mech. Syst. Signal

Proc. 118, 305–316 (2019)

23. Ozaki, S., Hashiguchi, K.: Numerical analysis of stick-slip

instability by a rate-dependent elastoplastic formulation for

friction. Tribol. Int. 43, 2120–2133 (2010)

24. Lee, S.M., Shin, M.W., Lee, W.K., Jang, H.: The correlation

between contact stiffness and stick-slip of brake friction

materials. Wear 302, 1414–1420 (2013)

25. Vadivuchezhian, K., Sundar, S., Murthy, H.: Effect of

variable friction coefficient on contact tractions. Tribol. Int.

44, 1433–1442 (2011)

26. Fu, T., Wang, W.H., Ge, N., Wang, X.G., Zhang, X.Y.:

Intelligent computing and simulation in seismic mitigation

efficiency analysis for the variable friction coefficient RFPS

structure system. Neural Comput. Appl. 33, 925–935 (2020)

27. Hashiguchi, K., Ozaki, S.: Constitutive equation for friction

with transition from static to kinetic friction and recovery of

static friction. Int. J. Plast. 24, 2102–2124 (2008)

28. Wei, D.G., Ruan, J.Y., Zhu, W.W., Kang, Z.H.: Properties

of stability, bifurcation, and chaos of the tangential motion

disk brake. J. Sound Vib. 375, 353–365 (2016)

29. Rusli, M., Fesa, M.H., Dahlan, H., Bur, M.: Squeal noise

analysis using a combination of nonlinear friction contact

model. Int. J. Automot. Mech. Eng. 17, 8160–8167 (2020)

30. Wang, X.C., Huang, B., Wang, R.L., Mo, J.L., Ouyang,

H.J.: Friction-induced stick-slip vibration and its experi-

mental validation. Mech. Syst. Signal Proc. 142, 106705

(2020)

31. Liu, N.Y., Ouyang, H.J.: Friction-induced vibration con-

sidering multiple types of nonlinearities. Nonlinear Dyn.

102, 2057–2075 (2020)

32. Hong, H.K., Liu, C.S.: Coulomb friction oscillator: mod-

elling and responses to harmonic loads and base excitations.

J. Sound Vib. 229, 1171–1192 (2000)

33. Hong, H.K., Liu, C.S.: Non-sticking oscillation formulae for

Coulomb friction under harmonic loading. J. Sound Vib.

244, 883–898 (2001)

34. Jang, Y.H., Barber, J.R.: Effect of phase on the frictional

dissipation in systems subjected to harmonically varying

loads. Eur. J. Mech. A-Solids 30, 269–274 (2011)

35. Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global

slip in a longitudinal line contact under non-uniform normal

loading. Tribol. Lett. 38, 313–323 (2010)

123

92 Y. G. Zhu et al.



36. Pilipchuk, V., Olejnik, P., Awrejcewicz, J.: Transient fric-

tion-induced vibrations in a 2-DOF model of brakes.

J. Sound Vib. 344, 297–312 (2015)

37. Liu, N.Y., Ouyang, H.J.: Friction-induced vibration of a

slider-on-rotating-disc system considering uniform and

non-uniform friction characteristics with bi-stability. Mech.

Syst. Signal Proc. 164, 108222 (2022)

38. Krallis, M., Hess, D.P.: Stick-slip in the presence of a nor-

mal vibration. Lubr. Sci. 8, 205–219 (2002)

39. Papangelo, A., Ciavarella, M.: Effect of normal load vari-

ation on the frictional behavior of a simple Coulomb fric-

tional oscillator. J. Sound Vib. 348, 282–293 (2015)

40. Pasternak, E., Dyskin, A., Karachevtseva, I.: Oscillations in

sliding with dry friction. Friction reduction by imposing

synchronised normal load oscillations. Int. J. Eng. Sci. 154,

103313 (2020)

41. Karnopp, D.: Computer simulation of stick-slip friction in

mechanical dynamic systems. J. Dyn. Syst., Meas Control

107, 100–103 (1985)

42. Wang, X.C., Wang, R.L., Huang, B., Mo, J.L., Ouyang,

H.J.: A study of effect of various normal force loading forms

on frictional stick-slip vibration. J. Dyn. Monit. Diagn. 1,

46–55 (2022)

43. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.:

Determining Lyapunov exponents from a time series.

Physica D 16, 285–317 (1985)

44. Wei, D.G., Zhu, W.W., Wang, B., Ma, Q., Kang, Z.H.:

Effects of brake pressures on stick-slip bifurcation and

chaos of the vehicle brake system. J Vibroeng 17,

2718–2732 (2015)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

The effect of dynamic normal force 93


	The effect of dynamic normal force on the stick--slip vibration characteristics
	Abstract
	Introduction
	Single-degree-of-freedom mathematical model
	Test equipment, results and discussion
	Test equipment and parameters
	Test results and discussion

	The stick--slip vibration characteristics obtained from a single-degree-of-freedom theoretical model
	The stick--slip vibration characteristics of the system under a constant normal force
	The stick--slip vibration characteristics of the system under an alternating normal force

	Influence of an alternating normal force on the system vibration characteristics for different friction coefficients
	The stick--slip vibration characteristics of the system under a constant normal force
	The stick--slip vibration characteristics of the system under an alternating normal force

	Conclusion
	Funding
	Data availability
	References




