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Abstract In this paper, a systematical bilinear approach
is provided to derive rational solutions and algebraic
solitons for three derivative nonlinear Schrödinger
equations, namely the Kaup–Newell equation, the
Chen–Lee–Liu equation and the Gerdjikov–Ivanov
equation. These solutions (in terms of envelope |q|)
live on a zero background and decay algebraically. A
simpler unified bilinear form for these three equations
is presented. Rational solutions with zero background
are obtained in terms of double Wronskian via bilin-
ear equations. Algebraic solitons resulting from ratio-
nal solutions are presented. Asymptotic dynamics are
analyzed and illustrated. Scattering of high-order ratio-
nal solutions are featured as waves with slowly vary-
ing amplitudes. Scatteringof algebraic solitons behaves
like usual solitons but asymptotically with zero phase
shift.

Keywords Rational solution · Zero background ·
Algebraic solitons · Derivative nonlinear Schrödinger
equations · Bilinear · Asymptotic dynamics

1 Introduction

For an integrable equation withmulti-soliton solutions,
it usually has rational solutions as well. In most of
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cases, these rational solutions correspond to multiple
zero eigenvalue of the associated spectral problem of
the equation, of which the eigenfunctions take forms of
polynomials. Therefore such rational solutions can be
obtained by implementing the so-called longwave limit
as in [1]. There are some alternative direct approaches,
which, somehow, ‘hide’ the limit procedure, but are
essentially along the line of the long-wave limit. These
approaches are usually based on determinants with
special structures, e.g., Wronskians. Examples can be
found in [2–10]. For some complex soliton equations,
such as the nonlinear Schrödinger (NLS) equation and
the derivative nonlinear Schrödinger (DNLS) equation,
their dynamics are described through carrier waves |q|
and their rational solutions (in terms of |q|) usually
need to live on a nonzero background. A typical exam-
ple is the rogue wave solution of the NLS equation,
characterized by space-time localization, first found by
Peregrine in 1983 in [11], and soon later an explicit
determinantal form for high order rogue wave solu-
tions was proved by Eleonskii, Krichever and Kula-
gin in [12]. In recent years, rogue wave solutions have
drawn intensive attention andmany complex integrable
equations have been shown to have such type of nonsin-
gular and space-time localized rational solutions, e.g.,
[7,13–20], etc. Recently, based on bilinear approach,
one of the authors introduced a partial-limit procedure
in [21] and found the Fokas–Lenells equation and the
massive Thirring model admit rational solutions (w.r.t.
|q|) with a zero background. In the partial-limit proce-
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dure, eigenvalues go to their real part (or pure imagi-
nary part, depending equations), therefore these solu-
tions are associated with real eigenvalues of the Kaup–
Newell spectral problem (cf. [22,23]). Such type of
rational solutions are different from rogue waves in
the following aspects (cf. [21]): they allow zero back-
ground; they are not space-time localized; the simplest
solution decays algebraically w.r.t. x for given t , and
likewise, decays algebraically w.r.t. t for given x ; two
suchwaves scatter like solitons but asymptotically with
no phase shifts; high-order rational solutions exhibit
slowly varying amplitudes and asymptotically these
amplitudes approach to a same value.

In the present paper, we will, from a bilinear point of
view, formulate such special type of rational solutions
for the three DNLS equations, including the Kaup–
Newell (KN) equation [24]

iqt + qxx − iδ
(
|q|2q

)
x

= 0, δ = ±1, (1)

the Chen–Lee–Liu (CLL) equation [25]

iqt + qxx − iδ|q|2qx = 0, δ = ±1, (2)

and the Gerdjikov–Ivanov (GI) equation [26]

iqt + qxx + iδq2q∗
x + 1

2
q3q∗2 = 0, δ = ±1. (3)

Note that δ canbegauged tobe1by scaling x → δx , but
we would like to keep it as a parameter for convenience
(see Eq. (25)). The DNLS equation (1) was first intro-
duced in 1971 by Rogister [27] as a model to describe
Alfvén wave in plasma, where q = qR + iqI is a com-
plex field, and qR and qI represent polarized Alfvén
waves propagating along the external magnetic field
(also see [28,29]). Later, its integrability were given by
Kaup and Newell in [24]. The DNLS equations also
have applications in optics. For example, the KN equa-
tion (1) was used to describe short pulses propagation
in long optical wave guides [30], the CLL equation
(2) can model short-pulse propagation in a frequency-
doubling crystal through the interplay of quadratic and
cubic nonlinearities [31], and the GI equation (3) can
be also used to model short-pulse propagations with
high order nonlinearities [32]. Note that the same type
of rational solutions have been obtained for the KN
equation (1) and for the GI equation (3) using Darboux
transformation, respectively, in [19] and [33]. How-
ever, in the present paper, we will give a simpler and
unified bilinear form for the three DNLS equations,
which enables us to formulate such type of rational

solutions in a unified form for the three DNLS equa-
tions. In this report, the solutions of the unified bilinear
DNLS equations in terms of double Wronskians are
presented. Rational solutions result from a special case
of the coefficient matrix A (see (23)). These solutions
can be understood as a result of partial limit along the
line of [21]. Dynamics of the solutions will be illus-
trated. High-order rational solutions show slowly vary-
ing amplitudes, and asymptotically these amplitudes
approach to a same value. Algebraic solitons can also
be obtained in this frame, of which scattering of dif-
ferent solitons behave like usual solitons but asymptot-
ically with no phase shift. These behaviors should be
typical features of this type of rational solutions.

The paper is organized as follows. In Sect. 2, we
provide unified bilinear forms for the three DNLS
equations together with solutions in double Wronskian
form. Then, in Sect. 3, we focus on rational solutions,
presenting explicit formulae for high-order rational
solutions and investigating dynamics and asymptotic
behavior. Section 4 illustrates interactions of algebraic
solitons. Finally, conclusions are given in Sect. 5.

2 Wronskian solutions for the DNLS equations

The three derivative nonlinear Schrödinger equations
can have a unified bilinear form via different transfor-
mations as given in [34]. In the following, we give a
simpler unified bilinear form.

The KN equation (1) allows a bilinear form (see
[34,35])

(i Dt + D2
x )g · f = 0, (4a)

(i Dt + D2
x ) f · f ∗ = 0, (4b)

2Dx f · f ∗ = −iδgg∗, (4c)

through the transformation

qKN = g f ∗

f 2
, (5)

where i2 = −1 and ∗ stands for complex conjugate.
The CLL equation (2) can be bilinearized as (cf. [34,
36,37])

(i Dt + D2
x )g · f = 0, (6a)

2D2
x f · f ∗ = −iδDx g · g∗, (6b)

2Dx f · f ∗ = −iδgg∗, (6c)

via the transformation

qCLL = g

f
. (7)
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Rational solutions with zero background 3103

Here, D is the Hirota bilinear operator defined by [38]

Dm
x Dn

y f (x, y) · g(x, y)

= (∂x − ∂x ′ )m(∂y − ∂y′ )n f (x, y)g(x ′, y′)|x ′=x,y′=y .

To achieve a bilinear form for theGI equation, wemake
use of the gauge equivalence of the three DNLS equa-
tions (see [32,39]), i.e.,

qGI = qCLLe
− i

2 δ∂−1
x |qCLL|2 = qKNe

−iδ∂−1
x |qKN|2 . (8)

Meanwhile, notice that (6c) together with (7) indicates
|qCLL|2 = −2iδ (ln f ∗/ f )x , and (4c) together with (5)
indicates |qKN|2 = −2iδ (ln f ∗/ f )x as well (cf. [40]).
It then follows that by the transformation

qGI = g

f ∗ , (9)

either (4) or (6) can serve as the bilinear form of the GI
equation (3). The transformations (5), (7) and (9) coin-
cide with the transformation (see Eq. (8) in [34]) for
the universal DNLS equations. However, our bilinear
equations (4) and (6) contains less number of equations
(compared with Eq. (9) in [34] where auxiliary func-
tions h and h̃ were introduced.) Thus, we can have a
simpler unified bilinear form for the three DNLS equa-
tions.

Theorem 1 The three derivative nonlinear Schrödinger
equations, the KN equation (1), the CLL equation (2)
and the GI equation (3), can share a unified bilinear
form (δ = ±1)

(i Dt + D2
x )g · f = 0, (10a)

(i Dt + D2
x ) f · f ∗ = 0, (10b)

2D2
x f · f ∗ = −iδDx g · g∗, (10c)

2Dx f · f ∗ = −iδgg∗, (10d)

through the transformations (5), (7) and (9), respec-
tively.

Next, we present double Wronskian solutions of
the bilinear equations (10). Let φ and ψ be 2N -th-
order column vectors ϕ = (ϕ1, ϕ2, . . . , ϕ2N )T , ψ =
(ψ1, ψ2, . . . , ψ2N )T , and introducedoubleWronskians

|̂N − 1; ̂N − 1|
= |ϕ, ∂xϕ, · · · , ∂ N−1

x ϕ;ψ, ∂xψ, · · · , ∂ N−1
x ψ |,

(11a)

|N̂ ; ˜N − 1| = |ϕ, ∂xϕ, · · · , ∂ N
x ϕ; ∂xψ, · · · , ∂ N−1

x ψ |.
(11b)

The solutions to the bilinear equations (4) and (6) can
be described as follows (cf. [35,41,42]).

Theorem 2 The bilinear system (10) allows double
Wronskian solutions

f = |̂N − 1; ̂N − 1|, g = 2|N̂ ; ˜N − 1|, (12)

where f and g are double Wronskians presented using
the shorthands (11), and composed by 2N-th-order
column vectors ϕ = (ϕ1, ϕ2, . . . , ϕ2N )T and ψ =
(ψ1, ψ2, . . . , ψ2N )T that are defined by

ϕ = exp
(
−i Ax − 2i A2t

)
C, ψ = T ϕ∗. (13)

Here, C ∈ C2N is arbitrary, A and T are constant
matrices in C2N×2N , subject to [41]

AT T ∗ = δ I, |T T ∗| = 1, δ = ±1, (14)

where I is the 2N × 2N identity matrix.

Proof First, for the KN equation (1), one can start from
its unreduced coupled equations

iqt + qxx − i(q2r)x = 0, irt − rxx − i(qr2)x = 0,

(15)

and bilinearize the system through transformation

q = gs

f 2
, r = h f

s2
. (16)

The bilinear from of (15) is (see [35])

(i Dt + D2
x )g · f = 0, (i Dt − D2

x )h · s

= 0, (i Dt + D2
x ) f · s = 0, Dx f · s = − i

2
gh.

(17)

For the CLL equation (2), starting from its unreduced
coupled equation

iqt + qxx − iqrqx = 0, irt − rxx − iqrrx = 0, (18)

via transformation

q = g

f
, r = h

s
, (19)
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3104 J. Wang, H. Wu

it can be bilinearized into (see [6,37])

(i Dt + D2
x )g · f = 0, (i Dt − D2

x )h · s = 0,

D2
x f · s = − i

2
Dx g · h, Dx f · s = − i

2
gh. (20)

In [6], it has been proved the unreducedCLLbilinear
equations (20) allow double Wronskian solutions

f = |̂N − 1; ̂M − 1|, g = 2|N̂ ; ˜M − 1|,
s = |̂N − 1; M̃ |, h = −2i |̂N − 2; M̂ |, (21)

where

ϕ = exp
(
−i Ax − 2i A2t

)
C+,

ψ = exp
(

i Ax + 2i A2t
)

C−, (22)

where C± ∈ C2N and A is a constant matrix in
C2N×2N . In a same way, one can prove the double
Wronskians (21) with (22) are also solutions to the
bilinear equations (17). Then, using the reduction tech-
nique proposed in [43,44], it has been proved that with
constraint M = N , together with (13) and (14), in light
of [41,42], the double Wronskians f and g in (12) are
solutions to the bilinear KN equation (4) and to the
bilinear CLL equation (6). It follows that such f and
g are also solutions to the unified bilinear DNLS equa-
tions (10). Thus, we have sketched the proof. ��

Note that in [41,42], solutions to the equations (14)
have been investigated. References [41,42] introduced
matrices B and S such that A = B2 and T = B−1S
and assumed B and S to be 2 × 2 block matrices as
follows:

B =
(

K1 0N

0N K4

)
, S =

(
S1 S2
S3 S4

)
,

where K j , S j ∈ CN×N and0N is the square zeromatrix
of order N . In the next section, we will present new
solutions for equations (14), which are not included in
[41,42], and will be used to generate rational solutions
with zero background and algebraic solitons for the
three DNLS equations. In addition, one should notice
that it follows from (14) that A is subject to |A| = 1.
This means the product of all the eigenvalues of A
should be 1. This is a quite strong constraint, compared
with the Fokas-Lenells equation in [22], the equations
in the Ablowitz-Kaup-Newell-Segur (AKNS) hierar-
chy in [43–46] and discrete case in [47].

3 Rational solutions with zero background

Consider the following solutions to the equations (14):

A =

⎛
⎜⎜⎜⎜⎜⎝

δ 0 0 · · · 0
1 δ 0 · · · 0
0 1 δ · · · 0
...

. . .
. . .

. . .
...

0 0 · · · 1 δ

⎞
⎟⎟⎟⎟⎟⎠

2N×2N

, δ = ±1, (23)

and T (that is a lower triangular Toeplitz matrix)

T =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

. . .
. . .

. . .
...

a2N−1 a2N−2 · · · a1 1

⎞
⎟⎟⎟⎟⎟⎠

2N×2N

, ai ∈ C,

(24)

where {ai } are such constants that make the condition
(14) satisfied. The vector ϕ defined by (13) with the
above A takes the form

ϕ =
(
eη(δ),

∂δ

1! (e
η(δ)), · · · ,

∂2N−1
δ

(2N − 1)! (e
η(δ))

)T
, η(δ) = −i(δx + 2δ2t),

(25)

where we have taken C = (1, 1, · · · , 1)T for conve-
nience.

The simplest case is of N = 1, where we have

A =
(

δ 0
1 δ

)
, T =

(
1 0

− δ
2 1

)
, (26)

and

ϕ =
(
eη(δ),

∂δ

1! (e
η(δ))

)T =
(
eη(δ), (−i x − 4iδt)eη(δ)

)T
,

ψ = T ϕ∗. (27)

The resulting solutions (via (5), (7), (9) and (12)) are

qKN = (4(x + 4δt) − iδ)e−2iδx−4i t

(4x + δ(i + 16t))2
, (28a)

qCLL = − 4e−2iδx−4i t

δ(i + 16t) + 4x
, (28b)

qGI = 4e−2iδx−4i t

δ(−i + 16t) + 4x
, (28c)

and the corresponding envelope is

|q|2KN = |q|2CLL = |q|2GI
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Fig. 1 Shape and motion of |q|2 given in (29) with δ = 1 in (a)
and δ = −1 in (b)

= |q|2 = 16

1 + 16(x + 4δt)2
. (29)

This is a nonsingular and algebraically decaying (for
given x or t) solitary wave, with a top trace x = −4δt
and constant amplitude 16. We depict such a wave in
Fig. 1.

When N = 2, we have

A =

⎛
⎜⎜⎝

δ 0 0 0
1 δ 0 0
0 1 δ 0
0 0 1 δ

⎞
⎟⎟⎠ , T =

⎛
⎜⎜⎜⎝

1 0 0 0
−δ
2 1 0 0
3δ2
8

−δ
2 1 0

−5δ3
16

3δ2
8

−δ
2 1

⎞
⎟⎟⎟⎠ , (30)

and

ϕ =
(
eη(δ),

∂δ

1! (e
η(δ)),

∂2δ

2! (e
η(δ)),

∂3δ

3! (e
η(δ))

)T
,

ψ = T ϕ∗. (31)

Skipping the expressions of qKN, qCLL and qGI, we
present the envelope,

|q|2KN = |q|2CLL = |q|2GI = |q|2 = A
B , (32)

where

A = 64[9 + 16[1048576t6 + 1572864δt5x

+ 61440t4(5 + 16x2) + 4096δt3x(51 + 80x2)

+ 48t2[−15 + 32x2(33 + 40x2)]
+ 24δt x[−15 + 32x2(7 + 8x2)]
+ x2(−9 + 240x2 + 256x4)]],

B = 9 + 64[67108864t8 + 134217728δt7x

+ 1048576t6(−5 + 112x2)

+ 524288δt5x(−9 + 112x2)

+ 2048t4(303 − 672x2 + 8960x4)

+ 2048δt3x(171 − 32x2 + 1792x4)

+ 16t2(351 + 5904x2 + 2304x4 + 28672x6)

+ 8δt x[117 + 16x2(87 + 48x2 + 256x4)]

+ x2[45 + 8x2(63 + 32x2 + 128x4)]].

Obviously, this is a rational solution with algebraic
decay (see Fig. 3a). To have more details about the
dynamics, let us investigate its asymptotic behavior.
Note that in [33], an asymptotic analysis for qGI (not
|qGI|2) has been given. In the following, we will ana-
lyze |q|2 along the line of [21], anddemonstrate how the
amplitudes vary slowly with respect to t and approach
to a same value as |t | → ∞.

First, we consider the envelope (32) in the coordi-
nates1

(
X = x + 4δt, Y1 = t + X2

2
√
3

)
,

with which (32) is written as

|q|2 = A1

B1
, (33)

where

A1 = 64(9 + 9216Y 2
1 ) − 294912δY1X

+ 64(−144 − 3072
√
3Y1 + 147456Y 2

1 )X2

+ 64(768
√
3δ + 24576δY1)X3

+ 64(4608 − 49152
√
3Y1)X4

− 262144
√
3δX5 + 1048576X6,

B1 = 9 + 165888Y 2
1 + 9437184Y 4

1 + 36864δY1X

+ (2880 − 55296
√
3Y1 + 589824Y 2

1

− 6291456
√
3Y 3

1 )X2 + (−6144
√
3δ

+ 196608δY1)X3

+ (46080 − 196608
√
3Y1 + 3145728Y 2

1 )X4

− 32768
√
3δX5 + 65536X6.

With the coordinates (X, Y1), we are able to observe the
curves along the line Y1 = constant. More precisely,
taking Y1 = 0, i.e.,

t = − X2

2
√
3
, (34)

this is equivalent to observing |q|2 in (X, t) along to
parabola (34), on which, |q|2 reads
1 X = x + 4δt results from the midline for the four curves
in Fig. 3a, while Y1 = t + X2

2
√
3
results from the observation

of dominating terms in A and B after replacing x by X using
X = x + 4δt .
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3106 J. Wang, H. Wu

|q|2 = 64(9 − 144X2 + 768
√
3δX3 + 4608X4 − 4096

√
3δX5 + 16384X6)

9 + 2880X2 − 6144
√
3δX3 + 46080X4 − 32768

√
3δX5 + 65536X6

. (35)

This is not a constant, but a function varies slowly
with respect to X . For δ = 1, when |X | 
 0, |q|2
slowly decreases w.r.t. X when X > 0 and also slowly
decreases w.r.t. X when X < 0. For δ = −1, when
|X | 
 0, |q|2 slowly increases w.r.t. X when X > 0
and also slowly increases w.r.t. X when X < 0. Finally,
they both tend to constant 16 when |X | → ∞. Such a
slowly varying behavior of |q|2 is shown in Fig. 2c for
the case δ = 1, although it seems that the change of
|q|2 with X is not apparently illustrated. The apparent
change can be observed from the zoom-in figure (Fig.
2f), where we especially choose the interval [15, 17] of
|q|2 so that it can be apparently seen that |q|2 decreases
when X < 0 as well as decreases when X > 0.

On the other hand, consider (32) in the coordinates
(

X = x + 4δt, Y2 = t − X2

2
√
3

)
.

In this case, we have

|q|2 = A2

B2
, (36)

where

A2 = 64(9 + 9216Y 2
2 ) − 294912δY2X + 64(−144 + 3072

√
3Y2 + 147456Y 2

2 )X2 + 64(−768
√
3δ

+ 24576δY2)X3 + 64(4608 + 49152
√
3Y2)X4 + 262144

√
3δX5 + 1048576X6,

B2 = 9 + 165888Y 2
2 + 9437184Y 4

2 + 36864δY2X + (2880 + 55296
√
3Y2 + 589824Y 2

2 + 6291456
√
3Y 3

2 )X2

+ (6144
√
3δ + 196608δY2)X3 + (46080 + 196608

√
3Y2 + 3145728Y 2

2 )X4 + 32768
√
3δX5 + 65536X6.

We can observe |q|2 along the line Y2 = constant,
or observe |q|2 in the (X, t) plane along the parabola
Y2 = 0, i.e.,

t = X2

2
√
3
, (37)

on which, |q|2 reads

|q|2 = 64(9 − 144X2 − 768
√
3δX3 + 4608X4 + 4096

√
3δX5 + 16384X6)

9 + 2880X2 + 6144
√
3δX3 + 46080X4 + 32768

√
3δX5 + 65536X6

. (38)

This again describes a function that varies slowly with
respect to X and finally approaches to the value 16 as
|X | → ∞. The behavior is shown in Fig. 2d.

With the above analysis, it is not difficult to under-
stand the dynamical behaviors of the N = 2 rational
solutions in the (x, t) coordinates.

Theorem 3 Asymptotically, the N = 2 rational solu-
tion (32) travels along the following four curves (see
the red curves in Fig. 3b):

x = −4δt +
√

−2
√
3t, t � 0, (39a)

x = −4δt −
√

−2
√
3t, t � 0, (39b)

x = −4δt +
√
2
√
3t, t � 0, (39c)

x = −4δt −
√
2
√
3t, t � 0. (39d)

The amplitudes of the waves are not constants but
slowly change and finally they approach to the constant
16 when |t | 
 0. More precisely, asymptotic properties
are listed in Table 1.

We would like to emphasize once again the slowly
varying amplitudes of the four branches in Fig. 3a. They

vary with time and asymptotically approach to con-
stant 16 when |t | → ∞. Figure 3c, d illustrate how
amplitudes slowly vary with time. Recalling the ratio-
nal solutions of the Fokas-Lenells equation obtained in
[22], together with (32) for the three DNLS equations
in the current paper, we can conclude that the behav-

ior with slowly varying amplitudes should be a typical
feature of such type of rational solutions. In addition,
we also point out that there is an apparent phase shift
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Rational solutions with zero background 3107

Fig. 2 a Profile of envelope |q|2 (32) in the coordinates (X, t)
for δ = 1. b Density plot of (a) where the red curves are (34)
and (37). c Profile of |q|2 (33) along the curve (34) for δ = 1. d
Profile of |q|2 (36) along the curve (37) for δ = 1. e Horizontal
zoom-in of (c) for X ∈ [−1, 1]. f Vertical zoom-in of (c) for
|q|2 ∈ [15, 17]

8
√
3

17
√
17

due to interaction (i.e., before and after t = 0)
by calculating distance of the two symmetry axes of
the curve (39a, 39b) and the curve (39c, 39d).

Besides, different from the Fokas-Lenells equation
(cf. [22]), due to |A| = 1, there is no parameter to
characterize these (high order) rational solitary waves.
We point out that one can introduce phase parame-
ters using lower triangular Toeplitz matrices (LTTMs),
which are matrices with form T in (24) where its
diagonal element 1 is replaced with a0. The LTTMs
are useful in expressing multiple-pole solutions, e.g.,
[5,8,48,49]. Since all LTTMs of the same order com-
mute, we can introduce a 2N -th order LTTM � and
define ϕ̃ = �ϕ, ψ̃ = T ϕ̃∗, where ϕ are defined by
(25). Then, the double Wronskians (12) composed by
ϕ̃ and ψ̃ are still solutions to the bilinear equations (4)
and (6) and so are (5), (7) and (9) for the KN, CLL and
GI equations, respectively. These parameters in � will
change the interaction of the waves from ‘symmetric’

Table 1 Asymptotic properties of |u|2 given by (32) as shown
in Fig. 3

Branches Asymptotic curve Amplitude changing
With respect to t

Left-up (39a) Increase

Left-down (39b) Decrease

Right-up (39c) Increase

Right-down (39d) Decrease

to ‘asymmetric’ pattern, but the waves still travel with
slowly varying amplitudes. We present illustrations for
such type of N = 2 rational solution with A, T given
in (26) and

� =

⎛
⎜⎜⎝

k1 0 0 0
k2 k1 0 0
k3 k2 k1 0
k4 k3 k2 k1

⎞
⎟⎟⎠ , ki ∈ C, (40)

while we skip providing formula for |q|2. Its illustra-
tions are given in Fig. 4.

4 Algebraic solitons

The reduction condition (14) admits various solutions
associatedwith rational-type solutions.Apart from (23)
and (24) to generate (high-order) rational solutions, in
this section, as an example, we consider the following
A and T :

A = Diag(A1, A2, · · · , AN ), T

= Diag(T1, T2, · · · , TN ), (41a)

where

A j =
(

δk2j 0
1 δk2j

)
, Tj =

⎛
⎝

1
k j

0
−k j

2δk4j

1
k j

⎞
⎠ ,

j = 1, · · · , N , (41b)

and
N∏

j=1

k2j = 1, k j ∈ R, |ki | �= |k j | for i �= j. (41c)

The vector ϕ and ψ with such A is given by

ϕ =
(
eζ(k1), ∂δk21

eζ(k1), eζ(k2), ∂δk22
eζ(k2), · · · ,

eζ(kN ), ∂δk2N
eζ(kN )

)T
, ψ = T ϕ∗, (42)
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Fig. 3 a Shape and motion of |q|2 (32) in (x, t) plane for δ = 1.
bDensity plot of (a) where the four red curves are given in (39). c
Profile of |q|2 (32) along the curve composed by (39b) and (39c)
w.r.t. t for δ = 1. d Profile of |q|2 (32) along the curve composed
by (39a) and (39d) w.r.t. t for δ = 1. e Horizontal zoom-in of (c)
for t ∈ [−2, 2]. f Vertical zoom-in of (c) for |q|2 ∈ [15, 16]

Fig. 4 a Asymmetric profile of |q|2 with δ = 1, A, T given in
(26) and � in (40) where k1 = 1, k2 = 1+ i, k3 = 1+3i, k4 =
1 − i

3 . b Density plot of (a)

where ζ(k j ) = −i(δk2j x + 2δ2k4j t) and we have taken

C = (1, 1, · · · , 1)T for convenience.
The simplest case is (26) which yields the rational

solution (29) behaving like a soliton (see Fig. 1). On
may call that solution an algebraic soliton as it looks
like a soliton but with algebraic decay w.r.t. x for given
t ( w.r.t. t for given x). Therefore, we suppose that solu-
tions corresponding to (41) may describe interaction of

algebraic solitons with different amplitudes and veloc-
ities. When N = 2, we have

A = Diag(A1, A2), T = Diag(T1, T2), (43)

where A j and Tj are defined in (41b) with k21k22 = 1.
The resulting ϕ and ψ are

ϕ =
(
eζ(k1), ∂δk21

eζ(k1), eζ(k2), ∂δk22
eζ(k2)

)T
,

ψ = T ϕ∗, (44)

and the explicit formula of the envelope is

|q|2KN = |q|2CLL = |q|2GI = |q|2 = A′

B′ , (45)

where (we have taken k1 = ± 1
k2

= k �= ±1 and δ = 1)

A′ = (k4 − 1)2

k14
(M1 + 2M2 cos θ − 2M3 sin θ),

B′ = 1 + k8

k4
+ N 2

1 + N 2
2 + 2 cos 2θ

+ 2N1
1 + k4

k2
cos θ − 2N2

1 − k4

k2
sin θ,

with

M1 = k4(1 + 15k4 + 15k8 + k12) + 256(1 − 2k4 + k8

+ k12 − 2k16 + k20)t2

+ 128k2(1 − 2k4 + 2k8 − 2k12 + k16)t x

+ 16k4(1 − k4 − k8 + k12)x2,

M2 = k6(−3 − 10k4 − 3k8) + 256k6(1 − 2k4 + k8)t2

+ 64k4(1 − k4 − k8 + k12)t x

+ 16k6(1 − 2k4 + k8)x2,

M3 = 16k2(−1 − 2k4 + 2k12 + k16)t + 4k4(−1 − 5k4

+ 5k8 + k12)x,

N1 = −1 − 6k4 − k8

4k4
+ 256(1 − 2k4 + k8)t2

4k4

+ 64(1 − k4 − k8 + k12)t x

4k6

+ 16(1 − 2k4 + 1k8)x2

4k4
,

N2 = − 4(−1 + k4)2(1 + k8)t

k8

− (−1 + k4)2(1 + k4)x

k6
,

θ = − 4t

k4
− 2x

k2
+ 4k4t + 2k2x .

Obviously, (45) is not a rational solution since there
are trigonometric functions in A′ and B′. With regard
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Fig. 5 aShape andmotionof |q|2 (45),where k =
√
6
2 .bDensity

plot of (a)

to asymptotic property, similar to the analysis in [21]
for the Fokas-Lenells equation, we can consider |q|2 in
the coordinates (X = x + 4t

k2
, t). Fixing X and letting

|t | → ∞, it turns out that

|q|2 ∼ 16k2

k4 + 16X2 , (46)

which indicates that asymptotically, there is an alge-
braic soliton travelling along the line x = −4t/k2 =
−4k22 t , with velocity −4k22 and amplitude 16k22. Like-
wise, considering |q|2 in the coordinates (X = x +
4k2t, t), we can find another algebraic soliton, asymp-
totically,

|q|2 ∼ 16k2

1 + 16k4X2 , |t | 
 0, (47)

travelling along the line x = −4k2t = −4k21 t , with
velocity −4k21 and amplitude 16k21. Since |k1k2| = 1,
the behaviors of the two algebraic solitons are char-
acterized by a single real number k2. One algebraic
soliton can be considered as a dual of another. In other
words, changing one of algebraic solitons, another will
be changed accordingly.

The envelop |q|2 given in (45) is shown in Fig. 5a.
Near the interaction point there are apparent phase
shifts for the two algebraic solitons. However, the
above analysis indicates that these phase shifts disap-
pear when |t | 
 0. See Fig. 5b. This is a typical feature
of the interactions of such type of algebraic solitons, cf.
[21,22,41]. It is not easy to make asymptotic analysis
for N -algebraic solitons associatedwith (41).However,
for N = 3, we do have the following interaction behav-
ior: asymptotically, there are three algebraic solitons,
respectively, travelling along the line x = −4k2j t , with

velocity −4k2j and amplitude 16k2j for j = 1, 2, 3. We
skip details and illustrations.

5 Conclusions and remarks

In this paper, through bilinear approach, we derived
rational solutions with zero background and algebraic
solitons for the three derivative nonlinear Schrödinger
equations, which are the KN, CLL and GI equation.
We presented a simpler and unified bilinear form for
these equations and gave rational solutions and alge-
braic solitons in terms of double Wronskian. These
solutions are associated with a partial-limit procedure
[21], which should be also available to Hirota’s form of
soliton solutions (cf. [50,51]). Although such type of
solutions can be obtained by means of Darboux trans-
formation (see [19] for the KN equation and [33] for
the GI equation), we have presented a unified bilin-
ear approach for the three DNLS equations, which
enables us to present explicit solutions in terms of
double Wronskian solutions (12) via (5), (7) and (9).
Below let us highlight the features of these solutionswe
have obtained. With regard to dynamics, these rational
solutions are different from the so-called rogue waves
that are space-time localized and live on nonzero back-
grounds (cf. [16–20]). They are different from the ratio-
nal solutions of the modified Korteweg-de Vries equa-
tion too (cf. [8,52–54]). These rational solutions live on
a zero background. The N = 1 rational solution (alge-
braic soliton) behaves like a single soliton but for given
t the wave shape decays algebraically when |x | → ∞.
The N = 2 rational solution shows four branches with
slowly varying amplitudes which are asymptotically
approach to a same value. These are typical features of
such type of rational solutions.Besides,we investigated
interactions of algebraic solitons, which are generated
when A and T take (41). These algebraic solitons can
scatter as usual solitons to keep their velocities and
amplitudes but a typical feature is asymptotically no
phase shift resulting from interactions. Finally, we note
that the DNLS equations and Fokas-Lenells equation
belong to the KN hierarchy; so far, we do not find such
type of algebraic solitons and rational solutions (result-
ing from real or pure imaginary eigenvalues) for the
equations in the AKNS hierarchy. As further research,
we would consider discretization of DNLS equations
and their rational solutions. Also, some recent applica-
tions of bilinearmethodmight be notable, e.g., [55–58].
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