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Abstract This study presents an inerter-based non-

linear vibration isolator with geometrical nonlinearity

created by configuring an inerter in a diamond-shaped

linkage mechanism. The isolation performance of the

proposed nonlinear isolator subjected to force or base-

motion excitations is investigated. Both analytical and

alternating frequency-time harmonic balance methods

as well as numerical integration method are used to

obtain the dynamic response. Beneficial performance

of the nonlinear isolator is demonstrated by various

performance indices including the force and displace-

ment transmissibility as well as power flow variables.

It is found that the use of the nonlinear inerter in the

isolator can shift and bend the peaks of the transmis-

sibility and time-averaged power flow to the low-

frequency range, creating a larger frequency band of

effective vibration isolation. It is also shown that the

inertance-to-mass ratio and the initial distance of the

nonlinear inerter can be effectively tailored to achieve

reduced transmissibility and power transmission at

interested frequencies. Anti-resonant peaks appear at

specific frequency, creating near-zero energy trans-

mission and significantly reducing vibration transmis-

sion to a base structure on which the proposed isolator

is mounted.

Keywords Nonlinear inerter � Geometric

nonlinearity � Nonlinear vibration isolator � Vibration
power flow � Transmissibility

1 Introduction

The inerter is a passive two-node mechanical element

and has the property that the applied force across the

two terminals is proportional to the relative acceleration

between the terminals [1]. The ratio of the output force

of the inerter to the relative acceleration is called

inertance and is measured in kilograms. There have

been a variety of practical designs and physical

realisations of mechanical inerters, using flywheel-

based [1–4] and fluid-based [5–7] mechanisms. Fly-

wheel-based inerters can be constructed through a ball-

screw mechanism consisting of a screw, nut, and

flywheel [2–4]. The relative linear motion of the

terminals is transformed into the rotational motion of
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flywheels storing kinetic energy. The structure of

flywheel-based inerters can also be achieved using a

rotating flywheel through a rack, a pinion, and gears,

which is also known as rack–pinion inerter [1]. The

corresponding inertance is related to the mass and the

radius of gyration of the flywheel as well as the radii of

the rack pinion, gear wheel, and flywheel pinion. Fluid-

based inerters can be realised incorporating fluid

flowing through an orifice [5, 6] or helical channel

[7]. With a proper design, the inertance (i.e. apparent

mass) of an inerter can be much larger than its physical

weight. The use of the inerter in an integrated structure

can provide inertial coupling between subsystems. In

this way, the dynamic property (e.g. the mass matrix) of

vibration systems can be tailored such that the amount

and the dominant of path vibration transmission in a

system can be optimised for desirable performance.

Therehavebeena numberof studies investigating the

dynamics of inerter-based suppression systems and

demonstrating performance benefits. Wang et al. [8]

studied the vibrationmitigation behaviour of a full-train

model incorporating inerter-based mechatronic suspen-

sions. It was found that the parallel inerter configuration

improves the dynamic performance of the train and

passage comfort. Lazar et al. [9] used the tuned inerter

damper for cable vibration suppression. Li et al. [10]

studied the potential benefits of the shimmy-suppression

devices using inerter for aircraft landing gear. It was

shown that the optimised inerter-based configurations

have better suppression performance than the conven-

tional spring-damper device. Zhang et al. [11] examined

the dynamic behaviour of a multi-storey building

structure with the use of inerter-spring-damper. Iner-

ter-based linear vibration isolators with different con-

figurations have alsobeen studied andhave shownbetter

dynamic performance in vibration attenuation com-

pared to the traditional isolators [12]. In recent studies,

inerters have also been applied to the laminated

composite plates [13] and metamaterial beams

[14, 15] for vibration suppression. Tuning methods of

tuned inerter dampers for nonlinear primary systems

have been proposed to achieve equal peaks in the

displacement and kinetic energy responses [16].

Potential applications of the nonlinear inerter have

also been studied for possible performance benefits.

De Haro Moras et al. [17] used a pair of horizontal

inerters to replace the springs used in conventional

quasi-zero-stiffness (QZS) isolators, which shows the

dynamical benefits compared with the traditional

spring-damper and spring-damper-inerter isolators in

vertical arrangement. Yang et al. [18] investigated the

performance of an inerter-based vibration isolator and

inerter-QZS hybrid isolator in vibration suppression.

Wang et al. [19] studied the dynamic behaviour of a

vibration isolator with inerter-based geometrical non-

linearity, and the corresponding isolation performance

is compared to the parallel and series-connected

configurations. Dong et al. [20] examined the sup-

pression of vibration transmission in coupled systems

by using an inerter-based joint exploiting geometric

nonlinearity. Apart from the nonlinear isolators, the

mechanical inerter can be used in nonlinear energy

sink (NES) devices. Zhang et al. [21] employed a

combined vibration control technique using a QZS

system with an inerter-based NES to achieve better

nonlinear isolation and absorption effects. In a recent

study, Wagg [22] conducted a comprehensive review

for different types of mechanical and fluid-based

inerters in linear and nonlinear applications.

There have been a lot of recent research interest in

developing high-performance nonlinear vibration iso-

lators [23]. Kovacic et al. [24] studied the dynamic

performance of a nonlinear vibration isolator using a

QZS mechanism to achieve low-dynamic stiffness for

low natural frequency while retaining high-static

supporting stiffness for low static deflection. It was

found that the periodic doubling bifurcation and

chaoticmotionmay occur under asymmetric excitation

of the nonlinear isolator. Carrella et al. [25] investi-

gated the displacement and force transmissibility

characteristics of a nonlinear isolator incorporating

high-static-low-dynamic stiffness. The previous

research has also clearly demonstrated the potential

benefits of exploiting inerters in nonlinear vibration

isolators for enhanced performance [22]. Therefore,

new designs of inerter-based nonlinear vibration

isolators are sought. It is noted that for performance

evaluation of nonlinear vibration isolators, including

inerter-based ones, the force and/or displacement

transmissibility is often used as the performance

indicator. The vibration energy power flow is widely

accepted as an index to assess the effectiveness of

vibration isolation. Vibration power flow analysis

(PFA) combines force and velocity amplitudes as well

as the phase difference into one quantity and provides a

better indication of dynamic performance from the

energy viewpoint [26]. For instance, Royston and

Singh [27] studied the vibratory power transmission
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from a vibrating engine source to a flexible receiver

through a nonlinear path. Xiong et al. [28] investigated

the interactional dynamic behaviour with respect to the

power flow between a vibrating equipment, a nonlinear

isolator, and a flexible ship excited by waves. The

nonlinearities were characterised by a general p-th

power damping and q-th power stiffness. In recent

years, PFA has been applied to study different nonlin-

ear vibration systems. Yang et al. revealed the power

flow behaviour of the Duffing oscillator [29] and a

nonlinear isolator mounted on a nonlinear base [30].

Shi et al. [31] studied the vibration energy transmission

and power flow performance in coupled systems with a

bilinear stiffness interface. Dai et al. [32] proposed the

use of linear and nonlinear constraints to reveal the

energy transmission mechanisms in impact oscillators.

This study presents a nonlinear inerter-based vibration

isolator and investigates the dynamics for performance

evaluation. The nonlinear inerter, named as theD-inerter,

is created by a linear inerter embedded in a four-bar

linkage mechanism. With the inclusion of the proposed

nonlinear inerter, it is shown that the natural frequency of

the system can be reduced, thereby expanding the

effective isolation frequency bandwidth. The fre-

quency–response curves bend to the low-frequency

range, benefiting vibration isolation. It is also demon-

strated the use of the nonlinear inerter leads to enhanced

vibration attenuation in terms of both force/displacement

transmissibility and energy transmission. The application

of the nonlinear isolator in a single-DOF (SDOF) system

subjected to force or base-motion excitations and in a

two-DOF (2DOF) forced system with a flexible founda-

tion is considered.Different performance indices, includ-

ing the force and displacement transmissibility, and

vibrationpowerflowandenergy-basedvariables are used

to evaluate the vibration isolation performance. The first-

order harmonic balance (HB) method and the HB with

alternating frequency time (AFT) are used to obtain the

steady-state responses and the performance indices. The

analytical results are validated and compared with the

numerical time-marchingRunge–Kuttamethod. The rest

of the paper is organised as follows. In Sect. 2, the

physical andmathematicalmodel of the nonlinear inerter

and its use in single-DOF isolator and 2DOF systems

with the isolatormountedonaflexible base are presented.

In Sect. 3, the dynamic analysis of the isolation systems

and performance indices for the evaluation of the

proposed isolators are introduced. In Sect. 4, the perfor-

mance of the proposed nonlinear D-inerter vibration

isolator used in SDOF and 2DOF systems is examined.

Conclusions are provided at the end of the paper.

2 Nonlinear inerter based on four-bar linkage

mechanism

2.1 The nonlinear inerter

Figure 1a shows the proposed nonlinear inerter config-

uration based on a four-bar diamond-shaped linkage

mechanism. The nonlinear inerter (hereafter referred to

as the D-inerter) is created by embedding a linear

horizontal inerter in a linkage created by four rigid

massless bars AC, AD, BC and BD with equal length l0
and pin-joined at points A, B, C and D. An ideal linear

inerter with inertance b is configured to the mechanism

with its two terminals joined to points C and D. Angle

h, measured from the horizontal direction CD and

positive in the anti-clockwise direction, is used to

denote the orientation of bar AC. The distances of AB

and CD are denoted by y and zCD, respectively. Point A

is subjected to a vertical force fa, while point B is

pinned to the ground. As the system is symmetric,

point A only moves along the vertical direction.

Figure 1(b) shows an ideal massless inerter for which

the applied force fb is proportional to the relative

acceleration of the two terminals [1], i.e.

fb ¼ b €zD � €zCð Þ ¼ b€zCD, where €zD and €zC are the

acceleration, while €zCD denotes the relative

accelerations.

Based on the geometry of the D-inerter, we have

y ¼ 2l0 sin h;

zCD ¼ 2l0 cos h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4l20 � y2
q ð1Þ

where y and zCD represent the distances of AB and CD,

respectively, and for practical applications we have

0\h\p=2. From Eq. (1), the expressions of the

velocity and acceleration are obtained by taking the

first and second derivatives:

_y ¼ 2l0 _h cos h;

€y ¼ 2l0 €h cos h� _h2 sin h
� � ð2Þ

respectively. The relative velocity and acceleration of

terminals C and D are denoted by _zCD and €zCD,
respectively, and are expressed as
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_zCD ¼ �2l0 _h sin h;

€zCD ¼ �2l0 €h sin hþ _h2 cos h
� �

:
ð3Þ

According to the property of the inerter, the

inertance force fb applied by the linkage to the inerter

is along the direction of CD and expressed by

fb ¼ b€zCD ¼ �2bl0 €h sin hþ _h2 cos h
� �

: ð4Þ

Based on the force equilibrium condition of the

linkage structure, the relationship between applied

force at point A and the inertance force applied to the

horizontal inerter is

fa hð Þ ¼ �fb
sin h
cos h

¼ 2bl0 €h sin hþ _h2 cos h
� � sin h

cos h
:

ð5Þ

Using Eqs. (1) and (2) to replace the terms _h, €h,
cos h and sin h in Eq. (5) with y; _y; €y and l0, we have a

relationship between the applied force to terminal A of

the nonlinear inerter to the corresponding response at

the terminal

fa y; _y; €yð Þ;¼ b
€yy2

4l20 � y2
þ 4l20y _y

2

4l20 � y2
� �2

 !

¼ 2bl0
€YY2

1� Y2
þ Y _Y2

1� Y2ð Þ2

 !

¼ fa1 Y ; €Y
� �

þ fa2 Y ; _Y
� �

ð6Þ

where Y ¼ y= 2l0ð Þ denotes the nondimensional dis-

tance between the two terminals of the nonlinear

inerter, fa1 Y ; €Y
� �

¼ 2bl0 €YY
2
�

1� Y2ð Þ and

fa2 Y ; _Y
� �

¼ 2bl0Y _Y2= 1� Y2ð Þ2. Equation (6) shows

that the nonlinear inertance force depends on the

distance Y , the relative velocity _Y and relative

acceleration €Y characteristics between the terminals.

Note that for the distance y between the two terminals,

we have y[ 0 all the time. Figure 2a shows the

variations of fa1 Y ; €Y
� �

against Y and €Y . It shows that

when Y is large, fa1 Y; €Y
� �

has an approximately linear

relationship with €Y . Figure 2b shows the changes of

fa2 Y ; _Y
� �

with respect to the distance Y and velocity _Y

of the terminals. It shows that the component of the

inertance force fa2 Y ; _Y
� �

of the nonlinear inerter is

sensitive to the relative velocity of the two terminals

when the initial distance Y is large.

2.2 Nonlinear D-inerter vibration isolator models

Figure 3a and b shows a single-DOF isolator system

with the proposed D-inerter for force excitation and

base-motion excitation, respectively. The system

model comprises a mass subjected to a harmonic

force excitation with amplitude f0 or a base-motion

excitation with amplitude q0 and frequency x. To
suppress the vibration transmission to the base, a

nonlinear vibration isolator is inserted between the

mass and the base. The isolator consists of a nonlinear

D-inerter device, configured in parallel with a linear

spring with stiffness coefficient k1 and a viscous

damper with damping coefficient c1. Figure 3c

θ

B

l0

b

A

fa

y

DC
b

DC

zC zD

fb fb

(a) (b)Fig. 1 a Nonlinear inerter

model and b a linear inerter
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presents the application of the D-inerter to vibration

isolation of a force excited machine with mass m1

mounting on a flexible single-DOF base via the

proposed nonlinear isolator. The single-DOF base

structure has mass m2, a spring with stiffness coeffi-

cient k2 and a damper with damping coefficient c2. For

the systems shown in Fig. 3, the vertical displacement

of each mass away from the static equilibrium position

is denoted as x1; x2; x3 and x4. For the three systems,

the static equilibrium positions of the masses, where

the spring k1 is at a length of y0 and the displacements

x1; x2; x3 and x4 are zero, are used as the references.

Correspondingly, the initial angle parameter of the

linkage is denoted by h0 at the static equilibrium

position.

2.2.1 Force excited SDOF system

The governing equation of motion of the mass shown

in Fig. 3a is

m1 €x1 þ c1 _x1 þ k1x1 þ fnl x1; _x1; €x1ð Þ ¼ f0e
ixt; ð7Þ

where the nonlinear inertial force is expressed as

fnl x1; _x1; €x1ð Þ ¼fa y1; _y1; €y1ð Þ ¼ b y0 þ x1ð Þ2 €x1
4l20 � y0 þ x1ð Þ2

þ 4bl20 y0 þ x1ð Þ _x21
4l20 � y0 þ x1ð Þ2
� �2

;
ð8Þ

Fig. 2 Nonlinear inertance

force of the nonlinear D-

inerter

(b ¼ 1 kg; l0 ¼ 0:1m)

Fig. 3 Application scenarios of nonlinear inerter-based vibration isolators. a SDOF system for force excitation (configuration C1),

b SDOF system for base-motion excitation (configuration C2) and c nonlinear isolator mounted on a flexible base (configuration C3)
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with y1 ¼ y0 þ x1. For clearer presentation, the fol-

lowing parameters are introduced

x1 ¼
ffiffiffiffiffiffi

k1
m1

r

; f1 ¼
c1

2m1x1

; k ¼ b

m1

; X1 ¼
x1
2l0

;

D0 ¼
y0
2l0

¼ sin h0; F0 ¼
f0

2k1l0
; X ¼ x

x1

; s ¼ x1t;

ð9Þ

wherex1 is the undamped natural frequency of system

without the nonlinear inerter, f1 is the damping ratio, k
is the inertance-to-mass ratio, X1 is the dimensionless

displacement of the mass in C1, D0 and h0 represent

the original distance of the terminals for the D-inerter

and original orientation of the bars for the nonlinear

inerter when the mass is at the static equilibrium

position, respectively, F0 and X are the dimensionless

amplitude and excitation frequency, respectively, and

s is the dimensionless time.

Using these variables and parameters, Eq. (7) is

transformed into a dimensionless form as

X00
1 þ 2f1X

0
1 þ X1

þ k
X00
1 X1 þ D0ð Þ2

1� X1 þ D0ð Þ2
þ X02

1 X1 þ D0ð Þ

1� X1 þ D0ð Þ2
� �2

0

B

@

1

C

A

¼ F0e
iXs:

ð10Þ

2.2.2 Base-motion excited SDOF system

For the base-excitation case shown in Fig. 3b, the

equation of motion of the mass is written as

m1 €x2 þ c1 _x2 � _qð Þ þ k1 x2 � qð Þ

þ b
€y2y

2
2

4l20 � y22
þ 4l20y2 _y

2
2

4l20 � y22
� �2

 !

¼ 0; ð11Þ

where q tð Þ ¼ q0e
ixt and y2 ¼ y0 þ x2 � q, Eq. (6) is

used for the force from the nonlinear D-inerter. By

introducing z2 ¼ x2 � q, Eq. (11) becomes

m1€z2 þ c1 _z2 þ k1z2 þ b
€y2y

2
2

4l20 � y22
þ 4l20y2 _y

2
2

4l20 � y22
� �2

 !

¼ �m1 €q ¼ m1q0x
2eixt:

ð12Þ

Following the similar nondimensionalisation pro-

cedure shown in Eq. (9), we obtain

X2 ¼
x2
2l0

; Z2 ¼
z2
2l0

; Q0 ¼
q0
2l0

; ð13Þ

where X2 is the dimensionless displacement of the

mass in C2, Z2 and Q0 are the nondimensional

amplitudes of the relative displacement between the

two terminals of the D-inerter and that of the base-

motion excitation, respectively. Using defined param-

eters in Eqs. (9) and (13), the nondimensional gov-

erning equation of the mass for the base-excitation

case (C2) can be written as

Z 00
2 þ 2f1Z

0

2 þ Z2

þ k
Z 00
2 Z2 þ D0ð Þ2

1� Z2 þ D0ð Þ2
þ Z 02

2 Z2 þ D0ð Þ

1� Z2 þ D0ð Þ2
� �2

0

B

@

1

C

A

¼ Q0X
2eiXs:

ð14Þ

2.2.3 2DOF system with flexible foundation

The governing equations of the 2DOF system in

Fig. 3c can be expressed as

m1 €x3 þ c1 _x3 � _x4ð Þ þ k1 x3 � x4ð Þ þ fnl y3; _y3; €y3ð Þ
¼ f0e

ixt;

ð15aÞ

m2 €x4 � c1 _x3 � _x4ð Þ � k1 x3 � x4ð Þ þ k2x4 þ c2 _x4
�fn1 y3; _y3; €y3ð Þ ¼ 0;

ð15bÞ

where fnl y3; _y3; €y3ð Þ is the expression of the nonlinear

force according to Eq. (6), y3 ¼ y0 þ z3 and

z3 ¼ x3 � x4. In order to facilitate later derivations,

the following nondimensional parameters are

introduced

x2 ¼
ffiffiffiffiffiffi

k2
m2

r

; l ¼ m2

m1

; c ¼ x2

x1

; f2 ¼
c2

2m2x2

;

g ¼ k2
k1

; X3 ¼
x3
2l0

; X4 ¼
x4
2l0

; Z3 ¼ X3 � X4;

ð16Þ

where x2 represents the undamped natural frequency

of the base structure, l is the mass ratio, c is the
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frequency ratio between the natural frequencies, f2 is
the damping ratio, g is the stiffness ratio,X3, X4 and Z3
are the dimensionless displacements of two masses

and their nondimensional relative displacement,

respectively. By using parameters and variables in

Eqs. (9) and (16), Eq. (15) can be transformed into its

dimensionless form as

X00
3 þ 2f1 X0

3 � X0
4

� �

þ X3 � X4

þ k
Z 00
3 Z3 þ D0ð Þ2

1� Z3 þ D0ð Þ2
þ Z 02

3 Z3 þ D0ð Þ

1� Z3 þ D0ð Þ2
� �2

0

B

@

1

C

A

¼ F0e
iXs;

lX00
4 � 2f1X

0
3 þ 2lcf2 þ 2f1ð ÞX0

4 � X3 þ gþ 1ð ÞX4

� k
Z 00
3 Z3 þ D0ð Þ2

1� Z3 þ D0ð Þ2
þ Z 02

3 Z3 þ D0ð Þ

1� Z3 þ D0ð Þ2
� �2

0

B

@

1

C

A

¼ 0;

ð17Þ

Note that the dimensionless governing equations of

the SDOF isolation system with forced excitation,

base-motion excitation and the 2DOF system are

presented by Eqs. (10), (14) and (17), respectively.

These equations can be further written into a set of

first-order ordinary differential equations and can be

solved by using a numerical time-marching method

such as the fourth-order Runge–Kutta (RK)

scheme with variable time steps to obtain the steady-

state response of masses.

3 Dynamic analysis and performance evaluation

In this section, the dynamic analysis of the D-inerter

isolators is presented. A general analysis procedure

using the alternating frequency–time with harmonic

balance (HB-AFT) method is introduced to obtain the

steady-state response. Analytical derivations of the

frequency–response relationship of the SDOF vibra-

tion isolator models using the first-order HB approx-

imations are also presented. Various performance

indices such as force transmissibility, displacement

transmissibility, time-averaged power flow and energy

transmission variables of vibration isolators are

defined and formulated.

3.1 Harmonic balance with alternating frequency–

time

For a general Q-DOF dynamical system, the govern-

ing equation can be written in a matrix form as

MX00 þ CX0 þKXþ Fnl X;X
0;X00; sð Þ ¼ Fe sð Þ;

ð18Þ

where X,X0 andX00 are the displacement, velocity and

acceleration response vectors, respectively;

Fnl X;X
0;X00; sð Þ is the nonlinear force vector due to

the D-inerter, with its expression depending on the

specific configurations as shown by Eqs. (10), (14)

and (17); Fe sð Þ is the external force vector, Fe sð Þ ¼
. . .;F0e

iXs; . . .
� 	T

for the force excitation applied to j-

th DOF (1� j�Q) of the system and Fe sð Þ ¼
. . .;Q0X

2eiXs; . . .
� 	T

for the base-motion excitation;

M, C and K are the mass, stiffness and damping

matrices, respectively. For the single-DOF vibration

isolator models shown in Fig. 3a and b, we have

M ¼ 1, C ¼ 2f1 and K ¼ 1. As for the case of the

nonlinear isolator mounted on a flexible base shown in

Fig. 3c, relevant matrices become

M ¼
1 0

0 l


 �

;

C ¼
2f1 �2f1
�2f1 2lcf2 þ 2f1


 �

;

K ¼
1 �1

�1 gþ 1


 �

;

ð19Þ

The steady-state displacement solutions of Eq. (18)

can be calculated by the harmonic balance method

with alternating frequency–time (HB-AFT)

scheme [33]. This technique is mainly based on

numerical determination of the Fourier coefficients for

the nonlinear force terms in the governing equation,

and it has been used to study both smooth and

nonsmooth nonlinear dynamical systems. When using

the HB-AFT scheme, the steady-state dimensionless

displacement responses X and the nonlinear force

Fnl X;X
0;X00; sð Þ can be approximated by an N-th-

order truncated Fourier series
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X ¼
XN

n¼0
~R1;ne

inXs;
XN

n¼0
~R2;ne

inXs; . . .;
XN

n¼0
~RQ;ne

inXs
n oT

;

ð20Þ

Fnl X;X
0;X00; sð Þ

¼
XN

n¼0
~H1;ne

inXs;
XN

n¼0
~H2;ne

inXs; . . .;
XN

n¼0
~HQ;ne

inXs
n oT

;

ð21Þ

where ~R1;n, ~R2;n and ~RQ;n are the complex Fourier

coefficients of the n-th order approximations of the

first, second andQ-th subsystems, respectively, ~HQ;n is

the complex Fourier coefficient of Q-th subsystem for

the nonlinear force at the n-th order. The velocity and

acceleration expressions can be further obtained using

the first and the second derivatives of Eq. (20). By

inserting all these related terms into Eq. (18) and

balancing the corresponding harmonic terms of n-th

(0� n�N) order, we obtain

� nXð Þ2Mþ inXCþK
� �

~R1;n
~R2;n

..

.

~RQ;n

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

¼ Sn �

~H1;n
~H2;n

..

.

~HQ;n

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

; ð22Þ

where Sn ¼ . . .;F0; . . .f gT for the force excitation and
Sn ¼ . . .;Q0X

2; . . .
� 	T

for the base-motion excita-

tion. For a Q-DOF system with N-th order HB

approximations, there are in total number of

Q 2N þ 1ð Þ real nonlinear algebraic equations, which

can be solved by the Newton–Raphson numerical

continuation technique [34].

3.2 Analytical investigation of the responses

3.2.1 Free vibration behaviour of SDOF systems

Here the free vibration behaviour of the SDOF system

is firstly considered by setting the excitation amplitude

zero, i.e. F0 ¼ 0 in Eq. (10) and Q0 ¼ 0 in Eq. (14),

which leads to

X00
1 þ 2f1X

0
1 þ X1

þ k
X00
1 X1 þ D0ð Þ2

1� X1 þ D0ð Þ2
þ X02

1 X1 þ D0ð Þ

1� X1 þ D0ð Þ2
� �2

0

B

@

1

C

A

¼ 0;

ð23Þ

Z 00
2 þ 2f1Z

0
2 þ Z2

þ k
Z 00
2 Z2 þ D0ð Þ2

1� Z2 þ D0ð Þ2
þ Z 02

2 Z2 þ D0ð Þ

1� Z2 þ D0ð Þ2
� �2

0

B

@

1

C

A

¼ 0:

ð24Þ

Note that these two equations are mathematically

equivalent by replacing X1 with Z2 in Eq. (23).

Therefore, only free vibration behaviour of the mass

for the system governed by Eq. (23) is analysed here,

which can then be easily extended to the system

described by Eq. (24). It is also noted that for practical

designs, we need 0\X1 þ D0\1. Therefore, the

range of the nondimensional displacement X1 of the

mass is

�D0\X1\1� D0; ð25Þ

which provides

Xlow ¼ �D0 ¼ � sin h0;

Xup ¼ 1� D0 ¼ 1� sin h0;
ð26Þ

denoting the lower and the upper limits for the

dimensionless displacement X1. For a periodic

response around the static equilibrium point, the

maximum value of the allowed amplitude:

X1j jmax¼ min D0; 1� D0ð Þ: ð27Þ

Equations (26) and (27) provide the constraints on

the maximum displacement of the proposed structure.

By using a second-order Taylor’s expansion for the

nonlinear term in Eq. (23), we have

G Xð Þ ¼ X1 þ D0ð Þ2

1� X1 þ D0ð Þ2

� D2
0

1� D2
0

þ 2D0

1� D2
0

� �2
X1 þ

1þ 3D2
0

1� D2
0

� �3
X2
1

¼ b0 þ b1X1 þ b2X
2
1 ;

ð28Þ
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H Xð Þ¼ X1þD0ð Þ

1� X1þD0ð Þ2
� �2

� D0

1�D2
0

� �2
þ 1þ3D2

0

1�D2
0

� �3
X1þ

6D0 1þD2
0

� �

1�D2
0

� �4
X2
1

¼c0þc1X1þc2X
2
1 ;

ð29Þ

where the coefficients are expressed by

b0 ¼
D2

0

1� D2
0

; b1 ¼
2D0

1� D2
0

� �2
; b2 ¼

1þ 3D2
0

1� D2
0

� �3
;

ð30Þ

c0 ¼
D0

1� D2
0

� �2
; c1 ¼

1þ 3D2
0

1� D2
0

� �3
; c2

¼
6D0 1þ D2

0

� �

1� D2
0

� �4
ð31Þ

depending on the original distanceD0 between the two

terminals of the nonlinear D-inerter.

The total dimensionless nonlinear force by the

nonlinear inerter is then approximated by

Fnl X1;X
0
1;X

00
1

� �

¼ k
X00
1 X1 þ D0ð Þ2

1� X1 þ D0ð Þ2
þ X

02
1 X1 þ D0ð Þ

1� X1 þ D0ð Þ2
� �2

0

B

@

1

C

A

� k X00
1 b0 þ b1X1 þ b2X

2
1

� �

þ X02
1 c0 þ c1X1 þ c2X

2
1

� �� �

:

ð32Þ

By inserting the approximate expression in Eq. (32)

into Eq. (23), we have

X00
1 þ 2f1X

0
1 þ X1

þ k X00
1 b0 þ b1X1 þ b2X

2
1

� �

þ X02
1 c0 þ c1X1 þ c2X

2
1

� �� �

¼ 0:

ð33Þ

From Eq. (33), the linearized natural frequency of

the system is

XnN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ kb0

s

: ð34Þ

This equation shows that the linearized natural

frequency of the system reduces with the increase of

the inertance-to-mass ratio k. Note that for the

corresponding linear inerter-based vibration isolator,

the natural frequency is expressed as

XnL ¼
ffiffiffiffiffiffiffiffiffiffiffi

1

1þ k

r

: ð35Þ

A comparison of Eqs. (34) and (35) shows that the

use of the nonlinear linkage mechanism can lead to a

lower linearized natural frequency of the isolator when

b0 [ 1. The requirement is equivalent to:

D0 [
ffiffiffi

2
p

2
; i:e:; h0 [

p
4
: ð36Þ

3.2.2 Analytical frequency response relationship

Here, the analytical results based on the first-order HB

method are given. The HB-AFT method and numer-

ical RK scheme can yield accurate results but with

relatively high computational cost. Compared with

these two methods, the analytical approximation can

provide steady-state solutions with relatively low cost.

In addition, the analytical solutions show better

insights into nonlinear dynamics and vibration trans-

mission mechanisms affected by system parameters.

For the SDOF oscillator with force excitation

(configuration C1), the steady-state response, the

displacement, velocity, and acceleration of the mass

can be approximated as

X1 ¼ R1 cos Xs� /ð Þ;
X0
1 ¼ �XR1 sin Xs� /ð Þ;

X00
1 ¼ �X2R1 cos Xs� /ð Þ;

ð37Þ

respectively. By inserting Eqs. (28), (29) and (37) into

Eq. (10) and retaining only the terms at the funda-

mental oscillation frequency X, we have

1� 1þ kb0 þ
1

4
kR2

1 3b2 � c1ð Þ
� 


X2

� �

R1 cos Xs� /ð Þ

� 2f1XR1 sin Xs� /ð Þ ¼ F0 cosXs:

ð38Þ

By balancing the coefficients of the harmonic terms

with cos Xs� /ð Þ and sin Xs� /ð Þ for Eq. (38), we

have

1� 1þ kb0 þ
1

4
kR2

1 3b2 � c1ð Þ
� 


X2

� �

R1

¼ F0 cos/; ð39Þ

2f1XR1 ¼ F0 sin/: ð40Þ
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By cancelling out the trigonometric terms in

Eqs. (39) and (40), it follows that

1� 1þ kb0 þ
1

4
kR2

1 3b2 � c1ð Þ
� 


X2

� 
2

R2
1

þ 4f21X
2R2

1

¼ F2
0 : ð41Þ

Equation (41) provides a nonlinear algebraic equa-

tion for the frequency–response relationship of the

mass. It can be solved by a bisection method to obtain

R1. Subsequently, the phase angle/ can be determined

allowing the steady-state response of the mass to be

obtained.

The backbone curves are widely used to charac-

terise the inherent dynamic properties of the nonlinear

systems [35]. It corresponds to the frequency–re-

sponse characteristic of unforced and undamped

system, i.e. when F0 ¼ f1 ¼ 0, Eq. (41) becomes

1� 1þ kb0 þ
1

4
kR2

1 3b2 � c1ð Þ
� 


X2 ¼ 0: ð42Þ

For the configuration C2, the analytical first-order

HB expressions of the steady-state relative displace-

ment, velocity, and acceleration are

Z2 � R2 cos Xs� hð Þ;
Z 0
2 � �XR2 sin Xs� hð Þ;

Z 00
2 � �X2R2 cos Xs� hð Þ;

ð43Þ

respectively, where Z2 ¼ X2 � Q0 cosXs is the rela-

tive displacement between the mass and the base

motion as defined in Eq. (14), R2 is the amplitude, and

h denotes the phase difference between the response

and the excitation. Note that the nonlinear force term

in Eq. (14) that arises from the nonlinear D-inerter can

be approximated by replacing X1 with Z2 in Eqs. (28)

and (29). Following the similar procedure as shown by

Eqs. (37)–(41), the frequency–response relations of

the system subjected to base-motion excitation can be

found. It is found that the resultant mathematical

expressions of the frequency response relations for the

force and base-motion excitation cases are similar. For

clarity, the detailed derivation process is provided in

the Appendix.

3.3 Performance indices

To assess the isolation performance of the proposed

D-inerter in SDOF and 2DOF systems, different

evaluation indices are used, including force transmis-

sibility, displacement transmissibility, time-averaged

power flow variables and kinetic energy of the mass.

3.3.1 Force transmissibility

The force transmissibility is widely used to evaluate

the performance of nonlinear vibration isolators.

Based on Eqs. (10) and (17), the nondimensional

transmitted force from the machine mass through the

nonlinear isolator to the ground (i.e. configuration C1)

or to the flexible base structure (i.e. configuration C3)

is expressed by

FT ¼ F0e
iXs � X0

i ; ð44Þ

where i ¼ 1 for system C1 and i ¼ 3 for system C3.

Therefore, the force transmissibility from the machine

to the base or the ground can be expressed as

TR ¼ FTj jmax

F0

ð45Þ

where FTj jmax is the maximum value of the transmitted

force in the steady state.

For the configuration C1, the analytical expressions

of the transmitted force and the force transmissibility

using the first-order approximations can be written as

FT � F0 cosXsþ X2R1 cos Xs� /ð Þ; ð46Þ

TR �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F0 þ X2R1 cos/
� �2þ X2R1 sin/

� �2
q

F0

; ð47Þ

where Eq. (37) is used for acceleration approximation.

Note that to achieve effective isolation of force

transmission, we need TR\1, i.e.

X4R2
1

þ 2X2R2
1 1� 1þ kb0 þ

1

4
kR2

1 3b2 � c1ð Þ
� 


X2

� �

\0;

ð48Þ
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where Eq. (39) is used for derivation. Therefore, the

effective isolation of force transmission requires

Xiso ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ 2k b0 þ 1
4
R2
1 3b2 � c1ð Þ

� �

s

\
ffiffiffi

2
p

: ð49Þ

It is noted that the expression

2k b0 þ 1
4
R2
1 3b2 � c1ð Þ

� �

is positive according to

Eqs. (30) and (31). For a conventional linear spring-

damper isolator, the isolation of force transmission is

only effective whenX is larger than
ffiffiffi

2
p

. Equation (49)

shows that the use of the D-inerter in the isolator can

successfully enlarge the frequency of effective isola-

tion. The response amplitude R1 in Eq. (49) takes the

critical value with the corresponding force transmis-

sibility TR of one.

Note that at high excitation frequencies, using

Eqs. (39), (41) and (47), we have

TR1 ¼ lim
X!1

TR ¼ kb0
1þ kb0

¼ 1
1=D2

0
�1

k þ 1
\1:

ð50Þ

Equation (50) shows that in the high-frequency

range, the force transmissibility TR has an asymptotic

value, i.e. kb0= 1þ kb0ð Þ. This asymptotic value is

smaller than one, indicating that the use of the

nonlinear isolator leads to a lower amplitude of the

transmitted force, compared to that of the external

excitation. It also shows that the asymptotic value in

the high-frequency range of the force transmissibility

is proportional to the initial distance D0 and the

inertance-to-mass ratio k.

3.3.2 Displacement transmissibility

The displacement transmissibility is used here to

evaluate the performance of the configuration C2. It is

defined as the ratio between the displacement ampli-

tude of the mass and that of the base:

TRd ¼
X2j j
Q0

� M2

Q0

; ð51Þ

where M2 is the response amplitude of the mass in C2

and the related expression is given by Eq. (69) in the

Appendix. For the effective isolation, we need

TRd\1, that is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 cos hþ Q0ð Þ2þR2
2 sin

2 h
q

\Q0; ð52Þ

where Eqs. (62) and (69) in the Appendix are used.

Therefore, the isolation of base motion is achieved

when the excitation frequency satisfies

Xiso ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ 2kb0 þ 1
2
kR2

2 3b2 � c1ð Þ

s

\
ffiffiffi

2
p

; ð53Þ

where Xiso is used to denote the lower limit of the

excitation frequency for effective isolation of base

motions. It shows that the use of the D-inerter in the

isolator can lead to a wider effective isolation

frequency band compared to the conventional linear

spring-damper isolator.

It is shown that the relative displacement amplitude

has a limiting value R2;1 at high frequencies, shown in

the Appendix by Eq. (67). Therefore, there exists an

asymptotic value of the displacement transmissibility

as X tends to infinity

TRd;1 ¼ lim
X!1

M2

Q0

� 


¼ lim
X!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2

Q2
0

þ 1þ 2R2
2

Q2
0X

2
1� 1þ kb0 þ

1

4
kR2

2 3b2 � c1ð Þ
� 


X2

� �

s

¼
Q0 � R2;1
�

�

�

�

Q0

:

ð54Þ

3.3.3 Vibration power flow and energy

Vibration power flow and energy transmission vari-

ables are important performance indices to assess the

isolation performance. According to the universal law

of energy conservation, over one cycle of a periodic

response in the steady state, the mechanical energy of

the system remains unchanged and all the input energy

by the excitation must be dissipated by the viscous

damping within the system. Thus, the time-averaged

input power Pin from the excitation equals the time-

averaged dissipated power Pd by the viscous damper:

Pin ¼ Pd ¼
1

ss

Z s0þss

s0

ðPd1 þ Pd2Þds; ð55Þ

where s0 is the starting time for averaging and ss is
averaging time span, which is set as one excitation

cycle, i.e. ss ¼ 2p=X; Pd1 and Pd2 are the instanta-

neous dissipated power by the viscous damper c1 and
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c2, respectively. It is noted that for system C1, Pd1 ¼
2f1X

02
1 and Pd2 ¼ 0. For system C2, we have Pd1 ¼

2f1 X0
2 � Q0� �2

and Pd2 ¼ 0. For system C3, Pd1 ¼
2f1 X0

3 � X0
4

� �2
and Pd2 ¼ 2lcf2X02

4 .

The analytical expression of the time-averaged

input power for configuration C1 is

Pin � f1X
2R2

1; ð56Þ

where Eq. (37) is used for the approximation. As for

the configuration C2, based on Eq. (55), the analytical

results of Pin can be easily obtained by replacing R1

with R2 in Eq. (56), and the value of R2 is calculated

by Eq. (64) in Appendix.

The nondimensional maximum kinetic energy of

the mass excited at a specific excitation frequency is

expressed by

Kmax ¼
1

2
X0
i

�

�

�

�

max

� �2

; ð57Þ

where X0
i

�

�

�

�

max
is the maximum magnitude of the

velocity of the massm1 in the steady state, i = 1, 2 or 3

for each configuration. The analytical expressions of

the maximum kinetic energy of configurations C1 and

C2 are

Kmax;c1 �
1

2
X2R2

1; Kmax;c2 �
1

2
X2M2

2 ; ð58Þ

respectively, the first-order approximation of the

velocity shown by Eq. (37) is used. Equations (56)

and (58) show that at a fixed value of the damping ratio

f1, the time-averaged input power is proportional to

the maximum kinetic energy of the mass for config-

uration C1.

For configuration C3, the power transmitted from

mass m1 to the flexible base is also an important index

to evaluate the vibration transmission behaviour.

According to the law of energy conservation, the

time-averaged transmitted power to the base is entirely

dissipated by the viscous damping c2 at the bottom.

Therefore, we have

Pt ¼ Pd2 ¼
1

ss

Z s0þss

s0

2lcf2X
02
4 ds: ð59Þ

In addition, the power transmission ratio RT is

defined as the ratio between the time-averaged trans-

mitted power Pt and the time-averaged input power

Pin:

RT ¼ Pt

Pin

: ð60Þ

A smaller value of RT is beneficial to achieve

effective vibration isolation.

4 Results and Discussion

4.1 Free vibration and result validations

Validations of results obtained by the HB-AFT

method, the analytical HB and numerical RK method

are firstly considered and presented herein. Figure 4

shows the influence of the inertance-to-mass ratio k
and the initial orientation of the bar h0 on the

linearized natural frequency XnN of the nonlinear

vibration isolator. The lines represent the analytical

linearized natural frequency obtained by Eq. (34). The

symbols are numerical results of Eq. (23) using RK

method for free vibration, where the initial displace-

ment is set as 0.001 and the initial velocity is zero. In

Fig. 4a, when h0 ¼ 45�, we have b0 ¼ 1 and

XnN ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi

1þ k
p

¼ XnL, i.e. the corresponding curve

of the linearized natural frequency will coincide with

the curve for a linear inerter-based vibration isolator.

The figure shows that for a given value of h0, the
increase in the inertance of D-inerter isolator leads to

reductions in the linearized natural frequency, which

can assist vibration isolation. Figure 4b shows that at a

given value of k, a larger value of the initial angle h0
can yield a smaller value of XnL, which can also

benefit vibration isolation.

Figure 5 shows the steady-state response amplitude

of the SDOF isolators using the different methods. The

solid lines represent the fifth-order HB-AFT results,

and dashed lines are the first-order HB approxima-

tions. The symbols are the numerical integration

results using the time marching method. It is found

that the results obtained by each method are almost the

same. The resonant peak is slightly bent to the low-

frequency range due to the geometric nonlinearity in

the D-inerter isolator. It illustrates that for both force

excitation and base-motion excitation, the first-order

analytical HB approximations can predict the dynamic

responses well. To have a balance between the

computational efficiency and accuracy, the first-order

HB approximations are used for the SDOF nonlinear

isolators (i.e. configuration C1 and C2). However, due
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to the complexity of analytical derivation, the fifth-

order HB-AFT scheme is applied to obtain the

dynamic response of the 2-DOF isolator system (i.e.

configuration C3).

4.2 Performance evaluations of the isolator

in force-excited SDOF system

In Figs. 6, 7 and 8, the effects of design parameters of

the nonlinear D-inerter isolator on the dynamic

response of the mass, the force transmissibility and

the kinetic energy of the mass are investigated,

respectively. Figures 6a, 7a and 8a show the influence

of the inertance-to-mass ratio k by setting four

possible values of 0, 5, 10 and 20, while the initial

distance of terminals D0 is fixed as D0 ¼ 0:5. The

dashed, dotted and dash-dotted lines represent the case

of k ¼ 5, 10 and 20, respectively, and the linear case

k ¼ 0 corresponding to the system without the D-

inerter is denoted by the solid line. Note that a larger

value of inertance can also be set to provide better

vibration isolation performance in certain frequency

ranges. The currently used values of inertance in the

case study are selected to avoid the large displacement

Fig. 4 Linearized natural frequency of the D-inerter isolator

with different a initial orientation and b inertance-to-mass

ratios. In a, the dotted, dashed and dash-dotted lines denote

analytical linearized natural frequency for

h0 ¼ 30�; 45� and 60�, respectively. In b, the dashed, dotted

and dash-dotted lines are analytical results for k ¼ 5; 10 and 15,
respectively. The symbols represent the corresponding numer-

ical results

Fig. 5 Validation and comparison of the response amplitude of

the SDOF system with a force excitation (configuration C1) and
b base-motion excitation (configuration C2) using different

methods. Solid lines: HB-AFT 5-th-order approximation;

Dashed lines: first-order HB analytical method; symbols:

numerical Runge–Kutta method. Parameter values:

f1 ¼ 0:01; k ¼ 10;D0 ¼ 0:5;F0 ¼ 0:002;Q0 ¼ 0:01
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exceeding the limit for the linkage mechanism. Based

on this point, the inertance-to-mass ratio is set to

ensure its functionality in a wide frequency range.

Figures 6b, 7b and 8b present the effects of the initial

distance D0 between the terminals of the D-inerter by

changing its value from 0.4, to 0.5 and then 0.6,

Fig. 6 Effects of a the

inertance-to-mass ratio k
(with D0 ¼ 0:5) and b the

initial distance D0 between

the terminals of the D-

inerter (with k ¼ 10) on the

response amplitude R1 of the

mass

Fig. 7 Effects of a the

inertance-to-mass ratio k
(with D0 ¼ 0:5) and b the

initial distance D0 between

the terminals of the D-

inerter (with k ¼ 10) on the

force transmissibility TR

Fig. 8 Effects of a the

inertance-to-mass ratio k
(with D0 ¼ 0:5) and b the

initial distance D0 between

the terminals of the D-

inerter (with k ¼ 10) on the

maximum kinetic energy

Kmax of the mass
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denoted by the dashed, dotted and dash-dotted lines,

respectively, while fixing k at 10. The other param-

eters are set as F0 ¼ 0:002 and f1 ¼ 0:01. The analyt-

ical approximation results obtained by the solutions of

Eq. (41) are denoted by different types of lines. For

cross-verification and comparison, numerical results

are also obtained from the fourth-order Runge–Kutta

method and are represented by different types of

symbols.

Figure 6a shows that as the inertance-to-mass ratio

k increases from 0 to 5, to 10, and to 20, the resonant

peak of the response curve R1 shifts to lower

frequencies, in accordance with the results shown

previously on the linearized natural frequencies. The

backbone curves are obtained using Eq. (42) and are

denoted using dash-dot-dot lines. At a prescribed

value of X in the high-frequency range, the dynamic

response level decreases as the k increases. Compared

with the corresponding linear isolator case (i.e. k ¼ 0),

a larger value of k for the nonlinear D-inerter isolator

can broaden the bandwidth of the isolation range and is

beneficial for vibration suppression. Figure 6a also

shows that the peak in each response curve of the D-

inerter isolator case bends to the low-frequency range,

similar to that of the softening stiffness Duffing

oscillator. The reason for the bending is that the mass

is having a relatively large displacement near reso-

nance such that the D-inerter can generate a large

inertial force. The effects of having the inertial force to

increase with the displacement are similar to those of

having the stiffness to reduce with the displacement,

leading to a left-bending response curve. It is also

noted that the resonant peak value increases with the

inertance-to-mass ratio. By combining Eqs. (41) and

(42), the peak value can be determined analytically as

R1P ¼ F0= 2f1Xrð Þ, where Xr is the corresponding

frequency. Therefore, as the inertance-to-mass ratio

increases, the resonant frequency Xr decreases, result-

ing a larger value of the resonant peak. Figure 6b

shows that as the initial distance D0 of the D-inerter

increases from 0.4 to 0.5 and then to 0.6, the resonant

peak of R1 shifts to the low-frequency range with

larger peak values. This behaviour is associated with

the fact that the linearized natural frequency decreases

when D0 increases. Figure 6b shows when the exci-

tation frequency is large, the response amplitude R1

can be reduced by having a larger value of D0. In

contrast, Fig. 6 shows that the influence of the

inertance-to-mass ratio k and initial distance D0 on

the response amplitude becomes small when the

excitation frequency tends to zero.

In Fig. 7, the effects of the design parameters of the

D-inerter on the force transmissibility TR of the

nonlinear isolator are investigated. It shows that

compared with the conventional linear spring-damper

isolator (i.e. k ¼ 0), the use of the D-inerter introduces

an anti-peak in the curve of TR. As the value of k
increases, the inertial force due to the D-inerter also

increases, leading to the shift of both the peak and the

anti-peak in each curve of TR to the low-frequency

range. This is due to the stronger inertial force by the

D-inerter with the increasing k. Figure 7b shows the

influence of the initial distance D0 between the

terminals of the D-inerter on the force transmission

behaviour. As the value ofD0 increases from 0.4 to 0.5

and then to 0.6, both the resonant and anti-resonant

peaks move to lower frequencies when D0 increases.

When the excitation frequency is greater than Xiso, the

force transmissibility first decreases to the local

minimum and then increases with the excitation

frequency approaching an asymptotic value in the

high-frequency range. In Fig. 7a, when k is 5, 10 and

20, the left bound of the effective isolation frequency

ranges starts from nearly 0.37, 0.51 and 0.68 using

Eq. (49) and the asymptotic values are approximately

0.63, 0.77 and 0.87 (obtained by TR1 in Eq. 50),

respectively. In Fig. 7b, the starting frequency Xiso of

effective isolation is about 0.40, 0.51 and 0.64 and the

asymptotic values of TR are approximately 0.66, 0.77

and 0.85 corresponding to an initial distanceD0 of 0.4,

0.5 and 0.6, respectively. The figure confirms that the

asymptotic value of TR increases with k andD0 values

but less than 1. Figure 7 shows that with larger values

of inertance k or the initial distance D0 between the

terminals of the D-inerter, the resonant peak of TR

twists further to the left due to a larger induced

nonlinear inertial force. Figure 7 demonstrates that the

inclusion of the nonlinear D-inerter to the isolator can

improve the isolation performance by creating a wider

frequency band where force transmissibility is less

than 1 at high frequencies.

Figure 8a and b shows the effects of the inertance-

to-mass ratio k and the initial distance D0 between the

terminals of the D-inerter on the maximum kinetic

energy Kmax, respectively. As shown in Eqs. (56) and

(58), at a prescribed damping coefficient, the time-

averaged input power Pin has a linear relationship with
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the maximum kinetic energy Kmax. Therefore, the

curves of Pin would have the same patterns as those of

Kmax. Compared with the curves of TR, Fig. 8 shows

that only one peak can be found in each curve of Kmax.

As the value of k increases from 0 to 20 or the value of

D0 increases from 0.4 to 0.6, the peak shifts to the left

and bends further to lower frequencies, but the peak

value changes little. As the excitation frequency X
reduces in the low-frequency range, the curves tend to

merge and the variations in the values of k and D0 can

only result in small changes in the curves of Kmax. At a

prescribed frequency in the high-frequency range,

larger values of k orD0 will lead to a lower level of the

maximum kinetic energy of the primary mass. Fig-

ure 8 shows that compared with the linear spring-

damper isolator (i.e. k ¼ 0), the use of D-inerter can

benefit vibration suppression by resulting in a lower

level of the power input as well as the maximum

kinetic energy of the mass in a wide frequency band.

4.3 Performance evaluations of the isolator

in motion-excited SDOF system

In Figs. 9, 10 and 11, the effects of design parameters

of the D-inerter isolator on the displacement trans-

missibility TRd, the time-averaged input power Pin and

the maximum kinetic energy Kmax of the mass for the

system subjected to base-motion excitation are inves-

tigated, respectively. Figures 9a, 10a and 11a present

the influence of the inertance-to-mass ratio k by

changing its value from 0, to 5, 10 and finally to 20,

while fixing D0 at 0.5. Figures 9b, 10b and 11b show

the effects of the initial distance D0 between the

terminals of the D-inerter by selecting three possible

values of 0.5, 0.6 and 0.7 while setting the inertance-

to-mass ratio k ¼ 10. The other parameters are set as

Q0 ¼ 0:01 and f1 ¼ 0:01. These different lines are

obtained by the first-order analytical HB approxima-

tion, as shown in the Appendix. Numerical results

based on the use of the Runge–Kutta method are also

presented by different types of symbols.

Figure 9a and b shows the influence of the

inertance-to-mass ratio k and the initial distance D0

on the displacement transmissibility TRd, respectively.

The solid line represents the linear conventional

isolator case with k ¼ 0. It shows that with the use

of the D-inerter, the peak of each curve of TRd bends

towards to low frequencies. There is also an anti-

resonant peak in each curve of TRd for the nonlinear

isolator cases. As the value of D0 or k increases, both

the peak and the anti-peak of TRd curve move further

to the low-frequency range. Figure 9a shows that

nonlinear isolators with D-inerter have lower peak

frequencies of TRd, compared with that of the linear

case. As the inertance-to-mass ratio k increases from 5

to 10 and then to 20, the starting frequency of the

effective isolation frequency band reduces from

approximately 0.68 to 0.51 and then to 0.37, in

accordance with Eq. (53). The corresponding asymp-

totic values TRd;1 based on Eq. (54) are approxi-

mately 6:3� 10�3, 7:7� 10�3 and 8:7� 10�3,

respectively. At high excitation frequencies, a larger

Fig. 9 Effects of the a inertance-to-mass ratio k (with D0 ¼ 0:5) and b initial distance D0 between the terminals of the D-inerter (with

k ¼ 10) on the displacement transmissibility TRd
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value of k of the D-inerter leads to a higher level of

displacement transmissibility. In the effective isola-

tion frequency band where TRd\1, the displacement

transmissibility firstly decreases to a local minimum at

the anti-peak frequency and then increases to approach

the asymptotic value in the high-frequency range. In

the low-frequency range, each curve of TRd tends to

merge. Figure 9b shows that when the initial distance

D0 increases from 0.5 to 0.6 and then to 0.7, the

starting frequency Xiso of the effective isolation

frequency band decreases from approximately 0.51

to 0.40 and then to 0.31. Figure 9b also shows that

when the excitation frequency X increases, there exist

asymptotic values of TRd being approximately

7:7� 10�3, 8:5� 10�3, and 9:1� 10�3 when

D0 = 0.5, 0.6, and 0.7, respectively. It shows that the

asymptotic value of TRd increases with the initial

distance D0. At a prescribed frequency in the high-

frequency range, a smaller value of D0 results in a

lower value of the displacement transmissibility.

Figure 9 shows that larger values of D0 or k of the

D-inerter in the nonlinear isolator can benefit the

vibration isolation performance by creating a wider

frequency band of effective isolation.

Figure 10a and b shows the influence of the

inertance-to-mass ratio k and the initial distance D0

on the time-averaged input power Pin, respectively.

The figure shows that there is only one left-bending

Fig. 10 Effects of the a inertance-to-mass ratio k (withD0 ¼ 0:5) and b initial distanceD0 between the terminals of the D-inerter (with

k ¼ 10) on the time-averaged input power Pin

Fig. 11 Effects of the a inertance-to-mass ratio k (withD0 ¼ 0:5) and b initial distanceD0 between the terminals of the D-inerter (with

k ¼ 10) on the maximum kinetic energy Kmax of the mass
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resonant peak in each curve of Pin. As the initial

distance D0 between the terminals or inertance of the

nonlinear isolator k increases, the resonant peak of Pin

shifts to the low-frequency range and the peak value

decreases. At a prescribed excitation frequency in the

high-frequency range, the time-averaged input power

decreases as D0 or k increases. In contrast, the values

of displacement amplitude and displacement trans-

missibility TRd increase with parameters D0 and k
when X is high, as shown in Fig. 9. The figure demon-

strates that the design parameters affect TRd and Pin

differently. Compared to the variations of TRd with

respect to the excitation frequency, there is no

asymptotic line or anti-peak found in each power flow

curve. In the high-frequency range, the time-averaged

input power Pin increases with the excitation fre-

quency. In comparison, for the force excitation case

shown in Fig. 8, Pin decreases with the increase ofX at

high frequencies. It shows that force excitation and

base-motion excitation affect the time-averaged input

power in different ways. In the low-frequency range,

the time-averaged input power increases with the

excitation frequency. As X approaches low frequen-

cies towards 0.1, the curves for different cases tend to

merge and the effects of the changes inD0 and k on Pin

become insignificant. Larger values of D0 and k can

enhance vibration isolation by resulting in a smaller

amount of input power at high excitation frequencies.

Figure 11a and b examines the influence of the

inertance-to-mass ratio k and the initial distance D0

between the D-inerter terminals on the maximum

kinetic energy Kmax of the mass, respectively. One

left-bending peak and one anti-resonant peak are

presented in each curve of Kmax for the nonlinear

isolator with the D-inerter. When the inertance-to-

mass ratio k or the initial distance D0 increases, both

the peak and the anti-resonant peak move to lower

frequencies. When the excitation frequency is in the

high- or low-frequency ranges away from the reso-

nances, the value of Kmax increases with the excitation

frequency following approximately straight lines. As

the excitation frequency X reduces in the low-

frequency range, the design parameters D0 and k of

the D-inerter have little effect onKmax as the curves for

different cases tend to merge. At a prescribed excita-

tion frequency in the high-frequency range, smaller

values ofD0 or k can lead to a lower level of the kinetic
energy. This behaviour is of direct contrast to the

effect of D0 or k on Pin. Figures 10 and 11 show that

for the nonlinear isolator subjected to base-motion

excitation, the parameters D0 and k of the embedded

D-inerter affect the time-averaged power flow and

kinetic energy in a different way.

4.4 Performance evaluations of the isolator

in 2DOF system with a flexible base

Here the response amplitude, force transmissibility,

power flow and energy transmission characteristics of

the 2DOF system with a flexible base are investigated

to assess the performance of the isolator. The fifth-

order HB-AFT and numerical Runge–Kutta methods

are used to obtain the dynamic response. System

parameters are set as

F0 ¼ 0:005; c ¼ g ¼ l ¼ 1; f1 ¼ f2 ¼ 0:01.

Figure 12a and b shows the effects of the inertance-

to-mass ratio k and the initial distance D0 between the

terminals of the D-inerter on the maximum displace-

ment X3j j of the machine mass m1. The solid line in

Fig. 12a represents the case of a conventional linear

isolator without the D-inerter. In this curve of linear

isolator case, there are two resonant peaks and one

anti-resonant peak. With the addition of the D-inerter,

the first peak of X3j j twists to the low-frequency range.
In contrast, the second resonant peak remains nearly

unbent. As the inertance-to-mass ratio k increases, the
peaks and also the anti-resonant shift to lower

frequencies. It is also noted that a larger value of the

inertance-to-mass ratio (e.g. k ¼ 20) can bend the

frequency–response curve further to the low-fre-

quency range, and a super-harmonic resonant peak is

found at X � 0:38. The reason is that a large inertance

value of the D-inerter will generate large nonlinear

force, resulting in stronger nonlinearity. Figure 12b

shows that as the initial distance D0 increases, the

values of X3j j at the first peak and at the anti-resonant

peak decrease. However, the second resonant peak

increases with D0 and k. In the high-frequency range,

the curves of different cases almost coincide, and it

demonstrates that the values of D0 and k only have

weak influence on the response amplitude at high

excitation frequencies. It is also noted that comparing

with a linear conventional isolator case with k ¼ 0, the

use of a nonlinear isolator incorporating the D-inerter

can lead to a smaller peak response amplitude of the

mass, suggesting the suppression effect of the
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nonlinear isolator on the response. As the excitation

frequency reduces in the low-frequency range, the

curves tend to merge and the initial distance D0 and

inertance k have weaker effect on the displacement

amplitude of mass m1.

In Fig. 13, the performance of the nonlinear isolator

is examined in terms of the force transmissibility TR.

Figure 13 shows that there are two peaks and two anti-

peaks in each curve of force transmissibility TR. The

first resonant peak twists to the left because the

nonlinear inertial force by the D-inerter increases with

the response amplitude, leading to a stronger trans-

mitted force to the base. As the inertance k increases

from 5 to 20 or the initial distance D0 increases from

0.4 to 0.6, the two peaks and the first anti-peak move to

lower frequencies. This behaviour is beneficial for

vibration isolation. The figure shows that regardless of

the variations of D0 and k, the frequency correspond-

ing to the second anti-peak remains to be approxi-

mately one. When the excitation frequency is larger

than one, the force transmissibility associated with

each D-inerter isolator case increases with the exci-

tation frequency X and approaches an asymptotic

value in the high-frequency range. This asymptotic

value increases with the initial distance D0 and the

inertance-to-mass k, but remains smaller than 1. Based

on Eq. (44), the value of F0e
iXs � X00

3

�

�

�

� is close to a

constant when the excitation frequency tends to

infinity. Similar phenomenon is also observed in

Fig. 7 for the SDOF system, for which the value of TR

is predicted analytically by Eq. (50). In the low-

frequency range, curves for different cases merge.

Compared with the conventional linear isolator case

(i.e. k ¼ 0), the nonlinear isolator has an extra anti-

Fig. 12 Effects of the a
inertance-to-mass ratio k
(with D0 ¼ 0:5) and b initial

distance D0 (with k ¼ 8) in

the 2-DOF isolation system

on the response amplitude

Fig. 13 Effects of the a inertance-to-mass ratio k (with D0 ¼ 0:5) and b initial distance D0 (with k ¼ 8) in the 2DOF isolation system

on the force transmissibility TR
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peak between the two resonant peaks and can lead to a

lower level of force transmissibility in the regions. It

can also provide a large frequency band in which the

force transmissibility is smaller than unity, which is

desirable for vibration isolation.

Figure 14 shows the effects of the inertance-to-

mass ratio k and the initial distance D0 on the time-

averaged input power Pin and the maximum kinetic

energy Kmax of mass m1. Figure 14a and b shows two

peaks exist in each curve of Pin, but no anti-peak is

observed. The first resonant peak of Pin curve bends to

lower frequencies due to the nonlinear effect intro-

duced by the nonlinear D-inerter in the vibration

isolator. It also shows that as the inertance-to-mass

ratio k or initial distance D0 increases, the two peaks

move to lower frequencies. When the excitation

frequency is in the low- or high-frequency ranges,

the influence of the changes in D0 and k on the power

input becomes negligible since different curves almost

coincide. As the excitation frequency increases, the

time-averaged input power Pin increases at low

frequencies and decreases at high frequencies. Com-

pared with the linear isolator case with k ¼ 0, the use

of the nonlinear isolator can yield a significant

reduction of the total input power into the system at

a prescribed frequency in the high-frequency range,

which benefits vibration isolation. Figure 14c and d

shows that one anti-peak appears between the two

peaks in each curve of Kmax. The peaks and the anti-

peak move to lower frequencies as the inertance-to-

mass ratio k or the initial distance D0 increases. It

shows that the inertance-to-mass ratio k and initial

distance D0 have large effects on the dynamic

performance and power transmission where the exci-

tation frequency locates between the two peak

frequencies. Figure 14c shows that at a prescribed

Fig. 14 Effects of the inertance-to-mass ratio k (with D0 ¼ 0:5) and the initial distance D0 (with k ¼ 8) in the 2-DOF isolation system

on the time-averaged input power Pin in a and b; and the maximum kinetic energy Kmax of mass m1 in c and d
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excitation frequency in the high-frequency range, the

values of Kmax of the D-inerter isolator cases are much

smaller than that of the linear isolator case. This

behaviour demonstrates the benefits of introducing the

D-inerter in vibration isolation. Figure 14 demon-

strates that with an appropriate design of the param-

eters of the D-inerter in the nonlinear isolator, a

tailored isolation performance can be achieved with

low energy input or low level of kinetic energy of the

mass.

The effects of the inertance-to-mass ratio k and the

initial distance D0 on the time-averaged transmitted

power Pt are investigated and shown in Fig. 15a and b,

respectively. Figure 15a shows that with the addition

of the D-inerter, one anti-peak can be created in the

curve of the time-averaged transmitted power, leading

to significantly reduction in vibration energy trans-

mission to the base structure. At a prescribed fre-

quency in the high-frequency range, compared with

that of the linear isolator case, the use of the D-inerter

isolator can lead to larger amount of energy transmis-

sion to the base structure. As the inertance-to-mass

ratio k increases from 5 to 10 and then to 20, two peaks

and the anti-peak in each curve of Pt shift to lower

frequencies. Figure 15b shows that as the initial

distance D0 increases from 0.4 to 0.5 and then to 0.6,

the frequencies associated with the peaks and the anti-

peak reduce. In the high-frequency range, a smaller

value of the initial distance D0 causes a lower level of

the transmitted power to the base structure. When the

excitation frequency locates in the low-frequency

range, the curves for different cases tend to merge and

the initial distance D0 and the inertance-to-mass ratio

k have negligible influence on the time-averaged

transmitted power Pt.

Figure 16a and b shows the effects of the inertance-

to-mass ratio k and the initial distanceD0 on the power

transmission ratio RT, respectively. The power trans-

mission ratio RT is the ratio between the time-averaged

transmitted power and the time-averaged input power,

representing the proportion of total energy transferred

to the base structure through the D-inerter. Therefore,

it provides a relative measure of vibration transmis-

sion. The solid line in Fig. 16a is associated with the

linear isolator case with k ¼ 0; it has the maximum RT

value at approximately X ¼ 1 and has nearly zero

values in the high-frequency range. With the inclusion

of the D-inerter, the power transmission ratio RT is

reduced in the low-frequency range, and its value

decreases as the increase of k or D0. Figure 16 also

presents the super-harmonic behaviour with the

frequency component Xr ¼ 2X due to the use of the

nonlinear inerter. As the inertance-to-mass ratio k
increases from 5 to 10 and then to 20, the correspond-

ing super-harmonics are found at excitation frequen-

cies equal to 0.44, 0.39 and 0.38, respectively. When

the initial distanceD0 changes from 0.4 to 0.5 and then

to 0.6, the super-harmonic responses appear at

approximately 0.45, 0.40 and 0.38, respectively. The

super-harmonic resonant peak becomes higher when

there is a stronger nonlinearity, and correspondingly

large power transmission is found. This is one

potential shortcomings of the system, apart from the

aforementioned constraint on the displacement

response. There is also an anti-resonance in each

curve of RT, where the transmitted power from mass

one through the nonlinear D-inerter is almost equal to

Fig. 15 Effects of the a
inertance-to-mass ratio k
(with D0 ¼ 0:5) and the

initial distance D0 (with

k ¼ 8) on the time-averaged

transmitted power Pt
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zero compared with the total input power. The power

transmission ratio curves merge at the unity excitation

frequency with peak value of one. When the excitation

frequency is larger than 1, the power transmission ratio

decreases with the increase of the excitation fre-

quency. At a prescribed value of X in the high-

frequency range, the increase in the value of k or D0

leads to larger values of the power transmission ratio

RT. At a particular excitation frequency, the value of

RT becomes approximately zero, indicating that only a

negligible proportion of the input energy is transmitted

to the base. This characteristic is desirable in terms of

vibration isolation. As the value of k or D0 increases,

this frequency associated with quasi-zero value of RT

reduces.

5 Conclusions

This study proposed nonlinear vibration isolators with

a nonlinear inerter created by embedding a linear

inerter in a diamond-shaped linkage. The performance

of the proposed isolators in an SDOF system subjected

to force and base-motion excitations and in a two-DOF

system with a flexible foundation was considered. The

analytical HB approximation and high-order HB-AFT

as well as the numerical RK method are used to obtain

the steady-state response. Force and displacement

transmissibility as well as time-averaged power flow

variables were used as performance indices. It was

shown that both the single-DOF and 2-DOF isolators

with the D-inerter have a wider range of effective

isolation frequency compared with the linear

conventional isolators and therefore are beneficial

for the attenuation of force and power transmission.

For the SDOF nonlinear inerter-based vibration

isolator under force excitation or base-motion excita-

tion, the benefits of using the D-inerter in the vibration

isolator are demonstrated by (1) bending of the

response curve to the low frequencies and significant

reduction in the response over a wide frequency range

alone with the introduced anti-resonance; (2) a larger

band of effective isolation as the transmissibility peak

shifts to lower frequencies; (3) much reduced amount

of time-averaged input power and lower kinetic

energy of the mass in a large frequency band.

For the D-inerter isolator mounted on a flexible

base, the results obtained in this investigation indicate

that (1) by adding the nonlinear inerter, one anti-

resonant peak may appear between the two peaks,

leading to a significantly lower level of the dynamic

response, force transmissibility or power transmission;

(2) the D-inerter will cause near-zero power transmis-

sion ratio at a particular excitation to the base

structure, demonstrating superior vibration isolation

performance using the proposed isolator design.
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Appendix

Using Eqs. (28), (29) and (43), governing Eq. (14) of

the single-DOF oscillator with base-motion excitation

(C2 configuration) becomes

1� 1þ kb0 þ
1

4
kR2

2 3b2 � c1ð Þ
� 


X2

� �

R2 cos Xs� hð Þ

�2f1XR2 sin Xs� hð Þ ¼ Q0X
2 cosXs:

ð61Þ

The coefficients of the corresponding harmonic

terms in Eq. (61) can be balanced, leading to

1� 1þ kb0 þ
1

4
kR2

2 3b2 � c1ð Þ
� 


X2

� �

R2

¼ Q0X
2 cos h; ð62Þ

�2f1XR2 ¼ �Q0X
2 sin h: ð63Þ

By using the identity of cos2 /þ sin2 / ¼ 1,

Eqs. (62) and (63) can be transformed into

1� 1þ kb0 þ
1

4
kR2

2 3b2 � c1ð Þ
� 


X2

� �2

R2
2

þ 2f1XR2ð Þ2

¼ Q2
0X

4; ð64Þ

R2

Q0

¼ X2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1þ kb0 þ 1
4
kR2

2 3b2 � c1ð Þ
� �

X2
� 	2þ 2f1Xð Þ2

q :

ð65Þ

Note that Eq. (65) is obtained by rewriting

Eq. (64), which can be solved by using a bisection

method to obtain the amplitude R2 of the relative

displacement. The phase angle h can then be deter-

mined by using Eqs. (62) and (63). When the excita-

tion frequency X approaching infinity, Eq. (65)

becomes

lim
X!1

R2

Q0

� 


¼ 1

1þ kb0 þ 1
4
kR2

2 3b2 � c1ð Þ
; ð66Þ

in which, by denoting the corresponding value of R2 as

R2;1, we have

1þ kb0 þ
1

4
kR2

2;1 3b2 � c1ð Þ
� 


R2;1 ¼ Q0; ð67Þ

which is a nonlinear algebraic equation which can be

solved by a standard bisection method. It shows that

the relative displacement amplitude R2;1 is only

related to the design parameters of k;D0 and Q0 of the

isolator.

It is noted that the nondimensional displacement

response X2 sð Þ of the mass in C2 is expressed by

X2 sð Þ ¼ Z2 sð Þ þ Q0 cosXs
� R2 cos Xs� hð Þ þ Q0 cosXs: ð68Þ

Therefore, the displacement amplitude M2 of the

mass in C2 can be obtained as

M2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 cos hþ Q0ð Þ2þR2
2 sin

2 h
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 þ Q2

0 þ 2R2
2

1

X2
� 1þ kb0 þ

1

4
kR2

2 3b2 � c1ð Þ
� 
� �

s

;

ð69Þ

where Eq. (62) is used for the simplification.
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