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Abstract In this paper, planar forced oscillations of

a particle connected to the support via two nonlinear

springs linked in series and two viscous dampers are

investigated. The constitutive relationships for elastic

forces of both springs are postulated in the form of the

third-order power law. The geometric nonlinearity

caused by the transverse motion of the pendulum is

approximated by three terms of the Taylor series,

which limits the range of applicability of the obtained

results to swings with maximum amplitudes of about

0.6 rad. The system has two degrees of freedom, but

its motion is described by two differential equations

and one algebraic equation which have been derived

using the Lagrange equations of the second kind. The

classical multiple scales method (MSM) in the time

domain was employed. However, the MSM variant

with three scales of the time variable has been

modified by developing new and dedicated algorithms

to adapt the technique to solving problems described

by the differential and algebraic equations (DAEs).

The paper investigates the cases of forced and damped

oscillation in non-resonant conditions, three cases of

external resonances, and the internal 1: 2 resonance in

the system. Moreover, the analysis of the stationary

periodic states with external resonances was carried

out, and investigations into the system’s stability were

concluded in each case. Two methods of assessing

asymptotic solutions have been proposed. The first is

based on the determination of the error satisfying the

equations of the mathematical model. The second one

is a relative measure in the sense of the L2-norm,

which compares the asymptotic solution with the

numerical one determined using the NDSolve proce-

dure of Mathematica software. These measures show

that the applied MSM solves the system to a high

degree of accuracy and exposes the key dynamical

features of the system. It was observed that the system

exhibits jump phenomena at some points in the

resonance cases, with stable and unstable periodic

orbits. This feature predicts chaotic vibration in the

system and defines the regions for its applications.

Keywords Asymptotic analysis � Multiple scales

method � Differential–algebraic system � Springs in

series

1 Introduction

Nowadays, numerous computational techniques and

algorithms are developed and offered for applied
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scientists and engineers to study various mathematical

models governed by nonlinear PDEs and ODEs.

However, direct use of the finite element method,

finite-difference method, the Bubnov–Galerkin

method, etc., reduces the problem described by the

nonlinear PDEs to that of a set of a large number of

coupled second-order nonlinear ODEs sometimes

linked with algebraic equation (AE) either linear or

nonlinear.

It may happen that in the case of coupled nonlinear

ODEs and AEs, mainly when it involves time-

dependent and discontinuous coefficients, a direct

numerical analysis does not allow for proper conclu-

sions of the obtained results (digits) though performed

with the help of illustrative 2D/3D figures. In many

instances, some key nonlinear features are hidden and

sometimes omitted while carrying out direct numer-

ical studies.

On the other hand, it was observed that the

traditional approach based on analytical/semi-analyt-

ical techniques might reveal many exciting features

like the prediction of various types of resonances and

stationary/nonstationary processes based on the

reduced amplitude-phase ODEs. Moreover, other

phenomena such as jump and hysteresis with simul-

taneous quantifying bifurcation diagrams and stability

of the periodic solutions can be observed.

There is also an observed attempt to the second step

of reducing the problems to a few degrees of freedom

systems governed by second-order ODEs based on

some introduced assumptions and hypotheses.

As it is well-recognized [1], the asymptotic method

(AM) combined with the multiple scale method

(MSM) allows one to shed light and give a physical

interpretation to the usually disordered and sometimes

abundant numerically obtained data.

It occurs that the mentioned analytical approaches

are not limited to weak nonlinearity, and they are

nowadays strongly supported by algebraic manipula-

tors of various technical computing environments

being widely available and extensively employed by

scientists and engineers. Additionally, there are situ-

ations where direct numerical simulation may lead to

difficulties in getting reliable and validated solutions

but can be overcome by appropriate use of the AM

combined with MSM.

The combination of AM and MSM stands for the

effective tool in the range of limiting values of the

nonlinear dynamics of the carried out processes where

the use of the computational schemes is problematic. It

should be emphasized that in many cases, those

solutions can be successfully used beyond their

nominal range of application. They can even be

understood as first approximations of some asymptotic

approaches, which allows for constructing subsegment

approximations that refine the corresponding

solutions.

We briefly describe a few works related to our study

in what follows.

Rand and Holmes [2] studied a pair of weakly

coupled van der Pol oscillators, emphasizing phase-

locked periodic motions. The problem was reduced to

the study of three algebraic equations.

Benedettini and Rega [3] employed a high-order

perturbation analysis for the primary resonance while

analyzing the nonlinear dynamics of an elastic cable

under planar excitation. Multivaluedness of the

response curves were illustrated.

Luongo and Polone [4] carried out the multiple

time-scale investigation for divergence-Hopf bifurca-

tion of imperfect symmetric systems. The method was

validated through the analysis of a 2DoF rigid bar

system (Augustin’s model) and transversal flow.

Rega et al. [5] used two analytical approaches to

construct asymptotic models for the nonlinear 3D

responses of an elastic suspended shallow cable under

harmonic excitation. Primary resonances of the in-

plane and out-of-plane symmetric/antisymmetric

modes were investigated based on the multiple scales

method. Frequency response curves were obtained and

discussed.

Belhaq and Houssini [6] proposed a novel method

for the construction of an asymptotic expansion of the

quasi-periodic solution based on the KBM (Krylov–

Bogolubov–Mitropolskiy) method combined with the

multiple scale method. The authors also considered

features of chaos and its suppression based on 1DoF

nonlinear oscillator parametrically and externally

driven.

Leamy and Gottlieb [7] studied internal resonances

in whirling strings with an account of longitudinal

dynamics and material nonlinearities. Direct applica-

tion of the multiple scales method on the three

governing PDEs was addressed, and periodic, quasi-

periodic, and aperiodic motions were detected and

discussed.

Belhaq and Lakrad [8] extended the classical

multiple scales method by employing the Jacobian
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elliptic functions. The advantages of the proposed

method were outlined.

Belhaq et al. [9] found asymptotic solutions of

damped nonlinear quasi-periodic Mathieu equations

using a double multiple scales method. Explicit

analytical approximations were reported and then

compared with the numerical integration of the

original governing ODE.

Lacarbonara et al. [10] employed two analytical

methods, i.e., the full-basis Galerkin discretization

approach and the direct treatment, both based on the

multiple scales technique. Closed-form conditions for

nonlinear orthogonality of the modes were discussed,

among others.

Abdulle and Weinan [11] developed a numerical

method called the finite-difference heterogeneous

MSM for solving multi-scale parabolic systems. The

novel approach was supplemented by a few illustrative

examples.

Luongo et al. [12] adopted the multiple scale

method to study 1:1 resonant multiple Hopf bifurca-

tions of discrete autonomous dynamical systems. They

used fractional power expansion of a perturbation

parameter, and they obtained m-order differential

bifurcation equation in the complex amplitude of the

unique critical vector. In order to illustrate the

algorithm, mechanical systems subjected to aerody-

namic forces triggering 1:1 resonant double Hopf

bifurcations were presented.

Warmiński [13] studied oscillations of parametri-

cally and self-excited 2DoF system with a Duffing

nonlinearity. Using the multiple scales method, he

detected synchronization phenomena near the princi-

pal resonances, i.e., in the neighborhood of the natural

frequencies; the first p1, the second p2, and near the

combination (p1 ? p2)/2.

Abouhazim et al. [14] investigated three-period

quasi-periodic oscillators in the vicinity of 2:2:1

resonance in a self-excited quasi-periodic Mathieu

equation using the method of multiple scales. The

efficiency of the method was validated.

Luongo and Di Egidio [15] employed the multiple

scale method to a 1D continuous model to derive

equations governing the system’s asymptotic dynam-

ics around a bifurcation point. Nonlinear, integro-

differential equations of motion were derived and

expanded up to cubic terms. Divergence, Hopf, and

double-zero bifurcations were revealed. They

employed multiple scales analysis to study the three

bifurcations, and the relevant bifurcation equations

were derived in their normal form.

Abouhazim et al. [16] investigated the damped

cubic nonlinear quasi-periodic Mathieu equation in

the vicinity of the principal 2:2:1 resonance. In

particular, the effects of damping and nonlinearity

on the resonant quasi-periodic motions were reported.

Srinil et al. [17] investigated resonant multimodal

dynamics due to 2:1 internal resonances in the finite-

amplitude free oscillations of horizontal/inclined

cables. A second-order asymptotic analysis under

planar 2:1 resonance was analyzed with the help of

multiple scales. Approximate horizontal/inclined

cable models were validated numerically.

Kramer et al. [18] addressed the problems dealing

with applications of MSM to three or more time scales.

Gottlieb and Cohen [19] studied the self-excited

oscillations of a string on an elastic foundation under a

nonlinear feed-forward force. The employed asymp-

totic multiple scale method yielded slowly varying

evolution equations. The derived bifurcation structure

included various regions of both stable and unsta-

ble coexisting periodic solutions defined by primary

and secondary Hopf stability thresholds. They found

the existence of quasi-periodic, combination-tone

solutions and complex nonstationary solutions that

emerged in a range of the asymptotically predicted

unstable regions.

Suchorsky et al. [20] employed a two-variable

expansion perturbation method to study the oscilla-

tions of a van der Pol-type system with delayed

feedback. The resulting amplitude-delay relation

predicted two Hopf bifurcation curves, such that in

the region between these curves, oscillations were

quenched.

Zulli and Luongo [21] considered a 2DoF nonlinear

system modeling dynamics of two towers exposed to

turbulent window flow and linked by a nonlinear

viscous device. Periodic and quasi-periodic solutions

were revealed and studied by using a perturbation

technique. In particular, the effects of viscous damp-

ing on the dynamics of the structure were illustrated,

including mitigating the oscillations of the two

independent towers.

Cacan et al. [22] developed an enriched multiple

scales method and studied periodic solutions of the

classical forced Duffing and van der Pol oscillators.

Analytical investigations were validated by numerical

simulations.
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Settimi et al. [23] employed multiple scale asymp-

totics to carry out an external feedback control in a

nonlinear continuum formulation of a noncontact

AFM model. The investigation included controllable

periodic dynamics and additional periodic and distinct

quasi-periodic solutions beyond the asymptotic sta-

bility thresholds.

Mora and Gottlieb [24] analyzed the oscillations of

a parametrically excited microbeam-string affected by

nonlinear damping. Both principal parametric reso-

nance and 3:1 internal resonance were studied using

the asymptotic multiple scales method. A bifurcation

structure, including the coexisting in-plane and out-of-

phase solutions, Hopf bifurcations, and conditions for

the loss of orbital stability combined with nonstation-

ary quasi-periodic solutions and strange chaotic

attractors were reported.

Wilbanks et al. [25] used the multiple scales

technique to analyze a two-scale command shaping

feed-forward control method to reduce undesirable

residual oscillations of traditional and non-traditional

Duffing systems.

Kovaleva et al. [26] analyzed the parametric

pendulum’s stationary and nonstationary oscillatory

dynamics using the limiting phase trajectory concept.

A reduced-order model was proposed, allowing the

prediction of highly modulated regimes outside the

traditionally considered range of initial conditions.

Guo and Rega [27] formulated solvability condi-

tions while carrying out multi-scale dynamic analysis

of 1D structures with non-homogeneous boundaries.

The formulation allowed one to study four typical

continuous structures, i.e., strings, cables, beams, and

arches.

Kovaleva et al. [26] studied low- and high-ampli-

tude oscillators of three nonlinear coupled pendula

(trimer) beyond the quasi-linear approximation. The

reduction in the system dimension via the asymptotic

procedure allowed for revealing energy exchange and

nonstationary energy localization. The beating-like

periodic and quasi-periodic recurrent energy exchange

between the pendula was addressed.

Fronk and Leamy [28] revealed angle- and ampli-

tude-dependent invariant waveforms, and plane-wave

stability in 2D periodic media by higher-order multi-

ple scales analysis. Simultaneous analysis of nonlinear

shear lattices confirmed that the inclusion of higher-

order terms in the injected waveforms significantly

reduced the growth of higher harmonics. Implications

for encryptions strategies and damage detection using

weakly nonlinear lattices were suggested.

Rand et al. [29] employed the perturbation tech-

nique combined with the multiple scale method to

derive and analyze a simplified third-order model

capturing the key features of the dynamics of

microscale oscillators with thermos-optical feedback.

In addition, the bifurcation diagram of the system was

presented.

Clementi et al. [30] addressed the internal reso-

nance of a 2DoF mechanical system with quadratic

and cubic nonlinearities using the multiple scale

method. The authors highlighted a few unexpected

but relevant features and hinted at exploiting the

obtained results.

Guo and Rega [31] showed that the full-spectrum

forced solutions at lower-order and the high-order

cross-interactions with the structural modes were

captured by the direct perturbation technique matched

with the multiple scales method, but not by the

discretized perturbation. Two different correction

schemes were utilized to remove the occurred errors.

The obtained results can be employed to analyze

structures with initial curvature.

Warmiński [32] studied regular and chaotic oscil-

lations of a nonlinear structure under the self-,

parametric, and external excitations. Approximate

analytical solutions were derived based on the multi-

ple scale method. The similarities and differences

between the van der Pol and Rayleigh models were

demonstrated for periodic, quasi-periodic, and chaotic

oscillations.

Lenci et al. [33] studied the internal resonances

between the longitudinal and transversal oscillations

of forces on Timoshenko beam with an axial end

spring by means of the multiple scale method. The

results were reliability discussed. Effects of jumping

phenomena from hardening to softening by crossing

the exact internal resonance value were illustrated.

On the other hand, mechanical systems containing

parallel or serially connected springs are widely

investigated in the field of theoretical and applied

mechanics. Such systems are applied in mechanical

and civil engineering, mechatronics, and micro-elec-

tro-mechanical systems (MEMS). Various spatial

configurations and connections between the springs

could exhibit rich dynamical behavior, especially in

the case of nonlinear elastic characteristics. An

interesting way of observing the behavior of such

123

4 G. Sypniewska-Kamińska et al.



systems could be in the case of various resonances. For

example, Andrzejewski and Awrejcewicz [34] and

Suciu et al. [35] tested the serial and parallel massless

springs in the structure of a car suspension. The

authors showed that the proper connections signifi-

cantly influenced oscillation damping.

The one-dimensional oscillator consisting of two

springs, one of which has a nonlinear characteristic,

was investigated by Telli and Kopmaz in [36]. The

differential–algebraic system that governs the motion

was tested in two ways. At first, the initial value

problem was solved numerically. The second

approach consisted of deriving one approximate

differential equation for the internal motion for which

the approximate analytical method was employed. The

used procedure yielded the appropriate properties of

the springs.

The system of the spring in various configurations

was described by Weggel et al. in [37]. The authors

showed how to find the effective stiffness of a system

of linear springs connected in various ways. The

approximate analytical method of nonlinear normal

modes was applied to qualitatively analyze the

strongly nonlinear spring-body system dynamics of

two degrees of freedom (DOF).

Manevich and Musienko [38] presented the asymp-

totic analysis of the one and two DOF systems. The

authors contributed an effective method of qualitative

research of non-damped free oscillations.

Two systems of one and two DOF with the springs

connected in series governed by ODEs and ALs

analyzed by Starosta et al. in [39] are of differential

and algebraic types. The suitably modified multiple

scale method (MSM) was applied to solve the

dynamical problem of free non-damped oscillation.

The nonlinear damping in a one-dimensional oscilla-

tor was examined by Awrejcewicz et al. [40].

In the linear case, the superposition principle

applies, and the connections of springs in series create

no difficulties. Depending on the degree of complexity

of the connections, the equivalent spring constant can

be introduced, or one may retain the algebraic

equations that result in a positive semi-definite mass

matrix in the model [41]. Hence, it is easy to eliminate

one coordinate of the coordinates. However, in

nonlinear systems, the principle of superposition does

not work, which is a source of model-related and

computational difficulties. It is not possible to intro-

duce the equivalent stiffness in the form of a close

relationship. Therefore, it becomes necessary to solve

problems described by differential–algebraic equa-

tions (DAEs).

This paper investigates the forced planar motion of

the small body connected to the support via two

nonlinear springs coupled in series and two viscous

dampers. An in-depth analysis of the behavior of the

system is based on the asymptotic approach with the

use of MSM in the time domain. Although the multi-

scale method is a proven and widely used tool in

nonlinear dynamics for solving problems described by

differential equations, only a few papers are directed

to problems involving DAEs. The MSM method based

on the operator of the harmonic oscillator causes that

the means used to solve the algebraic equation cannot

be too advanced. They cannot violate the linear

character of the operator. Nevertheless, this approach

occurred to be effective for analyzing quite simple

mechanical systems considered in our earlier papers

[39, 40]. Therefore, the purpose of the present paper is

to examine this approach in planar system with two

degrees of freedom and physical and geometrical

nonlinearities.

Besides the issue of developing an algorithm for

employing the method, the main problem with the

application of MSM is whether a usually small number

of asymptotic series approximating the solution will

satisfy the algebraic equations with sufficient accu-

racy. Therefore, the paper proposes two ways of

assessing asymptotic solutions. One of them, an

absolute error nature, is based on the determination

of the error satisfying individual equations of the

whole model. The second one is a relative measure in

the sense of the L2-norm that compares the asymptotic

solution with the numerical one determined using the

NDSolve procedure of Mathematica software.

The study of the vibrational motion of the spring

pendulum with two springs in series presented in the

paper is quite broad. It includes the cases of forced and

damped oscillation in non-resonant conditions, three

separately considered types of external resonances,

and the internal 1: 2 resonance. Moreover, as part of

the examination of external resonances, an analysis of

the stationary periodic states is also carried out.

It should be noted that coupled spring (elastic)

pendula are rarely investigated based on analytical

approaches due to the problems of constructing the
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solutions validated for both stationary and nonstation-

ary dynamics.

Our work not only gives hints to solving similar

problems, but also exhibits its interdisciplinary

aspects, including the multi-level quantum systems

by unifying nonstationary classical and quantum

problems.

Though the mathematical model is derived based

on the classical mechanics’ example, it can be used to

study other physical systems like paraffin crystals,

ferromagnetic chains, and other organic molecules,

including DNA [42, 43].

The above-mentioned development of algorithms

for the application of the MSM method to solve five

separate cases of motion of the spring pendulum

described by DAEs that are characterized by both

physical and geometric nonlinearities stands for a

novelty of the paper. In addition, we propose two types

of measures for quantitatively examining the accuracy

of the asymptotic solutions. The evaluation of the error

using a set of six quantities, assigned to individual

equations and unknowns, gave one the answer to the

doubt as to whether the accuracy of the solutions

satisfies that of the algebraic equation or not. It turned

out that in each of the considered cases, the accuracy

of its satisfying is the highest.

The rest of the paper is organized as follows. The

aspects connected with modeling, deriving the gov-

erning equations based on the Lagrangian approach,

and dimensionless formulation are outlined in Sect. 2.

A brief introduction to MSM and the assumptions

determining the applicability of the asymptotic solu-

tions stand for the subject of Sect. 3. A detailed

description of the way of deriving the asymptotic

solution for non-resonant oscillation of the pendulum

and a discussion of results are presented in Sect. 4.

Asymptotic solutions for three cases of external

resonances are derived and discussed in Sect. 5. The

determination of stationary periodic oscillations for

the external resonances together with the stability

analysis is described in Sect. 6. The asymptotic

solution for 1: 2 internal resonance is presented in

Sect. 7. Finally, conclusions and remarks are reported

in Sect. 8.

2 Mathematical model

Let us consider two small particles of mass m and m0

sliding on a bar. The system shown in Fig. 1 is

constrained to the motion on the vertical plane. The

bar can turn about the pin at the immovable point O,

while the particles are coupled via a spring. The

second spring connects one of the balls with point O.

In their natural state, the springs have the lengths L01

and L02; respectively. The relationship between the

elastic force and the elongation for each spring can be

written as follows:

Fi ¼ kiðDi þ KiD
3
i Þ; i ¼ 1; 2; ð1Þ

where ki;Ki are the elastic coefficients of the i-th

spring, and Di its total elongation.

The nonlinear contributions to the whole elastic

force are assumed to be small. There are two viscous

dampers with coefficients C1 and C2 in the system.

Both springs, the bar, and the dampers are assumed to

be massless. The size of the force F
!

, acting on the ball

of mass m along the bar, changes harmonically

according to the formula F tð Þ ¼ F0cos X1tð Þ, whereas

the bar is loaded by the given torque of magnitude

M tð Þ ¼ M0cos X2tð Þ:
The system has three degrees of freedom. We

introduce the generalized coordinates: X1 tð Þ and

X2 tð Þ, which define the position of the balls, and the

Fig. 1 Spring pendulum with two material points
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angle U tð Þ: The kinetic energy relative to the inertial

system, assumed at point O, has the following form:

T ¼ m0

2
_X1

2 þ L01 þ X1ð Þ2
� �

_U
2

þ m

2
_X2

2 þ L01 þ L02 þ X2ð Þ2 _U
2

� �
: ð2Þ

The potential energy of the conservative forces,

expressed in terms of the generalized coordinates, is as

follows:

V ¼ k1

1

2
X2

1 þ
1

4
K1X

4
1

� �

þ k2

1

2
X2 � X1ð Þ2 þ 1

4
K2 X2 � X1ð Þ4

� �

�g m0 L01 þ X1ð Þ þ m L01 þ L02 þ X2ð Þð ÞcosU: ð3Þ

where g is the Earth’s gravitational acceleration.

The harmonic forcing and the forces contributing to

damping are introduced into consideration as the

generalized forces:

QX1
¼ 0;QX2

¼ F0sinðX1tÞ � C1
_X2;QU

¼ M0sinðX2tÞ � C2
_U: ð4Þ

The Lagrange equations of the second kind yield

the governing equations of motion:

m0
€X1 þ k1 X1 þ K1X

3
1

� �
þ k2 X1 � X2 þ K2 X1 � X2ð Þ3

� �

� m0 L01 þ X1ð Þ _U2 � m0g cosU ¼ 0;
ð5Þ

m €X2 þ C1
_X2 þ k2 X2 � X1 þ K2 X2 � X1ð Þ3

� �

� m L01 þ L02 þ X2ð Þ _U2

� mg cosU ¼ F0 sin X1tð Þ;

ð6Þ

m0 L01 þ X1ð Þ2þm L01 þ L02 þ X2ð Þ2
� �

€Uþ C2
_U

þ m0g L01 þ X1ð Þ sinU

þ mg L01 þ L02 þ X2ð Þ sinUþ 2m0 L01 þ X1ð Þ _X1
_U

þ 2m L01 þ L02 þ X2ð Þ _X2
_U ¼ M0 sin X2tð Þ:

ð7Þ

From Eqs. (5)–(7), one can derive equations gov-

erning the spring pendulum with two nonlinear springs

connected in series. Such a system, shown in Fig. 2,

stands for the subject of the paper. The point

connecting the springs is marked with the symbol S,

and it can be treated as the massless counterpart of the

particle, the mass tending to zero. Therefore, the point

keeps the possibility of movement along the bar.

Formally, the systems shown in Figs. 1 and 2 differ

only in the presence of the ball of mass m0: This means

that assuming that m0 ¼ 0 in Eqs. (5)–(7), we get

k1 X1 þ K1X
3
1

� �
þ k2 X1 � X2 þ K2 X1 � X2ð Þ3

� �

¼ 0;

ð8Þ

m €X2 þ C1
_X2 þ k2 X2 � X1 þ K2 X2 � X1ð Þ3

� �
� m L0 þ X2ð Þ _U2

� mg cosU ¼ F0 sin X1tð Þ;

ð9Þ

m L0 þ X2ð Þ2 €Uþ C2
_Uþ mg L0 þ X2ð ÞsinU

þ 2m L0 þ X2ð Þ _X2
_U

¼ M0sinðX2tÞ; ð10Þ

where L0 ¼ L01 þ L02:

Equation (8) is algebraic and describes the equilib-

rium condition for the forces of both springs. The

mathematical model, given by Eqs. (8)–(10), belongs

to the class of dynamical systems governed by the

differential–algebraic equations (DAEs). Elimination,

in the strict sense, of the X1 coordinate is not a good

option for computational reasons, so both coordinates

are necessary to define the state of the system

unambiguously. Assuming that Eq. (8) depicts con-

straints, the X1 coordinate can be regarded as com-

plementary one, but not independent. As a result, the

system shown in Fig. 2 has two degrees of freedom.

Fig. 2 Pendulum with two springs connected serially
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Bishop et al. [41] discussed the special cases of

linear mechanical systems leading to the formulation

with positively semi-definite matrices of mass or

stiffness. The case with the positively semi-definite

matrix of mass is characterized by the fact that at least

one of the Lagrange equations becomes an algebraic

equation.

The initial conditions of the form:

X2 0ð Þ ¼ X0; _X2 0ð Þ ¼ V0;U 0ð Þ ¼ U0; _U 0ð Þ ¼ X0;

ð11Þ

where X0;V0;U0;X0 are known quantities, and are

necessary for an unambiguous solving of Eqs. (8)–

(10).

The pendulum reaches the stable static equilibrium

position when

U ¼ Ue;X1 ¼ X1e;X2 ¼ X2e; ð12Þ

where

Ue ¼ 0;

k1 X1e þ K1X
3
1e

� �
þ k2 X1e � X2e þ K2 X1e � X2eð Þ3

� �

¼ 0;

k2 X2e � X1e þ K2 X2e � X1eð Þ3
� �

¼ mg:

The problem of vibration of the pendulum is

described by seventeen physical quantities (four

variables and thirteen parameters). Among them, there

are three independent fundamental physical dimen-

sions, namely mass, time, and length. According to the

Buckingham p theorem [44], the problem can be

rewritten in terms of fourteen (i.e., 17–3) dimension-

less quantities, including ten parameters. In order to

transform Eqs. (8)–(10) into their counterpart dimen-

sionless form, we propose to introduce the reference

system with the analogous structure as the considered

one, but with the springs whose elastic properties are

linear, i.e., with K1 ¼ 0 and K2 ¼ 0: The effective

stiffness of the reference system is

ke ¼
k1k2

k1 þ k2

: ð13Þ

The eigenfrequency of the reference system

x ¼
ffiffiffiffi
ke
m

r
ð14Þ

is used for defining the dimensionless time

s ¼ xt: ð15Þ

Assuming the natural length L0 of both springs

increased by X2e as the reference length, i.e., L ¼
L0 þ X2e; we define the dimensionless coordinates

x1 ¼ X1 � X1e

L
; x2 ¼ X2 � X2e

L
: ð16Þ

Observe that both coordinates x1 and x2 are

functions of the dimensionless time s. We also

substitute the original generalized coordinate UðtÞ
with the function u sð Þ of dimensionless time.

The other dimensionless parameters describing the

properties of the system and the harmonic forces are

defined as follows:

k ¼ k2

k1

; a1 ¼ K1L
2; a2 ¼ K2L

2; c1 ¼ C1

mx
; c2 ¼ C2

mL2x
;

w2 ¼ mg

Lke
; f1 ¼ F0

Lke
; f2 ¼ M0

L2ke
; p1 ¼ X1

x
; p2 ¼ X2

x
:

ð17Þ

Dimensionless quantity ai stands for the ratio of the

nonlinear to the linear contribution of the entire spring

force. Parameters c1 and c2 make sense of dimension-

less viscous damping coefficients. The parameter w

expresses the ratio of the frequency of small

isochronous oscillations of a mathematical pendulum

of mass m and length L to the frequency x of the

reference system. The dimensionless coefficient f 1 can

be interpreted as the ratio of the amplitude of the

exciting force F
!

to the magnitude of a force causing

the spring to be elongated twice. Indirectly, a similar

interpretation may be applied to the coefficient f 2

when we assume that M0=L stands for a force.

Making use of definitions (13)–(17), one can write

the equations of the mathematical model in the

following dimensionless form:

x1 þ a1x1 3x2
1e þ 3x1ex1 þ x2

1

� �
� k x2 � x1ð Þ

� 3ka2 x2e � x1eð Þ3

� ka2 x2 � x1ð Þ2
3 x2e � x1eð Þ þ x2 � x1ð Þ ¼ 0;

ð18Þ
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€x2 þ c1 _x2 þ 1 þ kð Þ a2 x2 � x1ð Þ3þ3a2 x2e � x1eð Þ x2 � x1ð Þ2
� �

þ 1 þ kð Þ 1 þ 3a2 x2e � x1eð Þ2
� �

x2 � x1ð Þ

� 1 þ x2ð Þ _u2 þ w2 1 � cosuð Þ ¼ f1 sin p1sð Þ;

ð19Þ

1 þ x2ð Þ2 €uþ c2 _uþ w2 1 þ x2ð Þsinuþ 2 1 þ x2ð Þ _x2 _u
¼ f 2sinðp2sÞ;

ð20Þ

where the quantities x1e and x2e satisfy the follow-

ing equilibrium conditions

x1e þ a1x
3
1e þ k x1e � x2e þ a2 x1e � x2eð Þ3

� �
¼ 0;

1 þ kð Þ x2e � x1e þ a2 x2e � x1eð Þ3
� �

¼ w2:

ð21Þ

The initial conditions (11) in the dimensionless

form are

x2 0ð Þ ¼ x0; _x2 0ð Þ ¼ v0;u 0ð Þ ¼ u0; _u 0ð Þ ¼ x0;

ð22Þ

where x0 ¼ X0

L ; v0 ¼ V0

Lx :

3 Method of finding solution: general remarks

The approximate analytical solution in the asymptotic

sense to the problem given by (18)–(22) is obtained

using the multiple scales method in the time domain

(MSM). Following MSM, we introduce the small

parameter e that is a number satisfying a priori the

inequalities 0\e � 1: Instead of the dimensionless

time s, n variables describe the evolution of the

pendulum over time. We decide to choose the variant

of the MSM with three variables: s0; s1; s2 that are

related to the time s as follows:

si ¼ eis; i ¼ 0; 1; 2: ð23Þ

The unknown generalized coordinates and the

auxiliary function x1ðsÞ are approximated by the

following asymptotic expansions

x2 s; eð Þ ¼
X3

k¼1

ekn2k s0; s1; s2ð Þ þ O e4
� �

; ð24Þ

u s; eð Þ ¼
X3

k¼1

ek/k s0; s1; s2ð Þ þ O e4
� �

; ð25Þ

x1 s; eð Þ ¼
X3

k¼1

ekn1k s0; s1; s2ð Þ þ O e4
� �

; ð26Þ

where functions

n1k s0; s1; s2ð Þ; n2k s0; s1; s2ð Þ;/k s0; s1; s2ð Þ for k ¼
1; . . .; 3 are sght.

The asymptotic expansions (24)–(26) are uniformly

valid on some finite interval h0; sMÞ; where sM is of

order O e�nð Þ: The size of the interval is important in

the context of an intended steady-state study. The use

of three scales, not two, is exactly motivated by the

observation, which is mentioned in the latter part of

the work.

The differential operators relating to the time s are

replaced by operators with partial derivatives. Accord-

ing to the chain rule, we can write

d

ds
¼
X2

j¼0

e j
o

osj
¼ o

os0

þ e
o

os1

þ e2 o

os2

; ð27Þ

d2

ds2
¼ o2

os2
0

þ 2e
o2

os0os1

þ e2 o2

os2
1

þ 2
o2

os0os2

� �

þ 2e3 o2

os1os2

þ O e4
� �

: ð28Þ

Limiting the considering only to a weakly nonlinear

system, we assume that some parameters describing

the pendulum and its loading are small. We express the

assumptions about the smallness as follows:

a1 ¼ e2â1; a2 ¼ e2â2; c1 ¼ e2ĉ1; c2 ¼ e2ĉ2; f1
¼ e2 f̂1; f2 ¼ e2 f̂2: ð29Þ

The coefficients ba1; ba2; bc1; bc2; bf 1; bf 2 are finite

whene ! 0.

In order to ensure the linearity of the differential

operators of approximate equations within the frame-

work of MSM, one needs to approximate the trigono-

metric functions of the angle u. By expanding the

functions in the Taylor series around zero and taking

only the first three terms, we get an approximation that

satisfies these expectations.

sinu � u� 1

3
u3; cosu � 1 � 1

2
u2 ð30Þ
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Due to the occurrence of differential and algebraic

equations, some modifications in the standard MSM

approach are needed to solve the problem

satisfactorily.

4 Non-resonant oscillations

Inserting Eqs. (23)–(26) and (29)–(30) and then

calculating all the necessary derivatives according to

(27)–(28) yields equations with a small parameter in a

few different powers. Each of the three equations

should be satisfied for any value of e. After ordering

the terms of the equations according to the powers of

the small parameter, omitting all terms of the order

O e4ð Þ and higher, one can realize the requirement by

the method of undetermined coefficients. In this way,

we obtain the set of nine equations with unknown

functions n1k s0; s1; s2ð Þ; n2k s0; s1; s2ð Þ; /k s0; s1; s2ð Þ;
where k ¼ 1; 2; 3: The equations are divided into three

groups. The following equations, accompanied by e1,

belong to the first group

kn21 � 1 þ kð Þn11 ¼ 0; ð31Þ

o2n21

os2
0

þ 1 þ kð Þ n21 � n11ð Þ ¼ 0; ð32Þ

o2/1

os2
0

þ w2/1 ¼ 0: ð33Þ

Equations (31)–(33) are called equations of the

first-order approximation. The terms standing at e2

create the following equations of the second-order

approximation

kn22 � 1 þ kð Þn12 ¼ 0; ð34Þ

o2n22

os2
0

þ 1 þ kð Þðn22 � n12Þ

¼ �2
o2n21

os0os1

þ o/1

os0

� �2

� w2

2
/2

1; ð35Þ

o2/2

os2
0

þ w2/2 ¼ �2n21

o2/1

os2
0

� 2
o2/1

os0os1

� 2
on21

os0

o/1

os0

� w2n21/1:

ð36Þ

The coefficients that are accompanied by e3 form

the equations of the third-order approximation

kn23 � 1 þ kð Þn13 ¼ 3ba1x
2
1en11

� 3k�
a 2

x2e � x1eð Þ2 n21 � n11ð Þ;

ð37Þ

o2n23

os2
0

þ 1 þ kð Þ n23 � n13ð Þ ¼ f̂1 sin p1s0ð Þ � ĉ1

on21

os0

� 3 1 þ kð Þâ2 x2e � x1eð Þ2 n21 � n11ð Þ � w2/1/2

� o2n21

os2
1

� 2
o2n21

os0os2

� 2
o2n22

os0os1

þ n21

o/1

os0

� �2

þ2
o/1

os0

o/1

os1

þ o/2

os0

� �
;

ð38Þ

o2/3

os2
0

þ w2/3 ¼ f̂2 sin p2s0ð Þ � ĉ2

o/1

os0

� o2/1

os2
1

� 2
o2/1

os0os2

� 2
o2/2

os0os1

� o2/1

os2
0

n2
21 þ 2n22

� �

� 2
o/1

os0

on21

os1

þ n21

on21

os0

þ on22

os0

� �

� 2n21 2
o2/1

os0os1

þ o2/2

os2
0

� �
� 2

on21

os0

o/1

os1

þ o/2

os0

� �

þ w2

6
/3

1 � w2 n22/1 þ n21/2ð Þ:

ð39Þ

Contrary to the systems governed by only differ-

ential equations, there is one algebraic equation at

each level of the asymptotic approximation. The way

of the approximate solving these equations strongly

depends on the linear nature of the differential

operator which occurs in the other equations. This

requirement makes that the relationship between n1k

and n2k, for k = 1,..,3, is linear. Such a rough

linearization is justified by assumptions (29).

The system of Eqs. (31)–(39) is solved recursively.

In estimating the solution, we always start with the

algebraic equation. The algebraic equations enable

one to express the functions n1k s0; s1; s2ð Þ in terms of

the functions n2k s0; s1; s2ð Þ, where k ¼ 0; 1; 2:

From Eqs. (31) and (34), we get

n1k ¼
k

1 þ kð Þ n2k; fork ¼ 1; 2: ð40Þ

Substituting Eq. (40), for n11, into Eq. (32) yields
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o2n21

os2
0

þ n21 ¼ 0: ð41Þ

The general solution to this linear homogenous

equation is

n21 ¼ B1 s1; s2ð Þeis0 þ B1 s1; s2ð Þe�is0 ; ð42Þ

where i denotes the imaginary unit, B1 and its

complex conjugate B1 are unknown complex-valued

functions of both slower time scales. Taking into

account Eqs. (40) and (42), we can write

n11 ¼ k
1 þ kð Þ B1 s1; s2ð Þeis0 þ B1 s1; s2ð Þe�is0

� �
:

ð43Þ

The general solution to Eq. (32), which also is

linear and homogenous, reads

/1 ¼ B2 s1; s2ð Þeiws0 þ B2 s1; s2ð Þe�iws0 ; ð44Þ

where B2 is the complex conjugate to B2:

We start the solution of the second-order approx-

imation equations from Eq. (35). After substituting

relationship (40) and then solutions (42) and (44), we

obtain

o2n22

os2
0

þ n22 ¼ w2B2B2 �
3

2
w2 B2

2e
2iws0 þ B2e

�2iws0
� �

þ 2i
oB1

os1

eis0 þ oB1

os1

e�is0

� �
:

ð45Þ

The secular terms, which for Eq. (45) are periodic

functions with period 2p, violate the postulate about

the uniform validity of the series (24)–(26). Thus, they

must be removed by satisfying the following

conditions:

oB1

os1

¼ 0;
oB1

os1

¼ 0: ð46Þ

Taking into account (46), we get

o2n22

os2
0

þ n22 ¼ w2B2B2 �
3

2
w2 B2

2e
2iws0 þ B2e

�2iws0
� �

:

ð47Þ

Due to the same form of differential operators of

Eqs. (41) and (47), we omit the general solution to the

homogeneous equation corresponding to Eq. (47).

The particular solution has the following form:

n22 ¼ 3w2

2 4w2 � 1ð Þ B2
2e

2iws0 þ B2e
�2iws0

� �
þ w2B2B2:

ð48Þ

Making use of relationship (40), we determine the

function n12 s0; s1; s2ð Þ, i.e., we have

n12 ¼ 3kw2

2 1 þ kð Þ 4w2 � 1ð Þ B2
2e

2iws0 þ B2e
�2iws0

� �

þ kw2

1 þ kð ÞB2B2:

ð49Þ

Substituting solutions (42) and (44) into Eq. (36)

yields

o2/2

os2
0

þ w2/2 ¼ w2 þ 2w
� �

B1B2e
i 1þwð Þs0

þ w2 � 2w
� �

B1B2e
i w�1ð Þs0

þ w2 � 2w
� �

B1B2e
�i w�1ð Þs0

þ w2 þ 2w
� �

B1B2e
�i wþ1ð Þs0

þ 2iw
oB2

os1

eiws0 þ oB2

os1

e�iws0

� �
:

ð50Þ

The periodic functions with period 2wp are the

secular terms for Eq. (50). The following solvability

conditions provide the elimination of the secular

oB2

os1

¼ 0;
oB2

os1

¼ 0: ð51Þ

The particular solution to the equation, derived

from Eq. (50) taking into account conditions (51), is as

follows:

/2 ¼ �w2 þ 2w

2wþ 1
B1B2e

i wþ1ð Þs0 þ w2 � 2w

2w� 1
B1B2e

i w�1ð Þs0

þw2 � 2w

2w� 1
B1B2e

�i w�1ð Þs0 � w2 þ 2w

2wþ 1
B1B2e

�i wþ1ð Þs0 :

ð52Þ

Beginning with the solution of the third-order

approximation equations, we determine the function

n13 s0; s1; s2ð Þ in terms of n23 s0; s1; s2ð Þ: Employing

Eqs. (37) and (42)–(43), we obtain

n13 ¼ �
3k x2

1e â1 � â2ð Þ þ â2x2e 2x1e � x2eð Þ
� �

1 þ kð Þ2

B1e
is0 þ B1e

�is0
� �

þ k
1 þ kð Þ n23:

ð53Þ
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Substituting solutions (42)–(44), (48), and (52) to

Eq. (38) generates the appearance of the secular terms,

i.e., the periodic functions with the period of 2p. The

necessity to eliminate them leads to the following

solvability conditions:

�2i
oB1

os2

� iĉ1B1 � 3
kâ1x

2
1e þ â2 x2e � x1eð Þ2

1 þ k
B1

� 6w2 w2 � 1ð Þ
4w2 � 1

B1B2B2

¼ 0;

ð54Þ

2i
oB1

os2

þ iĉ1B1 � 3
kâ1x

2
1e þ â2 x2e � x1eð Þ2

1 þ k
B1

� 6w2 w2 � 1ð Þ
4w2 � 1

B1B2B2

¼ 0: ð55Þ

Taking into account solvability conditions (54)–

(55) makes it possible to obtain a uniformly valid

solution to Eq. (38) which has the following form:

n23 ¼ f̂1
1 � p2

1

sin p1s0ð Þ � 3w wþ 1ð Þ
4 2wþ 1ð Þ B1B

2
2e

i 2wþ1ð Þs0

þ 3w w� 1ð Þ
4 2w� 1ð Þ B1B

2
2e

i 2w�1ð Þs0

þ 3w w� 1ð Þ
4 2w� 1ð Þ B1B

2

2e
�i 2w�1ð Þs0

� 3w wþ 1ð Þ
4 2wþ 1ð Þ B1B

2

2e
�i 2wþ1ð Þs0 :

ð56Þ

The detailed form of Eq. (38), after elimination of

the secular terms (54)–(55), is quoted in Appendix as

Eq. (A1). In Appendix, there is also the new form of

Eq. (53), in which solution (56) is regarded (Eq. (A2)).

We insert solutions (42), (44), (48), and (52) into

Eq. (39). The following conditions

�2iw
oB2

os2

� iwĉ2B2 þ
w2 8w4 � 7w2 � 1ð Þ

2 4w2 � 1ð Þ B2
2B2

� 6w2 w2 � 1ð Þ
4w2 � 1

B1B1B2

¼ 0;

ð57Þ

2iw
oB2

os2

þ iwĉ2B2 þ
w2 8w4 � 7w2 � 1ð Þ

2 4w2 � 1ð Þ B2B
2

2

� 6w2 w2 � 1ð Þ
4w2 � 1

B1B1B2

¼ 0; ð58Þ

provide elimination of the secular terms, i.e., the

periodic functions with the period of 2wp. The

detailed form of Eq. (39), after elimination of the

secular terms (57)–(58), can be found in Appendix

under number (A3). The particular solution to

Eq. (A3) is as follows:

/3 ¼ f̂2
w2 � p2

2

sin p2s0ð Þ � 49w2 � 1

48 4w2 � 1ð Þ B3
2e

3iws0 þ B
3

2e
�3iws0

� �

þ w2 þ 5wþ 6

4 2wþ 1ð Þ B2
1B2e

i wþ2ð Þs0 þ B
2

1B2e
�i wþ2ð Þs0

� �

þ w2 � 5wþ 6

4 2w� 1ð Þ B
2

1B2e
i w�2ð Þs0 þ B2

1B2e
�i w�2ð Þs0

� �
:

ð59Þ

The unknown functions B1 s1; s2ð Þ and B2 s1; s2ð Þ
together with their complex conjugates are restricted

by solvability conditions (46), (51), (54)–(55), and

(57)–(58). We conclude from Eqs. (46) and (51) that

all these functions do not depend on the variable s1.

Taking into account this circumstance, we depict the

functions in the exponential form as follows:

Bj s2ð Þ ¼ 1

2
bj s2ð Þeiwj s2ð Þ;Bj s2ð Þ ¼ 1

2
bj s2ð Þe�iwj s2ð Þ; j

¼ 1; 2;

ð60Þ

where functions bj s2ð Þ andwj s2ð Þ, for j ¼ 1; 2; are real-

valued. Inserting relationships (60) into solvability

conditions (54)–(55) and (57)–(58) yields the follow-

ing set of four partial differential equations with

unknown functions bj s2ð Þ and wj s2ð Þ, forj ¼ 1; 2,

i
db1

ds2

� dw1

ds2

� i
ĉ1

2

� �
b1

þ 3
kâ1x

2
1e þ â2 x2e � x1eð Þ2

2 1 þ kð Þ b1 þ
3w2 w2 � 1ð Þ
4 4w2 � 1ð Þ b1b

2
2

¼ 0;

ð61Þ
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i
db1

ds2

þ dw1

ds2

þ i
ĉ1

2

� �
b1

� 3
kâ1x

2
1e þ â2 x2e � x1eð Þ2

2 1 þ kð Þ b1 �
3w2 w2 � 1ð Þ
4 4w2 � 1ð Þ b1b

2
2

¼ 0;

ð62Þ

�iw
db2

ds2

þ w
dw2

ds2

� i
ĉ2

2

� �
b2 þ w2 8w4 � 7w2 � 1

16 4w2 � 1ð Þ b3
2

� 3w2 w2 � 1ð Þ
4 4w2 � 1ð Þ b2

1b2

¼ 0;

ð63Þ

iw
db2

ds2

þ w
dw2

ds2

þ i
ĉ2

2

� �
b2 þ w2 8w4 � 7w2 � 1

16 4w2 � 1ð Þ b3
2

� 3w2 w2 � 1ð Þ
4 4w2 � 1ð Þ b2

1b2

¼ 0:

ð64Þ

Solving Eqs. (61)–(64) with respect to the deriva-

tives, one can obtain

db1

ds2

¼ � 1

2
ĉ1b1; ð65Þ

db2

ds2

¼ � 1

2
ĉ2b2; ð66Þ

dw1

ds2

¼ 3
kâ1x

2
1e þ â2 x2e � x1eð Þ2

2 1 þ kð Þ þ 3w2 w2 � 1ð Þ
4 4w2 � 1ð Þ b2

2;

ð67Þ

dw2

ds2

¼ �w
8w4 � 7w2 � 1

16 4w2 � 1ð Þ b2
2 �

3w w2 � 1ð Þ
4 4w2 � 1ð Þ b

2
1:

ð68Þ

Equations (65)–(68) describe the variability of the

functions bj s2ð Þ and wj s2ð Þ, for j ¼ 1; 2, in the slowest

scale of the time. According to definition (27), the

following identity is valid for any function only of the

variable s2

d

ds
¼ e2 d

ds2

; ð69Þ

Let us introduce the functions a1ðs2Þ and a2 s2ð Þ
such that

a1 ¼ eb1; a2 ¼ eb2: ð70Þ

Multiplying Eqs. (65)–(66) by e3, while Eqs. (67)–

(68) by e2 and taking into account identity (69) and

relationships (29), we obtain

da1

ds
¼ � 1

2
c1a1 sð Þ; ð71Þ

da2

ds
¼ � 1

2
c2a2 sð Þ; ð72Þ

dw1

ds
¼ 3w2 w2 � 1ð Þ

4 4w2 � 1ð Þ a2
2 sð Þ

þ 3
ka1x

2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ ; ð73Þ

dw2

ds
¼ � 3w w2 � 1ð Þ

4 4w2 � 1ð Þ a
2
1 sð Þ � w

8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2 sð Þ:

ð74Þ

The following initial conditions

a1 0ð Þ ¼ a10; a2 0ð Þ ¼ a20;w1 0ð Þ ¼ w10;w2 0ð Þ ¼ w20

ð75Þ

provide the unambiguous determination of the func-

tions a1; a2;w1;w2: The initial values a10; a20;w10, and

w20 are related to the initial values x0; v0;u0 and x0.

The exact solution to the initial value problem

given by Eqs. (71)–(75) has the following form:

a1 sð Þ ¼ a10e
�c1s

2 ; ð76Þ

a2 sð Þ ¼ a20e
�1

2
c2s; ð77Þ

w1 sð Þ ¼ 3w2 w2 � 1ð Þ
4c2 4w2 � 1ð Þ a

2
20 1 � e�c2sð Þ

þ 3
ka1x

2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ sþ w10; ð78Þ

w2 sð Þ ¼ 3a2
10w w2 � 1ð Þ 1 � e�c1sð Þ

4c1 4w2 � 1ð Þ

� w 8w4 � 7w2 � 1ð Þa2
20 1 � e�c2sð Þ

16c2 4w2 � 1ð Þ þ w20:

ð79Þ

Assembling, accordingly to expansions (24)–(26),

the solutions obtained using the recursive procedure,

we obtain the following form of the asymptotic

solution
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x2 sð Þ ¼ � f1 sin p1sð Þ
p2

1 � 1
þ ~x2 sð Þ; ð80Þ

u sð Þ ¼ � f2 sin p2sð Þ
p2

2 � w2
þ ~u sð Þ; ð81Þ

x1 sð Þ ¼ � kf1 sin p1sð Þ
1 þ kð Þ p2

1 � 1
� �þ ~x1 sð Þ; ð82Þ

where the functions ~x1 sð Þ; ~x2 sð Þ; and ~x2 sð Þ are

defined in Appendix.

The functions a1 sð Þ; a2 sð Þ;w1 sð Þ; and w2 sð Þ are

defined by Eqs. (76)–(79). The functions a1 sð Þ and

w1 sð Þ depict the amplitude and the phase of the

function a1 sð Þcos sþ w1 sð Þð Þ corresponding to the

first term of the asymptotic expansion (24). Similarly,

the functions a2 sð Þ andw2 sð Þ are the amplitude and the

phase of the function a2 sð Þcos sþ w2 sð Þð Þ which

corresponds to the first term of the asymptotic

expansion (25). In the context of this interpretation,

we say that Eqs. (71)–(74) are the equations of

amplitude and phase modulation.

Asymptotic solutions (80)–(82) fail when any of the

denominators’ terms equals zero or close to zero,

which implies the occurrence of resonant oscillations.

Equations (80)–(82) describe the pendulum’s oscilla-

tion and the variability of strains of both springs,

excluding the resonant cases.

Let us assume the following values of the dimen-

sionless parameters describing the mechanical fea-

tures of the pendulum:

k ¼ 1:3; a1 ¼ 0:05; a2 ¼ 0:05;w ¼ 0:15; c1

¼ 0:01; c2 ¼ 0:01:

The parameters characterizing the forces and the

initial values are as follows:

f 1 ¼ 0:005; f 2 ¼ 0:005; p1 ¼ 0:23; p2 ¼ 1:6;

x0 ¼ 0:03; v0 ¼ 0;u0 ¼ 0:07;x0 ¼ 0:

Requiring that the asymptotic solution satisfy initial

conditions (22), we get a set of algebraic equations

with unknown a10; a20;w10; and w20: For the data

considered, solving these equations gives the follow-

ing results:

a10 � 0:03007; a20 � 0:07415;w10 � 0:03457;w20

� �0:34210:

The time histories of the longitudinal and swing

oscillation are shown in Figs. 3, 4, 5 and 6. The first

two of them show the transient situation. The effect of

slow attenuation of both vibrations is observed here.

The next two figures depict the transition from the

state of transient oscillations to the steady ones. In the

case of the longitudinal vibrations, it takes more time

Fig. 3 Transient longitudinal oscillation; solid line—asymp-

totic solution, dotted line—numerical solution

Fig. 4 Transient swing oscillation; solid line—asymptotic

solution, dotted line—numerical solution

Fig. 5 Transition from the transient oscillation to the steady one

for x2 sð Þ; solid line—asymptotic solution, dotted line—numer-

ical solution
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to pass to the stationary regime. To verify the

correctness and accuracy of the asymptotic solution,

each figure also shows graphs of the solution obtained

by numerically integrating the governing Eqs. (18)–

(20) with initial conditions (22). For this purpose, we

employ the NDSolve procedure of the Mathematica

12.0 software. The index of DAEs (18)–(20), under-

stood as the minimum number of differentiations

necessary to solve the equations for the first deriva-

tives of variables, is equal to two. NDSolve converts

the system into so-called residual form and then the

built-in solver reduces the index to one. The converted

residual form is solved using the IDA (i.e., Implicit

Differential–Algebraic solver). The methods of IDA

are based on backward differentiation formulas BDF.

The calculations were carried out with standard

machine precision, i.e., around sixteen digits. The

approximate asymptotic solution is drawn using a

solid line, whereas a dotted line depicts the numerical

solution.

The time-varying dimensionless deformations of

both springs for the transient and stationary vibrations

are shown in Figs. 7 and 8, respectively. The dimen-

sionless elongation D1 of the spring with one end

immovable is equal to the coordinate x1 sð Þ; while the

strain D2 of the intermediate spring is understood as

the difference x2 sð Þ � x1 sð Þ: The deformations deter-

mined on the ground of the asymptotic approximation

are drawn by solid lines, whereas the dotted lines

depict the deformations calculated numerically. One

can note the high compatibility of the curves present-

ing the numerical and asymptotic solutions in each of

Figs. 3, 4, 5, 6, 7 and 8.

The quantitative evaluation of the accuracy of

approximate solutions (80)—(82) is established based

on the following measures:

ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

se � ss
r
se

ss

Hi x1 sð Þ; x1 sð Þ;u sð Þð Þ � 0ð Þ2ds

s
; i

¼ 1; 2; 3;

ð83Þ

di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
se
ss

xi sð Þ � xin sð Þð Þ2ds

r
se
ss

xin sð Þð Þ2ds

vuut ; i ¼ 1; 2; d3

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
se
ss

u sð Þ � un sð Þð Þ2ds

r
se
ss

un sð Þð Þ2ds

vuut ð84Þ

where H1;H2; and H3 stand for, in order, the

differential operators, i.e., the left sides of Eqs. (18)–

(20), x1n sð Þ; x2n sð Þ;un sð Þ are the approximate solu-

tions to Eqs. (18)–(20) obtained numerically using the

procedure NDSolve included in Mathematica 12.0,

Fig. 6 Transition from the transient oscillation to steady one for

u sð Þ; solid line—asymptotic solution, dotted line—numerical

solution

Fig. 7 Strain of both springs for transient oscillation; solid

line—asymptotic solution, dotted line—numerical solution

Fig. 8 Strain of both springs for stationary oscillation; solid

line—asymptotic solution, dotted line—numerical solution
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and ss and se denote the instants chosen from the

interval of simulation.

When the exact solution is unknown, any attempts

to introduce the relative error are problematic.

Assuming the numerical solution as the sufficiently

accurate approximation, one can assess the accuracy

of the approximate asymptotic solution using the

relative error di; i ¼ 1; 2; 3; in the sense of L2 norm.

The measures defined by Eq. (83) evaluate the error of

the satisfying governing equations and, hence, it has

the nature of the absolute error. Both measures of error

are based on the metric of the space of square-

integrable functions induced by the inner product.

They can serve as a good estimation of the distance

between functions on the whole interval. In light of

such an interpretation, formula (83) allows for the

assessment of the error in meeting individual govern-

ing equations in the considered interval. Formula (84)

gives the distance between the numerical and asymp-

totic solutions on the interval.

Estimating the accuracy of the asymptotic solution

shown in Figs. 3, 4, 5, 6, 7 and 8, we assumed ss ¼ 0

and se ¼ 1200. The values of both measures of error

are collected in Table 1. Except for the function x2 sð Þ;
the asymptotic solutions are almost one order of

magnitude less accurate than numerical ones on the

assumed interval. However, the small values of both

measures of error confirm that the results obtained

using the MSM can be considered reliable for the

range of parameters consistent with assumptions (29).

5 External resonance cases

Approximate solution (80)–(82) allows one to recog-

nize the following resonant cases:

(i) primary external resonances, when

p1 � 1; p2 � w;

(ii) internal resonance, when 2w � 1:

The resonant cases require a separate approach

based on additionally formulated assumptions, and we

provide solutions for all detected external resonance

cases. However, to avoid unnecessary repetitions, the

solution procedure will be described in detail only for

the external resonance p1 � 1. Then, the resonant

phenomena are expected in a neighborhood of the

natural frequency, which in dimensionless formula-

tion equals 1. Following the MSM, we introduce the

detuning parameter r1, as follows:

p1 ¼ 1 þ r1: ð85Þ

Assuming that the detuning parameter is of the

order O eð Þ; we write

r1 ¼ er̂1; ð86Þ

and the coefficient br1 is finite when e ! 0.

While maintaining assumptions (29), inserting

relations (23)–(28) and approximations (30) into

governing Eqs. (18)–(20), and taking into account

resonance condition (85), we get three equations

containing the small parameter e in various powers.

These equations need to be rearranged according to the

powers of the small parameter. The requirement that

each of these equations should be satisfied for any

value of e yields a system of DAEs. Omitting all terms

of the order O e4ð Þ, we get nine equations that are

organized into three groups, as follows:

(i) equations of the first-order approximation

kn21 � 1 þ kð Þn11 ¼ 0; ð87Þ

o2n21

os2
0

þ 1 þ kð Þ n21 � n11ð Þ ¼ 0; ð88Þ

o2/1

os2
0

þ w2/1 ¼ 0; ð89Þ

(ii) equations of the second-order approximation

kn22 � 1 þ kð Þn12 ¼ 0; ð90Þ

Table 1 Values of error measured due to formulas (83)–(84)

Asymptotic solution Numerical solution

e1 4.14526 9 10-8 1.24921 9 10-9

e2 1.4522 9 10-5 2.58085 9 10-5

e3 6.22734 9 10-5 1.66021 9 10-6

d1 0.00173

d2 0.00173

d3 0.01285
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o2n22

os2
0

þ 1 þ kð Þ n22 � n12ð Þ

¼ �2
o2n21

os0os1

þ o/1

os0

� �2

�w2

2
/2

1; ð91Þ

o2/2

os2
0

þ w2/2 ¼ �2n21

o2/1

os2
0

� 2
o2/1

os0os1

� 2
on21

os0

o/1

os0

� w2n21/1;

ð92Þ

(iii) equations of the third-order approximation

kn23 � 1 þ kð Þn13 ¼ 3â1x
2
1en11

� 3k~a2 x2e � x1eð Þ2 n21 � n11ð Þ;
ð93Þ

o2n23

os2
0

þ 1 þ kð Þ n23 � n13ð Þ

¼ f̂1 sin 1 þ er̂1ð Þs0ð Þ � ĉ1

on21

os0

� 3 1 þ kð Þâ2 x2e � x1eð Þ2 n21 � n11ð Þ

� w2/1/2 �
o2n21

os2
1

� 2
o2n21

os0os2

� 2
o2n22

os0os1

þ n21

o/1

os0

� �2

þ2
o/1

os0

o/1

os1

þ o/2

os0

� �
;

ð94Þ

o2/3

os2
0

þ w2/3 ¼ f̂2 sin p2s0ð Þ � ĉ2

o/1

os0

� o2/1

os2
1

� 2
o2/1

os0os2

� 2
o2/2

os0os1

þ w2

6
/3

1

� w2 n22/1 þ n21/2ð Þ � o2/1

os2
0

n2
21 þ 2n22

� �

� 2
o/1

os0

on21

os1

þ n21

on21

os0

þ on22

os0

� �

� 2n21 2
o2/1

os0os1

þ o2/2

os2
0

� �
� 2

on21

os0

o/1

os1

þ o/2

os0

� �
:

ð95Þ

The functions n1k s0; s1; s2ð Þ; n2k s0; s1; s2ð Þ;/k;

where k ¼ 0; 1; 2; are to be determined. From

Eq. (87), it follows that

n11 ¼ k
1 þ kð Þ n21: ð96Þ

We substitute dependence (96) into Eq. (88) which

becomes the following homogeneous differential

equation

o2n21

os2
0

þ n21 ¼ 0: ð97Þ

The general solution to Eq. (97) reads

n21 ¼ B1 s1; s2ð Þeis0 þ B1 s1; s2ð Þe�is0 ; ð98Þ

where B1 and its complex conjugate B1 are unknown

complex-valued functions of both slower time scales.

Taking into account Eqs. (96) and (98), we write

n11 ¼ k
1 þ kð Þ B1 s1; s2ð Þeis0 þ B1 s1; s2ð Þe�is0

� �
:

ð99Þ

The general solution to homogenous Eq. (89) has

the form

/1 ¼ B2 s1; s2ð Þeiws0 þ B2 s1; s2ð Þe�iws0 ; ð100Þ

where B2 is the complex conjugate to B2:

Making use of Eq. (90), substituting solution (98)

for n21 and solution (100) for /1, and eliminating the

secular terms according to

oB1

os1

¼ 0;
oB1

os1

¼ 0; ð101Þ

oB2

os1

¼ 0;
oB2

os1

¼ 0; ð102Þ

the following form of Eqs. (91)–(92) is obtained

o2n22

os2
0

þ n22 ¼ w2B2B2 �
3

2
w2 B2

2e
2iws0 þ B2e

�2iws0
� �

;

ð103Þ

o2/2

os2
0

þ w2/2 ¼ w2 þ 2w
� �

B1B2e
i 1þwð Þs0 þ w2 � 2w

� �
B1B2e

i w�1ð Þs0

w2 � 2w
� �

B1B2e
�i w�1ð Þs0 þ w2 þ 2w

� �
B1B2e

�i wþ1ð Þs0 :

ð104Þ

The particular solutions to Eqs. (103)–(104) take

the following form:

n22 ¼ 3w2

2 4w2 � 1
� � B2

2e
2iws0 þ B2e

�2iws0
� �

þ w2B2B2;

ð105Þ
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/2 ¼ �w2 þ 2w

2wþ 1
B1B2e

i wþ1ð Þs0 þ w2 � 2w

2w� 1
B1B2e

i w�1ð Þs0

þ w2 � 2w

2w� 1
B1B2e

�i w�1ð Þs0 � w2 þ 2w

2wþ 1
B1B2e

�i wþ1ð Þs0 :

ð106Þ

Equations (90) and (106) yield

n12 ¼ 3kw2

2 1 þ kð Þ 4w2 � 1
� � B2

2e
2iws0 þ B2e

�2iws0
� �

þ kw2

1 þ kð ÞB2B2:

ð107Þ

Using Eq. (93), we derive the following

relationship:

n13 ¼ k
1 þ k

n23 þ 3ba2 x2e � x1eð Þ2n21

� �

�
3 ba1x

2
1e þ kba2 x2e � x1eð Þ2

� �

1 þ k
n11: ð108Þ

After substituting solutions (98)–(102), (105)–

(106), and (108) into Eqs. (94)–(95), it is necessary

to eliminate the secular terms from them. Conse-

quently, the following solvability conditions should be

satisfied:

� 2i
oB1

os2

� iĉ1B1 �
1

2
if̂1eir̂1s0 � 3

kâ1x
2
1e þ â2 x2e � x1eð Þ2

1 þ k
B1

� 6w2 w2 � 1ð Þ
4w2 � 1

B1B2B2 ¼ 0;

ð109Þ

2i
oB1

os2

þ iĉ1B1 þ
1

2
if̂1e

�ir̂1s0 � 3
kâ1x

2
1e þ â2 x2e � x1eð Þ2

1 þ k
B1

� 6w2 w2 � 1ð Þ
4w2 � 1

B1B2B2 ¼ 0;

ð110Þ

�2iw
oB2

os2

� iwĉ2B2 þ
w2 8w4 � 7w2 � 1ð Þ

2 4w2 � 1ð Þ B2
2B2

� 6w2 w2 � 1ð Þ
4w2 � 1

B1B1B2

¼ 0;

ð111Þ

2iw
oB2

os2

þ iwĉ2B2 þ
w2 8w4 � 7w2 � 1ð Þ

2 4w2 � 1ð Þ B2B
2

2

� 6w2 w2 � 1ð Þ
4w2 � 1

B1B1B2

¼ 0:

ð112Þ

The form of Eqs. (94)–(95) which was derived after

the elimination of the secular terms (109)–(112) is

quoted in Appendix as Eqs. (A7)–(A8). The particular

solutions to Eqs. (A7)–(A8) are given by

n23 ¼ � 3w wþ 1ð Þ
4 2wþ 1ð Þ B1B

2
2e

i 2wþ1ð Þs0 þ B1B
2

2e
�i 2wþ1ð Þs0

� �

þ 3w w� 1ð Þ
4 2w� 1ð Þ B1B

2
2e

i 2w�1ð Þs0 þ B1B
2

2e
�i 2w�1ð Þs0

� �
;

ð113Þ

/3 ¼ f̂2
w2 � p2

2

sin p2s0ð Þ � 49w2 � 1

48 4w2 � 1ð Þ B3
2e

3iws0 þ B
3

2e
�3iws0

� �

þ w2 þ 5wþ 6

4 2wþ 1ð Þ B2
1B2e

i wþ2ð Þs0 þ B
2

1B2e
�i wþ2ð Þs0

� �

þ w2 � 5wþ 6

4 2w� 1ð Þ B
2

1B2e
i w�2ð Þs0 þ B2

1B2e
�i w�2ð Þs0

� �
:

ð114Þ

Substituting solutions (98)–(99) and (113) into

Eq. (108), we obtain

� 3kw wþ 1ð Þ
4 2wþ 1ð Þ 1 þ kð Þ B1B

2
2e

i 2wþ1ð Þs0 þ B1B
2

2e
�i 2wþ1ð Þs0

� �

þ 3kw w� 1ð Þ
4 2w� 1ð Þ 1 þ kð Þ B1B

2
2e

i 2w�1ð Þs0 þ B1B
2

2e
�i 2w�1ð Þs0

� �

�
3k â1x

2
1e � â2 x2e � x1eð Þ2

� �

1 þ kð Þ2
B1e

is0 þ B1e
�is0

� �
:

ð115Þ

Solvability conditions (101)–(102) imply no depen-

dence of the unknown functions B1 and B2 on the

variable s1: Presenting the functions in the exponential

form according to (60), taking into account smallness

assumptions (29) and (70), and relation (69) between

derivatives, we obtain the following form of the

modulation equations:

da1

ds
¼ � 1

2
c1a1ðsÞ �

1

2
f 1cosðr1s� w1ðsÞÞ; ð116Þ

da2

ds
¼ � 1

2
c2a2ðsÞ; ð117Þ
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dw1

ds
¼ 3w2 w2 � 1ð Þ

4 4w2 � 1ð Þ a2
2 sð Þ þ 3

ka1x
2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ
� f 1sin r1s� w1 sð Þð Þ

2a1 sð Þ ;

ð118Þ

dw2

ds
¼ 3w w2 � 1ð Þ

4 4w2 � 1ð Þ a
2
1ðsÞ � w

8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2ðsÞ:

ð119Þ

The initial conditions to Eqs. (116)–(119) have the

same form as conditions (75). The second equation of

this system is not coupled with the others, which

enables solving it separately. The exact solution to

Eq. (117) is as follows:

a2 sð Þ ¼ a20e
�1

2
c2s: ð120Þ

Substituting Eq. (120) for a2 sð Þ into Eqs. (116) and

(118)–(119), we get the initial value problem which

should be solved numerically.

The combination of the solutions, obtained in the

recursive procedure, according to Eqs. (24)–(26) leads

to an approximate asymptotic solution in the form

x2 sð Þ ¼ ~x2 sð Þ; ð121Þ

u sð Þ ¼ � f 2sin p2sð Þ
p2

2 � w2
þ �

u
sð Þ: ð122Þ

The auxiliary function x1 sð Þ is defined as follows:

x1 sð Þ ¼ ~x1 sð Þ: ð123Þ

The functions a1 sð Þ; a2 sð Þ;w1 sð Þ; and w2 sð Þ are the

solutions to modulation problem (116)–(119) and

~x2 sð Þ; �u sð Þ; ~x1ðsÞ are defined by Eqs. (A4)–(A5) and

(A6), respectively. The approximate solution, given

by Eqs. (121)–(123) together with modulation

Eqs. (116)–(119), is applicable for the external reso-

nance p1 � 1.

The asymptotic solution for the main resonance

p2 ¼ wþ r2; where r2 as the detuning parameter is of

the order e, is as follows:

x2 sð Þ ¼ � f 1sin p1sð Þ
p2

1 � 1
þ ~x2 sð Þ; ð124Þ

u sð Þ ¼ �
u

sð Þ; ð125Þ

x1 sð Þ ¼ � kf 1sin p1sð Þ
1 þ kð Þ p2

1 � 1
� �þ ~x1 sð Þ: ð126Þ

The amplitudes a1 sð Þ; a2 sð Þ and the phases w1 sð Þ;
w2 sð Þ satisfy the following modulation equations:

da1

ds
¼ � 1

2
c1a1ðsÞ; ð127Þ

da2

ds
¼ � 1

2
c2a2 sð Þ � f 2

2w
cosðr2s� w2ðsÞÞ; ð128Þ

dw1

ds
¼ 3w2 w2 � 1ð Þ

4 4w2 � 1ð Þ a2
2 sð Þ

þ 3
ka1x

2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ ; ð129Þ

dw2

ds
¼ 3w w2 � 1ð Þ

4 4w2 � 1ð Þ a
2
1 sð Þ � w

8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2 sð Þ

� f 2sin r2s� w2 sð Þð Þ
2wa2 sð Þ ;

ð130Þ

that are supplemented by initial conditions (75).

Equation (127) has the exact solution of the form:

a1 sð Þ ¼ a10e
�c2

2
s: ð131Þ

When the resonance is caused by both excitations

simultaneously, i.e., p1 ¼ 1 þ r1 and p2 ¼ wþ r2, the

asymptotic solution takes the following form:

x2 sð Þ ¼ ~x2 sð Þ; ð132Þ

u sð Þ ¼ �
u

sð Þ; ð133Þ

x1 sð Þ ¼ ~x1 sð Þ: ð134Þ

The modulation equations corresponding to the

case of two simultaneously occurring main resonance

have the form:

da1

ds
¼ � 1

2
c1a1ðsÞ �

1

2
f 1cosðr1s� w1ðsÞÞ; ð135Þ

da2

ds
¼ � 1

2
c2a2 sð Þ � f 2

2w
cosðr2s� w2ðsÞÞ; ð136Þ
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dw1

ds
¼ 3w2 w2 � 1ð Þ

4 4w2 � 1ð Þ a2
2 sð Þ þ 3

ka1x
2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ
� f 1sin r1s� w1 sð Þð Þ

2a1 sð Þ ;

ð137Þ

dw2

ds
¼ 3w w2 � 1ð Þ

4 4w2 � 1ð Þ a
2
1 sð Þ � w

8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2 sð Þ

� f 2sin r2s� w2 sð Þð Þ
2wa2 sð Þ ;

ð138Þ

and are supplemented by initial conditions (75).

Now, the modulation problem can be solved

numerically.

Let the pendulum with the same parameters as

specified in Sect. 4 serve as an example in numerical

simulations for the external resonance. Thus, we take

the following values:

k ¼ 1:3; a1 ¼ a2 ¼ 0:05;w ¼ 0:15; c1 ¼ c2 ¼ 0:01:

ð139Þ

The values assumed for initial conditions (22) are

x0 ¼ 0:01; v0 ¼ 0;u0 ¼ 0:02;x0 ¼ 0: ð140Þ

The external load is defined by the following

values:

f 1 ¼ f 2 ¼ 0:001; p1 ¼ 1 þ r1; r1 ¼ 0:01; p2 ¼ 0:65:

We take the following initial values for the

modulation problem (135)–(138)

a10 � 0:01002; a20 � 0:02318;w10 � �0:05522;w20

� �0:53136:

ð141Þ

The relationship between initial values (140) and

(141) has been determined using the analytical form of

solution (121)–(123).

Figure 9 shows the time history of transient vibra-

tions in the longitudinal direction with a clear

tendency to increase the amplitude. Due to the

presence of damping in the system, the resonant

oscillations settle themselves at the amplitude value of

about 0.04. The effect of slow but clear damping of the

pendulum oscillations in the transverse direction is

observed in Fig. 11 concerning the transitional state.

The graphs of the dimensionless deformations of both

springs in the steady state are shown in Fig. 12.

When k[ 1, the distal spring connected directly to

the immovable point O is more flexible and therefore

subject to greater deformations. In each of Figs. 9, 10,

11, 12 and 13, the functions resulting from the

asymptotic solution (121)–(123) are drawn with solid

lines. On the other hand, the corresponding functions

that are obtained numerically by solving Eqs. (18)–

(20) are depicted as dotted lines. The difference

between asymptotic and numerical solutions is imper-

ceptible in the graphs. Using measures (83)–(84), both

the error of satisfying the governing equations by the

asymptotic solution and the relative error related to the

numerical solution was assessed. Their values are as

follows:

Fig. 9 Transient longitudinal oscillations in the main resonance

p1 � 1; solid line—asymptotic solution, dotted line—numerical

solution

Fig. 10 Stationary longitudinal oscillations in the main

resonance p1 � 1; solid line—asymptotic solution, dotted

line—numerical solution
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e1 ¼ 3:7974 � 10�7; e2 ¼ 4:58086 � 10�6; e3

¼ 8:76156 � 10�5;

d1 ¼ 5:7452 � 10�3; d2 ¼ 5:7411 � 10�3; d3

¼ 4:1421 � 10�2:

The definite integrals in formulas (83)–(84) have

been calculated on the interval h0; 1500i: The error of

approximation (30) contributes to the greater value of

the error d3. The small values of the error measures of

both types confirm the usefulness of the asymptotic

solution for the description of vibration under the

external resonance p � 1.

We present the approximate solutions adequate for

the external resonance p2 � w assuming the following

values of the parameters describing the harmonic load

f 1 ¼ 6 � 10�4; f 2 ¼ 5 � 10�4; p1 ¼ 0:57; p2

¼ wþ r2; r2 ¼ �0:004:

The values of the parameters expressing mechan-

ical properties of the pendulum and the initial values

are defined by Eqs. (139)–(140), respectively. The

following values of amplitudes and phases correspond

to these initial values:

a10 � 0:01012; a20 � 0:02333;w10 � �0:04541;w20

� �0:5420:

The error measures according to formulas (83)–

(84) employed to the solution shown in Figs. 13, 14, 15

and 16 and computed on the interval h0; 1500i take

values

e1 ¼ 7:8310 � 10�9; e2 ¼ 5:2869 � 10�5; e3

¼ 2:1557 � 10�5;

Fig. 11 Transient swing oscillations in the main resonance

p1 � 1; solid line—asymptotic solution, dotted line—numerical

solution

Fig. 12 Strain of both springs versus time for the stationary

vibration in the main resonance p1 � 1; solid line—asymptotic

solution, dotted line—numerical solution

Fig. 13 Transient swing oscillations in the main resonance

p2 � w; solid line—asymptotic solution, dotted line—numeri-

cal solution

Fig. 14 Stationary swing oscillations in the main resonance

p2 � w; solid line—asymptotic solution, dotted line—numeri-

cal solution
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d1 ¼ 1:1014 � 10�2; d2 ¼ 1:1013 � 10�2; d3

¼ 4:1421 � 10�2:

Figures 13 and 14 show how the swing oscillations

change from the transient state to steady-state oscil-

lation in the external resonance p2 � w. The amplitude

of the oscillations reaches relatively large values.

However, they still fall within the range to which the

approximate formula (30) can be applied. There is a

slight, but noticeable in the figures, difference in the

course of asymptotic and numerical solutions. It is also

reflected in higher values of the relative error (84).

While the transverse vibration stabilized fairly

quickly, the longitudinal vibration remains transient

on the whole interval h0; 1500i, as shown in Fig. 15.

The distal spring connected to the immovable point

O is subject to greater deformation for large values of

the time variable which is shown in Fig. 16. The same

convention of presenting the results holds as previ-

ously in Figs. 13, 14, 15 and 16. The approximate

numerical solutions obtained with the use of the

NDSolve procedure are drawn with dotted lines, while

the solid line was assigned to asymptotic solutions

(124)–(126).

The asymptotic solution (132)–(134) that is valid in

the case of double external resonance is presented in

the graphs for the values of the parameters listed in

Eqs. (139)–(140). We supplement the set of data with

the following values concerning the forces

f 1 ¼ 1 � 10�3; f 2 ¼ 4 � 10�4; p1 ¼ 1 þ r1; p2

¼ wþ r2; r1 ¼ 0:008; r2 ¼ �0:003:

Calculating, the initial values for the modulation

problem, we obtain

a10 � 0:01018; a20 � 0:02224;w10 � �0:05510;w20

� �0:45459:

Figures 17 and 18 show how the longitudinal

oscillations change from the transient state to almost

steady-state oscillation. The variability of the pendu-

lum oscillation in the transverse direction on the whole

interval h0; 1500i is shown in Fig. 19. In the steady

state, the amplitude a2ðsÞ stabilizes at a level slightly

exceeding the value of 0.2, i.e., within the range when

approximation (30) is valid. The differences in the

course of the numerical solutions depicted with a

dotted line and the asymptotic solutions drawn with a

solid line are practically invisible on the graphs. This

conclusion is confirmed by the values of the relative

error of the asymptotic solution related to the numer-

ical solution which are as follows:

Fig. 15 Longitudinal oscillations for large values of the time

variable; solid line—asymptotic solution, dotted line—numer-

ical solution

Fig. 16 Strain of both springs versus time for large values of the

time variable; solid line—asymptotic solution, dotted line—

numerical solution

Fig. 17 Transition of longitudinal oscillations from transient to

steady state for the double external resonance; solid line—

asymptotic solution, dotted line—numerical solution

123

22 G. Sypniewska-Kamińska et al.



d1 ¼ 6:9448 � 10�3; d2 ¼ 6:9391 � 10�3; d3

¼ 1:9219 � 10�2:

The measures of the satisfying of the governing

equations take the following values:

e1 ¼ 5:3898 � 10�7; e2 ¼ 2:7740 � 10�5; e3

¼ 5:7614 � 10�5:

The error of both types have been calculated on the

interval h0; 1500i. Figure 20 shows graphs of distal

and intermediate spring deformations as a function of

time for stationary oscillation. Also, in this case, one

can observe a high agreement of the results obtained

by the asymptotic and numerical methods. Observe

that the amplitudes of the deformations of the distal

spring are larger.

6 Steady states at external resonances

We start the section devoted to the steady-state

oscillation of the pendulum under the conditions of

external resonance with a discussion of the case of two

simultaneously occurring resonances, i.e., p1 � 1 and

p2 � w. Following the approach of MSM to the

steady-state analysis, we define the modified phases

hi sð Þ ¼ ris� wi sð Þ; i ¼ 1:2: ð142Þ

Introducing these definitions into Eqs. (135)–(138)

enables to transform them onto an autonomous

dynamical system governed by the following ampli-

tude and phase ODEs:

da1

ds
¼ � 1

2
c1a1ðsÞ �

1

2
f 1cosðh1ðsÞÞ; ð143Þ

da2

ds
¼ � 1

2
c2a2 sð Þ � f 2

2w
cosðh2ðsÞÞ; ð144Þ

dh1

ds
¼ r1 � 3

ka1x
2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ

� 3w2 w2 � 1ð Þ
4 4w2 � 1ð Þ a2

2 sð Þ þ f 1sin h1ðsÞð Þ
2a1 sð Þ ; ð145Þ

dh2

ds
¼ r2 �

3w w2 � 1ð Þ
4 4w2 � 1ð Þ a

2
1 sð Þ

þ w
8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2 sð Þ þ f 2sin h2 sð Þð Þ

2wa2 sð Þ :

ð146Þ

According to the assumptions about the nonsta-

tionary vibration, we postulate that the time deriva-

tives of the amplitude and the modified phase become

equal to zero. This requirement allows one to write the

following equations

Fig. 18 Almost stationary longitudinal oscillations in the

double external resonance; solid line—asymptotic solution,

dotted line—numerical solution

Fig. 19 Transient and stationary swing oscillations for the

double external resonance; solid line—asymptotic solution,

dotted line—numerical solution

Fig. 20 Strain of springs versus time for the stationary vibration

in the double resonance; solid line—asymptotic solution, dotted

line—numerical solution
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c1a1 þ f 1cosh1 ¼ 0; ð147Þ

c2a2 þ
f 2

w
cosh2 ¼ 0; ð148Þ

r1 � 3
ka1x

2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ � 3w2 w2 � 1ð Þ
4 4w2 � 1ð Þ a2

2

þ f 1sinh1

2a1

¼ 0;

ð149Þ

r2 �
3w w2 � 1ð Þ
4 4w2 � 1ð Þ a

2
1 þ w

8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2 þ

f 2sinh2

2wa2

¼ 0

ð150Þ

that govern the steady-state oscillation at the double

external resonance. The amplitudes and modified

phases that satisfy system (147)–(150) are constant

quantities representing the fixed point of the dynam-

ical system (143)–(146).

Employing the Pythagorean identity, the modified

phases can be eliminated from Eqs. (147)–(150),

which allows one to express the direct dependence

between the amplitudes and the parameters of the

harmonic forces in the form of the following algebraic

equations:

c1a1ð Þ2 þ 4a2
1 3

ka1x
2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ þ 3w2 w2 � 1ð Þ
4 4w2 � 1ð Þ a2

2 � r1

 !2

¼ f 2
1;

ð151Þ

w2a2
2

w w2 � 1ð Þ 1 þ 8w2ð Þa2
2 � 12a2

1

� �
8ð4w2 � 1Þ þ 2r2

� �2

þ wc2a2ð Þ2

¼ f 2
2:

ð152Þ

The real solutions of system (151)–(152), with

given values of the amplitudes f 1 and f 2 as well the

detuning parameters r1 and r2, are the values of the

amplitudes at the steady oscillation. By changing the

values of the detuning parameters, one can determine

the curves of the resonance responses. However, the

study of the stability of the fixed points requires also

knowing the values of the modified phases. Therefore,

it is necessary to solve the system of four Eqs. (147)–

(150). The substitutions

sinhi ¼
2ui

1 þ u2
i

; coshi ¼
1 � u2

i

1 þ u2
i

ð153Þ

where

ui ¼ tan
hi
2

� �
; i ¼ 1; 2;

allow one to transform Eqs. (147)–(150) into a

more convenient, fully algebraic form. Namely, we get

c1a1ð1 þ u2
1Þ þ f 1ð1 � u2

1Þ ¼ 0; ð154Þ

wc2a2ð1 þ u2
2Þ þ f 2ð1 � u2

2Þ ¼ 0; ð155Þ

r1�
3w2 w2�1ð Þ
4 4w2�1ð Þ a2

2�3
ka1x

2
1eþa2 x2e�x1eð Þ2

2 1þkð Þ

 !
a1ð1

þu2
1Þþ f 1u1

¼0;

ð156Þ

w r2 �
3w w2 � 1ð Þ
4 4w2 � 1ð Þ a

2
1 þ w

8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2

� �
a2ð1

þ u2
2Þ þ f 2u2

¼ 0:

ð157Þ

Let ða1s; a2s; h1s; h2sÞ be any fixed point of

the dynamical system (143)–(146). To examine

the stability of this point in the sense of Lyapunov, we

introduce the functions ~ai sð Þ and �
h i

sð Þ; i ¼ 1; 2; that

can be treated as small perturbations of the fixed point,

i.e.,

ai sð Þ ¼ ais þ ~ai sð Þ; hi sð Þ ¼ his þ �
hi

sð Þ; i ¼ 1; 2:

ð158Þ

Inserting functions (158) into Eqs. (143)–(146)

yields

d ~a1

ds
¼ � c1

2
a1s þ ~a1 sð Þð Þ � f1

2
cos h1s þ ~h1 sð Þ
� �

;

ð159Þ

d ~a2

ds
¼ � c2

2
a2s þ ~a2 sð Þð Þ � f2

2w
cos h2s þ ~h2 sð Þ
� �

;

ð160Þ
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d~h1

ds
¼ r1 � 3

ka1x
2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ

� 3w2 w2 � 1ð Þ
4 4w2 � 1ð Þ a2s þ ~a2 sð Þð Þ2

þ
f1 sin h1s þ ~h1 sð Þ

� �

2 a1s þ ~a1 sð Þð Þ ;

ð161Þ

d~h2

ds
¼ r2 �

3w w2 � 1ð Þ
4 4w2 � 1ð Þ a1s þ ~a1 sð Þð Þ2

þ w
8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2s þ ~a2 sð Þð Þ2

þ
f2 sin h2s þ ~h2 sð Þ

� �

2w a2s þ ~a2 sð Þð Þ :

ð162Þ

The right-hand sides of Eqs. (159)–(162)

can be treated as functions of the small

perturbations. We expand the functions

into the Taylor series around zero that

corresponds to the fixed point

ða1s; a2s; h1s; h2sÞ: Then, ignoring the terms of the

order higher than one, we get the following

linearized form of Eqs. (159)–(162):

d ~a1

ds
¼ � c1

2
~a1 sð Þ þ f1

2
sin h1s

~h1 sð Þ; ð163Þ

d ~a2

ds
¼ � c2

2
~a2 sð Þ þ f2

2w
sin h2s

~h2 sð Þ; ð164Þ

d~h1

ds
¼ � f1

2a2
1s

sin h1s ~a1 sð Þ � 3w2 w2 � 1ð Þ
2 4w2 � 1ð Þ a2s ~a2 sð Þ

þ f1 cos h1s

2a1s

~h1 sð Þ;

ð165Þ

d~h2

ds
¼ � 3w w2 � 1ð Þ

2 4w2 � 1ð Þ a1s ~a1 sð Þ

þ w
8w4 � 7w2 � 1

8 4w2 � 1ð Þ a2s ~a2 sð Þ

� f2 sin h2s

2wa2
2s

~a2 sð Þ þ f2 cos h2s

2wa2s

~h2 sð Þ:

ð166Þ

Equations (163)–(166) take into account that the

fixed point satisfies the steady-state Eqs. (154)–(157).

The general solution to Eqs. (163)–(166) can be

presented in the form of the linear combination of

the exponential functions

~ai sð Þ ¼
X4

j¼1

Cije
rjs; �

h i

sð Þ ¼
X4

j¼1

C iþ2ð Þje
rjs; i ¼ 1; 2;

ð167Þ

where rj; j ¼ 1; 4; are the roots of the characteristic

equation

B � rIj j ¼ 0: ð168Þ

The symbol I denotes the identity matrix of

dimension 4 � 4, and B is the 4 � 4-matrix whose

entries are as follows:

b11 ¼ � c1

2
; b12 ¼ 0 ; b13 ¼ f 1sinh1s

2
; b14 ¼ 0;

b21 ¼ 0; b22 ¼ � c2

2
; b23 ¼ 0; b24 ¼ f 2sinh2s

2w
;

b31 ¼ � f 1sinh1s

2a2
1s

; b32 ¼ � 3w2 w2 � 1ð Þ
2 4w2 � 1ð Þ a2s ;

b33 ¼ f 1cosh1s

2a1s
; b34 ¼ 0;

b41 ¼ � 3w w2 � 1ð Þ
2 4w2 � 1ð Þ a1s; b42 ¼ w

8w4 � 7w2 � 1

8 4w2 � 1ð Þ
a2s �

f 2sinh2s

2wa2
2s

;

b43 ¼ 0: b44 ¼ f 2cosh2s

2wa2s
:

The roots of Eq. (168) are the eigenvalues of matrix

B. If the real parts of all eigenvalues of the matrix B

are negative, then the fixed point ða1s; a2s; h1s; h2sÞ is

asymptotically stable in the sense of Lyapunov.

System of Eqs. (154)–(157) is solved numerically

using the procedure NSolve of the Mathematica.

Determining the real roots in the iterative procedure

enables the drawing of the resonance response curves,

and now it is also possible to visualize the relationship

between the modified phases and the detuning param-

eters. The study of stability of the resonance response

curves is based on the eigenvalues of the matrix B,

which are determined using the standard procedure

Eigenvalues of the Mathematica.

Let us assume the following values of the dimen-

sionless parameters describing the mechanical fea-

tures of the pendulum:
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k ¼ 1:5; a1 ¼ 0:08; a2 ¼ 0:08;w ¼ 0:13; c1

¼ 0:001; c2 ¼ 0:001:

The magnitudes of the dimensionless amplitudes of

harmonic forces are assumed to be f 1 ¼ f 2 ¼ 0:008:

In order to illustrate the influence of the detuning

parameter r1 on the course of the double resonance,

we change its values from -0.005 to 0.005 with the

step of size 2 � 10�5: The detuning parameter r2 ¼
�0:004 ensures that the frequency of the force f 2 is

close to w: In Figs. 21, 22 and 23, the resonance

responses curves of the spring pendulum are pre-

sented. The relationship between the amplitudes a1

and a2 and the detuning parameter r1 as well as the

relationship between both modified phases and the

detuning parameter r1 are depicted. All the points that

make up the resonance response curves presented in

Figs. 21–24 are stable. The amplitude a1 reaches its

maximum value for r1 slightly greater than zero. As

the parameter r1 increases, the modified phase h1

changes from 0 to p. Both the amplitude a2 and the

phase h2 change their values to a small extent, and both

of these quantities reach their minima for r1 slightly

greater than zero.

Fig. 21 Amplitude a1 versus the detuning parameter r1 at the

double external resonance; r2 ¼ �0:004

Fig. 22 Amplitude a2 versus the detuning parameter r1 at the

double external resonance; r2 ¼ �0:004

Fig. 23 Modified phase h1 versus the detuning parameter r1 at

the double external resonance for r2 ¼ �0:004

Fig. 24 Modified phase h2 versus the detuning parameter r1 at

the double external resonances for r2 ¼ �0:004:

Fig. 25 Amplitude a1 versus the detuning parameter r2 at the

double external resonance for r1 ¼ 0:01; stable branches are

darker
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In turn, the curves, drawn in Figs. 25, 26, 27 and 28,

show how the parameter r2 influences the course of

the double resonance. The parameter r2 varies from -

0.005 to 0.005 with the step of size 2 � 10�5, and the

detuning parameter r1 is equal to 0.01 which guaran-

tees that the frequency of the force f 1 is close to 1.

Branches made of unstable fixed points appeared on

the graphs of the curves depicting the influence of the

parameter r2. The stable branches of the curves have

been drawn using points of larger size, so they are

darker. The curve a2 versus r2 has a shape typical for

systems with the nonlinearity of the cubic type and the

soft characteristic. The amplitude reaches large values

which are close to the limit of the range of the

applicability of the approximation given by formula

(30). The modified phase h2 passes from 0 to p in the

narrow range of negative values of the parameter r2.

In the same interval, the modified phase h1 decreases

slightly, and the amplitude a1 increases by almost

twice.

Due to the occurrence of the unstable fixed points in

the range between about -0.004 and -0.002, the jump

phenomena are possible with slight fluctuations in the

frequency of the torque that forces the transverse

oscillation. The shape of the resonance response

curves in the double resonance can change dramati-

cally. For example, a small change in the value of the

parameter r1 from 0.01 to 0.004, without changing any

other parameter, leads to the results shown in Figs. 29,

30, 31 and 32.

Equations (116)–(119) describe the slow evolution

of the amplitudes and phases for the conditions of the

external resonance p1 � 1. According to Eq. (120),

the amplitude a2ðsÞ tends asymptotically to zero.

Taking into account Eq. (A5), one can conclude that

the function �
u ðsÞ also vanishes asymptotically, and

Fig. 26 Amplitude a2 versus the detuning parameter r2 at the

double external resonance for r1 ¼ 0:01; stable branches are

darker

Fig. 27 Modified phase h1 versus the detuning parameter r2 at

the double external resonance for r1 ¼ 0:01; stable branches are

darker

Fig. 28 Modified phase h2 versus the detuning parameter r2 at

the double external resonance for r1 ¼ 0:01; stable branches are

darker

Fig. 29 Amplitude a1 versus the detuning parameter r2 at the

double external resonance for r1 ¼ 0:004; stable branches are

darker
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the steady resonant solution for uðsÞ becomes pure

harmonic, owing to (122). Such behavior of the spring

pendulum is a consequence of the assumption of weak

coupling between the longitudinal and transverse

motion. The phase w2ðsÞ is related to the other

variables of the modulation problem, but due to the

disappearance of the function �
u ðsÞ with time, the

variability of the phase w2ðsÞ is not important. In other

words, we can write the modulation problem for the

external resonance p1 � 1 as follows:

da1

ds
¼ � 1

2
c1a1ðsÞ �

1

2
f 1cosðr1s� w1ðsÞÞ; ð169Þ

dw1

ds
¼ 3

ka1x
2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ
� f 1sin r1s� w1 sð Þð Þ

2a1 sð Þ : ð170Þ

After introducing the modified phase h1ðsÞ, accord-

ing to definition (142), we can formulate the following

equations governing the amplitude and phase of the

steady-state oscillation

c1a1 þ f1 cos h1 ¼ 0; ð171Þ

r1 � 3
ka1x

2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ þ f1 sin h1

2a1

¼ 0:

ð172Þ

The exact solution to Eqs. (171)–(172) can be

found. Namely, by eliminating the modified phase h1,

we obtain the direct dependence between the ampli-

tude a1 and the parameter r1

c1a1ð Þ2þ4a2
1 3

ka1x
2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ � r1

 !2

¼ f 2
1 :

ð173Þ

Solving Eq. (173) for the square of a1 yields

a2
1 ¼ f 2

1

c2
1 þ 4 3

ka1x
2
1e
þa2 x2e�x1eð Þ2

2 1þkð Þ � r1

� �2
: ð174Þ

The solution for the variable h1 is

h1 ¼ a tan
2r1

c1

� 3
ka1x

2
1e þ a2 x2e � x1eð Þ2

c1 1 þ kð Þ

 !
:

ð175Þ

Equation (174) shows that the amplitude of steady

oscillations reaches its maximum a1max ¼ f 1=c1j j
when the detuning parameter takes the value

Fig. 30 Amplitude a2 versus the detuning parameter r2 at the

double external resonance for r1 ¼ 0:004; stable branches are

darker

Fig. 31 Modified phase h1 versus the detuning parameter r2 at

the double external resonance for r1 ¼ 0:004; stable branches

are darker

Fig. 32 Modified phase h2 versus the detuning parameter r2 at

the double external resonance for r1 ¼ 0:01; stable branches are

darker
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r�1 ¼ 3
ka1x

2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ : ð176Þ

At the same value r�1, the modified phase passes

through zero. It means that both the nonlinear

properties of the springs and their individual contri-

bution to the whole stiffness (via the parameter k)

affect the resonance p1 � 1:

The matrix necessary to test the stability of the fixed

point a1s; h1sð Þ has the following form:

B ¼
� c1

2

f 1sinh1s

2

� f 1sinh1s

2a2
1s

f 1cosh1s

2a1s

2
664

3
775: ð177Þ

Inserting Eq. (177) into Eq. (176) yields

r2 þ c1

2
� f 1cosh1s

2a1s

� �
r þ f 2

1 sinh1sð Þ2

4
� f 1c1cosh1s

4a1s

¼ 0:

ð178Þ

Taking into account Eq. (171), we can write

Eq. (178) in the form:

r2 þ c1r þ
c2

1

4
þ f 2

1 sinh1sð Þ2

4
¼ 0 ð179Þ

It results from Eq. (179) that both its roots have

negative real parts. Thus, all points of the resonance

response curves, shown in Figs. 33 and 34, are stable.

The following data was adopted to draw the figures:

k ¼ 1:1; a1 ¼ 0:15; a2 ¼ 0:15;w ¼ 0:11; c1

¼ 0:008; f 1 ¼ 0:001:

We start the study of the resonance p2 � w with

modulation Eqs. (127)–(130). According to Eq. (131),

the amplitude a1 sð Þ asymptotically tends to zero. For

sufficiently large values of the variable s, the influence

of amplitude a1 sð Þ becomes insignificant. Therefore,

the solution to Eq. (129) is also irrelevant. Contrary to

the resonance p1 � 1, the coupling between the

transverse and longitudinal movement is maintained

even for large values of time s. The coupling is caused

by the second term of the solution ~x1ðsÞ (see Eq. (A4)).

Thus, we can write the modulation problem for

stationary states in the external resonance p2 � w as

follows:

da2

ds
¼ � 1

2
c2a2 sð Þ � f 2

2w
cosðr2s� w2ðsÞÞ; ð180Þ

dw2

ds
¼ �w

8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2 sð Þ

� f 2sin r2s� w2 sð Þð Þ
2wa2 sð Þ : ð181Þ

After introducing the modified phase h2ðsÞ, accord-

ing to definition (142), we formulate the following

equations governing the amplitude and phase of the

stationary vibration

c2a2 þ
f 2

w
cosh2 ¼ 0; ð182Þ

r2 þ w
8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2 þ

f 2sinh2

2wa2

¼ 0: ð183Þ

By eliminating the modified phase h2, we obtain the

direct dependence between the amplitude a2 and the

parameter r2
Fig. 33 Amplitude a1 versus the detuning parameter r1 at the

resonance p1 � 1

Fig. 34 Modified phase h1 versus the detuning parameter r1 at

the resonance p1 � 1
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wc2a2ð Þ2 þ 4w2a2
2 r2 þ w

8w4 � 7w2 � 1

16 4w2 � 1ð Þ a2
2

� �2

¼ f 2
2:

ð184Þ

We test the stability of the fixed points that are the

roots of Eqs. (182)–(183) in the same way as in the

case of double resonance p1 � 1 and p2 � w. The

matrix necessary to test the stability of the fixed point

a2s; h2sð Þ has the form

B ¼
� c2

2

f 2sinh2s

2w

w
8w4 � 7w2 � 1

8 4w2 � 1ð Þ a2s �
f 2sinh2s

2wa2
2s

f 2cosh2s

2wa2s

2
664

3
775:

ð185Þ

The following parameters are fixed:

w ¼ 0:13; c2 ¼ 0:0015; f 2 ¼ 0:0001:

The resonance response curves with two separable

stable branches (points of which are drawn with larger

dots) and an unstable branch are presented in Figs. 35

and 36.

7 Internal resonance

When the pendulum is constructed in such a way that

the relation 2w & 1 between the frequencies holds,

then its oscillation shows the strong effects of coupling

between the motion in the longitudinal and transverse

directions. To express the closeness of the frequencies,

we introduce the detuning parameter r3 in the

following manner

w ¼ 1

2
þ r3; r3 ¼ er̂3: ð186Þ

As previously, we employ MSM to investigate this

case of resonance. Assumptions (29) about the small-

ness of some parameters of the mathematical model

remain valid. Following the same procedure as in

Sects. 4 and 5, we obtain the approximate asymptotic

solution, which is valid for the internal resonance, of

the following form:

The auxiliary function x1 sð Þ is as follows:

x1 sð Þ ¼ � kf1 sin p1sð Þ
1 þ kð Þ p2

1 � 1
� �þ k

4 1 þ kð Þ
1

2
þ r3

� �2

a2
2 sð Þ

þ
k 1 � 3a1x

2
1e þ 3a2 x2e � x1eð Þ2þk

� �

1 þ kð Þ2

a1 sð Þ cos sþ w1 sð Þð Þ

þ k
8 1 þ kð Þ a1 sð Þa2

2 sð Þ cos 2r3s� w1 sð Þ þ 2w2 sð Þð Þ

� 3k 1 þ 2r3ð Þ 3 þ 2r3ð Þ
128 1 þ kð Þ 1 þ r3ð Þ

a1 sð Þa2
2 sð Þ cos 2 1 þ r3ð Þsþ w1 sð Þ þ 2w2 sð Þð Þ:

ð189Þ

The functions a1 sð Þ; a2 sð Þ;w1 sð Þ; and w2 sð Þ are

solutions to the modulation ODEs of the following

form:

Fig. 35 Amplitude a2 versus the detuning parameter r2 at the

resonance p2 � w; stable branches are darker

Fig. 36 Modified phase h2 versus the detuning parameter r2 at

the resonance p2 � w; stable branches are darker
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da1

ds
¼ � c1

2
a1 sð Þ � 3

32
1 þ 2r3ð Þ2a2

2 sð Þsinð2r3s

þ 2w2 sð Þ � w1 sð ÞÞ;
ð190Þ

da2

ds
¼ � c2

2
a2 sð Þ þ 1

4

3

2
� r3

� �
a1 sð Þsinð2r3s

þ 2w2 sð Þ � w1 sð ÞÞ;
ð191Þ

dw1

ds
¼ 3

ka1x
2
1e þ a2 x2e � x1eð Þ2

2 1 þ kð Þ

þ
1 þ 2r3ð Þ 20r3

3 � 4r2
3 þ 9r3 þ 24

� �
256 1 þ r3ð Þ a2

2 sð Þ

þ 3 1 þ 2r3ð Þ2

32a1 sð Þ a2
2 sð Þ cos 2r3sþ 2w2 sð Þ � w1 sð Þð Þ;

ð192Þ

dw2

ds
¼ 3 � 2r3

8
a1 sð Þ cos 2r3sþ 2w2 sð Þ � w1 sð Þð Þ

� 32r3
3 � 12r2

3 þ 4r3 þ 9

256
a2

2 sð Þþ

þ 27 þ 2r3 4r3 1 þ r3 2r3 þ 13ð Þð Þð Þ � 31

128 1 þ r3ð Þ 1 þ 2r3ð Þ a2
1 sð Þ:

ð193Þ

ODEs (190)–(193) are supplemented by initial

conditions (75), and the modulation problem is solved

numerically.

The following parameters are fixed during numer-

ical calculations:

k ¼ 2; a1 ¼ a2 ¼ 0:03; c1 ¼ c2 ¼ 0:001; r3 ¼ 0:007:

The external load parameters are fixed:

f 1 ¼ 0:002; f 2 ¼ 0:001; p1 ¼ 1:5; p2 ¼ 1:13:

The initial values for the equations of motion are as

follows:

x0 ¼ 0:01; v0 ¼ 0;u0 ¼ 0:02;x0 ¼ 0:

x2 sð Þ ¼ � f1 sin p1sð Þ
p2

1 � 1
þ a1 sð Þ cos sþ w1 sð Þð Þ þ 1

4

1

2
þ r3

� �2

a2
2 sð Þ

þ 1

8
a1 sð Þa2

2 sð Þ cos 2r3s� w1 sð Þ þ 2w2 sð Þð Þ

� 3 1 þ 2r3ð Þ 3 þ 2r3ð Þ
128 1 þ r3ð Þ a1 sð Þa2

2 sð Þ cos 2 1 þ r3ð Þsþ w1 sð Þ þ 2w2 sð Þð Þ;

ð187Þ

u sð Þ ¼ � f2 sin p2sð Þ
p2

2 � 1
2
þ r3

� �2
þ a2 sð Þ cos

1

2
þ r3

� �
sþ w2 sð Þ

� �

þ 72r3
3 þ 180r2

3 þ 182r3 þ 47

3072 1 þ r3ð Þ a3
2 sð Þ cos 3

1

2
þ r3

� �
sþ 3w2 sð Þ

� �

� 1 þ 2r3ð Þ 5 þ 2r3ð Þ
16 1 þ r3ð Þ a1 sð Þa2 sð Þ cos

3

2
þ r3

� �
sþ w1 sð Þ þ w2 sð Þ

� �

þ 2r3 � 3ð Þ 2r3 þ 3ð Þ2

256 1 þ r3ð Þ a2
1 sð Þa2 sð Þ cos

3

2
� r3

� �
sþ 2w1 sð Þ � w2 sð Þ

� �

þ 1 þ 2r3ð Þ 5 þ 2r3ð Þ 7 þ 2r3ð Þ
256 1 þ r3ð Þ a2

1 sð Þa2 sð Þ cos
5

2
þ r3

� �
sþ 2w1 sð Þ þ w2 sð Þ

� �
:

ð188Þ
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The calculated initial values of the amplitudes and

phases that are consistent with the values of x0; v0;

u0 and x0 are:

a10 � 0:01026; a20 � 0:02019;w10 � �0:23559;w20

� �0:11179:

The relationship between the initial values has been

determined using the analytical form of solution

(194)–(195).

In Figs. 37 and 38, the time history of the pendulum

oscillations in the longitudinal and transverse direc-

tion is shown, respectively. Figure 39 reports how the

deformations of the springs change with dimension-

less time s. The same method of presentation is

maintained, in which the solution obtained numeri-

cally usingNDSolve is drawn with a dotted line and the

asymptotic solution (solid line). One can observe high

compliance between both solutions, which is now

worth underlying when the internal resonance affects

the pendulum motion besides the forces. The follow-

ing values of the measures (83)–(84)

e1 ¼ 1:50206 � 10�6; e2 ¼ 1:13790 � 10�5; e3

¼ 2:60259 � 10�5;

d1 ¼ 1:30214 � 10�2; d2 ¼ 1:30267 � 10�2; d3

¼ 2:40833 � 10�2:

confirm the usefulness of the asymptotic solution

(187)–(188). The error values were calculated on the

interval h0; 1000i.
In each of Figs. 37, 38, and 39, one can notice the

alternating changes in the amplitude of oscillations in

the transverse and longitudinal directions,

characteristic of internal resonance. This trend is

weakened by damping and disrupted by external

forces. Thus, the amplitudes a1 sð Þ and a2 sð Þ describ-

ing the slow variation tendency (but only of the first

terms of the solutions), drawn with a solid black line in

Figs. 37 and 38, do not exactly pass through the local

maxima and minima. The effects of internal resonance

in its pure form can be observed in Figs. 40 and 41.

These graphs show the asymptotic solutions that were

obtained, assuming that c1 ¼ c2 ¼ 0 and f1 ¼ f2 ¼ 0

and without changing the values of the other param-

eters of the model. In this conservative system, the

oscillations are realized with the fixed modulation of

slowly changing amplitudes caused by internal reso-

nance. The figures also show the numerical solutions

(drawn with the dotted line).

The latter case proves that asymptotic solutions are

universal and that on their basis, various special cases
Fig. 37 Longitudinal oscillations in the internal resonance;

solid line—asymptotic solution, dotted line—numerical

solution

Fig. 38 Swing oscillations in the internal resonance; solid

line—asymptotic solution, dotted line—numerical solution

Fig. 39 Deformations of the spring versus time in the internal

resonance; solid line—asymptotic solution, dotted line—nu-

merical solution
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can be discussed without the need to construct new

solutions.

8 Conclusions

Harmonically forced and viscously damped planar

oscillations of the spring pendulum with two serially

connected nonlinear springs have been analyzed. We

derived the equations of motion from the Lagrange

formalism, taking as a starting point an analogous one-

dimensional oscillator with two degrees of freedom,

i.e., a pendulum with two particles. The mathematical

model of the spring pendulum includes two second-

order ODEs and one algebraic equation (AE).

The governing equations concerning both non-

resonant and resonant oscillations are solved using the

MSM, which has been appropriately modified to solve

the differential–algebraic equations. The variant of the

MSM with three variables in the time domain has been

employed. The accuracy of the obtained solutions has

been estimated using two measures. The first assesses

the error satisfying the equations of the mathematical

model. The second one stands for a relative measure in

the sense of the L2-norm and compares the asymptotic

solution with the numerical one determined using the

NDSolve procedure of Mathematica software. These

errors serve as measurable criteria for identifying the

accuracy of the solution methods.

The asymptotic solution, valid for non-resonant

motion, enabled the prediction of three resonance

cases: two external resonances and the 1:2 internal

resonance. Asymptotic solutions for the two single

external resonances and the case of two simultane-

ously occurring resonances p1 � 1 and p2 � w have

been derived. The approximate asymptotic solutions

for each of the resonance cases are based on different

assumptions, so they must be constructed indepen-

dently. Although asymptotic solutions were obtained

from the constituted sequence limited only to three

terms, the formulas representing them are complex.

The comparison of the forms of the asymptotic

solutions for non-resonant oscillation and external

resonances made it possible to find common terms that

depend only on the structure, geometry, and mechan-

ical properties of the pendulum. Writing the solutions

in this more compact form enables a more straight-

forward analysis of the influence of individual

parameters on the pendulum’s motion.

Within the procedure of solving the problem

corresponding to a given resonance case, the modu-

lation equations of the amplitudes and phases are

derived. The modulation equations obtained for

external resonances are the basis for the steady-state

analysis. Studies of the periodic stationary solutions,

supplemented with the analysis of the stability in the

Lyapunov sense, have been carried out for each of the

considered external resonance. The resonance

response curves have been depicted in the form of

the dependencies: the amplitude versus the detuning

parameter and the modified phase versus the detuning

parameter. The shape of the resonance response curves

of the pendulum at the double resonance strongly

depends on the forcing parameters. Slight changes

with regard to the frequency or the amplitude of the

force dramatically change the form of the response

curves. Taking into account the jump phenomenon

between stable branches, one should predict the

Fig. 40 Longitudinal oscillations in the internal resonance for

c1 ¼ c2 ¼ 0 and f 1 ¼ f 2 ¼ 0:

Fig. 41 Swing oscillations in the internal resonance for c1 ¼
c2 ¼ 0 and f 1 ¼ f 2 ¼ 0; solid line—asymptotic solution, dotted

line—numerical solution

123

Quantifying nonlinear dynamics of a spring pendulum with two springs in series: an analytical 33



chaotic behavior in this regime. For the case of p1 � 1

resonance, the analytical form of the dependencies

between the amplitude and the detuning parameter as

well as between the modified phase and the detuning

parameter has been derived. It was also proved that all

fixed points are stable.

The occurrence of internal resonances depends on

the fulfillment of certain design conditions. For the

spring pendulum, it appears when there is the 1: 2

relationship between the dimensionless frequencies

characteristic for the longitudinal and transverse

oscillations. Taking into account both the measures

satisfying the governing equations and compliance

with the numerical solution, one can conclude that the

asymptotic solution works well both in the presence

and absence of the damping and external forces. The

presented possibility of obtaining a solution for a

specific case from a more general solution proves the

advantages of approximate analytical methods based

on our approach.

Sypniewska-Kamińska et al. in [45] pointed the

impact of the error of approximation of the trigono-

metric functions by the Taylor series on the accuracy

of asymptotic solutions. Therefore, the solutions were

rejected for which the oscillation amplitude values in

the transverse direction exceed the approximation

applicability range (i.e., about 0.6 rad). This observa-

tion also holds for resonance cases.

Mechanical systems consisting of elastic elements

connected in series have great potential for technical

applications. For example, in vehicle’s suspension or

passive damping systems. The study of such systems

with an analytical approach can bring many benefits. It

is obvious that the analytical results, even approxi-

mate, allow for a much broader analysis of the

behavior of the system than the numerical solutions.
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Appendix

The detailed form of Eq. (38) after substitution

Eqs. (42)–(44), (48), (52) and elimination of the

secular terms (54)–(55) follows

o2n23

os2
0

þ n23 ¼ f̂1 sin p1s0ð Þ þ 3
w2 wþ 1ð Þ2

2wþ 1
B1B

2
2e

i 2wþ1ð Þs0

� 3
w2 w� 1ð Þ2

2w� 1
B1B

2
2e

i 2w�1ð Þs0

� 3
w2 w� 1ð Þ2

2w� 1
B1B

2

2e
�i 2w�1ð Þs0

þ 3
w2 wþ 1ð Þ2

2wþ 1
B1B

2

2e
�i 2wþ1ð Þs0 :

ðA1Þ

Equation (53) with inserted solution (56) instead of

the function n23ðs0; s1; s2Þ reads:

n13 ¼ � kf̂1 sin p1s0ð Þ
1 þ kð Þ p2

1 � 1
� �

�
3k â1x

2
1e � â2 x2e � x1eð Þ2

� �

1 þ kð Þ2
B1e

is0 þ B1e
�is0

� �

3kw w� 1ð Þ
4 2w� 1ð Þ 1 þ kð Þ B1B

2
2e

i 2w�1ð Þs0 þ B1B
2

2e
�i 2w�1ð Þs0

� �

� 3kw wþ 1ð Þ
4 2wþ 1ð Þ 1 þ kð Þ B1B

2
2e

i 2wþ1ð Þs0 þ B1B
2

2e
�i 2wþ1ð Þs0

� �
:

ðA2Þ

The detailed form of Eq. (39) after substitution

Eqs. (42)–(44), (48), (52) and elimination of the

secular terms (57)–(58) is as follows:

o2/3

os2
0

þ w2/3 ¼ f̂2 sin p2s0ð Þ

þ w2 49w2 � 1

6 4w2 � 1ð Þ B3
2e

3iws0 þ B
3

2e
�3iws0

� �

� w3 þ 6w2 þ 11wþ 6

2wþ 1
wðB2

1B2e
i wþ2ð Þs0 þ B

2

1B2e
�i wþ2ð Þs0Þ

þ w3 � 6w2 þ 11w� 6

2w� 1

w B
2

1B2e
i w�2ð Þs0 þ B2

1B2e
�i w�2ð Þs0

� �
:

ðA3Þ

Functions ~x1 sð Þ; ~x2 sð Þ; and �
u sð Þ in Eqs. (83)–(85),

and (7) have the following form:
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~x1 sð Þ ¼ kw2

4 1 þ kð Þ 1 þ 3
cos 2wsþ 2w2 sð Þð Þ

4w2 � 1

� �
a2

2 sð Þ

þ k

1 þ kð Þ2
1 � 3a1x

2
1e þ 3a2 x2e � x1eð Þ2þk

� �
a1

sð Þ cos sþ w1 sð Þð Þ

þ 3kw w� 1ð Þ
16 1 þ kð Þ 2w� 1ð Þ a1 sð Þa2

2 sð Þ

cos 1 � 2wð Þsþ w1 sð Þ � 2w2 sð Þð Þ

� 3kw wþ 1ð Þ
16 1 þ kð Þ 2wþ 1ð Þ a1 sð Þa2

2 sð Þ

cos 1 þ 2wð Þsþ w1 sð Þ þ 2w2 sð Þð Þ;
ðA4Þ

~x2 sð Þ ¼ a1 sð Þ cos sþ w1 sð Þð Þ

þ w2

4
a2

2 sð Þ 1 þ 3

4w2 � 1
cos 2wsþ 2w2 sð Þð Þ

� �

þ 3w w� 1ð Þ
16 2w� 1ð Þ a1 sð Þa2

2 sð Þ cos 1 � 2wð Þsþ w1 sð Þ � 2w2 sð Þð Þ

� 3w wþ 1ð Þ
16 2wþ 1ð Þ a1 sð Þa2

2 sð Þ cos 1 þ 2wð Þsþ w1 sð Þ þ 2w2 sð Þð Þ;

ðA5Þ

~u sð Þ ¼ a2 sð Þ cos wsþ w2 sð Þð Þ

� 49w2 � 1

192 4w2 � 1ð Þ a
3
2 sð Þ cos 3wsþ 3w2 sð Þð Þ

þ w w� 2ð Þ
2 2w� 1ð Þ a1 sð Þa2 sð Þ cos 1 � wð Þsþ w1 sð Þ � w2 sð Þð Þ

� w wþ 2ð Þ
2 2wþ 1ð Þ a1 sð Þa2 sð Þ cos 1 þ wð Þsþ w1 sð Þ þ w2 sð Þð Þ

þ w3 � 5w2 þ 6w

16 2w� 1ð Þ a2
1 sð Þa2 sð Þ cos 2 � wð Þsþ 2w1 sð Þ � w2 sð Þð Þ

þ w3 þ 5w2 þ 6w

16 2wþ 1ð Þ a2
1 sð Þa2 sð Þ cos 2 þ wð Þsþ 2w1 sð Þ þ w2 sð Þð Þ:

ðA6Þ

The detailed form of Eqs. (94)–(95) after elimina-

tion of the secular terms (109)–(112) reads

o2n23

os2
0

þ n23 ¼ 3
w2 wþ 1ð Þ2

2wþ 1
B1B

2
2e

i 2wþ1ð Þs0 þ B1B
2

2e
�i 2wþ1ð Þs0

� �

�3
w2 w� 1ð Þ2

2w� 1
B1B

2
2e

i 2w�1ð Þs0 � B1B
2

2e
�i 2w�1ð Þs0

� �
;

ðA7Þ

o2/3

os2
0

þ w2/3 ¼ f̂2 sin p2s0ð Þ

þ w2 49w2 � 1

6 4w2 � 1ð Þ B3
2e

3iws0 þ B
3

2e
�3iws0

� �

� w
w3 þ 6w2 þ 11wþ 6

2wþ 1
ðB2

1B2e
i wþ2ð Þs0 þ B

2

1B2e
�i wþ2ð Þs0Þ

þ w
w3 � 6w2 þ 11w� 6

2w� 1
B

2

1B2e
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Longitudinal-transversal internal resonances in Timosh-

enko beams with an axial elastic boundary condition.

Nonlin. Dyn. 103, 3489–3513 (2021)

34. Andrzejewski, R., Awrejcewicz, J.: Nonlinear Dynamics of

a Wheeled Vehicle. Springer, Berlin (2005)

35. Suciu, C.V., Tobiishi, T., Mouri, R.: Modeling and simu-

lation of a vehicle suspension with variable damping versus

the excitation frequency. J. Telecom. Inf. Technol. 1(2012),

83–89 (2012)

36. Telli, S., Kopmaz, O.: Free vibrations of a mass grounded by

linear and nonlinear springs in series. J. Sound Vib. 289,

689–710 (2006)

37. Weggel, D.C., Boyajian, D.M., Chen, S.E.: Modelling

structures as systems of springs. World Trans. Eng. Tech-

nol. Educ. 6(1), 169–172 (2007)

38. Manevitch, L.I., Musienko, A.I.: Limiting phase trajectories

and energy exchange between anharmonic oscillator and

external force. Nonlin. Dyn. 58, 633–642 (2009)

39. Starosta, R., Awrejcewicz, J., Sypniewska-Kamińska, G.:
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