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Abstract In this paper, a novel robust tracking con-
trol strategy for nonlinear unmatcheduncertain systems
is formulated using the event-based adaptive dynamic
programming (ADP) approach. First, an augmented
system is constructed based on the nonlinear system
and the reference trajectory. Then, by forming an aux-
iliary system and introducing a discounted cost func-
tion, the event-based robust tracking control prob-
lem is transformed into the event-based optimal con-
trol problem of the auxiliary system. The event-based
Hamilton–Jacobi–Bellman (HJB) equation associated
with the event-based optimal control problem is solved
using a single critic neural network (NN) under the
ADP framework. A novel weight tuning rule for the
critic network is formulated to avoid the necessity of
an initial admissible control at the beginning of the
weights tuning process. The obtained event-based con-
troller is updated only at the triggering instants decided
by the designed triggering condition, which helped in a
significant reduction of resources used in computation
and communication.Meanwhile, it is demonstrated that
the obtained event-based controller can guarantee the
tracking error’s uniform ultimate boundedness. Fur-
thermore, using the Lyapunov method, it is guaranteed
that the established novel event-triggering rule ensures
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uniform ultimate boundedness of all signals associ-
ated with the closed-loop auxiliary system. Finally, the
applicability of the proposed control scheme is demon-
strated by providing two simulation examples.
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tainty · Event-triggered control · Adaptive dynamic
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1 Introduction

Uncertainties are inevitable in practical nonlinear sys-
tems because of the presence of external disturbances
and modeling errors. So, considering the requirement
of the robustness of the designed feedback controller
to uncertainties, many robust control design schemes
have been developed over several decades [1–3]. Espe-
cially the method developed by Lin [3], in which the
optimal control approach is utilized to obtain the robust
controller, got remarkable attention [4,5]. In the case
of linear systems, the optimal controller can be derived
conveniently by solving the algebraic Riccati equation
(ARE) associated with it [6]. However, for nonlinear
systems, instead of the ARE, one needs to find the
solution of the Hamilton–Jacobi–Bellman (HJB) equa-
tion [7]. Since the HJB equation is a nonlinear par-
tial differential equation, solving it with an analytical
method is challenging. Although dynamic program-
ming is generally used to solve the optimal control
problem of nonlinear systems, it suffers heavily from
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the notorious “curse of dimensionality” [8]. The neu-
ral network (NN)-based function approximation tech-
nique called adaptive dynamic programming (ADP)
has been employed to address this difficulty [9,10].
The ADP approach was initially developed by Wer-
bos to determine the solution of the optimal control
problem effectively [11]. The ADP algorithm has a
close relation with the reinforcement learning (RL)
technique [12]. In the literature, ADP is also known
as approximate dynamic programming [13], adaptive
critic designs (ACDs) [14], neural dynamic program-
ming (NDP) [15], and Q-learning [16].

Inmost practical applications, the system states need
to track the desired trajectory rather than converge to
zero merely [17,18]. In the past several years, sig-
nificant work has been done on tracking control by
combining the aforementioned robust control method
and the ADP algorithms [19–22]. In [19], the integral
reinforcement learning technique is utilized to develop
an optimal tracking controller for constrained input
systems. For nonlinear matched uncertain systems, in
[20], a robust tracking controller is designed via neu-
ral network approach, and in [21], a guaranteed cost
tracking controller is developed. In [22], tracking con-
troller for nonlinear systems considering unmatched
uncertainties is derived via ACDs. However, all the
work mentioned above is developed under the clas-
sical time-triggering framework, which suffers from
inefficient use of computational and communicational
resources.

Compared to the classical time-triggered approach,
in the event-based or event-triggered strategy, the con-
troller is only updated if a predefined triggering rule
is not fulfilled, which helps in the effective use of
computational and communicational resources [23–
26]. Thus, many works have been done by combin-
ing the ADP-based robust control approach and the
event-based framework. In [27], an actor-critic NN
structure is utilized to derive an event-based opti-
mal adaptive controller for nonlinear systems. In [28],
an event-based guaranteed cost controller is derived
for nonlinear systems utilizing a single critic NN.
In [29], adaptive critic is used to design event-based
near-optimal controller for heating, ventilation, and
air conditioning (HVAC) systems. In [30], event-
triggered optimal controller is designed for continu-
ous stirred tank reactor (CSTR) system using ADP
approach. The event-based ADP framework has been
further utilized in designing controller for nonlinear

systems with constrained input [31], with matched
uncertainties [32], and with unmatched uncertainties
[33].

Under the event-basedADP framework, the tracking
controller for nonlinear systems has been designed in
[34–43]. In [34–36,38,44], theADPapproach is used to
formulate event-based optimal tracking controller for
nonlinear systems without considering any uncertain-
ties. The event-basedADPapproach is utilized to derive
an optimal tracking controller for modular reconfig-
urable robots in [39], and in [40], the tracking controller
is design with application in wastewater treatment. In
[41], event-based ADP is utilized to develop a track-
ing controller for constrained input systems. In [42],
Cui et al. established event-based H∞ tracking con-
troller via RL method. In our previous work [43], non-
linear matched uncertain system was considered while
designing the event-based robust tracking controller.
In [44], the event-triggered ADP approach is used
to design a tracking controller for partially unknown
matched uncertain constrained systems. Nonetheless,
papers in the existing literature have not focused on
developing a robust tracking controller for continuous-
time nonlinear systemswith unmatched uncertainty via
event-based ADP approach, particularly without using
the H∞ control approach [42]. Unlike the matched
uncertainty, the unmatched uncertainty enters the sys-
tem through a different channel than the control input.
The unmatched uncertainties are amore general kind of
uncertainties and can be widely seen in most practical
systems. So, it is vital to consider unmatched uncer-
tainty while designing a controller for nonlinear sys-
tems. This is what drives the research developed in this
paper.

The following are the major contributions of this
work.

1. Compared with [34–38,41], in this work uncer-
tainty is considered while designing the ADP-
based event-triggered robust tracking controller.
As unmatched uncertainties are the most common
formof uncertainty, theymust be taken into account
while developing a controller for nonlinear sys-
tems.

2. Unlike [42], in this work, the event-based robust
tracking controller is derived without using the
H∞ control strategy. In the H∞ optimal control
approach, the existence of the saddle point must be
judged, but this is a challenging task.
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3. Rather than considering matched uncertainty as in
[43,44], unmatched uncertainty is considered in
this work. Moreover, unlike [43], the need for the
initial stabilizing control at the beginning of the
critic weights tuning process is also relaxed by
modifying the tuning rule.

The remaining part of this work is organized in the
following manner. In Sect. 2, the original tracking con-
trol problem is transformed into the optimal control
problem of an auxiliary system. The event-based HJB
equation is formulated, and the event-triggering rule
is derived in Sect. 3. In Sect. 4, the HJB equation is
solved via the ADP approach. In Sect. 5, the Lyapunov
approach is used to show that all the signals associated
with the closed-loop auxiliary system are uniformly
ultimately bounded. In Sect. 6, two simulation exam-
ples are presented. Finally, a concluding remark is given
in Sect. 7.Moreover, limitations and future scope of the
proposed work are also mentioned in Sect. 7.

Notation: In this work, the maximum and minimum
eigenvalues of amatrix are denoted byλM (·) andλm(·),
respectively. The transform operation is represented by
the superscript �. ∇(·) denotes the gradient operation.
In is the identity matrix of dimension n × n and 0n×m

is the zero matrix of dimension n ×m. � is a compact
subset of R2.

2 Problem transformation

Consider the continuous-time nonlinear uncertain sys-
tem given in the form

ẋ(t) = f (x(t)) + g(x(t))u(t) + � f (x(t)), (1)

where x(t) ∈ R
n and u(t) ∈ R

b are the state vec-
tor and control input, respectively. Let x(0) = x0 be
the initial state. f (·) and g(·) are smooth functions in
their arguments with f (0) = 0 and f + gu satisfies
the Lipschitz continuity. The unmatched uncertainty
� f (x) = l(x)d(x), where l(x) ∈ R

n×p, d(x) ∈ R
p

and if b = p then l(x) �= g(x). Let d(x) be bounded
by a known function λd(x), i.e., ‖d(x)‖ ≤ λd(x). Fur-
thermore, λd(0) = 0 and d(0) = 0. In addition, there
exists a nonnegative function gM (x) satisfying

∥
∥g+(x)� f (x)

∥
∥ ≤ gM (x),

where g+(x) is the pseudoinverse of g(x). Let the
desired trajectory xd(t) ∈ R

n be generated from

ẋd(t) = �(xd(t)), (2)

where �(xd) satisfies the Lipschitz continuity and
�(0) = 0. Let xd(0) = xdo be the initial condition.

The objective of thiswork is to derive an event-based
robust controller for system (1) so that the system state
x(t) follows the desired trajectory xd(t). Define the
tracking error as et (t) = x(t) − xd(t). From (1) and
(2), the tracking error dynamics can be presented as

ėt (t) = f (et (t) + xd(t)) + g(et (t) + xd(t))u(t)

+ � f (et (t) + xd(t)) − �(xd(t)). (3)

Now, based on the tracking error and the desired trajec-
tory, an augmented state vector ξ(t) = [e�

t (t), x�
d (t)]�

∈ R
2n is formed. Then, using (2) and (3), the aug-

mented system dynamics is formulated as

ξ̇ (t) = F(ξ(t)) + G(ξ(t))u(ξ(t)) + �F(ξ(t)), (4)

where F : R
2n → R

2n and G : R
2n → R

2n×b are
new systemmatrices while�F(ξ(t)) ∈ R

2n is the new
uncertain term. They can be expressed as

F(ξ(t)) =
[

f (et (t) + xd(t)) − �(xd(t))
�(xd(t))

]

,

G(ξ(t)) =
[

g(et (t) + xd(t))
0

]

and

�F(ξ(t)) =
[

� f (et (t) + xd(t))
0

]

= L(ξ(t))d(ξ(t)).

The terms d(ξ) and G+(ξ)�F(ξ) are still upper
bounded and the bound can be derived as

d(ξ) = d(x) ≤ λd(x) = λd(et + xd) � λd(ξ) (5)

and
∥
∥G+(ξ)�F(ξ)

∥
∥ = ∥

∥g+(x)� f (x)
∥
∥

≤ gM (x) = gM (et + xd) � gM (ξ),

(6)

respectively.

123



2834 R. Dahal, I. Kar

Next, the uncertain term L(ξ)d(ξ) is projected onto
the range of matrix G(ξ) and decomposed into sum of
matched and unmatched component, that is

L(ξ)d(ξ) = G(ξ)G+(ξ)L(ξ)d(ξ)

+ (I − G(ξ)G+(ξ))L(ξ)d(ξ).

Then following auxiliary system is formed

ξ̇ = F(ξ) + G(ξ)u(ξ)

+ (I − G(ξ)G+(ξ))L(ξ)v(ξ), (7)

where v(ξ) ∈ R
p is an auxiliary control that handles

the unmatched component.

3 Event-based robust tracking control strategy

In this section, the event-based HJB equation is devel-
oped for the auxiliary system (7). Moreover, the
event-triggering rule is also obtained using Lyapunov
approach. The cost function associated with the auxil-
iary system (7) is defined as

J (ξ(t)) =
∫ ∞

t
e−γ (τ−t){U (ξ(τ ), u(ξ(τ )), v(ξ(τ )))

+ β2‖m�‖2λ2d(ξ) + ‖r�‖2g2M (ξ)}dτ, (8)

where γ and β are positive constant, U (ξ, u(ξ), v(ξ))

= ξ� Q̄ξ + u�(ξ)Ru(ξ) + β2v�(ξ)Mv(ξ) and Q̄ =
diag{Q, 0n×n}. Q,M and R are positive definitematri-
ces with appropriate dimension. Let r and m be lower
triangular matrices with appropriate dimension. Then,
using Cholesky decomposition one can write R = rr�
and M = mm�.

Remark 1 The discount term e−γ (τ−t) in cost func-
tion (8) is employed to make sure that (8) is bounded.
Otherwise, the control policy pair [u�(et (t), xd(t)),
v�(et (t), xd(t))]� maycause (8) to becomeunbounded
since it depends on reference trajectory xd(t). In many
practical systems, we need to consider reference trajec-
tory which does not converge to zero. In that situation
xd(t) makes (8) unbounded [45,46].

Let
(�) be the set of admissible controls on�. We
assume that the optimal control policy pair is admissi-
ble. If the cost function J (ξ) is continuously differen-
tiable then one can write

‖r�‖2g2M (ξ) + β2‖m�‖2λ2d +U (ξ, u(ξ), v(ξ))

− γ J (ξ) + J̇ (ξ) = 0 (9)

with J (0) = 0. Here (9) is called the infinitesimal ver-
sion of (8). The Hamiltonian for the auxiliary system
(7) is given as

H(ξ, u(ξ), v(ξ),∇ J (ξ))

= (∇ J (ξ))�(F(ξ) + G(ξ)u(ξ)

+ (I − G(ξ)G+(ξ))L(ξ)v(ξ)) + ‖r�‖2g2M (ξ)

+ β2‖m�‖2λ2d +U (ξ, u(ξ), v(ξ)) − γ J (ξ).

(10)

The optimal cost function is given by

J ∗(ξ(t))

= min
u,v∈
(�)

∫ ∞

t
e−γ (τ−t){U (ξ(τ ), u(ξ(τ )), v(ξ(τ )))

+ β2‖m�‖2λ2d(ξ) + ‖r�‖2g2M (ξ)}dτ. (11)

By the Bellman’s principle, J ∗(ξ(t)) holds the HJB
equation

min
u,v∈
(�)

H(ξ, u(ξ), v(ξ),∇ J ∗(ξ)) = 0 (12)

with J ∗(0) = 0. Define (I − G(ξ)G+(ξ))L(ξ) =
K (ξ). The optimal control policies are obtained as

u∗(ξ) = −1

2
R−1G�(ξ)∇ J ∗(ξ) (13)

and

v∗(ξ) = − 1

2β2 M
−1K�(ξ)∇ J ∗(ξ). (14)

Substituting (13) and (14) into (12), we present theHJB
equation as

(∇ J ∗(ξ))�F(ξ) + ξ� Q̄ξ + β2‖m�‖2λ2d(ξ)

+ ‖r�‖2g2M (ξ) − γ J ∗(ξ)

− 1

4
∇(J ∗(ξ))�G(ξ)R−1G�(ξ)∇ J ∗(ξ)

− 1

4β2∇(J ∗(ξ))�K (ξ)M−1K�(ξ)∇ J ∗(ξ) = 0.

(15)

123



Robust tracking control of nonlinear 2835

3.1 The event-based HJB equation formulation

Here, we present the HJB equation (15) in event-based
form. Before proceeding, the event-based strategy is
explained.

Let us consider amonotonically increasing sequence
{tk}∞k=0, where the kth triggering instant is represented
as tk and k ∈ N. Let the system state be sampled at
every triggering instants and {ξk}∞k=0 be the sequence
of sampled state, where ξk = ξ(tk) is the sampled state
at tk . The triggering error is described as the difference
between the current state ξ(t) and the sampled state ξk
and is represented as

ek(t) = ξk − ξ(t), ∀t ∈ [tk, tk+1), k ∈ N. (16)

Based on (16), the event-based mechanism can be
explained. If a predefined triggering rule is not satisfied,
then the triggering error becomes zero, i.e., ek(t) = 0,
and the control law will be updated. When the trig-
gering rule is fulfilled, the control law is held con-
stant between the two consecutive triggering instants.
This principle is similar to the familiar zero-order hold
(ZOH) principle, and it can be expressed as

u(t) = u(ξk) � μ(ξk), ∀t ∈ [tk, tk+1), k ∈ N.

From (16), the event-based control policy is obtained as

u(t) = μ(ξ(t) + ek(t)), ∀t ∈ [tk, tk+1), k ∈ N. (17)

Now, using the control law (17), we obtain the sam-
pled version of auxiliary system (7) as

ξ̇ = F(ξ) + G(ξ)μ(ξ(t) + ek(t)) + K (ξ)v(ξ). (18)

The optimal control (13), under event-triggered mech-
anism, can be expressed as

μ∗(ξk) = −1

2
R−1G�(ξk)∇ J ∗(ξk). (19)

Now, using (19), we formulate the HJB equation under
event-based framework as

H(ξ, μ∗(ξk), v∗(ξ),∇ J ∗(ξ)) = 0,

that is,

(∇ J ∗(ξ))�F(ξ) + ξ� Q̄ξ + β2‖m�‖2λ2d(ξ)

+ ‖r�‖2g2M (ξ) − γ J ∗(ξ)

− 1

2
∇(J ∗(ξ))�G(ξ)R−1G�(ξk)∇ J ∗(ξk)

+ 1

4
∇(J ∗(ξk))�G(ξk)R

−1G�(ξk)∇ J ∗(ξk)

− 1

4β2∇(J ∗(ξ))�K (ξ)M−1K�(ξ)∇ J ∗(ξ) = 0,

(20)

where J ∗(0) = 0.

3.2 Event-triggering condition

In this subsection,weobtain the event-triggering condi-
tion using the Lyapunov approach. Before continuing,
following statement is made which will be required to
derive the triggering rule. The following statement is
satisfied in many applications when the controller is
affine with respect to the event-triggering error signal
[27,47].

Assumption 1 Let L be a positive constant. We con-
sider that the optimal control policy u∗(ξ) fulfills the
Lipschitz continuity on � such that

‖u∗(ξ(t)) − u∗(ξk)‖ = ‖u∗(ξ(t)) − u∗(ξ(t) + ek(t))‖
≤ L‖ek(t)‖.

Theorem 1 Let Assumption 1 be true, J ∗(ξ) satis-
fies the HJB equation (12), the control policies are
described by (14) and (19), and the event-triggering
law is formulated as

‖ek(t)‖2 ≤ (1 − η21)λm(Q)‖et‖2 − 2β2‖m�v∗(ξ)‖2
2‖r�‖2L2

� ‖eT ‖2, (21)

then for η1 ∈ (0, 1) and γ = 0, the closed-loop
augmented system (4) is asymptotically stable under
μ∗(ξk) and for γ �= 0 the tracking error et is uniformly
ultimately bounded.

Proof Consider J ∗(ξ) is the Lyapunov function can-
didate. Differentiating J ∗(ξ) along the trajectory of
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ξ̇ (t) = F(ξ(t))+G(ξ(t))μ∗(ξk)+�F(ξ(t)), one can
write

J̇ ∗(ξ) = (∇ J ∗(ξ))�(F(ξ) + G(ξ)μ∗(ξk)+�F(ξ(t))

= (∇ J ∗(ξ))�F(ξ) + (∇ J ∗(ξ))�G(ξ)μ∗(ξk)
+ (∇ J ∗(ξ))�(G(ξ)G+(ξ)L(ξ) + K (ξ))d(ξ).

(22)

From (12), we obtain

(∇ J ∗(ξ))�F(ξ)

= −ξ� Q̄ξ − β2‖m�‖2λ2d(ξ) − ‖r�‖2g2M (ξ)

+ γ J ∗(ξ) + 1

4
∇(J ∗(ξ))�G(ξ)R−1G�(ξ)∇ J ∗(ξ)

+ 1

4β2∇(J ∗(ξ))�K (ξ)M−1K�(ξ)∇ J ∗(ξ), (23)

from (13), we can write

G�(ξ)∇ J ∗(ξ) = −2Ru∗(ξ) (24)

and from (14), we obtain

K�(ξ)∇ J ∗(ξ) = −2β2Mv∗(ξ) (25)

Using (23), (24) and (25) we derived

J̇ ∗(ξ) = −ξ� Q̄ξ − β2‖m�‖2λ2d(ξ) − ‖r�‖2g2M (ξ)

+ γ J ∗(ξ) + u∗�(ξ)Ru∗(ξ)

+ β2v∗�(ξ)Mv∗(ξ) − 2u∗�(ξ)Rμ∗(ξk)
− 2u∗�(ξ)RG+(ξ)L(ξ)d(ξ)

− 2β2v∗�(ξ)Md(ξ). (26)

Now,

u∗�(ξ)Ru∗(ξ) − 2u∗�(ξ)Rμ∗(ξk)
− 2u∗�(ξ)RG+(ξ)L(ξ)d(ξ)

= ‖r�(u∗(ξ) − u∗(ξk) − G+(ξ)L(ξ)d(ξ))‖2
− ‖r�(u∗(ξk) + G+(ξ)L(ξ)d(ξ))‖2

≤ 2‖r�‖2 + 2‖r�G+(ξ)L(ξ)d(ξ)‖2
− ‖r�(u∗(ξk) + G+(ξ)L(ξ)d(ξ))‖2

≤ 2‖r�‖2L2‖ek‖2 + 2‖r�G+(ξ)L(ξ)d(ξ)‖2
− ‖r�(u∗(ξk) + G+(ξ)L(ξ)d(ξ))‖2 (27)

and

−2β2v∗�(ξ)Md(ξ) ≤ β2(‖m�v∗(ξ)‖2
+‖m�d(ξ)‖2). (28)

Since, Q̄ = diag{Q, 0n×n}, one can write ξ� Q̄ξ =
e�
t Qet . Now, using (27), (28), and Assumption 1 we
derive

J̇ ∗(ξ) ≤ −λm(Q)‖et‖2 − β2‖m�‖2λ2d(ξ)

− ‖r�‖2g2M (ξ) + 2β2v∗�(ξ)Mv∗(ξ) + γ J ∗(ξ)

+ β2‖m�d(ξ)‖2 + 2‖r�‖2L2‖ek‖2
+ 2‖r�G+(ξ)L(ξ)d(ξ)‖2
− ‖r�(u∗(ξk) + G+(ξ)L(ξ)d(ξ))‖2

≤ −λm(Q)‖et‖2 − ‖r�‖2(g2M (ξ)

− 2‖G+(ξ)L(ξ)d(ξ)‖2) + 2‖r�‖2L2‖ek‖2
− β2‖m�‖2(λ2d(ξ) − ‖d(ξ)‖2)
+ 2β2v∗�(ξ)Mv∗(ξ) + γ J ∗(ξ)

− ‖r�(u∗(ξk) + G+(ξ)L(ξ)d(ξ))‖2
≤ −η21λm(Q)‖et‖2 + (η21 − 1)λm(Q)‖et‖2

+ 2‖r�‖2L2‖ek‖2 + 2β2‖m�v∗(ξ)‖2
+ γ J ∗(ξ). (29)

Hence, when the triggering rule stated in Theorem 1
is satisfied and γ = 0, then using (29) we can write

J̇ ∗(ξ) ≤ −η21λm(Q)‖et (t))‖2. (30)

Thus, the system is asymptotically stable for γ = 0.
When γ �= 0, then

J̇ ∗(ξ) ≤ γ J ∗(ξ) − η21λm(Q)‖et (t))‖2. (31)

Since J ∗(ξ) is positive definite and bounded on �, let
J ∗
max be the maximum value of J ∗(ξ). So, from (31),
J̇ ∗(ξ) ≤ 0 only if et lies out of the set
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�et =
{

et : ‖et‖ ≤ 1

η1

√

γ J ∗
max

λm(Q)

}

. (32)

Thus we conclude that for γ �= 0, the tracking error
et (t) is uniformly ultimately bounded and the ultimate

bound is 1
η1

√
γ J∗

max
λm (Q)

. �

Remark 2 In thiswork, the control policyμ∗(ξk) is for-
mulated under the event-triggered framework, but the
augmented control policy v∗(ξ) is formulated under
the time-triggered framework. There are two reasons
behind this. First, the control policy to be used in the
uncertain system is μ∗(ξk) not the augmented control
v∗(ξ). Second, if we also consider the augmented con-
trol in the event-triggering framework, then it becomes
very difficult to obtain the event-triggering rule (21).

Remark 3 The lower bond of theminimum event inter-
val �tmin can be expressed as

�tmin ≥ 1

P ln(1 + Tmin),

where

Tmin = min
k∈N

{ ||ek(tk+1)||
||ξk || + π

}

> 0

and ek(tk+1) = ξk − ξ(tk+1), P and π are positive
constant satisfying F(ξ) + G(ξ)u(ξ) + �F(ξ) ≤
P‖ξ‖+π .Note that the positive constantsP andπ exist
because F(ξ)+G(ξ)u is Lipschitz continuous and the
terms d(ξ) and G+(ξ)�F(ξ) are upper bounded. The
theoretical proof is similar to [32]. We have excluded
the proof to avoid repetition. In the simulation result,
we have presented that the intersample time indeed has
a lower limit which is larger than zero. As a result, the
infamous Zeno behavior is avoided.

4 ACDs for solving event-based HJB equation

In this section, a single critic network is employed
to approximate the optimal value of the cost function
under the ADP framework. The optimal cost function
can be reconstructed on �, utilizing the neural net-
work’s universal approximation property and l number
of hidden layer neurons, as

J ∗(ξ) = ω�
c σc(ξ) + εc(ξ), (33)

where ωc ∈ R
l is the actual weight vector of critic net-

work, σc(ξ) ∈ R
l is the activation function, and εc(ξ)

is the reconstruction error. Next, we obtain the gradient
of (33) as

∇ J ∗(ξ) = (∇σc(ξ))�ωc + ∇εc(ξ). (34)

Due to the unavailability of the actual weight vector
ωc, the approximate weight vector ω̂c is used to form a
critic network to estimate the value of the optimal cost
function J ∗(ξ) as follows

Ĵ (ξ) = ω̂�
c σc(ξ). (35)

Then the gradient of (35) is

∇ Ĵ (ξ) = (∇σc(ξ))�ω̂c. (36)

Considering (34)we present the augmented control law
(14) and the event-based control law (19) as

v∗(ξ) = − 1

2β2 M
−1K�(ξ)((∇σc(ξ))�ωc + ∇εc(ξ))

(37)

and

μ∗(ξk) = −1

2
R−1G�(ξk)((∇σc(ξk))

�ωc + ∇εc(ξk)),

(38)

respectively. Then by using (36), the approximate value
of v∗(ξ) and μ∗(ξk) can be obtained as

v̂(ξ) = − 1

2β2 M
−1K�(ξ)(∇σc(ξ))�ω̂c (39)

and

μ̂(ξk) = −1

2
R−1G�(ξk)(∇σc(ξk))

�ω̂c, (40)

respectively. Substituting J ∗(ξ) from (33) into (10), we
obtain

H(ξ, ωc, μ
∗(ξk), v∗(ξ))

= ω�
c ∇σc(ξ)(F(ξ) + G(ξ)μ∗(ξk) + K (ξ)v∗(ξ))

+ ‖r�‖2g2M (ξ) + β2‖m�‖2λ2d(ξ)

+U (ξ, μ∗(ξk), v∗(ξ)) − γω�
c σc(ξ)

� ecH , (41)
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where ecH = −(∇εc(ξ))�(F(ξ) + G(ξ)μ∗(ξk) +
K (ξ)v∗(ξ)) + γ εc(ξ) is the residual error because of
the reconstruction error associatedwith theNNapprox-
imation. Now the Hamiltonian (10) is approximated as

Ĥ(ξ, ω̂c, μ̂(ξk), v̂(ξ))

= ω̂�
c ∇σc(ξ)(F(ξ) + G(ξ)μ̂(ξk) + K (ξ)v̂(ξ))

+ ‖r�‖2g2M (ξ) + β2‖m�‖2λ2d(ξ)

+U (ξ, μ̂(ξk), v̂(ξ)) − γ ω̂�
c σc(ξ). (42)

From the HJB equation it is evident that H(ξ, ωc, μ
∗

(ξk), v
∗(ξ)) = 0. So, the approximation error of

Hamiltonian is given by

ec = Ĥ(ξ, ω̂c, μ̂(ξk), v̂(ξ)) − H(ξ, ωc, μ
∗(ξk),

v∗(ξ)) = ω̂�
c ∇σc(ξ)(F(ξ) + G(ξ)μ̂(ξk)

+ K (ξ)v̂(ξ)) + ‖r�‖2g2M (ξ)

+ β2‖m�‖2λ2d(ξ)

+U (ξ, μ̂(ξk), v̂(ξ)) − γ ω̂�
c σc(ξ)

= ‖r�‖2g2M (ξ) + β2‖m�‖2λ2d(ξ)

+U (ξ, μ̂(ξk), v̂(ξ)) + ω̂�
c φ, (43)

where φ = ∇σc(ξ)(F(ξ)+G(ξ)μ̂(ξk)+K (ξ)v̂(ξ))−
γ σc(ξ).

Now, to ensure ec given in (43) to be sufficiently
small, we need to train the critic network to obtain
appropriate weights. For that, the objective function
constructed as E = (1/2)e�

c ec is minimized by using
the steepest descent technique. Based on this approach
the tuning rule is given as

˙̂ωc1 = −lc
(1 + φ�φ)2

∂E

∂ω̂c

= −lcφ

(1 + φ�φ)2
(ω̂�

c φ + ‖r�‖2g2M (ξ)

+ β2‖m�‖2λ2d(ξ) +U (ξ, μ̂(ξk), v̂(ξ)), (44)

where lc > 0 is a design parameter which is also known
as the critic network’s learning rate and 1/(1 + φ�φ)2

is introduced to normalize φ. However, the tuning rule
(44) has following drawbacks

1. An initial stabilizing control is needed at the begin-
ning of the critic weight vector learning process

while using the tuning rule provided in (44). How-
ever, in some practical applications, determining
the initial admissible control can be difficult.

2. The term φ/(1+φ�φ)2 in (44) should be held per-
sistently exciting to guarantee the convergence of
the critic weights to valid optimal values. To meet
the persistency of excitation (PE) condition, usu-
ally a probing noise is applied to the control input
during the initial period of the critic weights tuning
process. However, the probing noise can cause the
system to become unstable.

To overcome the above drawbacks, we modify the tun-
ing rule (44) via the Lyapunov approach. Before con-
tinuing the following assumption, which is similar to
[20], is presented.

Assumption 2 Let us consider V (ξ) be a continuously
differentiable Lyapunov function candidate for the sys-
tem (7) under the action of control policies given by
(37) and (38), and satisfy

V̇ (ξ)

= (∇V (ξ))�(F(ξ) + G(ξ)μ∗(ξk) + K (ξ)v∗(ξ))

< 0. (45)

Moreover, there exists a symmetric positive definite
matrix � ∈ R

2n defined on � ensuring

(∇V (ξ))�(F(ξ) + G(ξ)μ∗(ξk) + K (ξ)v∗(ξ))

= −(∇V (ξ))��∇V (ξ)

≤ −λm(�)‖V (ξ)‖2. (46)

Remark 4 F(ξ) + G(ξ)μ∗(ξk) + K (ξ)v∗(ξ) is fre-
quently considered to be bounded by a positive con-
stant on a compact set � [48]. In other words, there
exist a constant z1 such that ‖F(ξ) + G(ξ)μ∗(ξk) +
K (ξ)v∗(ξ)‖ ≤ z1. Here we assumed that F(ξ) +
G(ξ)μ∗(ξk)+K (ξ)v∗(ξ) is bounded by a functionwith
respect to ξ , which is less stringent than the constant
upper bound assumption.Without loss of generality,we
consider that ‖(F(ξ) +G(ξ)μ∗(ξk) + K (ξ)v∗(ξ))‖ ≤
z2‖∇V (ξ)‖, where z2 is a positive constant. In this
regard,we canwrite ‖(∇V (ξ))�(F(ξ)+G(ξ)μ∗(ξk)+
K (ξ)v∗(ξ))‖ ≤ z2‖∇V (ξ)‖2. Observing (45), one can
find that (46) is reasonable. In simulation, a polynomial
with respect to ξ is chosen as V (ξ).
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While we apply the approximated control policies
(39) and (40) to the auxiliary system (7), to avoid insta-
bility we need to avoid the possibility

(∇V (ξ))�(F(ξ) + G(ξ)μ̂(ξk) + K (ξ)v̂(ξ)) > 0.
(47)

To avoid (47), the training process is enhanced by
introducing an additional term which is obtained using
the steepest descent method as given below

˙̂ωc2

= ls
∂((∇V (ξ))�(F(ξ) + G(ξ)μ̂(ξk) + K (ξ)v̂(ξ)))

∂ω̂c

= ls
2

(∇σc(ξk)G(ξk)R
−1G�(ξ)∇V (ξ)

+ 1

β2∇σc(ξ)K (ξ)M−1K�(ξ)∇V (ξ)), (48)

where ls > 0 is a design parameter. Now, the modified
critic weights tuning rule is obtained by adding the sta-
bilizing term (48) to the traditional tuning rule (44) as

˙̂ωc = ˙̂ωc1 + ˙̂ωc2

= −lcφ

(1 + φ�φ)2
(ω̂�

c φ + ‖r�‖2g2M (ξ)

+ β2‖m�‖2λ2d(ξ) +U (ξ, μ̂(ξk), v̂(ξ)))

+ ls
2

(∇σc(ξk)G(ξk)R
−1G�(ξ)∇V (ξ)

+ 1

β2∇σc(ξ)K (ξ)M−1K�(ξ)∇V (ξ)). (49)

Remark 5 The new tuning rule (49) can eliminate the
need of initial admissible control. Hence, we can ini-
tialize the critic weight vector to zerowhile learning the
appropriate critic weights. Moreover, the risk of insta-
bility due to the addition of probing noise to fulfill the
PE condition is also eliminated.

The critic weights approximation error ω̃c is defined
as the difference between the ideal and the approximate
weight vector, i.e., ω̃c = ωc − ω̂c. From (41) and (43)
we obtain

ec = −ω̃�
c φ + ecH . (50)

Then, using (49) and (50), the critic weights approxi-
mation error dynamics is presented as

˙̃ωc = −lcφ

(1 + φ�φ)2
(ω̃�

c φ − ecH )

− ls
2

(∇σc(ξk)G(ξk)R
−1G�(ξ)∇V (ξ)

+ 1

β2∇σc(ξ)K (ξ)M−1K�(ξ)∇V (ξ)). (51)

The closed-loop system functions as an impulsive
dynamical system consisting of flow dynamics and
jump dynamics under the event-based control law.
Let us consider an augmented state vector ψ =
[ξ�, ξ�

k , ω̃�
c ]�. Then, the flow dynamics of the closed-

loop system, which occurs for all t ∈ [tk, tk+1), can be
presented as

ψ̇(t)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

F(ξ) + G(ξ)μ̂(ξk) + K (ξ)v̂(ξ)

0
−lcφ

(1+φ�φ)2
(ω̃�

c φ − ecH )

− ls
2 (∇σc(ξk)G(ξk)R−1G�(ξ)∇V (ξ)

+ 1
β2 ∇σc(ξ)K (ξ)M−1K�(ξ)∇V (ξ))

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

∀t ∈ [tk, tk+1), k ∈ N (52)

and the jump dynamics of the closed-loop system,
which occurs for all t ∈ tk+1, can be presented as

ψ(t+) = ψ(t) +
⎡

⎣

0
ξk − ξ(t)

0

⎤

⎦ , ∀t ∈ tk+1, k ∈ N,

(53)

where ψ(t+) = limς→0+ ψ(t +ς) and ς ∈ (0, tk+1 −
tk).

5 Stability analysis

In this section, the stability of impulsive dynamical rep-
resentation of closed-loop system, given by (52) and
(53), is studied. Prior to moving forward some assump-
tions, which are common in the literature, are stated
below [32].

Assumption 3 The augmented systemdynamicsG(ξ)

and K (ξ) satisfy the following assumptions, where A,
GM , and KM are positive constants.
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1. The dynamics G(ξ) satisfies the Lipschitz continu-
ity such that ‖G(ξ) − G(ξk)‖ ≤ A‖ek(t)‖.

2. The dynamics G(ξ) and K (ξ) are upper bounded
by GM and KM , respectively.

Assumption 4 The following conditions hold on �,
where B, ∇σcM , ∇εcM , ωcM , and ecHM are positive
constants.

1. The gradient of activation function satisfies the Lip-
schitz continuity such that ‖∇σc(ξ) − ∇σc(ξk)‖ ≤
B‖ek(t)‖.

2. The gradient of activation function ∇σc(ξ) and the
gradient of neural approximation error ∇εc(ξ) are
upper bounded by ∇σcM and ∇εcM , respectively.

3. The ideal weight vector ωc and the residual error
ecH are upper bounded by ωcM and ecHM , respec-
tively.

Theorem 2 Let Assumptions 1 to 4 be true. Then,
under the control policies (39) and (40), the closed-
loop auxiliary system (7) is asymptotically stable and
the critic weights approximation error is uniformly ulti-
mately bounded if the inequalities (54) and (55) hold,
where (η2 ∈ (0, 1)) is a design parameter, and the val-
ues ofΓ1 andΓ2 are give by (63) and (69), respectively.

‖ek (t)‖2

≤ (1 − η22)λm (Q)‖et (t)‖2 + ‖r�μ̂(ξk )‖2 − β2‖m�‖2‖v̂(ξ)‖2
‖R−1‖2‖r�‖2(A2∇σ 2

cM + B2G2
M )‖ω̂c‖2

� ‖êT ‖2 (54)

‖ω̃c‖ >

√
√
√
√

2‖R‖2(1 + φ�φ)(Γ1 + Γ2 + γ J∗
max )

2(1 + φ�φ)(lc‖R‖2λϕm − G2
M∇σ 2

cM ) − lc‖R‖2λϕM

(55)

Proof In light of the flow dynamics (52) and the jump
dynamics (53) we consider the Lyapunov function can-
didate as

ϒ(t) = ϒ1(t) + ϒ2(t) + ϒ3(t) + ϒ4(t), (56)

where ϒ1(t) = J ∗(ξ), ϒ2(t) = J ∗(ξk), ϒ3(t) =
1
2 ω̃

�
c ω̃c and ϒ4(t) = lsV (ξ). Now, the analysis is sep-

arated into two cases.
Case 1. Events are not triggered, i.e., t ∈ [tk, tk+1).
Taking the differentiation of (56) one can write

ϒ̇(t) = ϒ̇1(t) + ϒ̇2(t) + ϒ̇3(t) + ϒ̇4(t). (57)

It is evident that for t ∈ [tk, tk+1) ϒ̇2(t) = 0. Now,
differentiating ϒ1(t) along the trajectory of ξ̇ (t) =
F(ξ) + G(ξ)μ̂(ξk) + K (ξ)v̂(ξ), we obtain

ϒ̇1(t) = (∇ J ∗(ξ))�(F(ξ) + G(ξ)μ̂(ξk)

+ K (ξ)v̂(ξ)).

Now using Eqs. (23) and (24), we derived

ϒ̇1(t) = −ξ� Q̄ξ − β2‖m�‖2λ2d(ξ) − ‖r�‖2g2M (ξ)

+ γ J ∗(ξ) + u∗�(ξ)Ru∗(ξ)

− 2u∗�(ξ)Rμ̂(ξk) + β2v∗�(ξ)Mv∗(ξ)

− 2β2v∗�(ξ)M v̂(ξ). (58)

We can write

u∗�(ξ)Ru∗(ξ) − 2u∗�(ξ)Rμ̂(ξk)

≤ ‖r�(u∗(ξ) − μ̂(ξk))‖2 − ‖r�μ̂(ξk)‖2

≤ ‖r�‖2‖1
2
R−1G�(ξ)(∇σc(ξ))�ω̂c

− 1

2
R−1G�(ξk)(∇σc(ξk))

�ω̂c

+ 1

2
R−1G�(ξ)(∇σc(ξ))�(ω̃c + ∇εc(ξ))‖2

− ‖r�μ̂(ξk)‖2

≤ ‖r�‖2
2

‖R−1(G�(ξ)(∇σc(ξ))�

− G�(ξk)(∇σc(ξk))
�)ω̂c‖2 − ‖r�μ̂(ξk)‖2

+ 1

2
‖R−1G�(ξ)((∇σc(ξ))�ω̃c + ∇εc(ξ))‖2

≤ ‖r�‖2‖R−1‖2(A2∇σ 2
cM + B2G2

M )‖ek‖2‖ω̂c‖2

+ 1

‖R‖2G
2
M∇σ 2

cM‖ω̃c‖2 + 1

‖R‖2G
2
M∇εcM

− ‖r�μ̂(ξk)‖2, (59)

− 2β2v∗�(ξ)M v̂(ξ)

≤ β2v∗�(ξ)Mv∗(ξ) + β2v̂�(ξ)M v̂(ξ) (60)

and

2β2v∗�(ξ)Mv∗(ξ)

≤ 1

2β2‖M‖‖K�(ξ)(∇σc(ξ))�(ωc + ∇εc)‖2

≤ 1

2β2‖M‖K
2
M∇σ 2

cM (ω2
cM + ∇εcM ). (61)
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Based on the above three inequalities, (58) can be
expressed as

ϒ̇1(t)

≤ −ξ� Q̄ξ − β2‖m�‖2λ2d(ξ) − ‖r�‖2g2M (ξ)

+ γ J ∗(ξ) + β2‖m�‖2‖v̂(ξ)‖2 − ‖r�μ̂(ξk)‖2
+ ‖r�‖2‖R−1‖2(A2∇σ 2

cM + B2G2
M )‖ek‖2‖ω̂c‖2

+ 1

‖R‖2G
2
M∇σ 2

cM‖ω̃c‖2 + Γ1, (62)

where Γ1 is a positive constant and it is expressed as

Γ1 = G2
M

‖R‖2∇ε2cM + K 2
M∇σ 2

cM

2β2‖M‖ (ω2
cM + ∇ε2cM ). (63)

We have ω�
c φ = φ�ωc. Let ϕ = φ/(1 + φ�φ). Now,

using (51), the time derivative of ϒ3(t) is found as

ϒ̇3(t) = −lcω̃
�
c ϕϕ�ω̃c + lc

(1 + φ�φ)
ω̃�
c ϕecH

− ls
2

ω̃�
c ∇σc(ξk)G(ξk)R

−1G�(ξ)∇V (ξ)

− ls
2β2 ω̃�

c ∇σc(ξ)K (ξ)M−1K�(ξ)∇V (ξ).

(64)

Let λM (ϕϕ�) = λϕM and λm(ϕϕ�) = λϕm . Then,
Considering Young’s inequality 2c�d ≤ c�c + d�d
and Assumption 4, (64) can be expressed as

ϒ̇3(t)

≤ −lcλϕm‖ω̃c‖2

+ lc
2(1 + φ�φ)

(λϕM‖ω̃c‖2 + e2cHM )

− ls
2

ω̃�
c ∇σc(ξk)G(ξk)R

−1G�(ξ)∇V (ξ)

− ls
2β2 ω̃�

c ∇σc(ξ)K (ξ)M−1K�(ξ)∇V (ξ). (65)

Now, substituting ω̃c = ωc − ω̂c in last two terms of
(65) and considering the control policies (39) and (40),
one can write

ϒ̇3(t)

≤ −lcλϕm‖ω̃c‖2

+ lc
2(1 + φ�φ)

(λϕM‖ω̃c‖2 + e2cHM )

− ls
2

(∇V (ξ))�G(ξ)R−1G�(ξk)∇σc(ξk)ωc

− ls(∇V (ξ))�G(ξ)μ̂(ξk)

− ls
2β2 (∇V (ξ))�K (ξ)M−1K�(ξ)∇σc(ξ)ωc

− ls(∇V (ξ))�K (ξ)v̂(ξ). (66)

The derivative of ϒ4(t) is

ϒ̇4(t) = ls∇V (ξ)(F(ξ) + G(ξ)μ̂(ξk) + K (ξ)v̂(ξ)).

(67)

Now, combining (66) and (67) and using the control
policies (37) and (38), one can write

ϒ̇3(t) + ϒ̇4(t)

≤ −lcλϕm‖ω̃c‖2

+ lc
2(1 + φ�φ)

(λϕM‖ω̃c‖2 + e2cHM )

+ ls(∇V (ξ))�(F(ξ) + G(ξ)μ∗(ξk) + K (ξ)v∗(ξ))

+ ls
2

(∇V (ξ))�G(ξ)R−1G�(ξk)∇εc(ξk)

+ ls
2β2 (∇V (ξ))�K (ξ)M−1K�(ξ)∇εc(ξ).

Now, utilizing Assumptions 1 to 4, we can write

ϒ̇3(t) + ϒ̇4(t)

≤ −lcλϕm‖ω̃c‖2

+ lc
2(1 + φ�φ)

(λϕM‖ω̃c‖2 + e2cHM )

− lsλm(�)‖V (ξ)‖2 + lsκ‖∇V (ξ)‖
≤ −lcλϕm‖ω̃c‖2 + lc

2(1 + φ�φ)
λϕM‖ω̃c‖2

+ lc
2(1 + φ�φ)

e2cHM + lsκ2

4λm(�)

− lsλm(�)

(

‖V (ξ)‖ − κ

2λm(�)

)2

≤ −lcλϕm‖ω̃c‖2 + lcλϕM

2(1 + φ�φ)
‖ω̃c‖2 + Γ2, (68)
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where κ = 1
2∇εcM (G2

M‖R−1‖ + 1
β2 K

2
M‖M−1‖) and

the positive constant Γ2 is given by

Γ2 = lce2cHM

2(1 + φ�φ)
+ lsκ2

4λm(�)
. (69)

Substituting (62) and (68) into (57), we obtain

ϒ̇(t)

≤ −ξ� Q̄ξ − β2‖m�‖2λ2d(ξ) − ‖r�‖2g2M (ξ)

+ γ J ∗(ξ) + β2‖m�‖2‖v̂(ξ)‖2
+ ‖r�‖2‖R−1‖2(A2∇σ 2

cM + B2G2
M )‖ek‖2‖ω̂c‖2

− ‖r�μ̂(ξk)‖2 + 1

‖R‖2G
2
M∇σ 2

cM‖ω̃c‖2

− lcλϕm‖ω̃c‖2 + lcλϕM

2(1 + φ�φ)
‖ω̃c‖2 + Γ1 + Γ2.

(70)

Since Q̄ = diag{Q, 0n×n}, one can write ξ�(t)Q̄
ξ(t) = e�

t (t)Qet (t). Now, introducing the design
parameter η2, (70) can be presented as

ϒ̇(t)

≤ −η22λm(Q)‖et (t)‖2 − (1 − η22)λm(Q)‖et (t)‖2
− β2‖m�‖2λ2d(ξ) − ‖r�‖2g2M (ξ)

+ β2‖m�‖2‖v̂(ξ)‖2 − ‖r�μ̂(ξk)‖2
+ ‖r�‖2‖R−1‖2(A2∇σ 2

cM + B2G2
M )‖ek‖2‖ω̂c‖2

+ G2
M

‖R‖2∇σ 2
cM‖ω̃c‖2 − lcλϕm‖ω̃c‖2

+ lcλϕM

2(1 + φ�φ)
‖ω̃c‖2 + γ J ∗

max + Γ1 + Γ2. (71)

If the inequalities (54) and (55) mentioned in The-
orem 2 hold then (71) implies

ϒ̇(t) ≤ −η22λm(Q)‖et (t)‖2 − β2‖m�‖2λ2d(ξ)

− ‖r�‖2g2M (ξ)

< 0,

i.e., the proposedLyapunov function candidate has neg-
ative time derivative for all t ∈ [tk, tk+1).
Case 2. Events are triggered, i.e., t ∈ tk+1. We derive
the difference of the Lyapunov function candidate as

�ϒ(tk) = J ∗(ξ(t+k )) − J ∗(ξ(tk))

+ 1

2
ω̃�
c (t+k )ω̃c(t

+
k ) − 1

2
ω̃�
c (tk)ω̃c(tk))

+ J ∗(ξk+1) − J ∗(ξk) + ls(V (t+k ) − V (tk)),
(72)

where ξ(t+k ) = limς→0+ ξ(tk + ς) and ς ∈ (0, tk+1 −
tk). In Case 1 we derived that ϒ̇(t) < 0 for all
t ∈ [tk, tk+1), so

ϒ(tk) ≥ lim
ς→0+ ϒ(tk + ς) ∀ς ∈ (0, tk+1 − tk), k ∈ N

� ϒ(t+k ). (73)

Thus, one can write

J ∗(ξ(t+k )) + 1

2
ω̃�
c (t+k )ω̃c(t

+
k ) + lsV (t+k )

− J ∗(ξk) − 1

2
ω̃�
c (tk)ω̃c(tk)) − lsV (t+k ) ≤ 0.

(74)

Hence, we can further express that

(J ∗(ξk+1) − J ∗(ξk)) ≤ −ϑ‖ek+1(tk)‖, (75)

where ϑ is a class k function and ek+1(tk) = ξk+1−ξk .
The inequalities (74) and (75) imply the monotonically
decreasing property of the proposedLyapunov function
candidate for all t ∈ tk+1.

Thus from the two cases presented above, we con-
clude that the closed-loop system is asymptotically sta-
ble and the critic weights approximation error is uni-
formly ultimately bounded. �


A flowchart is given in Fig. 1 to explain the fun-
damental methodology of the proposed work, which
comprises the learning and implementation phases.
In the learning phase, the converged critic weights
are obtained after sufficient iterations while using the
event-triggering rule (54). Then the converged weights
are passed to the implementation phase to obtain the
approximate values of the optimal control policies
μ∗(ξk) and v∗(ξ) as μ̂(ξk) and v̂(ξ), respectively.
The approximated event-based control policy μ̂(ξk) is
applied to the uncertain nonlinear system while using
the event triggering rule (21) to track the desired tra-
jectory.
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Fig. 1 Flowchart of the
proposed method
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Remark 6 The values of the sampling frequencies η1
and η2 are chosen such that the terms ‖eT ‖2 and ‖êT ‖2
become positive, respectively. The increase in the value
of η1 and η2 will increase the sampling frequency and
the number of the event triggering instants. Further-
more, it improves tracking performance. However, we
have to select the sampling frequency such that there
is a trade-off between the number of triggering instants
and the tracking performance. Similar to relevant lit-
erature [38], other parameters are chosen heuristically
such that the convergence time of the critic weights and
the number of triggering instants are minimum with
acceptable tracking performance.

6 Simulation illustration

In this section, two simulation examples are presented
to exhibit the efficacy of the proposed event-based
robust trajectory tracking scheme. In Example 1, we
have considered a linear systemwith unmatched uncer-
tainty, and in Example 2, the spring-mass-damper sys-
tem with nonlinear spring constant and unmatched
uncertainty is considered.

6.1 Example 1

Consider the following linear unmatched uncertain sys-
tem [21]

ẋ =
[

x2
−100x1 − 2x2

]

+
[

0
1

]

u + � f (x), (76)

where x = [x1, x2]� ∈ R
2 is the state vec-

tor, u ∈ R denotes the control input, � f (x) =
l(x)d(x) and l(x) = [1, 0]�. The perturbation d(x) =
0.5θ1x1sin(x2+θ2), where the parameters θ1 and θ2 are
unknown. We consider θ1 ∈ [−1, 1], θ2 ∈ [−5, 5] and
the upper bound of the perturbation d(x) is λd(x) =
|x1|. Let x0 = [0.6,−0.5]� be the initial state. The
desired trajectory xd(t) is generated from

ẋd(t) =
[

xd2
−100xd1

]

, (77)

where xd = [xd1, xd2]� ∈ R
2 with the initial condition

xd0 = [0.3,−0.3]�. The tracking error et is defined as
et = x − xd , where et = [et1, et2]� ∈ R

2, and initial

condition eto = x0−xd0. Then an augmented state vec-
tor ξ = [ξ1, ξ2, ξ3, ξ4]� ∈ R

4 is defined and following
augmented system is formed

ξ̇ =

⎡

⎢
⎢
⎣

ξ2
−100ξ1 − 2(ξ2 + ξ4)

ξ4
−100ξ3

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦
u(ξ)

+ L(ξ)d(ξ), (78)

where L(ξ) = [1, 0, 0, 0]� and d(ξ) = 0.5θ1(ξ1 +
ξ3)sin((ξ2 + ξ4) + θ2). The initial condition ξ0 =
[et0, xd0]� = [0.3,−0.2, 0.3,−0.3]�. The upper
bound for λd(ξ) is derived as λd(ξ) = |ξ1 + ξ3|.
We have obtained G+(ξ) = [0, 1, 0, 0] so (I −
G(ξ)G+(ξ))L(ξ) = [1, 0, 0, 0]�. As in (7), the auxil-
iary system is formulated as

ξ̇ =

⎡

⎢
⎢
⎣

ξ2
−100ξ1 − 2(ξ2 + ξ4)

ξ4
−100ξ3

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦
u(ξ) +

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

v(ξ). (79)

Since, ‖G+(ξ)L(ξ)d(ξ)‖ = 0 we have taken
gM (ξ) = 0. Let R = I1, M = I1 and Q = 500I2.
For the simulation purpose, consider γ = 0.5 and
β = 0.85.

Our aim is to develop an event-based robust con-
troller for the system (76) to track the reference trajec-
tory generated by (77). As described in the theoretical
analysis, to achieve this design criteria, the augmented
system (78) is formed and then the original control
problem is transformed to designing an event-based
optimal controller for auxiliary system (79). Based on
(8), the cost function for (79) can be presented as

J (ξ(t)) =
∫ ∞

t
e−0.5(τ−t){500‖et‖2 + ‖u(ξ)‖2

+ 0.72‖v(ξ)‖2 + 0.72|ξ1 + ξ3|2}dτ. (80)

The critic network (35) is employed to find the
solution of the event-based optimal control problem
approximately. We have considered l = 10 numbers of
hidden layer neurons and the weight vector of the critic
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network is represented as ω̂c = [ω̂c1, . . . , ω̂c10]�. The
activation function for the critic network is selected as
σc(ξ) = [ξ21 , ξ22 , ξ23 , , ξ24 , ξ1ξ2, ξ1ξ3, ξ1ξ4, ξ2ξ3, ξ2ξ4,

ξ3ξ4]�. The weights are trained using the tuning rule
(49) and the triggering condition (54) is used during the
training process. The parameters used during the tuning
process are lc = 3, ls = 0.1, (A2∇σ 2

cM + B2G2
M ) = 8

and η2 = 0.7.
To satisfy the PE condition, a small exponen-

tially decreasing probing noise is applied to the con-
trol input for the initial 10 seconds of the train-
ing process. All the elements of the weight vec-
tor are initialized to zero. As shown in Fig. 2,
the critic weight vector converges to ω̂c = [0.46,
3.64, 0.01,−0.69,−0.85,−0.32,−0.02, 0.71,−3.89,
− 1.60]�. During the training process the event-based
controller updates 5714 times. On the contrary, under
the same design criteria, the time-based controller
updates 18000 times.

Then, we used the converged weights to obtain the
approximate values of control policies control polices
(39) and (40). Now, we select θ1 = −0.3 and θ2 = 5
to demonstrate the trajectory tracking ability of the
designed control policy μ̂(ξk) and the triggering rule
described in (21). We considered η1 = 0.65 and
L = 2.5. The sampling period is taken as 0.01 second.
The tracking performance of the designed controller is
displayed in Figs. 3 and 4. The obtained event-based
control policy μ̂(ξk) is shown in Fig. 5.

The value of the sampling frequency η1 is consid-
ered as η1 ∈ (0, 1). Table 1 illustrates the relationship
between η1 and the number of triggering instants Ns .
From the table it is clear that as η1 increases the number
of event-triggering instants Ns increases.

The evolution of the triggering conditionwith ‖eT ‖2
and ‖ek‖2 is displayed in Fig. 6. The sampling period

Fig. 2 Convergence process of critic weights

is shown in Fig. 7. The minimal intersample time is
found to be 0.01 second. That means the infamous
Zeno behavior is excluded. Furthermore, Fig. 7 also
conveys that only 435 state samples are used during
the tracking process. So, the controller is updated only
435 times. Nonetheless, if we use the time-triggering
method under the same condition then 1600 samples
are required. So, developed event-based tracking con-
trol strategy reduces the resources used significantly.

Next, in order to show that the derived controller is
robust,wehave taken θ1 = 0.4 and θ2 = −1.The track-
ing performance for new value of θ1 and θ2 is shown
in Figs. 8 and 9. In this scenario, the event-based con-
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Fig. 3 Tracking performance of x1 for θ1 = −0.3 and θ2 = 5
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Fig. 4 Tracking performance of x2 for θ1 = −0.3 and θ2 = 5
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Fig. 5 Event-based control input
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Fig. 6 Evolution of the triggering condition with ‖eT ‖2 and
‖ek‖2
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Fig. 7 Triggering instants during the tracking process
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Fig. 8 Tracking performance of x1 for θ1 = 0.4 and θ2 = −1
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Fig. 9 Tracking performance of x2 for θ1 = 0.4 and θ2 = −1

Table 1 Effect of η1 on number of triggering instants

Parameters Case 1 Case 2 Case 3

η1 0.65 0.75 0.8

Ns 435 777 906

troller updates 468 times only. On the contrary, the con-
ventional time-triggered controller updates 1600 times
under the same design criteria.

6.2 Example 2

Consider the spring-mass-damper system [36]

ẋ =
[

0 1
− k

m − c
m

]

x +
[
0
1
m

]

u, (81)

where x = [x1, x2]�, x1 is the position and x2 is
the velocity, m represents the mass of the object, k
denotes the spring constant and c is the damping. Let
m = 1Kg, c = 0.5N .s/m and the spring is nonlinear
with the nonlinearity k(x) = −5x3N/m. After adding
an unmatched uncertainty� f (x), the system dynamics
is obtained as

ẋ =
[

x2
−5x31 − 0.5x2

]

+
[

0
1

]

u + � f (x), (82)

where� f (x) = l(x)d(x) and l(x) = [1, 0]�. The per-
turbationd(x) = 0.5θ1x1x2sin(x1)cos(x2+θ2),where
the parameters θ1 and θ2 are unknown. We consider
θ1 ∈ [−1, 1], θ2 ∈ [−5, 5] and the upper bound of the
perturbation d(x) isλd(x) = |x2|. Let x0 = [0.5, 0.2]�
be the initial state. The desired trajectory xd(t) is gen-
erated from

ẋd(t) =
[

xd2
−5xd1

]

, (83)

where xd = [xd1, xd2]� ∈ R
2 with the initial condition

xd0 = [0.2,−0.2]�. Then an augmented state vector
ξ = [ξ1, ξ2, ξ3, ξ4]� ∈ R

4 is defined and following
augmented system is formed
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ξ̇ =

⎡

⎢
⎢
⎣

ξ2
−5(ξ1 + ξ3)

3 − 0.5(ξ2 + ξ4) + 5ξ3
ξ4

−5ξ3

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦
u(ξ) + L(ξ)d(ξ), (84)

where L(ξ) = [1, 0, 0, 0]� and d(ξ) = 0.5θ1(ξ1 +
ξ3)(ξ2 + ξ4)sin(ξ1 + ξ3)cos((ξ2 + ξ4) + θ2). The ini-
tial condition ξ0 = [0.3, 0.4, 0.2,−0.2]�. The upper
bound for λd(ξ) is derived as λd(ξ) = |ξ2 + ξ4|. The
auxiliary system is formulated as

ξ̇ =

⎡

⎢
⎢
⎣

ξ2
−5(ξ1 + ξ3)

3 − 0.5(ξ2 + ξ4) + 5ξ3
ξ4

−5ξ3

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦
u(ξ) +

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

v(ξ). (85)

Since ‖G+(ξ)L(ξ)d(ξ)‖ = 0, we have taken gM (ξ) =
0. Let R = I1, M = I1 and Q = 300I2. For the simu-
lation purpose, consider γ = 1.2 and β = 0.9.

Based on (8), the cost function for (85) can be pre-
sented as

J (ξ(t)) =
∫ ∞

t
e−1.2(τ−t){300‖et‖2 + ‖u(ξ)‖2

+ 0.81‖v(ξ)‖2 + 0.81|ξ2 + ξ4|2}dτ. (86)

Fig. 10 Convergence process of critic weights
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Fig. 11 Tracking performance of x1 for θ1 = −0.9 and θ2 =
−0.3
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Fig. 12 Tracking performance of x2 for θ1 = −0.9 and θ2 =
−0.3

We have considered l = 10 numbers of hidden
layer neurons and the activation function is chosen as
σc(ξ) = [ξ21 , ξ1ξ2, ξ1ξ3, ξ1ξ4, ξ

2
2 , ξ2ξ3, ξ2ξ4, ξ

2
3 , ξ3ξ4,

ξ24 ]�. The parameters used during the tuning process
are lc = 4, ls = 0.5, (A2∇σ 2

cM + B2G2
M ) = 8 and

η2 = 0.7.
To fulfill the PE criteria, a small exponentially

decreasing probing noise is applied to the control
input for the initial 10 seconds of the training pro-
cess. All the elements of the weight vector are ini-
tialized to zero. The critic weight vector ω̂c con-
verges to [3.53, 19, 11.46, 2.49, 1.93, 0.23, 0.01, 10.07,
−0.73, 2.05]� as shown in Fig. 10. During the training
process the event-based controller updates 8947 times.
On the contrary, under the same design criteria, the
time-based controller updates 16000 times.

Then, we used the converged weights to obtain the
control polices (39) and (40). Now, we select θ1 =
−0.9 and θ2 = −0.3 to check the trajectory tracking
performance of the designed control policy μ̂(ξk) and
the triggering rule described in (21). We considered
η1 = 0.7 and L = 10. The sampling period is taken as
0.01 second. The performance of the designed tracking
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Fig. 13 Event-based control input
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Fig. 14 Evolution of the triggering condition with ‖eT ‖2 and
‖ek‖2
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Fig. 15 Triggering instants during the tracking process

controller is displayed in Figs. 11 and 12. The obtained
event-based control policy μ̂(ξk) is displayed inFig. 13.

The evolution of the triggering conditionwith ‖eT ‖2
and ‖ek‖2 is displayed in Fig. 14. The sampling period
is shown in Fig. 15. The minimal intersample time is
found to be 0.01 second. Thatmeans the infamousZeno
behavior is excluded. Furthermore, Fig. 15 also con-
veys that only 1452 state samples are used during the
tracking process. So, the controller is updated 1452
times only. Nonetheless, if we use the time-triggering
method under the same condition then 8000 samples
are required. So, developed event-based tracking con-
trol strategy reduces the resources used significantly.

0 10 20 30 40 50 60 70 80
-0.4

-0.2

0

0.2

0.4

0.6

Fig. 16 Tracking performance of x1 for θ1 = 0.8 and θ2 = 4
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Fig. 17 Tracking performance of x2 for θ1 = 0.8 and θ2 = 4

Next, in order to show that the derived controller is
robust, we have taken θ1 = 0.8 and θ2 = 4. The track-
ing performance for new value of θ1 and θ2 is shown
in Figs. 16 and 17. Here, only 1438 state samples are
used during the tracking process. In other words, the
event-based controller updates 1438 times only. On the
other hand, the conventional time-triggered controller
updates 8000 times under the same design criteria.

7 Conclusion

In this work, an event-based robust tracking strat-
egy for an unmatched uncertain system is developed.
By forming an auxiliary system and decomposing the
unmatched uncertainty, the original control problem is
transformed into obtaining an optimal controller for an
auxiliary system. The related event-based HJB equa-
tion is solved via the ADP approach. The critic weights
tuning law ismodified to avoid the need for initial stabi-
lizing control at the beginning of the tuning process. In
the meantime, a novel event-triggering law is devel-
oped, and the uniform ultimate boundedness of the
tracking error is verified using the Lyapunov method.
The closed-loop auxiliary system’s asymptotic stabil-
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ity and the uniform ultimate boundedness of the critic
approximation error are assured. Finally, two simula-
tion examples are included to demonstrate the useful-
ness of the proposed methodology.

The main limitations of the proposed work and
future scope are as follows.

1. The work developed in this article needs complete
knowledge of system dynamics. However, we may
not know the system dynamics completely in many
applications.

2. The proposed method is not suitable for time-delay
systems. In the future, a tracking controller will
be designed for uncertain nonlinear systems with
time-delay using event-based ADP approach.
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