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Abstract To analyse novel coronavirus disease
(COVID-19) transmission in India, this article provides
an extended SEIRmulticompartment model using vac-
cination as a control parameter. The model considers
eight classes of infection: susceptible (S), vaccinated
(V), exposed (E), asymptomatic infected (A), symp-
tomatic infected (I), isolated (J ), hospitalised (H),
recovered (R). To begin, a mathematical study is per-
formed to demonstrate the suggested model’s uniform
boundedness, epidemic equilibrium, and basic repro-
duction number. The findings indicate that if, R0 < 1,
the disease-free equilibrium is locally asymptotically
stable; but, if, R0 > 1 the equilibrium is unstable.
Secondly, we examine the effect on those who have
received vaccinations with what are deemed optimal
values. The suggested model is numerically simulated
usingMATLAB14.0, and the results confirm the capac-
ity of the proposed model to provide an accurate fore-
cast of the progress of the epidemic in India. Finally,
we examine the impact of immunisation on COVID-19
dissemination.

S. Kurmi (B) · U. Chouhan
Department of Mathematics, Bioinformatics and Computer
Applications, Maulana Azad National Institute of
Technology, Bhopal, Madhya Pradesh, India
e-mail: sk.193104001@manit.ac.in

U. Chouhan
e-mail: chouhanu@manit.ac.in

Keywords COVID-19 · Mathematical model ·
Vaccination · Sensitivity analysis ·
Numerical simulation

Mathematics Subject Classification MSC 34-04

1 Introduction

The world is currently grappling with a novel infec-
tious disease, coronavirus disease. In February 2020,
theWorld Health Organization (WHO) termed this dis-
ease COVID-19 [1]. The disease initially manifested
itself in December 2019 at the Huanan seafood mar-
ket in Wuhan, Hubei, China. Nowadays, the number
of affected people is growing daily. COVID-19 was
declared a global pandemic by the WHO onMarch 11,
2020 [2]. As of September 17, 2021, about 226 mil-
lion confirmed cases of COVID-19 had been reported
to WHO, including over 4 million deaths [3]. India’s
first reported COVID-19 case occurred in Kerala on
January 30, 2020, when a 20-year-old lady returned
to India from Wuhan, China [4]. As of September 17,
2021, about 33 million confirmed cases of COVID-19
had been detected in India, with over 444 thousand
deaths reported to the WHO [5].

Individuals spread COVID-19 through their respi-
ratory droplets after coming into contact with con-
taminated objects or sick individuals. Social separa-
tion is used to keep people apart and to put an end
to overcrowded social events. The symptoms of all
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coronavirus patients are identical, including respiratory
difficulties, fever, and a dry cough. Numerous shops,
supermarkets, department stores, and public areas were
closed to prevent individuals from encountering one
another, and various countries implemented lockdown
procedures to limit the spread of the disease. During the
COVID-19 pandemic, some countries employed non-
pharmaceutical interventions (NPIs) such as mask use,
social isolation, and appropriate sanitation to help pre-
vent the virus spread. This process contributes to the
slowing but not a complete cessation of the spread.
However, vaccination is being initiated in order to com-
bat COVID-19.

Mathematicalmodels are researched to better under-
stand infectious disease behaviour and to forecast trans-
mission dynamics for the purpose of regulating and
planningmeasures [6–8].Numerousmodel-based stud-
ies have effectively captured the worldwide dynam-
ics of the corresponding infectious illness throughout
the history of literature [9–16]. Significant research
has been conducted or is currently being conducted
to uncover COVID-19 using appropriate mathemat-
ical models. Ndairou et al. [17] proposed a com-
partmental mathematical model for the spread of the
COVID-19 disease, focusing on the transmissibility of
super-spreaders among individuals. Mandal et al. [18]
develop a mathematical model wherein they include a
quarantine class and government intervention methods
to help minimise disease spread. In a separate recent
study, Prathumwan et al. [19] developed a mathemat-
ical model for projecting the COVID-19 outbreak’s
propagation in order to explore the impacts of quar-
antined, hospitalised, and latent class people. Using a
deterministic compartmental model, Biswas et al. [20]
investigated the propagation of COVID-19 and deter-
mined model parameters using data from an active epi-
demic in India. In their work, Gumel et al. [21] demon-
strate how several main non-pharmaceutical COVID-
19 therapies might be included in the epidemic model.
Additionally, a short summary of different models used
to explore the dynamics of COVID-19 is given, cov-
ering agent-based, network, and statistical models. In
another recent work, Ghostine et al. [22] have proposed
an enhanced SEIRmodel including a vaccination com-
partment to mimic the spread of a new coronavirus
epidemic in Saudi Arabia. Das et al. [23] developed
a mathematical model including comorbidity in order
to investigate the transmission dynamics ofCOVID-19.

Das et al. [24] proposed and explored a mathemat-
ical framework to study the transmission dynamics
of COVID-19 with comorbidity. Yu et al. [25] pro-
posed compartmental model to study the development
of COVID-19 in India after relaxing control. Hu et al.
[26] assessed the controllability of spread of COVID-
19 in different stages based onproposed compartmental
model.

Due to the fact that the nature and destruction
of COVID-19 are dependent on a variety of system
parameters (such as personal immunity, history of
travel to a COVID-19 pandemic country, and main-
taining the required hygiene), we cannot use a sin-
gle model to describe the entire disease system world-
wide. While adding richness and complexity to mod-
els might improve their accuracy, it also complicates
their mathematics. To combat COVID-19 as a pan-
demic, appropriate immunisation efforts utilising NPIs
must be developed. To accomplish this, coupled fun-
damental tactics are unavoidably necessary under opti-
mal control strategies to eradicate COVID-19 as an
infectious disease at the lowest possible cost of vac-
cination. The primary objective of this effort is to
determine the optimal control strategy for COVID-19
infection using NPIs and vaccination. Consideration of
asymptomatic infected, symptomatic infected, and vac-
cination classes in the proposed compartmental model
requires an extensive investigation of disease-free equi-
librium points.We have assumed themodel parameters
and evaluated the adequate reproduction number. We
have donemodel fitting, parameter estimation, and val-
idation of the model.

The following sections comprise the manuscript for
this article: Sect. 2 introduces the model formulation.
Section 3 conducts a qualitative study of the model.
We examine the positivity and boundedness of solu-
tions in Sect. 3.1, we study the positivity and bound-
edness of solutions. We compute the disease-free equi-
librium E0, in Sect. 3.2. Following that, in Sect. 3.3,
we also compute the basic reproduction number R0 of
the COVID-19 system model. In Sect. 3.4, we exam-
ine the local stability of the disease-free equilibrium in
terms of R0. Sect. 4 formulates and solves an optimal
control problem analytically. Section 5 illustrates the
model’s utility through numerical simulation; Sect. 5.1
illustrates the fixed control parameter. Section 5.2 dis-
cusses the sensitivity of the reproduction number, R0,
to the parameters of the model system. In Sect. 5.3,
we discussed the bifurcation diagram. The numerical
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simulation of the optimal control problem is shown
in Sect. 5.4. Parameter-estimation, model fitting and
model validation is discussed in Sect. 5.5. The conclu-
sion concludes with Sect. 6.

2 The proposed mathematical model

In this section, we shall study the transmission mech-
anism of COVID-19 using a deterministic compart-
mental model. To formulate the mathematics model,
we have divided the total population X (t) into eight
mutually exclusive compartments based on their dis-
ease status namely: susceptible S(t), vaccinated V(t),
exposed E(t), asymptomatic infected A(t), symp-
tomatic infected I(t), isolated J (t), hospitalisedH(t)
and recovered R(t).

Some of the classes are discussed in more detail
here. In the exposed class E(t), we consider those indi-
viduals of the susceptible and vaccinated classes who
have had sufficient interaction with the infected indi-
viduals or contaminated surfaces or objects. There is
an incubation period and a latency period. The incu-
bation period is the period between exposure and the
onset of clinical symptoms. The latent period is the
period between exposure and communicability, which
may be shorter or longer than the incubation period. In
COVID-19, the latent period is shorter than the incuba-
tion period [27]. This fact leads us to make another two
classes from the exposed class, namely asymptomatic
infected A(t) and symptomatic infected I(t). Asymp-
tomatic infected class A(t) contains those individuals
of the exposed class who lie between the latent period
and the incubation period, and symptomatic infected
class I(t), contains those individuals of the exposed
class who lie between the incubation period and infec-
tion period.

The mixing of individual hosts is homogeneous,
and thus the law of the mass action holds. The rate
of transfer from a compartment is in proportion to
the population size of the compartment. There is no
loss of immunity and no possibility of reinfection.
Our model assumes that vaccinated individuals have
to be separated into a vaccinated class V(t). Π is the
birth/recruitment rate into the population, μ is the per
capita natural death rate,β is the per capita transmission
rate, α is the constant of vaccination, ξ is the transfer
rate of vaccinated individuals to get exposed or called
vaccine inefficacy,ε is the transfer rate of exposed indi-

viduals to asymptomatic infected, δ is the transfer rate
of exposed individuals to symptomatic infected, θ is the
rate of asymptomatic infected individuals to become
isolated, λ is the rate of symptomatic infected indi-
viduals become hospitalised. ηa, ηi and η j are the
disease-induced death rates of asymptomatic infected,
symptomatic infected, and isolated infected, respec-
tively, and ρa, ρi , ρ j and ρh are the recovery rates of
asymptomatic infected, symptomatic infected, isolated
infected, and hospitalised individuals, respectively.

We provide in Fig. 1 the flow diagram of the
COVID-19 transmission model under the aforemen-
tioned assumptions, which illustrates the many inter-
actions between classes. The inward and outward
arrows indicate the population increasing and decreas-
ing, accordingly.

According to the conditions outlined above and the
flow diagram (Fig. 1), the transmission of the virus is
governed by the following system of ODEs:

Ṡ = Π − βS(A + I) − αu(t)S − dS
V̇ = αu(t)S − βξV(A + I) − dV
Ė = βS(A + I) + βξV(A + I) − (ε + δ + d)E
Ȧ = εE − (θ + ηa + d + ρa)A
İ = δE − (κ + λ + ηi + d + ρi )I (1)

J̇ = θ A + κI − (μ + ρ j + η j + d)J
Ḣ = λI + μJ − (ρh + ηh + d)H
Ṙ = ρaA + ρiI + ρ jJ + ρhH − dR

The initial condition of system (1) is S(0) ≥
0,V(0) ≥ 0, E(0) ≥ 0,A(0) ≥ 0, I(0) ≥ 0,J (0) ≥
0,H(0) ≥ 0, and R(0) ≥ 0. The description of the
state variables, control variables, and parameters used
in the model with values is provided in Table 1.

3 Analysis of the model for fixed control

In this section, we analyse the model for fixed control,
i.e. u(t) must be constant. Therefore, αu is also con-
stant, so without loss of generality, we replace αu with
another constant α and carry out the analysis part.
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Fig. 1 Pictorial scenario of model (1). The flowchart shows the
interaction of different stages of individuals in the model: sus-
ceptible (S), vaccinated (V), exposed (E), asymptomatic infected

(A), symptomatic infected (I), isolated (J ), hospitalised (H),
recovered (R)

3.1 Positivity and boundedness of solutions

Theorem 1 The solutions of system (1) are nonnega-
tive and uniformly bounded.

Proof We assume that

X = S + V + E + A + I + J + H + R.

⇒ Ẋ = Ṡ + V̇ + Ė + Ȧ + İ + J̇ + Ḣ + Ṙ
⇒ Ẋ + dX = Π − ηaA − ηi − η jJ − ηhH
⇒ X + dX ≤ Π

⇒ X ≤ Π

d
(1 − e−dt ) + X0e

−dt .

Now for t → ∞
0 < X ≤ Π

d
.

Hence, all the solution system (1) that are initiating in
{R8+} are confined in the region

{X ∈ R
8+ : 0 ≤ X <

Π

d
+ ε}

for any ε > 0 and t → ∞. �	

3.2 The disease-free equilibrium E0

The disease-free equilibrium E0 of system (1) is
obtained by setting all derivatives to 0 with A = 0
and I = 0 and solving all variables, that yields to:

E0 =
(

Π

α + d
,

Πα

d(α + d)
, 0, 0, 0, 0, 0, 0

)
. (2)

3.3 The basic reproduction number R0

The basic reproduction number R0 is the most crucial
epidemiological parameter for determining the nature
of the disease. It is used to measure the transmis-
sion potential of an infectious disease. Additionally,
it is essential for disease management and transmis-
sion. In epidemiology, the basic reproduction num-
ber, R0, (sometimes called the basic reproduction ratio
or basic reproductive rate), is the average number of
new infections caused by a single infected individ-
ual at the time t in the susceptible populations. Van
den Driessche and Watmough [28] proposed a method
for determining the basic reproduction number, named
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Table 1 Description and values of the parameters used in the model (1)

Parameters Description of parameters Value Source

Π Recruitment rate to susceptible class 50 Assumed

α Constant of vaccination 0.9 Assumed

β Disease transmission rate 0.1 Assumed

ξ Transfer rate of vaccinated individuals to get
exposed

0.01 Assumed

d Natural death rate 0.2 Assumed

ε Transfer rate of exposed individuals to asymptotic
infected

0.09 Assumed

δ Transfer rate of exposed individuals to symp-
tomatic infected individuals

0.08 Assumed

θ Transfer rate of asymptotic infected individuals
becomes isolated

0.95 Assumed

κ Transfer rate of symptomatic infected individuals
to become isolated

0.9 Assumed

λ Transfer rate of symptomatic infected individuals
becomes hospitalised

0.85 Assumed

μ Transformation rate of isolated individuals to
becomes hospitalised

0.2 Assumed

ηa Disease-induced death rate of asymptotic infected
individuals

0.6 Assumed

ηi Disease-induced death rate of symptomatic
infected individuals

0.8 Assumed

η j Disease-induced death rate of isolated infected
individuals

0.25 Assumed

ηh Disease-induced death rate of hospitalised indi-
viduals

0.25 Assumed

ρa The recovery rate of asymptomatic infected indi-
viduals

0.5 Assumed

ρi The recovery rate of symptomatic infected indi-
viduals

0.4 Assumed

ρ j The recovery rate of isolated infected individuals 0.4 Assumed

ρh The recovery rate of hospitalised infected individ-
uals

0.25 Assumed

u Control Variable 0.9 Assumed

the next-generation matrix method. By employing the
next-generation matrix approach, we determine the
basic reproduction number. E, A, I, J andH are the
classes that are directly engaged in disease transmis-
sion. Therefore, from system (1), we have

Ė = βS(A + I) + βξV(A + I) − (ε + δ + d)E
Ȧ = εE − (θ + ηa + d + ρa)A
İ = δE − (κ + λ + ηi + d + ρi )I (3)

J̇ = θ A + κI − (μ + ρ j + η j + d)J
Ḣ = λI + μJ − (ρh + ηh + d)H

Hence, we decompose the right-hand side of system (3)
as F − V, where

F =

⎛
⎜⎜⎜⎜⎝

βS(A + I) + βξV(A + I)

0
0
0
0

⎞
⎟⎟⎟⎟⎠ and
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V =

⎛
⎜⎜⎜⎜⎝

(ε + δ + d)E
(θ + ηa + d + ρa)A − εE

(κ + λ + ηi + d + ρi )I − δE
(μ + ρ j + η j + d)J − θA − κI

(ρh + ηh + d)H − λI − μJ )

⎞
⎟⎟⎟⎟⎠ .

The Jacobian matrices of F and V are given by F and
V, respectively.

F̃ = ∂F

∂x j
(E0) =

⎛
⎜⎜⎜⎜⎝

0 βΠ
d(α+d)

(d + ξα)
(d+ξα)βΠ
d(α+d)

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

and

Ṽ = ∂V

∂x j
(E0) =

⎛
⎜⎜⎜⎜⎝

(ε + δ + d) 0 0 0 0
−ε (θ + ηa + d + ρa) 0 0 0
−δ 0 κ + λ + ηi + d + ρi 0 0
0 −θ −κ (μ + ρ j + η j + d) 0
0 0 −λ −μ (ρh + ηh + d)

⎞
⎟⎟⎟⎟⎠

for x j = E,A, I,J , andH. Or

F̃ =

⎛
⎜⎜⎜⎜⎝

0 c c 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ and Ṽ =

⎛
⎜⎜⎜⎜⎝

c1 0 0 0 0
−ε c2 0 0 0
−δ 0 c3 0 0
0 −θ −κ c4 0
0 0 −λ −μ c5

⎞
⎟⎟⎟⎟⎠

where, c1 = ε + δ + d, c2 = θ + ηa + d + ρa, c3 =
κ + λ + ηi + d + ρi , c4 = μ + ρ j + η j + d, c5 =
ρh + d, andc = βΠ(ξα+d)

d(α+d)
.

Because the basic reproduction number is equal to

the spectral radius of the matrix F̃Ṽ
−1

. As a result, we
know that the basic reproduction number for the model
under consideration is

R0 = ρ(F̃Ṽ
−1

) = εc

c1c2
+ δc

c1c3
. (4)

3.4 Stability analysis of the disease-free equilibrium

In this section, we study the stability analysis of the

disease-free equilibrium point E0 =
(

Π
α+d , Πα

d(α+d)
, 0,

0, 0, 0, 0, 0) whose stability has been investigated in
the next theorem.

Theorem 2 If R0 < 1, then the DFE E0 is locally
asymptotically stable, and it is unstable if R0 > 1.

Proof The Jacobian matrix corresponding to system 1

at DFE E0

(
Π

α+d , Πα
d(α+d)

, 0, 0, 0, 0, 0, 0
)
is given as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(α + d) 0 −βS0 −βS0 0 0 0 0
α −d 0 −βξV0 −βξV0 0 0 0
0 0 −(ε + δ + d) βS0 + βξV0 −βξV0 βS0 + βξV0 −βξV0 0 0 0
0 0 ε −(−θ + ηa + d + ρa) 0 0 0 0
0 0 δ 0 −(κ + λ + ηi + d + ρi ) 0 0 0
0 0 0 θ κ −(μ + ρ j + ηi + d) 0 0
0 0 0 0 λ μ −(ρh + ηh + d) 0
0 0 0 ρa ρi ρ j ρh −d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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this can also be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(α + d) − λ 0 0 −βS0 −βS0 0 0 0
α −d − λ 0 −βξV0 −βξV0 0 0 0
0 0 −c1 − λ c c 0 0 0
0 0 ε −c2 − λ 0 0 0 0
0 0 δ 0 −c3 − λ 0 0 0
0 0 0 θ κ −c4 − λ 0 0
0 0 0 0 λ μ −c5 − λ 0
0 0 0 ρa ρi ρ j ρh −d − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now, the eigenvalues of the above matrix are the roots
of the following characteristic equation:

− (α + d + λ)(−d − λ)(−d − λ)(−c5 − λ)

(−c4 − λ)[δ(c2 + λ)c − (c3 + λ){(c1 + λ)

(c2 + λ) − εc}] = 0

− (α + d + λ)(−d − λ)(−d − λ)(−c5 − λ)(−c4 − λ)

[−λ3 − λ2(c1 + c2 + c3) − (c1c2 + c2c3 + c3c1
− εc − cδ)λ + λcc2
+ εcc3 − c3c1c2] = 0

− (α + d + λ)(−d − λ)(−d − λ)(−c5 − λ)

(−c4 − λ)[λ3 + (c1 + c2 + c3)λ
2 + (c1c2

+ c2c3 + c3c1 − εc − cδ)λ + c1c2c3(1 − R0)] = 0

− (α + d + λ)(−d − λ)(−d − λ)(−c5 − λ)

(−c4 − λ)[λ3 + a1λ
2 + a2λ + a3] = 0,

where a1 = c1 + c2 + c3, a2 = c1c2 + c2c3 + c3c1 −
εc − cδ, a3 = c1c2c3(1 − R0).

Following that, using the Liénard-Chipart test, we
may determine whether all the roots of the characteris-
tic equation are negative or have a negative real part if
and only if the following conditions are met:

a2 > 0,

a1a2 − a3 > 0.

To verify the conditions of the Lienard–Chipard test.
We rewrite the coefficients a1, a2, anda3 of the charac-
teristic polynomial in terms of the basic reproduction
number R0 given by ( 4).

a1 = c1 + c2 + c3,

a2 = c1(1 − R0)(c2 + c3) + δcc2
c3

+ εcc3
c2

+ c2c3, and

a3 = c1c2c3(1 − R0).

Additionally, we compute the following expression in
terms of R0:

a1a2 − a3 = c1[c1c2 + c2c3 + c3c1 + c22 + c23](1 − R0)

+ (c1 + c2 + c3)

(
δcc2
c3

+ εcc3
c2

+ c2c3

)
.

As a result of the preceding expressions, it is obvi-
ous that if, R0 < 1, , the second criterion of the
Lienard–Chipard test is satisfied, and the disease-free
equilibrium is asymptotically stable. When, R0 > 1,
we deduce that at least one eigenvalue is positive using
Descartes’ rule of signs. �	

The epidemiological implication of Theorem 1 is
that a tiny intake of COVID-19-infected individuals
will not result in a community outbreak if R0 < 1.
That is, the disease rapidly dies out (when R0 < 1) if
the initial number of infected individuals is in the basin
of attraction of the continuum of the DFE (E0).

4 The optimal control problem

Control strategies are crucial in reducing COVID-19
transmission. It is necessary to develop a strategy that
minimises both the number of affected individuals and
associated costs. In this aspect, optimal control theory is
an extremely useful tool for determining such a policy.
Now, we are concentrating on the most effective tech-
niques for combining non-pharmaceutical treatments
with the vaccination process in India. The optimal prob-
lem is given by introducing time-varying control u(t),
representing a fraction of the vaccination process. The
objective functional is constructed as follows:

J (u) =
∫ t f

0
[b1A + b2 I + b3

2
u2]dt

subject to the proposed model (1). The parameters
b1, b2, and b3 > 0 corresponds to the weight con-
straints for the asymptomatic infected, symptomatic
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infected, and vaccination, respectively. By using the
standard results, we can show that an optimal state
exists. Now,we need to find out the value of the optimal
control u∗(t) such that

J (u∗) = min J (u),

where Ω = {u | 0 ≤ u ≤ 1,Lebesgue integral}.
Here, we use the Pontryagin’s maximum principle

to derive the necessary conditions for our optimal and
corresponding states. The Lagrangian is given by

L(V, A, I, u) = b1A + b2I + b3
2
u2.

The Hamiltonian is defined as follows

H(V, A, I, u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8)

= L(V, A, I, u) + λ1Ṡ
+λ2V̇ + λ3Ė + λ4Ȧ + λ5İ
+λ6J̇ + λ7Ḣ + λ8Ṙ.

Or

H =
(
b1A + b2I + b3

2
u2

)
+ λ1(Π

−βS(A + I) − αuS − dS)

+λ2(αuS − βξV(A + I) − dV)

+λ3(βS(A + I) + βξV(A + I) − c1E)

+λ4(εE − c2A) + λ5(δE − c3I)

+λ6(θA + κI − c4J )

+λ7(λI + μJ − c5H) + λ8(ρaA
+ρiI + ρhH − dR).

For the optimal controlu∗(t), there exits adjoint vari-
ables corresponding to the states variables S, V, E,

A, I, J , H, andR.

λ̇1(t) = −∂H

∂S = −[λ1(−β(A + I) − αu − d)

+λ2αu + λ3β(A + I)]
λ̇2(t) = −∂H

∂V = −[λ2(−βξ(A + I) − d)

+λ3(βξ(A + I))]
λ̇3(t) = −∂H

∂E = −[−λ3c1 + ελ4 + δλ5]

λ̇4(t) = −∂H

∂A = −[b1 − λ1βS − λ2βξV
+λ3(βS + βξV) − c2λ4 + θλ6 + ρaλ8]

λ̇5(t) = −∂H

∂I = −[b2 − λ1βξV + λ3βS
+λ4βξV − c3λ5 + κλ6 + λλ7 + ρiλ8]

λ̇6(t) = − ∂H

∂J = −[c4λ6 + μλ7 + λ8ρ j ]

λ̇7(t) = − ∂H

∂H = −[−c5λ5 + λ8ρh]

λ̇8(t) = − ∂H

∂R = dλ8

where the adjoint variables satisfy the transversal-
ity conditions λ1(t f ) = 0, λ2(t f ) = 0, λ3(t f ) =
0, λ4(t f ) = 0, λ5(t f ) = 0, λ6(t f ) = 0, λ7(t f ) =
0, λ8(t f ) = 0.

We minimise the Hamiltonian concerning the con-
trol variable u∗(t).
∂H

∂u
= b3u − αλ1S + αλ2S = 0

⇒ u∗ = αS(λ1 − λ2)

b3
.

5 Numerical simulation

5.1 Fixed control

We consider two cases: one with regular vaccination
and the otherwith optimal vaccination control. First,we
consider regular vaccination. To simulate our numeri-
cal results, we set the parameters for the system (1) that
are given in Table 1.

Using the parameters given in Table 1, we calcu-
late the disease-free equilibrium E0 = (49.50, 200.49,
0, 0, 0, 0, 0, 0) and the basic reproduction number
R0 = 0.9104 from equations (2) and (3), respectively.
This shows that the system is locally asymptotic sta-
ble, and the epidemic outbreak could be controlled.
Using these values of parameters and the initial condi-
tion as S(0) = 500, V(0) = 10, E(0) = 10, A(0) =
1, I(0) = 1, J (0) = 5, H(0) = 0, and R(0) = 0,
we solve our model numerically.

Figure 2 represents that when the basic reproduc-
tion number R0 < 1, the system (1) converges to the
disease-free equilibrium. Next, when we change the
value of u from 0.9 to 0.5, the becomes R0 = 1.3902 >

1, and Fig. 3 shows the variations in all the states of the
system (1) when R0 is greater than unity.

5.2 Sensitivity analysis

Sensitivity analysis for the basic reproduction number,
R0, tells us, how each parameter involved in the expres-
sion of R0 is essential in disease transmission. It is used
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Fig. 2 Simulation results of
model (1). The solution
trajectory tends towards the
disease-free equilibrium
(DFE) when R0 < 1
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to determine which parameter has a high impact and
which has a low impact on the threshold R0. More-
over, it has an impact on the dynamics of the proposed
model. Sensitivity indices tell us the relative change in
the R0 when a parameter is changed. For performing
the sensitivity analysis on R0 we used the normalised
forward sensitivity index of R0, concerning the param-
eters in the expression of R0, which is defined as the
relative change in the variable for the relative change in
its parameters. If the variable is differential for a param-
eter, then its sensitivity indices are defined as follows.

Definition 1 The normalised forward sensitivity index
of a function, F(x1, x2, ..., xn) for xi (1 ≤ i ≤ n), is
defined by Γ F

xi = ∂F
∂xi

× xi
F .

Therefore, the normalised forward sensitivity index
of R0 for a given parameter θ is given by Γ

R0
θ = ∂R0

∂θ
×

θ
R0
. The explicit expression of R0 is given by

R0 = εc

c1c2
+ δc

c1c3
,

where c1 = ε+δ+d, c2 = θ +ηa +d+ρa, c3 = κ +
λ+ηi +d+ρi , c5 = ρh+ηh+d, and c = βΠ(ξαu+d)

d(αu+d)
.

To find sensitivity indices of R0, we consider the
parameters Π, β, ε, δ, ξ, α, u, d, θ, ηa, ρa, κ, λ,

ηi , and λi since R0 is the functionof only these parame-
ters.All sensitive indices can be carried out, and expres-
sions are given below.

Γ R0
ε = ∂R0

∂ε
× ε

R0
= − ε

c1
+ cε

c1c2R0

Γ
R0

δ = ∂R0

∂δ
× δ

R0
= − δ

c1
+ cδ

c1c3R0

Γ
R0

θ = ∂R0

∂θ
× θ

R0
= − εc

c22c1
× θ

R0

Γ R0
ηa

= ∂R0

∂ηa
× ηa

R0
= − εc

c22c1
× ρa

R0

Γ R0
κ = ∂R0

∂κ
× κ

R0
= − δc

c1c23
× κ

R0

Γ
R0

λ = ∂R0

∂λ
× λ

R0
= − δc

c23c1
× λ

R0
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Fig. 3 Simulation results of
model (1), when R0 > 1
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Γ R0
ηi

= ∂R0

∂ηi
× ηi

R0
= − δc

c23c1
× ηi

R0

Γ R0
ρi

= ∂R0

∂ρi
× ρi

R0
= − δc

c23c1
× ρi

R0

Γ
R0

β = ∂R0

∂β
× β

R0
= 1

Γ
R0

Π = ∂R0

∂Π
× Π

R0
= 1

Γ
R0

ξ = ∂R0

∂ξ
× ξ

R0
= αuξ

ξαu + d

Γ R0
α = ∂R0

∂α
× α

R0
= α(ξ − 1)ud

(ξαu + d)(αu + d)

Γ R0
u = ∂R0

∂u
× u

R0
= u(ξ − 1)αd

(ξαu + d)(αu + d)
, and

Γ
R0
d = ∂R0

∂d
× d

R0

=
c1βΠ

d2(αu+d)2
{d(αu + d) − (ξαu + d)(αu + 2d)} − c

c21

(
ε

c2
+ δ

c3

)
− c

c1

(
ε

c22
+ δ

c23

)
× d

R0

.

Table 2 contains the sensitivity indices for the basic
reproduction number R0 for the values of parameters
in Table 1.

From Table 2, it is clear that the most sensitive
parameters for the basic reproduction number R0 of
model 1 are Π,β, α and u. The positive index indi-
cates that R0 is an increasing function of the rele-
vant parameter, while the negative index indicates that
R0 is a decreasing function of the relevant parame-
ter. For example, Γ R0

β = 1, means that if we increase
the parameter β by some percentage, then R0 is also
increasedwith the same percentage.Additionally, a rise
in the value of ε will result 36.84% increase in the basic
reproduction number. In contrast, increasing the value
of α reduces R0 by 76.30 %. As shown in Table 1, Π
and β have a greater positive effect on R0 than ε, δ, ξ
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Table 2 The sensitivity index was calculated for the parameter
values given in Table 1

Parameter symbols Sensitivity indices

Π 1

β 1

ε 0.3684

δ 0.1721

ξ 0.0389

α −0.7630

u −0.7630

d −0.6199

θ −0.2582

ηa −0.1631

ρa −0.1359

κ −0.1109

λ −0.1047

ηi −0.0986

ρi −0.0493

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Sensitivity Index

P
ar

am
et

er
s

Π
β
ε
δ
ξ
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ρ
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κ
λ
η

i
ρ

i

Fig. 4 The sensitivity index of R0 against the concerning param-
eters

and α and u have a greater negative effect on R0 than
the remaining parameters affecting R0.

The results shown in Table 2 are depicted in Fig. 4.
This figure demonstrates that parameters with a right-
hand sidebar have a positive effect on, R0, whereas
parameters with a left-hand sidebar have a negative
effect, as well as longer the bar, the greater the sen-
sitivity of R0 for that parameter.
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Fig. 5 Contour plots indicating nature of change in basic repro-
duction number (R0) of model (1) under parametric planes. Con-
tour Plot of R0 as a function of α and β
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Fig. 6 Contour plots indicating nature of change in basic repro-
duction number (R0) of model (1) under parametric planes. The
Contour Plot of R0 as a function of α and u

Figures 5 and 6 show the contour plots of the basic
reproduction number R0 with respect to the parameters
α vs β and α vs u, respectively. As illustrated in Fig. 5,
whenβ increases andα decreases then R0 will increase.
Thus, in order to control the ongoing COVID-19 pan-
demic, the basic reproduction number, R0,must be low-
ered, for which we must take measures to increase the
value of α and to slow the disease transmission rate β.
As seen in Fig. 6, when the control parameter u and
the vaccination parameter α increases then R0 falls.
By increasing the value of the control parameter u, the
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number of persons vaccinated increases and the rate of
vaccination increases as well.

We know that the basic reproduction number, R0,
therefore, in order to control the dynamics of disease
transmission, we must reduce the value of R0. As a
result of Table 2 and Figs. 4, 5 and 6, we can conclude
that parameters with negative indices can be increased
in order to significantly reduce R0.Additionally,we can
observe that parameters such asΠ , and β have positive
indices, implying that by lowering their values, we can
lower R0. As a consequence, we can control disease
transmission in this manner.

5.3 Bifurcation diagram

In order to examine disease-free equilibria in sys-
tem (1), Theorem 2 demonstrates that system (1) may
undergo a transcritical bifurcation at the threshold
parameter condition R0 = 1. It has been discovered
that system (1) exhibits a transcritical bifurcation when
R0 = 1, which is seen in Fig. 7. The locally stable equi-
libria are shown by solid blue lines, whereas the unsta-
ble equilibria are represented by dashed red lines. As
the disease-free equilibrium is locally asymptotically
stable for R0 < 1, a solid blue line represents it. The
disease-free equilibrium is unstable if R0 > 1, and it is
depicted as a red dashed line on the graph.

5.4 Numerical simulation of the optimal control
problem

We now conduct a numerical simulation of the for-
mulated optimum control problem. Using the forward
fourth-order R-K technique, we begin by finding the
numerical solution of system (1) using the initial val-
ues specified in Table 2. Then, utilising the numeri-
cal solution of the system and the transversality con-
ditions, we apply the backward fourth-order R-K tech-
nique to determine the numerical solution of the system
of adjoint equations.

We take the parametric values the same as in Table 1
except for α = 0.5 and keep the same set of initial val-
ues. For numerical simulation, we take b1 = 1.2, b2 =
1.2, b3 = 1. Fig. 8 represents the dynamics of popula-
tions of all the classes in the presence and absence of an
optimal control strategy. From Fig. 8, we can see that
in the absence of a control strategy, the population of

the susceptible and the vaccinated classes goes down
faster than a control strategy. In the absence of vaccina-
tion, the populations of the remaining classes other than
the isolated class increase then decrease exponentially
and get flattered after some time. When vaccination
is there, then the population of the classes increases
slowly. In the absence of vaccination, the population of
the infected class increases and then decreases expo-
nentially after that gets flattered, but in the presence
of vaccination strategy, the infected class goes down
slowly.

In Fig. 9, we plotted the solution of the system of
adjoint Eq. 4. Fig. 9 shows the variation in the evalu-
ation of adjoint variables when the optimal control is
applied to the proposed model. In Fig. 10, we plotted
the variation in the optimal control parameter u(t). We
noticed in Fig. 10 that we initially keep a high vaccina-
tion rate for controlling the disease transmission and
then decrease it gradually such that implementation
cost is also minimised. This phenomenon is justified
because as more and more populations are vaccinated,
immunity against the virus also develops naturally in
public, so we can gradually decrease the vaccination
rate.

5.5 Parameter estimation-model fitting and model
validation

The period from March 25, 2020, to April 24, 2020, is
considered for model fitting. In India, we have accu-
mulated daily cases of COVID-19 for this analysis.
CumulativeCOVID-19 caseswere acquired from refer-
ence [29].Model (1) is calibrated for India’s cumulative
daily cases.We enumerated the principalmodel param-
eters determined from data, in Table 3. The data will
also estimate someof the initial conditions ofmodel (1).
Fitting cumulative daily cases in MATLAB is accom-
plishedwith the least-square function fmincon. Tables 3
and 4 list the parameters and initial conditions calcu-
lated using the approach described above. The daily
cumulative reported cases of India are fitted and dis-
played in Fig. 11.
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Fig. 8 Dynamics of classes
in presence and absence of
vaccination strategy
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Fig. 9 Dynamics of the
adjoint variables when
control applied optimally
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Fig. 10 Dynamics of the vaccination strategy
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Table 3 Estimated values of the parameters used in model (1)
through model fitting technique

Parameters Value Source

Π 67446.82 [30]

α 0.99879 Estimated

β 0.00001 Estimated

ξ 0.00001 Estimated

d 0.0000391 [30]

ε 0.00064 Estimated

δ 0.62 [31]

θ 0.95879 Estimated

κ 0.98784 Estimated

λ 0.8576 Estimated

μ 0.2756 Estimated

ηa 0.6987 Estimated

ηi 0.8789 Estimated

η j 0.2548 Estimated

ηh 0.2579 Estimated

ρa 0.73 [31]

ρi 0.79 [31]

ρ j 0.4786 Estimated

ρh 0.8368 [32]

u 0.995 Assumed

Table 4 Estimated initial population size for India

Parameters Value Source

S(0) 1352642280 [30]

V(0) 0 Assumed, since no vaccination

started till that time

E(0) 1302 Estimated

A(0) 479 Estimated

I(0) 356 Estimated

J (0) 657 [30]

H(0) 657 [30]

R(0) 452 Estimated

We validate the model by comparing the model pre-
diction with the reported data. We compared the daily

cases predicted by the algorithm from April 25, 2020,
to May 10, 2020. Fig. 12 depicts the model prediction
scenarios estimated from the set of parameters and ini-
tial values from Tables 3 and 4 , respectively.

6 Conclusion

This study modified the SEIR model to include eight
infection classes and vaccination as a control parameter
in order to simulate and predict the spread of a novel
coronavirus disease. To begin, mathematical analysis
was used to demonstrate the positivity and bounded-
ness, disease-free equilibrium, and basic reproduction
number of the suggested model. In the second step,
The qualitative dynamic behaviour of the model was
explored, and the basic reproduction number, R0, was
calculated using the next-generation matrix approach.
The result indicates that the model is asymptotically
stable at infection-free equilibrium for R0 < 1 and
unstable for R0 > 1. We analysed the optimum control
issue and performed several numerical simulations on
the solutions of the model. In addition, we performed
sensitivity analysis and generated a bifurcation dia-
gram. A simulation of the optimum control has been
performed numerically. Validation and prediction of
models are also performed.

Finally, we investigated the impact of vaccination
on the spread of the disease and showed that a combi-
nation of community mitigation strategies and vacci-
nation events could be effective measures to diminish
coronavirus by minimising social and economic costs.
Our analysis demonstrates that expanding the vaccina-
tion program considerably reduces the number of con-
firmed cases and deaths. The proposed model can be
used to assist public health officials in planning, prepar-
ing, and implementing appropriate measures and deci-
sions to control the pandemic.

Additionally, the models we presented contain a
large number of parameters whose estimated values
may be subjected to uncertainty. Thus, uncertainty
analysis may be used to determine the parameters that
have the largest impact on the chosen response function
based on the numerical simulation results.
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Fig. 11 Model (1) fitted to
cumulated daily cases of
India from April 25, 2020,
to May 10, 2020. Here,
observed data points are
shown in red dots and the
solid blue line depicts the
model fitted curve

Fig. 12 The Bar graph of
daily infected cases. The
blue bar shows the model
predicted cases and red bar
depicts the observed cases
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