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Abstract To describe the particular mechanical

behaviors of beams with both uniform and non-

uniform cross sections, such as the bidirectional

bending, torsion-bending coupling, the torsion-related

warping, the cross-sectional stretch, and Wagner

effects, a series of efficient higher-order beam ele-

ments (HOBEs) is proposed in the frame of the

absolute nodal coordinate formulation (ANCF). In the

proposed HOBEs, a new mixed kinematic description

of beam elements is introduced via the warping

functions and slope vectors. Compared with the

existing HOBEs using Lagrange polynomials, the

additional degrees of freedom per element proposed to

accurately describe the warping deformation are

dramatically reduced. Moreover, the tremendous

Von-Mises stress on the cross sections in the existing

HOBEs does not occur in the proposed new HOBEs.

Compared with the classical nonlinear finite elements

formulations, the complete 3D strain state with the

higher-order terms allows the cross-sectional stretch

and avoids the expensive calculations of the extra

warping and Wagner strain measures and their

derivatives. Moreover, the transverse integration

allows an arbitrary section shape to vary along the

beam axial direction. Thus, these new HOBEs benefit

from the efficient warping description in the classical

FE and inherit the advantages of 3D-continuum theory

in the ANCF. In addition, the shear locking is

alleviated due to the ability to capture the non-uniform

distribution of shear stress, and the Poisson locking is

addressed via the enhanced continuum mechanics

approach. Finally, the proposed HOBEs are validated

and compared using statics and dynamics undergoing

complex significant deformations on various bench-

marks, FEs, commercial codes, and experimental data.

Keywords Beam element � Warping � Absolute
nodal coordinate formulation � Flexible multibody

system � Order reduction

1 Introduction

The thin-walled beams, non-uniform beams, small

slenderness ratio beams, and pre-twisted beams have

been extensively used in engineering. Under the

assumption that the cross section of a beam keeps
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planar, the classic Euler–Bernoulli beam model and

the Timoshenko beam model fail to capture specific

deformation patterns [1–30] of the overhead beams,

such as the bidirectional bending [28], torsion-related

warping [8–19, 26, 27], bending-related warping [19],

cross-sectional stretch [13, 14, 25] (the so-called

transverse extension in [13] and cross section con-

traction in [14]), and Wagner effects [10–18] in

particular. Wagner effects [4] include Wagner

moment and Wagner strains (the quadratic torsion

curvature), which play an important role in analyzing

large nonlinear torsion consisting of warping and

torsional resistance phenomenon that occurs with twist

rotation. Under the small strain assumption, most

existing commercial codes of finite element (FE)

formulations do not account for Wagner effects [9].

Thus, they cannot predict a beam’s structural behavior

correctly under significant torsional actions [9, 25].

Besides, in some FE formulations implemented codes,

the cross-sectional stretch cannot be captured because

the transverse strains are identically equal to zeros

[25].

Many methods have been proposed to remove the

above limitations of classical beam theories [30]. The

shear correction factors [1–3] are introduced to

measure the effective transverse shear strains, straight-

forwardly accounting for the shear stress of non-

uniform distributed along the cross section. Although

the shear correction factors can improve the global

response of a lower-order (or planar) beam model,

such as bidirectional bending [31–34], they cannot

capture the out-of-plane warping. There is a vast of

works about improving the description of the cross-

sectional deformation via the warping function [8–19]

and the higher-order beam element (HOBE) theory

[22–29]. In the geometrically exact beam formulation

(GEBF) proposed by Simo [5] and Simo and Vu-Quoc

[6], early work in [8] suggested introducing the

warping function into the kinematics. It combined

two extra warping strain measures to account for the

warping effects. For the nonlinear torsion of thin-

walled beams, the small strain assumption does not

hold, and thus, the nonlinear Wagner effects [4] are

increasingly significant and must be considered in the

GEBF-based works [10–14]. The Wagner effects

induce an apparent axial shortening at the beam free

end, accompanied by a cross section stretch [17].

Based on the 1D-continuum theory [16], most GEBF

neglected the cross-sectional stretch [5–12], just to

name a few. Recently, works [13, 14] also allowed the

cross-sectional stretch via polynomial ansatz functions

and deformation modes, respectively, but resulted in

additional DOFs due to the stretch. However, little

effort has been devoted to the non-uniform cross-

sectional deformation. A comprehensive historical

overview is given in the latest work [16]. The absolute

nodal coordinate formulation (ANCF) proposed by

Shabana [35] is based on the 3D-continuum theory and

considers the high-order strain, namely the cross-

sectional stretch [25] and Wagner effects are consid-

ered inherently. Furthermore, the ANCF is applicable

for cross-sectional deformation of the non-uniform

beam, since the cross-sectional shapes can vary along

the beam axial direction by changing the upper and

lower limit functions of sections. Thus, the complete

3D strain state in the ANCF element level benefits

from a nonlinear 3D FE analysis. The existing ANCF

[24–29] uses higher orders of the cross-sectional

displacement field and transverse derivatives to cap-

ture the deformation and coupling among different

modes, such as warping [26, 27], warping-stretch

coupling [25], and bidirectional bending [28]. More-

over, one can get an insight into other nonlinear FE

formulations of uniform cross-sectional deformation,

e.g., the generalized beam theory (GBT) [20] via the

deformation modes in [17], and generalized strain

beam formulation [21] via extra warping and Wagner

strain measures in [18] (similar to GEBF [8–14]).

The nonlinear FE beam formulations of GEBF and

ANCF are promising to handle complex dynamics of

flexible multibody systems (FMBS) undergoing large

deformations and overall rotations. Although the

ANCF benefits from the complete 3D strain state,

the original fully parameterized beam elements [35]

suffer from serious numerical problems of shear

locking and Poisson locking and are not accurate

enough in the large deformation

[24, 26, 29, 31, 36–39]. In general, the simulation

accuracy and efficiency depend on the geometric

description to define the kinematic description. The

locking arises here due to a linear transverse interpo-

lation but a cubic axial interpolation for the displace-

ment field, which violates some continuity conditions

at the element interface and induces rigid shear strains

[29, 31]. As reported in [39], shear locking effectively

suppresses the antisymmetric bending mode. The

Poisson locking that arises here due to the linear

transverse model cannot satisfy the required linear
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Hooke’s law, resulting in a stiff bending response

[26, 29, 31]. The numerical stiffing phenomenon of

shear locking results in a slow convergence rate [29].

It can be alleviated via dense mesh, while the Poisson

locking may lead to a wrong result regardless of the

number of beam elements used [26, 29, 31].

Locking is a commonly stiffing phenomenon in

most FE formulations [16, 22, 29, 30, 40]. The works

[29, 40] also give a comprehensive historical overview

of the locking alleviation techniques for classical FE

and ANCF, respectively. In the ANCF, early works

about locking alleviation are to use the mixed

formulation [36], the cross-sectional HOBEs [24],

the modified constitutive law, the Veubeke–Hu–

Washizu principle [41], and Hellinger–Reissner prin-

ciple [42]. Most of the locking alleviation techniques

for ANCF are inspired by the vast locking alleviation

techniques successfully used in classical FE, then

refined and used by many researchers

[25–29, 31–33, 43–47]. The methodology of the

mixed formulation [36] calculates the stiffness via

the structural mechanic for bending, twisting, shear,

axial extension, and later with cross-sectional stretch

[43]. Matikainen et al. [24] reported that the trape-

zoidal cross-sectional mode helps mitigate the locking

in the fully parameterized beam elements, essentially a

cross-sectional HOBE theory. Later, the trapezoidal

cross-sectional mode was also successfully used to

mitigate the locking in the fully parameterized plate

element [44]. The modified constitutive law includes

the enhanced continuum mechanics approach (CMA)

[28, 31, 33, 36, 43], the strain split method (SSM)

[29, 46, 47], and the shear scaling factors (a split

technique of stiffness matrix) [45]. The first two

methodologies have significantly improved the bend-

ing behavior of ANCF beam elements. Gerstmayr

et al. [36] proposed the enhanced CMA, a technique of

split elastic tensor with a selectively reduced integra-

tion, and considered the Poisson effect only on the

beam axis. The roots of the enhanced CMA lie in the

concept of selectively reduced integration in GEBF [6]

to handle the well-known over-stiff solutions due to

shear locking. Recently, Patel and Shabana [29]

proposed the SSM, a technique of split strain tensor

of uncoupled with a full integration procedure

[29, 46, 47]. Although the existing HOBEs [24–29]

slightly differ in warping description and locking

alleviation, they are computationally expensive due to

the use of Lagrange polynomials on the beam sections

(e.g., the cubic element 34X3c [28] with 120DOFs and

biquadratic element B4 [26] with 96DOFs).

For the FMBS dynamics, the most time-consuming

computation is for the nonlinear terms [48], mostly of

high dimensions. In terms of the number of unknowns

to be solved in a set of differential–algebraic equations

(DAEs), a reduced-order model (ROM) using energy

equivalence can significantly reduce the computa-

tional effort. The proper orthogonal decomposition

(POD) is a classical method to reduce the DOFs of the

large-scale numerical simulation for a complex non-

linear system in many fields. It has also been used in

the FMBS modeled by ANCF, which is required to

pre-simulate with the prior knowledge of run-time

load [49, 50] to obtain an appropriate ROM to verify

its solution over the same period [51–53]. Thus, the

POD model is only the optimal approximation to the

prior training data within the period as mentioned

above, rather than the partial differential equations for

the original system. However, many works reported

that the POD model lacks robustness due to a

significantly low accuracy when the system parame-

ters change [54–60]. It can fail in a broad scope of

parameters [59], especially for the FMBS. On the

contrary, if the POD model is reconstructed when

loading conditions change [61], the expensive time

spent on training makes the POD model lose its

significance in the sense of model order reduction [59].

On the other hand, the component mode synthesis

(CMS) model, such as Craig–Bampton (C–B) method

[62], is an optimal approximation to the partial

differential equations for the structures, and no prior

knowledge of pre-simulation under run-time load is

required. The CMS has also been successfully used in

many problems, such as flexible aircraft control [49],

contacts and frictions [63, 64], and slewing flexible

beam [65]. Many CMS-related works about LOBEs

were trying to address the difficulty facing the large

nonlinear deformation in the FMBS, such as the FFRF

[61, 66–70], the ANCF [33, 50, 71], and the GEBF

[72]. For an FMBS, the challenge in establishing a

high-robust and high-precision ROM is caused by the

large deformation resulting from overall rotation and

its coupling deformation, distinguished from the

structural dynamics do not experience the overall

rotation. Therefore, the ability to capture the dynamic

response of high-speed rotation under 3D loading is an

index to evaluate many order reduction techniques. To

the authors’ best knowledge, the model order
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reduction based on successive linearizations can

sufficiently address the case of 72 rad/s in [33].

Although there are minor works to reduce the

HOBE-based model, it is increasingly urgent since

the HOBEs can accurately describe the cross-sectional

deformation but are time-consuming due to many

DOFs, as mentioned above.

This study proposes a mixed kinematic description

of beam elements via the slope vectors and warping

functions in a complete 3D strain state undergoing

large deformations and overall rotations. Thus, the

new HOBEs for ANCF can obtain the cross-sectional

deformations (such as warping, stretch and Wagner

effects) even with non-uniform variation section and

large torsion in a compact strain expression. The six

entries of the Green–Lagrange strain tensor depend on

the mixed kinematic description, avoiding the expen-

sive calculations of the extra warping and Wagner

strain measures and their derivatives [8–12]. More-

over, an accurately warping function helps the

proposed HOBEs account for the non-uniform distri-

bution of shear stress, eliminating the need to modify

the shear energy. To describe the warping deforma-

tions, unlike the existing HOBEs [24–29] using

Lagrange polynomials, the proposed HOBEs are

interpolated via the warping functions to reduce the

element DOFs significantly. To capture the geometries

of non-uniform beams, unlike some conventional FE

formulations using dense mesh, the new HOBEs only

need sparse elements with smaller DOFs because the

cross-sectional shapes can vary along the beam axial

direction. Thus, these new elements inherit the

advantages of 3D-continuum theory and benefit from

the efficient description of warping in the GEBF.

The remaining part of this paper is organized as

follows. Firstly, based on the ANCF, a series of new

HOBEs interpolated with the slope vectors and

warping functions is proposed as a novel technique

in Sect. 2. The governing equations in the FMBs are

depicted in Sect. 3. In Sect. 4, the computation

complexity in terms of the number of unknowns is

analyzed in detail to highlight the benefits of new

HOBEs. In the static numerical examples in Sects. 5.1

and 5.2, the frequency, deformation, Von-Mises stress

distribution, and torsional limit of the new HOBEs and

their ROMs are compared among the GEBF, com-

mercial codes, and experimental data, respectively. In

Sect. 5.3, a dynamic numerical example is presented to

demonstrate the importance of the consideration of

warping in the nonlinear bending-torsion coupled

dynamics. Finally, some concluding remarks are made

in Sect. 6.

2 The ANCF model contains warping

2.1 Kinematic description

Let r ¼ rðx; y; z; tÞ 2 R3 denote the global position

vector of an arbitrary point on the beam element at

time t. According to the work by Sugiyama et al. [73],

a planar beam configuration can be described by the

global position vector rc of the centroid line and a

linear polynomial interpolation of the cross sec-

tion. Thus, r can be described by the material frame

x–y-z defined in the element coordinate system as

follows,

rðx; y; z; tÞ ¼ rcðx; tÞ þ yr;yðx; tÞ þ zr;zðx; tÞ; ð1Þ

where rc is a interpolation function of quadratic

[31–33, 43] or cubic [28, 35, 38] polynomial. r;y ¼
or=oy 2 R3 and r;z ¼ or=oz 2 R3 are the transverse

slope vectors (or first-order directional derivatives).

The elements with displacement field given by Eq. (1)

with linear transverse interpolation are the lower-order

beam elements (LOBEs). Importantly, the transverse

slope vectors r;y and r;z are no longer orthogonal unit

vectors and can induce parallelogram deformation

[74] and stretch deformation. Thus, the kinematic

description Eq. (1) relaxes the assumption of a rigid

cross section.

The slope vectors in Eq. (1) can be interpolated over

all p nodes of an element

r;a x; tð Þ ¼
Xp

i¼1

fi xð Þri;a tð Þ; ð2Þ

where ri;a ¼ ori=oa ¼ r;a xi; tð Þ, a ¼ y; z, represents

the directional derivative of node i, which constitutes

the beam’s nodal coordinates. fi xð Þ is the parameter

function for the local coordinate x and will be

discussed separately for each classical element

[28, 35, 43, 75].

Substituting Eq. (2) into Eq. (1) yields

rðx; y; z; tÞ ¼ rcðx; tÞ

þ
Xp

i¼1

yfi xð Þri;y tð Þ þ zfi xð Þri;z tð Þ
� �

: ð3Þ
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Using the slope vectors instead of rotation angle

makes no singular problem but results in locking

problems [26, 29, 31, 37–39, 41–43] in the ANCF. An

immense amount of methods on locking alleviation in

the ANCF [24–29, 31, 33, 36, 43–47] were proposed

for various locking mechanisms. As stated in the

introduction, the shear locking and Poisson locking

arise due to the linear transverse model and lead to

excessive torsional stiffness and bending stiffness.

The warping displacement field X is the cross-

sectional deviation of the deformed beam from a plane

surface, which can be described via an enriched

displacement field. This enriched displacement field

motivates the development of HOBEs to expand the

cross section kinematics and overcome the planar

beam theories’ limitations. The limitations are elab-

orated in the introduction [1–30]. The warping

displacement field X is superposed on the LOBE’s

(or planar beam’s) field described by Eq. (1), yielding

the global position vector of an arbitrary point on a

beam as follows,

rðx; y; z; tÞ ¼ rcðx; tÞ þ yr;yðx; tÞ þ zr;zðx; tÞþX: ð4Þ

Obviously, when X ¼ 03�1 holds, the beam cross

section deforms as a planar surface and Eq. (4) will

degenerate to Eq. (1).

In the existing HOBEs [24–29] of ANCF, X can be

described with the higher-order interpolation as

X¼OðabÞþOðabcÞþOðabcsÞ þ � � � ; ð5Þ

where OðabÞ, OðabcÞ and OðabcsÞ, respectively,

denote the functions of second-order, third-order,

fourth-order directional derivatives in the transverse

directions, and a; b; c; s ¼ y; z.

Orzechowski and Shabana [27] proposed a two-

node HOBE, which covers quadratic interpolation in

the transverse directions. A quadratic element allows

the cross-sectional deviation from a plane surface to be

equal to X¼OðabÞ, which can be written more

explicitly with a complete polynomial over p nodes,

OðabÞ ¼ 1

2
y2r;yyðx; tÞ þ yzr;yzðx; tÞ þ 1

2
z2r;zzðx; tÞ

¼
Xp

i¼1

1

2
y2fi xð Þri;yyðtÞ þ yzfi xð Þri;yzðtÞ þ 1

2
z2fi xð Þri;zzðtÞ

� �
;

ð6Þ

where r;ab ¼ or2
�
oaobð Þ 2 R3 is the curvature vector

[27] (or second-order directional derivatives).

Compared with the LOBEs, ri;ab ¼
or2i
�
oaobð Þ¼ r;ab xi; tð Þ 2 R3 is the additional nodal

coordinates in the quadratic elements.

Similarly, a cubic element allows the cross-sec-

tional deviation from a plane surface to be equal to

X¼OðabÞþOðabcÞ, where

OðabcÞ ¼ 1

6
y3r;yyyðx; tÞ þ 1

2
y2zr;yyzðx; tÞ

þ 1

2
yz2r;yzzðx; tÞ þ 1

6
z3r;zzzðx; tÞ

¼
Xp

i¼1

1

6
y3fi xð Þri;yyyðtÞ þ 1

2
y2zfi xð Þri;yyzðtÞ

�

þ1

2
yz2fi xð Þri;yzzðtÞ þ 1

6
z3fi xð Þri;zzzðtÞ

�
;

ð7Þ

where r;abc ¼ or3
�
oaobocð Þ 2 R3 and

ri;abc ¼ or3i
�
oaobocð Þ¼r;abr xi; tð Þ 2 R3. Compared

with the LOBEs, ri;ab and ri;abc are the additional

nodal coordinates in the cubic elements. Moreover, the

higher-order representation of the cross-sectional

deformation can ensure the smoothness and continuity

of the cross section at the element interface [27–29].

Thus, the HOBEs can alleviate shear locking as well as

capture the warping displacement. By increasing the

order of polynomials in Eq. (5), the existing HOBEs

[24–29] can improve the prediction of deformation but

sharply increase the element DOFs [26, 28] and

computation time [26].

In general, the accuracy and efficiency of the

numerical solution depend on the geometric descrip-

tion used to define the FE displacement field. Early

work [8] suggested introducing the Saint–Venant

warping function into the kinematics of the GEBF,

which is a finite formulation of 1D-continuum theory

[16] and neglects the cross-sectional stretch. Inspired

by this, a mixed kinematic description of beam

elements is proposed by introducing the warping

function into the kinematics of ANCF, a finite

formulation of 3D-continuum theory. When the beam

twist along the central axis x, X can be described as

X x; y; z; tð Þ ¼ x y; zð Þh x; tð Þ � x y; zð Þr;xðx; tÞ; ð8Þ

where x is the warping function. r,x represents the

angle of twist to the x-the tangent of the beam’s axial

line, which allows for describing distortional defor-

mations of the cross section. For a beam without pre-

torsion, the initial value of h x; tð Þ ¼ 0 0 0½ �T is a
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null vector. The ability to capture cross-sectional

warping is the main difference between LOBEs

(planar beams) and HOBEs. From this point of view,

the proposed new elements are essentially HOBEs.

Substituting Eq. (8) into Eq. (4), one can get the

displacement field for the proposed new HOBEs.

Similar to Eq. (2), the vector r;x x; tð Þ in Eq. (8) for

ANCF can be also interpolated over all p nodes as

r;x x; tð Þ ¼
Xp

i¼1

fi xð Þri;x tð Þ; ð9Þ

where ri;x ¼ ori=ox ¼ r;x xi; tð Þ is the additional

nodal coordinates compared with the LOBEs. Fur-

thermore, the warping displacement field X can be

further cast as

X ¼ x y; zð Þr;x x; tð Þ ¼
Xp

i¼1

x y; zð Þfi xð Þri;x tð Þ: ð10Þ

The comparisons related to different transverse

interpolation approaches are shown in Table 1. For the

sake of readability, the element naming conventions

used in the works by Orzechowski and Shabana [27]

and by Ebel et al. [28] are still adopted in this study.

Four classical LOBEs described by Eq. (1) are given in

the first column, which are the essential elements to

construct the HOBEs. By increasing the order of

polynomials in Eq. (5), the existing HOBEs [24–29]

can improve the deformation prediction, especially for

the cross sections. Thus, the additional DOFs per

element will sharply increase to 9p, 21p, and 36p in the

quadratic, cubic and biquadratic beam elements,

respectively. However, this will lead to a high

computational cost for the existing HOBEs to obtain

a correct analysis, as reported in [26]. However, the

warping displacement field described by Eq. (8) in the

new HOBEs differs from the field described by Eq. (5)

in the existing HOBEs. The element names supple-

mented by the letter ‘‘x’’ represent the proposed new

HOBEs interpolated with the warping function, as

shown in Eq. (8). In the new elements, ri;x x; tð Þ is the
additional nodal coordinates, which indicates only 3p

additional DOFs per element are needed to capture the

warping deformation. Thus, compared with the exist-

ing HOBEs in the ANCF, the proposed new HOBEs

sharply reduce the element DOFs and will be carefully

studied via two-node, three-node, and four-node beam

elements in this study.

For the existing method of creating HOBEs via

Eq. (5), to capture the bending-torsion coupling in the

Princeton beam experiment, a cubic beam element

34X3 needs to be designed, as reported in [28].

Moreover, to capture the warping displacement of a

square beam under the pure torsion, a biquadratic

beam element B4 needs to be designed as reported in

[26]. Thus, in the following Sects. 5.1 and 5.2, the

performance of the proposed new HOBEs will be

tested compared with 34X3 and B4.

Using the displacement field given by Eqs. (1) and

(4), the global position vector r can be further

expressed as follows,

rðx; y; z; tÞ ¼ S n; g; fð Þe tð Þ; ð11Þ

where e is the vector of element nodal coordinates and

S is matrix of dimensionless shape functions of

element.

For an HOBE, the shape function matrix is divided

into two parts, one is related to the essential LOBE,

and the other is related to the superposed warping. The

matrix of shape functions of the proposed HOBEs

possess the following structure,

Table 1 The comparisons related with different transverse interpolation approaches

Element Interpolation X Additional

Nodal coordinates (i ¼ 1 � � � p) DOFs

B24 [35], MGD30 [75], 3333 [43], 3433 [28] Linear 03�1 – 0

B42 [26, 27, 29], 3363 [28] Quadratic OðabÞ ri;yy; ri;yz; ri;zz 9p

34X3 [28] Cubic OðabÞþOðabcÞ ri;yy; ri;yz; ri;zz; ri;yyy; ri;yyz; ri;yzz; ri;zzz 21p

B4 [26] Biquadratic OðabÞþOðabcÞ
þOðabcsÞ

ri;yy; ri;yz; ri;zz; ri;yyy; ri;yyz; ri;yzz; ri;zzz;

ri;yyyy; ri;yyyz; ri;yyzz; ri;yzzz; ri;zzzz

36p

B24-x, MGD30-x, 3333-x, 3433-x Warping xr;x ri;x 3p
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SHOBE ¼ sHOBE � I ¼ ½sLOBE1 Sx1|fflfflfflfflffl{zfflfflfflfflffl}
sHOBE
1

� � � sLOBEp Sxp|fflfflfflfflffl{zfflfflfflfflffl}
sHOBEp

� � I

2 R3�NE

;

ð12Þ

where ‘‘ � ’’ denotes the Kronecker product, I is a

3 9 3 identity matrix, NE is the element DOFs, and

sLOBEi forms the row vector of shape functions of a

LOBE. Table 2 gives the schematic, defined vector e

and the corresponding shape function matrix S of each

element. Moreover, the warping-related shape func-

tions can be written as

Sxi ¼ x g; fð Þfi nð Þ; i¼1 � � � p; ð13Þ

where n, g, and f are the dimensionless element

coordinates. The warping function x of sectional

shape is given in Appendix B, and can be substituted

into Table 2 to get the specific expressions of S. This is

crucial for a successful interpolation. The shape

functions of LOBEs and their dimensionless param-

eter functions fi nð Þ are also provided in Table 2 (see

the box).

2.1.1 The proposed two-node beam elements: BE24-x

The classical LOBE BE24, also called the fully

parameterized beam element of ANCF, was originally

proposed by Yakoub and Shabana [35]. The position

of an arbitrary point on the BE24 is defined using the

displacement field given by Eq. (1), and the position of

the centroid line is interpolated using cubic Hermite

polynomials. Based on BE24, the BE24-x is proposed

using the warping displacement field given by Eq. (8).

As displayed in Table 2, the vector of element nodal

coordinates is defined as e ¼ eT1 eT2
� 	T2 R30, where

eTi ¼ rTi rTi;x rTi;y rTi;z rTi;x

h i
, i¼1; 2. Thus,

SBE24�x ¼ sBE24�x � I ¼ ½sBE241 Sx1|fflfflfflfflffl{zfflfflfflfflffl}
sBE24�x
1

sBE242 Sx2|fflfflfflfflffl{zfflfflfflfflffl}
sBE24�x
2

� � I

2 R3�30:

ð14Þ

For the LOBE BE24 [35], sBE24i ¼½Si Si;1 Si;2 Si;3 �
(see Table 2). The subscripts ‘‘1,’’ ‘‘2,’’ and ‘‘3’’

represent the shape functions accordingly multiplied

Table 2 The vector e of nodal coordinates and matrix S of dimensionless shape functions of beam elements

75
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by the directional derivatives in the x, y, and z

directions at node i. For example, Si;2I is multiplied by

the directional derivatives ri;y at node i. Moreover, l is

the length of the beam element of undeformed in

Table 2.

According to the work by Ebel et al. [28], the beam

elements have the same number of vectors per node

can be noted with four digits abcd, a denotes the

dimension of an element, b denotes the nodes per

element, c denotes the number of vectors per node, and

d always takes the value 3 for the same polynomial

basis. Thus, the BE24 was also called 3243 in [24].

2.1.2 The proposed three-node beam elements:

MGD30-x and 3333-x

Ren [75] proposed a C1-continuous LOBE, whose

position of the centroid line is interpolated with cubic

Hermite polynomials. It is a gradient-deficient beam

element without the longitudinal slope vector only in

the middle node. Thus, the above-mentioned naming

convention via four digits is not suited for the element

proposed by Ren [75]. For the convenience of

readability, it is named as MGD30 in this study. As

shown in Table 2, based on the MGD30, a new HOBE

noted as MGD30-x is proposed using the displace-

ment field given by Eq. (8) to account for the cross-

sectional warping. The vector of element nodal

coordinates is defined as e ¼ eT1 eT2 eT3
� 	T2 R39,

where eT1¼ rT1 rT1;x rT1;y rT1;z rT1;x

h i
, eT2¼ rT2;y rT2;z

h

rT2;x�, and eT3¼ rT3 rT3;x rT3;y rT3;z rT3;x

h i
. Thus,

SMGD30�x ¼ sMGD30�x � I

¼ ½sMGD30
1 Sx1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
sMGD30�x
1

sMGD30
2 Sx2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
sMGD30�x
2

sMGD30
3 Sx3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
sMGD30�x
3

� � I

2 R3�39:

ð15Þ

In the LOBE MGD30

[75],sMGD30
1 ¼ S1 S1;1 S1;2 S1;3

� 	
, sMGD30

2 ¼ S2;2 S2;3
� 	

,

sMGD30
3 ¼ S3 S3;1 S3;2 S3;3

� 	
(see Table 2).

Nachbagauer [43] originally proposed the LOBE

3333, and the position of the beam’s centroid line is

interpolated by quadratic polynomials. It is a gradient-

deficient beam element without longitudinal slope

vector in each node. As shown in Table 2, similarly to

the interpolation of warping function of Eq. (8), a new

HOBE 3333-x is proposed. The vector of element

nodal coordinates is defined as e¼ eT1 eT2 eT3
� 	T2 R36,

where eTi ¼ rTi rTi;y rTi;z rTi;x

h i
, i¼1; 2; 3. Thus,

S3333�x ¼ s3333�x � I

¼ ½s33331 Sx1|fflfflfflffl{zfflfflfflffl}
s3333�x
1

s33332 Sx2|fflfflfflffl{zfflfflfflffl}
s3333�x
2

s33333 Sx3|fflfflfflffl{zfflfflfflffl}
s3333�x
3

� � I

2 R3�36; ð16Þ

In the LOBE 3333 [43], s3333i ¼ Si Si;2 Si;3
� 	

(see

Table 2).

2.1.3 The proposed four-node beam elements:

3433-x

The LOBE 3433 was originally proposed in the work

of Ebel et al. [28]; however, the element shape

functions were not provided. Thus, in this study, a new

four-node beam element also named 3433 is proposed

using the displacement field given by Eq. (3). As

shown in Table 2, based on the proposed LOBE 3433,

a new HOBE 3433-x is proposed using the displace-

ment field given by Eq. (8). The vector e 2 R48 of

element nodal coordinates is defined as e ¼
eT1 eT2
�

eT3 eT4
	T
; where eTi ¼ rTi rTi;y rTi;z rTi;x

h i
,

i¼1; 2; 3; 4. Thus,

S3433�x ¼ s3433�x � I

¼ ½s34331 Sx1|fflfflfflffl{zfflfflfflffl}
s3433�x
1

s34332 Sx2|fflfflfflffl{zfflfflfflffl}
s3433�x
2

s34333 Sx3|fflfflfflffl{zfflfflfflffl}
s3433�x
3

s34334 Sx4|fflfflfflffl{zfflfflfflffl}
s3433�x
4

�

� I

2 R3�48:

ð17Þ

In the LOBE 3433 [28], s3433i ¼½Si Si;2 Si;3 � (see
Table 2).

The existing HOBEs whose displacement fields are

given by Eq. (5), such as BE42 and 34X3, are defined

in Appendix A. In addition, there are many other

HOBEs reported in works by Matikainen et al. [24]

and Ebel et al. [28].

The parameter functions for the two-node, three-

node, and four-node HOBEs in Table 2 reproduce a

linear, quadratic, and cubic interpolation of rotations,

which can address constant [37, 43], linear, and
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quadratic interpolation of curvatures, respectively.

Thus, multiple-node beam elements are intended to be

used for large deformation problems and can improve

the rate of convergence even with a rougher mesh.

However, the HOBEs are not yet eliminating locking.

Moreover, their performances are also dependent on

the constitutive model used [29] and will be demon-

strated in the following Sect. 2.3.

2.2 The constant element mass matrix

The element kinetic energy T.E can be calculated from

the following volume integral

TE ¼ 1

2

Z

V

q_rT_rdV ¼ 1

2
_eT
Z

V

qSTSdV_e ¼ 1

2
_eTM_e;

ð18Þ

where
R
V qS

TSdV is the constant element mass matrix

M, and S is the matrix of shape functions associated

with the proposed elements, as shown in Table 2.

2.3 Computation of element elastic forces

Gerstmayr et al. [36] originally proposed the enhanced

CMA to alleviate the excessive bending stiffness due

to the Poisson coupling among the axial and transverse

deformations. The enhanced CMA combines a split

elastic tensor and a selective integration procedure.

For a isotropic linear elastic beam, the fourth-order

elastic tensor E
s

¼ 2G I4 þ m
1�2mI� Ið Þ is split into two

parts E
s

¼E
s

0þE
s

m, where E
s

m accounts for the Poisson

effect only on the beam axis with the selective

integration procedure and E
s

0 does not include the

Poisson’s ratio mwith a full integration procedure.G ¼
E= 2 1þ mð Þð Þ is the shear modulus, E is the Young’s

modulus, and I4 is the fourth-order identity tensor.

The entries of E
s

m and E
s

0 can be given by

E
s

m

aaaa
¼ cþ 2G� E ¼ 2cm;E

s

m

aabb a 6¼bð Þ
¼ c;

a; b ¼ 1; 2; 3;
ð19Þ

E
s

v

aaaa
¼ E; a; b ¼ 1; 2; 3;

E
s

0

abab a6¼bð Þ
¼ E

s

0

abba a6¼bð Þ
¼

k2G; a; b ¼ 1; 3

k3G; a; b ¼ 1; 2

G; a; b ¼ 2; 3

8
><

>:
;

ð20Þ

where c ¼ Em= 1þ mð Þ 1� 2mð Þð Þ is the constant Lamé

coefficient. k2 and k3 are the shear correction factors

account for the distribution of the shear stress along

the cross section. In fact, a warping function helps the

proposed HOBEs account for the non-uniform distri-

bution of shear stress, and thus relax the need for a

shear correction factors, i.e., k2 ¼ k3 ¼ 1. The shear

correction factors were also eliminated because the

HOBE theory in [76] can correctly account for the

parabolic shear stress distribution on the cross sec-

tion. In contrast to the standard CMA with 21 nonzero

entries for E
s

, there are 9 nonzero entries for E
s

m and 15

nonzero entries for E
s

0.

The split elastic tensor results in a split form of the

second Piola–Kirchhoff stress r, leading to

r ¼ E
s

: e ¼ E
s

0 : eþ E
s

m : e ¼ r0 þ rm; ð21Þ

where e ¼ FTF� I
� ��

2 is the symmetric Green–

Lagrange strain tensor and F is the deformation

gradient tensor. By using the chain rule and the

mapping between the deformed configuration r and

the initial configuration r0, the deformation gradient

tensor reads

F ¼ or

orT0
¼ or

obT
or0
obT


 ��1

¼ o Seð Þ
obT

o Se0ð Þ
obT


 ��1

¼
s 1ð Þ
;x e s 1ð Þ

;y e s 1ð Þ
;z e

s 2ð Þ
;x e s 2ð Þ

;y e s 2ð Þ
;z e

s 3ð Þ
;x e s 3ð Þ

;y e s 3ð Þ
;z e

2
64

3
75J�1

0 ; ð22Þ

where the vector b ¼ x y z½ �T is defined in the

element local coordinate system and e0 is the vector of

initial generalized coordinates. And s
jð Þ

;b ¼ os jð Þ�ob,
where s jð Þ 2 RNE

is the j-th row of S, j = 1, 2, 3. For

example, the explicit form for SMGD30�x 2 R3�39 is

equal to
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When a flexible body experience a rigid-body

rotation, the stress and deformation measures should

remain constant to satisfy the objectivity requirement,

which is essential in analyzing large deformations.

According to the book by Shabana [77], let the

orthogonal matrix R describe an arbitrary rigid-body

rotation, F0 and F be the deformation gradient tensor

on the continuous body before and after the rigid-body

rotation, respectively. Thus, F ¼ RF0, and

e ¼ 1

2
FTF� I
� �

¼ 1

2
FT
0R

TRF0 � I
� �

¼ 1

2
FT
0F0 � I

� �
¼ e0: ð24Þ

At this point, the Green–Lagrange strain tensor

remains constant during the rigid-body rotation. While

in the GEBF, the interpolation of the rotation variables

spoils the objectivity of the strain measures with

respect to a rigid-body rotation [7].

Next, to illustrate the effect of the kinematic

description on the strain tensor, a beam of the straight

and undistorted initial configuration is considered

since its identity element Jacobian J0 ¼ I in Eq. (22)

makes the analysis simpler. Now let F be the

deformation gradient tensor after deformation, thus

e ¼ 1

2
FTF� I
� �

¼ 1

2

or

obT

� T
or

obT
� I

 !

¼ 1

2

rT;xr;x � 1 rT;xr;y rT;xr;z

rT;yr;y � 1 rT;yr;z

sym rT;zr;z � 1

2

64

3

75

¼ 1

2

eTSxxe� 1 eTSxye eTSxze

eTSyye� 1 eTSyze

sym eTSzze� 1

2

64

3

75

¼
exx exy exz

eyy eyz
sym ezz

2

64

3

75;

ð25Þ

where Sxx ¼
P3

j¼1

s jð ÞT
;x s jð Þ

;x , Syy ¼
P3

j¼1 s
jð ÞT

;y s jð Þ
;y , Szz ¼

P3
j¼1 s

jð ÞT
;z s jð Þ

;z , Sxy ¼
P3

j¼1 s
jð ÞT

;x s jð Þ
;y , Sxz ¼

P3
j¼1 s

jð ÞT
;x

s jð Þ
;z , Syz ¼

P3
j¼1 s

jð ÞT
;y s jð Þ

;z . The general expression

Eq. (25) can both express the strain tensor in the

LOBEs and the proposed HOBEs. For example, for the

LOBEMGD30, the shape function is SMGD30 2 R3�30,

and SMGD30
xx ¼

P3
j¼1 s

jð ÞT
;x s jð Þ

;x 2 R30�30 in Eq. (25). For

the proposed HOBE MGD30-x, the shape function is

SMGD30�x 2 R3�39 (as shown in Eq. 23), and

SMGD30�x
xx ¼

P3
j¼1 s

jð ÞT
;x s jð Þ

;x 2 R39�39 in Eq. (25).

Obviously, warping effects are considered in the

Green–Lagrange strain tensor in the proposed HOBEs.

This is totally different from [8–18], where extra strain

measures need to be defined to capture the warping

effects. The following statements in Tables 3 and 5

will point out the differences brought out by the

proposed HOBEs and how the warping-related entries

affect the components in the Green–Lagrange strain

tensor.

Compared with the existing HOBEs for ANCF, the

superior improvement is that the new elements can

accurately predict the cross-sectional deformations

with much smaller DOFs, as elaborated in Table 1.

Next, the comparisons among the LOBEs for ANCF

and other classical FE formulations in the strain

measure level are made below.

The main differences in the strain values between

the LOBEs and proposed HOBEs come from the

contribution of the warping function. As demonstrated

in Eq. (13), Sxi ¼ x g; fð Þfi nð Þ; i¼1 � � � p. Compared

with the LOBEs, the improvements in the HOBEs

yields:

(1) In the LOBEs, for the strains eyy and ezz,
e.g.,-

, the constant entry of s jð Þ
;y from Table 2 yields a

constant eyy at a given x. A similar conclusion of

s 1ð Þ

s 2ð Þ

s 3ð Þ

2
4

3
5 ¼

S1 0 0 S1;1 0 0 S1;2 0 0 S1;3 0 0 Sx1 0 0 � � � S3 0 0 S3;1 0 0 S3;2 0 0 S3;3 0 0 Sx3 0 0

0 S1 0 0 S1;1 0 0 S1;2 0 0 S1;3 0 0 Sx1 0 � � � 0 S3 0 0 S3;1 0 0 S3;2 0 0 S3;3 0 0 Sx3 0

0 0 S1 0 0 S1;1 0 0 S1;2 0 0 S1;3 0 0 Sx1 � � � 0 0 S3 0 0 S3;1 0 0 S3;2 0 0 S3;3 0 0 Sx3

2
4

3
5: ð23Þ
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the LOBE (TDBE12, which is a degenerate case

of space beam BE24 in plane problem) can also

be found in [25]. And some works [26, 29]

believed that the Poisson locking arose here

because the constant strains eyy and ezz cannot
satisfy the required linear Hooke’s law.While in

the proposed HOBEs, the warping-related entry

oSxi
�
oy ¼ fi nð Þox=oy of s jð Þ

;y yields the strain eyy
to be a quadratic function with respect to ox=oy
(6¼ constant), as shown in Table 3. Therefore,

the Poisson locking can be moderately allevi-

ated, same reason to the existing HOBEs

[24–29]. What is more, for a two-ends-fixed

beam under upper and lower surface-pressure

case in [26], the cross-sectional boundaries are

distorted with in-plane warping [78, 79] and

cross-sectional extension in the HOBEs. As

shown in Table 3, the nonlinear strains eyy and
ezz in the HOBEs cause nonlinear stretch

combining with in-plane warping [78, 79] and

cross-sectional extension, while the constant

strains eyy and ezz in the LOBEs only cause

constant stretch (or cross-sectional extension).

However, the cross-sectional extension is

neglected in [78, 79], it is effective for locking

alleviation and crucial for a correct analysis, as

reported in [17].

(2) In the LOBEs (e.g., [28, 35, 43, 75]), for the

shear strains exy and exz,

e.g.,exy ¼ 1
2
eTSxye ¼ 1

2
eT

P3

i¼1

s jð ÞT
;x s jð Þ

;y

� 
e, the

product of linear entry of s jð Þ
;x from Table 2 and

constant entry of s jð Þ
;y yields a linear shear strain

exy. Thus, the cross-sectional shape of a LOBE

keeps planar but no longer restricts normal to the

beam’s neutral axis. The linear transverse

models (or LOBEs) lead to the linear distribu-

tion of the shear strains. Therefore, the shear

energy is modified with correction factors [1–3]

to improve the accuracy of mechanical

response. While in the HOBEs, the product of

nonlinear entry oSxi
�
ox ¼ xofi nð Þ=ox of s jð Þ

;x

and linear or nonlinear entry oSxi
�
oy ¼

fi nð Þox=oy of s jð Þ
;y yields a nonlinear shear strain

exy, as shown in Table 3. Therefore, the cross-

sectional shape will warp out of their original

plane surfaces. In practice, even a tiny cross-

sectional warping can significantly contribute to

the torsional response (see following

Sect. 5.4).

The new HOBEs significantly benefit from fully

considering the Green–Lagrange strains, i.e., a com-

plete 3D Green–Lagrange strain state with the higher-

order terms. Compared with the classical FE formu-

lation, the ANCF gets the Wagner effects and cross-

sectional stretch in a straightforward and compact

manner. As shown in Table 4, considering a complete

3D Green–Lagrange strain brings advantages in two

aspects:

(1) In the classical FE formulations, such as the

GEBF [5–8] and GBT [20], the higher-order

terms of y and z in exx [9–14, 17, 18]) are ignored
under the small strain assumption. However,

when the thin-walled beam experiences a mod-

erate torque, the small strain assumption is no

longer hold and the increasing nonlinear Wag-

ner effects should be considered for correct

results [9–14, 17, 18]). While in the ANCF, the

higher-order terms in exx ¼ 1
2
eTSxxe ¼

1
2

eT
P3

j¼1

s jð ÞT
;x s jð Þ

;x

 !
e� 1

 !
are considered

always, such as the warping-related entry

oSxi
�
ox ¼ xofi nð Þ=ox of s jð Þ

;x in the proposed

HOBEs, which avoids the expensive

Table 3 The improvements in the HOBEs compared with the LOBEs

ANCF element type eyy,ezz Poisson locking exy,exz Surface

LOBEs (e.g., [28, 35, 43, 75].) Const Yes L Plane

HOBEs (Proposed, e.g., [24–29]) NL No or alleviation NL Warp

L: linear, NL: nonlinear
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calculations of the extra warping and Wagner

strain measures and their derivatives [8–14].

(2) In some FE formulations based on the 1D-

continuum theory, such as the GEBF [5–12] and

the generalized strain beam formulation-based

work [18], the cross-sectional stretch is

neglected directly. Although the cross-sectional

stretch often makes a relatively small contribu-

tion to the overall mechanical response, it is

effective for locking alleviation and crucial for a

correct analysis, as reported in [17]. After

consideringWagner effects in [9–14], the GEBF

[14] has been further refined via more GBT

cross-sectional stretch modes to obrain a more

flexible behavior. While in the ANCF based on

the 3D-continuum theory, the cross-sectional

stretch is always considered. This complete 3D-

continuum theory-based ANCF allows the

cross-sectional shape to vary along the beam

axial direction, while the cross-sectional shape

in the 1D-continuum theory-based formulations

is often unchanged and constant. Moreover, in

contrast to GBTmodes [17] of uncoupled, many

ANCF modes are stretch coupled modes

[42, 73, 74] and the important effect of coupled

modes in a large deformation case has been

Table 4 The comparison between the classical FE formulations and the proposed ANCF HOBEs

Type GEBF GBT [17] ANCF

(Proposed)

Strain state 1D 3D 3D

Warping Yes (e.g., [8–14]) Yes Yes

Wagner effects (i) No (e.g., [5–8])

(ii) Yes (e.g., [9–14])

Yes, Yes, via exx

Cross-sectional

stretch

(i) No (e.g., [5–12])

(ii) Yes. Refined via polynomial ansatz functions in [13] or GBT

modes in [14]

Yes, via GBT

modes

Yes, via eyy,ezz

Non-uniform cross

section

No No Yes

Modes Uncoupled Uncoupled Coupled

Non-uniform cross section: cross-sectional shape varies along a beam axial direction

Table 5 Computational cost estimation for the unknowns in one Newton–Raphson iteration for different elements (n.e: mesh

number; n: model DOFs in the FOM; nt þ nb: model DOFs in the ROM; nt: truncated modes [62]; nb: boundary modes [62])

p Element Interpolation ne NE n Computational complexity O nmð Þ

Statics: Dynamics

2 B42 [26, 27, 29] Quadratic 38 42 819 FOM: ROM: Generalized-a Scheme [85]:

2 B4[26] Biquadratic 38 96 1872

2 B24-x Warping 38 30 585

3 MGD30[75] Linear 24 30 444

3 MGD30-x Warping 24 39 591

3 3333[43] Linear 24 27 441 O nð Þ O nt þ nbð Þ O nþ ncð Þ (Eq. (29))
3 3363[28] Quadratic 24 54 882

3 3333-x Warping 24 36 588

4 34X3[28] Cubic 16 120 1470

4 3433-x Warping 16 48 588

123

2330 Y. Tang et al.



discussed in [42] for LOBEs. And it will also be

discussed for the proposed HOBEs in the

flowing Sect. 5.2.

In this study, the strain energy is given in terms of

the energy-conjugate pair consisting of the Piola–

Kirchhoff stress and the Green–Lagrange strain ten-

sor. And the split strain subdivides the element elastic

energy UE into two components, as

UE ¼ 1

2

Z

V

r : e dV ¼ 1

2

Z

V

e : E
s

0 : edV

þ 1

2
TW

Z

L

e : E
s

m : edL;
ð26Þ

where T and W are the element thickness and width,

respectively. The integral of an irregular section is

usually divided into several independent integrals of

regular sections; more details are given in Appendix

C.

An alternative strain energy formulation can be

further developed via the so-called structural mechan-

ics formulation via generalized 3D strain measures,

i.e., axial strain, shear strain, torsional strain, bending

strain, cross-sectional stretch strain, and two extra

warping strain measures. These two extra strain

measures are conjugating to stress measures of bi-

shear and bi-moment [8]. In GEBF, the way to simply

the 3D Green–Lagrange strain tensor to the general-

ized 1D strain measures under the small train

assumption can be found in [12]. The strain energy

based on the elastic linear approach and obtained with

respect to the relationships of all the kinematic modes

can be found in [28, 36, 42, 43] only for LOBEs and

existing HOBEs. However, the coupled modes to

correctly predict the large deformation will be missing

in this so-called structural mechanics formulation

[42]. It is interesting to improve the so-called struc-

tural mechanics formulation to get a clear mechanical

power expression via the vector of resultant forces and

their conjugate strain measures, but it is beyond the

scope of this study.

The entry in the vector of element elastic force [33]

is

FE
i ¼ � oUE

oei
¼ � 1

2

Z

V

o E
s

0

anbc
eanebc

� 

oei
dV

� 1

2
TW

Z

l

o E
s

m

anbc
eanebc

� 

oei
dl

¼ � 1

2
etmefdevd

Z

V

E
s

0

anbc
HtaHknHfbHvcdV

�

þTW

Z

l

E
s

m

anbc
HtaHknHfbHvcdl



þ 1

2
etm

Z

V

E
s

0

anbc
HtaHkndbcdV þ TW

Z

l

E
s

m

anbc
HtaHkndbcdl

� 
;

ð27Þ

where Hta ¼ J�1
0 oSt

�
oba and Hta ¼ oSt=oba in a

straight and undistorted reference configuration. dbc
is the Kronecker delta function,

a; b; c; d;m; n ¼ 1; 2; 3, t; k; f ; v ¼ 1; 2; . . .;NE=3,

i ¼ 1; 2 � � �NE.

The entry in the tangent stiffness matrix or the

Jacobian matrix of element elastic force [33] is

Kij ¼
oFE

i

oej

¼ �etmevd

Z

V

E
s

0

anbc
HtaHknHfbHvcdV þ TW
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etdevd
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HfaHknHtbHvcdl
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þ 1

2

Z
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E
s

0

anbc
HtaHkndbcdVþ

1

2
TW

Z

l

E
s

m

anbc
HtaHkndbcdl;

ð28Þ

where j ¼ 1; 2 � � �NE and Eq. (28) is symmetric and

nonlinear. The integral terms in Eqs. (27) and (28) are

invariant quantities to be done in the pre-processing

when computing at any state of deformation.

According to the work by Ebel et al. [28], the

element names supplemented by the letter ‘‘c’’

throughout this study indicate the full elasticity-based

elements (based on the CMA), such as the element

MGD30c-x (defined in Sect. 2.1.2). To prevent Pois-

son locking, elements here apply the enhanced CMA

elaborated in this Sect. The element names supple-

mented by the letter ‘‘s’’ denote the elements using the

structural mechanics to prevent Poisson locking, such

as the element 3333 s (see Sect. 2.1.2).
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3 The governing equations of the FMBs

The governing equations in the FMBs are a set of

differential–algebraic equations (DAEs) of index-3 as

follows,

M€e tð Þ þ FE e tð Þð Þ þ CT
e e tð Þ; tð ÞkðtÞ ¼ Q e tð Þ; _e tð Þð Þ 2 Rn;

C e tð Þ; tð Þ ¼ 0 2 Rnc ; t 2 Rþ;

(

ð29Þ

whereM is the constant mass matrix, e is the vector of

generalized coordinates, FE is the vector of smooth

nonlinear elastic forces, k is the vector of Lagrange

multipliers, C 2 Rnc is the vector of smooth holo-

nomic constrains, nc is the number of constraint

equations,CT
e 2 Rn�nc is the Jacobian of vectorC, and

the over-dot denotes time derivative.Q is the vector of

external forces and usually depends on position and

velocity generalized vectors, which can stand for

friction, aerodynamic and damping forces, etc. Thus,

the first row of Eq. (29) are the dynamic equilibrium

equations of the system, the second row of Eq. (29) are

the nc kinematic constraints for the mechanical joints

of the system.

4 Analysis of computational complexity

To highlight the advantages of using warping function

over Lagrange polynomials in the HOBEs, the com-

putation complexity O nmð Þ in one Newton–Raphson

iteration method is analyzed. For a relatively fair

estimation with the same level for calculations, the

beam modeled with the two-node, three-node, and

four-node LOBEs is meshing into 38, 24, and 16

elements (around 588 DOFs). Compared with the

existing HOBEs using Lagrange polynomials to

describe the warping deformation in Eq. (5), the

proposed new HOBEs can reduce the model DOFs

using warping function in Eq. (8). For example, for the

two-node HOBEs, the proposed B24-x, respectively,
reduces the model DOFs from 819 (B42 [26, 27, 29])

and 1872 (B4 [26]) to 585. For the three-node HOBEs,

the proposed 3333-x reduces the model DOFs from

882 (3363 [28]) to 588. For the four-node HOBEs, the

proposed 3433-x extremely reduces the model DOFs

from 1470 (34X3 [28]) to 588. Same meshes ne for the

proposed p-node HOBEs will be numerically tested in

the following Princeton beam.

For statics problems as shown in Table 5, the

computational cost estimation in one Newton–Raph-

son iteration is consistent with the model DOFs. Thus,

the computational complexities are O nð Þ and

O nt þ nbð Þ in the FOM and ROM, respectively. And

n � nt þ nb always holds. For dynamics problems,

the computational complexity isO nþ ncð Þ for solving
the DAEs described by Eq. (29). Table 5 indicates the

potential of time reduction when the proposed HOBEs

are used. In the following numerical examples, the

accuracy and efficiency of the proposed HOBEs will

be tested comprehensively.

5 Case studies

5.1 Princeton beam experiment

The Princeton beam has served as a benchmark to

assess the accuracy of the beam formulations in many

studies [28, 31–34]. It is subjected to actions of

combined axial compressive, large biaxial bending,

and bending-torsion coupled under vertical loading.

The condensed adaptive CMS algorithm recently

proposed by the authors [33], based on the FE model

of the LOBE 3333c with shear correction factors, has

Fig. 1 Schematic of the Princeton beam
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been validated by the Princeton beam. It indicates that

the CMS based on the successively local linearizations

[71] can describe the nonlinear curve in space and

capture such significant nonlinear multi-coupling

problems. An interesting phenomenon is that the tip

force in one direction decreases but the displacement

increases, mainly caused by the coupling of bending-

torsion. As reported in [28], among the proposed

elements with the ability to describe the non-uniform

shear stress on the cross section, only the above 34X3c

can capture this coupling phenomenon when k2 = k3-
= 1. However, the accuracy and efficacy of the

numerical solution depend on the geometric descrip-

tion defined by the kinematic description. Therefore, a

comparative study is first made based on the Princeton

beam to test the performance of the new HOBEs

whose displacement field is constructed by the warp-

ing function.

As shown in Fig. 1, X–Y-Z is the inertial frame, and

x–y-z is the material frame attached at the beam end.

(a) (b)

(c)

Fig. 2 Displacement |u3| versus loading angle
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Under a tip load P, the free end tip orientation of the

cantilever beam is defined as h. Thus, the free end tip

twist can be written as / ¼ h� hjP¼0. The free end tip

deflection along the vectors y and z is denoted as u2
and u3, respectively. The applied tip load P is varied

from 0 to 90 degrees.

Results in Figs. 2, 3, and 4 show the 11 predictions

for the 4 proposed HOBEs (BE24c-x, 3333c-x,
3433c-x, and MGD30c-x), 2 existing HOBEs

(BE42c and 34X3c), 2 LOBEs (3333c and MGD30c),

ANSYS BEAM188, ANSYS SOLID95, and GEBF of

Bauchau et al. [32] under 3 loading cases, as well as

the error bar (MGD30c-x vs. experiment [80]). The 3

loading cases are P1 = 4.448 N, P2 = 8.896 N, and

P3 = 13.345 N, respectively. As mentioned above, the

Princeton beam meshes ne the same as the p-node

elements in Table 5.

(a) (b)

(c)

Fig. 3 Displacement |u2| versus loading angle

123

2334 Y. Tang et al.



As shown in Fig. 2, the LOBEs 3333c and

MGD30c fail to predict the bending-torsion coupling

under P3 = 13.345 N, i.e., the tip force in z direction

decreases but the corresponding displacement |u3|

increases. This coupling phenomenon arises because

the planar beam elements cannot describe the non-

uniform distributed shear stress when k2 = k3 = 1. The

6 curves of 3333c-x, 3433c-x, MGD30c-x, ANSYS
BEAM188, ANSYS SOLID95, and the GEBF [32]

agree well with each other, and are close to the

experimental data [80], but the curves of BE24c-x,
34X3c, and BE42c deviate a little from the above

curves. In Fig. 3, the displacement prediction |u2| in

(b)(a)

(c)

Fig. 4 Twist angle U versus loading angle h
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the y direction of the 11 elements and the experimental

data [80] agree well with each other.

As shown in Fig. 4, the differences among the 11

elements and the experimental data [80] are apparent

in the twist angle predictions. The number of curves

close to the experimental data [80] is reduced from 6 to

4, because the 2 curves of ANSYS cannot predict the

behavior under significant torsional actions correctly

[9, 25]. The 2 curves of BE24c-x and ANSYS

SOLID95 deviate a little from the above 4 closed

curves. The 3 curves of BE42c, 34X3c, and ANSYS

BEAM188 differ far from the above 4 closed curves.

Similarly, the LOBEs 3333c and MGD30c completely

fail to predict the twist angle. The curves of LOBE

BE24c are close to the curves of 3333c and MGD30c,

which are not plot in Figs. 2, 3, and 4 so as not to affect

the observation of other curves. These results demon-

strate that a warping function helps the proposed

HOBEs account for the non-uniform distribution of

shear stress, and thus relax the need for a shear

correction factors.

The Von-Mises stress obtained from the proposed

MGD30c-x is slightly smaller than that from ANSYS

SOLID95 under P3 = 13.345 N at three loading

angles, as shown in Fig. 5. It is worth noting that all

these results of ANCF are obtained when k2 = k3 = 1.

Although using shear correction factors can improve

the performance of LOBEs straightforward [31–34], it

cannot capture the cross-sectional warping, as shown

in Fig. 6. The end-sectional Von-Mises stress (Pa)

contour modeled by the proposed is still slightly

smaller than that from ANSYS SOLID95, and it

distributes more uniformly. Although the existing

HOBEs can improve the global response by increasing

Lagrange polynomials’ order, they cause increasingly

tremendous Von-Mises stress on the end section. The

warping shape differs from each other when modeling

by different transverse interpolations.

The computation time of the Princeton beam under

the 3 loading cases (21 computing cases) is shown in

Table 6. Most of the time spent in the pre-processing is

to calculate the invariant quantities in Eqs. (27) and

(28) to compute force and stiffnesses at any state of

deformation. The solving time is to solve the equations

of nonlinear static equilibrium in the Newton–Raph-

son iteration. The time consumed for the 34X3c is

taken as the standard one, i.e., Ts
3 ¼ 1779:89s. Sim-

ulations show that the total time consumed for the

BE24c-x, MGD30c-x, and 3333c-x is all, respec-

tively, smaller than Ts
3%. The 34X3c is still time-

(b)(a) (b)(a)

Fig. 5 Von-Mises stress contours of the Princeton beam (P3 = 13.345 N)
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consuming even when ne = 1, because T1 = 1734.26 s

and T2 = 0.81 s. The proposed BE24c-x, 3333c-x,
3433c-x, and MGD30c-x all are more accurate and

extremely time-saving than the existing HOBEs

34X3c in this benchmark test.

The displacement u3 (m) with an increasing mesh

(P = 13.345 N and h¼30o) is shown in Table 7. The

relative error in the last column is

D¼ u� usð Þ=usj j � 100%, where u is the final results

of the elements used when ne = 48, and us is the

standard results of experiment [80]. To avoid locking,

the mixed formulation 3333 s [28] uses the structural

mechanics to calculate the stiffness and thus yields an

error of 0.75%. As expected, the LOBEs 3333c and

MGD30c poorly overestimate the stiffness since they

both miss the warping deformation and the shear

correction factor. The results of 3333 s, 3333c-x,
MGD30c-x, and 3433c-x yield an error smaller than

1%. And the results of BE24c-x, ANSYS BEAM188,

and ANSYS SOLID95 yield an error between 1% and

1.5%. The result of 34X3c derived in this study final

agrees well with that of the 34X3c of Ebel et al. [28]

Fig. 6 End-sectional Von-Mises stress (Pa) contour and cross-sectional shape of the Princeton beam modeled by different beam

elements (P = 13.345 N and h¼30o)

Table 6 Computation time of the Princeton beam example (T1: the pre-processing time; T2: the solving time; T3(= T1 ? T2): the
total time; T ¼ T3=T

s
3 � 100%;Ts

3: the total time of the standard one)

Time BE42c BE24c-x 3333c 3333c-x 34X3c 3433c-x MGD30c MGD30c-x

T1 (s) 26.27 7.76 4.72 15.18 1739.28 45.00 7.21 20.20

T2 (s) 2.67 1.55 0.78 1.40 40.61 1.69 0.85 1.57

T3 (s) 28.94 9.31 5.50 16.58 1779.89 46.69 8.06 21.77

T(%) 1.63 0.52 0.31 0.93 100 2.62 0.45 1.22
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when ne = 48, and is closer to the experiment date [80]

with a roughmeshing. Under a roughmesh ne = 1 or 4,

the MGD30c-x, 34X3c, 3433c-x, ANSYS

BEAM188, and 3333 s exhibit significant locking

alleviation.

5.2 Uniform and non-uniform cross section

cantilever beam under torsion

This example aims to evaluate the proposed new

HOBEs, mainly MGD30c-x, under pure twisting

conditions. As shown in Fig. 7, four beams of uniform

and non-uniform cross sections are subjected to an

imposed torsion at its free end, respectively. In

Fig. 7a, the I-section cantilever beam has been inves-

tigated in the GEBF [10–12, 17] to analyze Wagner

effects [4] on the thin-walled beams and will be served

as a benchmark problem here. To capture the geome-

tries of beams with non-uniform cross section, some

classical FE formulations have to use dense mesh

because the cross-sectional shapes cannot change

along the element length. However, dense mesh are

often too computationally expensive to be practical in

a large-scale engineering system. In the ANCF, the

cross-sectional shapes can vary along the element

length via changing the upper and lower limits of

cross-sectional integral terms instead of dense mesh.

In Fig. 7d, the tapered cantilever has been investigated

in the ANCF/FFR SSM [46] about the first bending

frequency and will be served as a benchmark problem

in this study. To better compare with existing works,

the Young’s modulus E = 210 GPa for I-section

cantilever beam is set the same with [10], while

E = 1 GPa for the rest four cantilevers is set the same

with [46]. For the five studied cantilever beams, the

length, density, and Poisson’s ratio are L = 2 m,

q = 7850 kg/m3, and m = 0.3, respectively.

As stated below Eq. (26) and Appendix C, the

I-section in Fig. 7a is divided into three rectangular

regions, and the hollow cross section in Fig. 7c, d is

divided into four rectangular regions. Many works

[10–12] of GEBF use the warping function and shear

correction factor to improve its performance, mainly

because the inadequacy of the assumed warping

displacement field for the I-section beam in detecting

cross-sectional modes [17]. In this study, BE24c-x
and MGD30c-x (k2 = k3 = 0.3868 [2]) are discussed,

and two quadratic elements BE24c-x-II and

MGD30c-x-II (k2 = k3 = 1) with more cross-sec-

tional modes are also discussed comparatively. Please

see Appendix B2 for more details of the element

MGD30c-x-II.
Table 8 compares the first in-plane (X–Z plane)

bending frequency of the cantilevers modeled by the

Table 7 Displacement u3 (m) with an increasing mesh (P = 13.345 N and h¼30o)

Element Number of elements ne Error (%)

1 4 8 16 32 48

BE24c - 0.007295 - 0.013136 - 0.013985 - 0.014144 - 0.014164 - 0.014166 16.2

BE42c - 0.007293 - 0.013370 - 0.015088 - 0.015818 - 0.016113 - 0.016202 4.15

BE24c- x - 0.007293 - 0.013398 - 0.015251 - 0.016155 - 0.016537 - 0.016654 1.47

3333s [28] - 0.015532 - 0.016771 - 0.016777 - 0.016777 - 0.016777 - 0.016777 0.75

3333c - 0.007925 - 0.013451 - 0.014066 - 0.014159 - 0.014168 - 0.014170 16.2

3333c-x - 0.008008 - 0.014398 - 0.016120 - 0.016641 - 0.016750 - 0.016750 0.91

MGD30c - 0.012231 - 0.014155 - 0.014168 - 0.014168 - 0.014169 - 0.014169 16.2

MGD30c-x - 0.012711 - 0.015960 - 0.016424 - 0.016664 - 0.016752 - 0.016779 0.73

34X3c [28] - 0.013552 - 0.015781 - 0.016095 - 0.016227 - 0.016275 - 0.016286 3.65

34X3c - 0.016364 - 0.016318 - 0.016314 - 0.016314 - 0.016310 - 0.016278 3.70

3433c-x - 0.016852 - 0.016811 - 0.016802 - 0.016798 - 0.016793 - 0.016756 0.87

ANSYS BEAM188 - 0.015993 - 0.016661 - 0.016664 - 0.016664 - 0.016664 - 0.016664 1.41

ANSYS SOLID95 - 0.016698 (ne = 170 9 2 9 5) 1.21

Experiment [80] - 0.016903 0
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proposed HOBEs, ANCF/FFR SSM (modeled by

BE24) in [46], and commercial codes accordingly. It

is worth noting that the results not supplemented with

parentheses ‘‘()’’ are divided into neelements by

default, and the commercial solid elements need to

be finely meshed to obtain the correct solutions. For

the I-section and hollow tapered cantilever beams, the

frequencies of the proposed HOBEs are slightly higher

(a) (b) (c)

(d) (e)

Fig. 7 The initial configurations of the studied cantilever beams

Table 8 First in-plane bending frequency (rad/s) of the cantilevers

Type Element Number of elements ne

1 10 50 100

(a) I-section ANCF MGD30c-x 396.310 392.805 392.641 392.641

ANCF MGD30c-x-II 392.175 388.940 388.843 388.843

Nastran CHEXA 313.104(3ne) 380.522 (3ne) 377.896(12ne) 377.488(48ne)

Nastran CBEAM 265.779 376.369 377.940 377.901

ABAQUS C3D8I 312.758(7ne) 380.208(7ne) 378.028(13ne) 377.626(23ne)

(b) Square ANCF MGD30c-x 9.088 9.041 9.041 9.041

Nastran CHEXA 7.351 9.053 9.067 (4ne) 9.064(16ne)

Nastran CBEAM 6.303 9.002 9.042 9.043

ABAQUS C3D8I 7.345 9.053 9.067(4ne) 9.064(16ne)

(c) Hollow rectangular ANCF MGD30c-x 9.847 9.796 9.795 9.795

Nastran CHEXA 8.130 9.910 9.807 (4ne) 9.786(16ne)

Nastran CBEAM 6.809 9.708 9.750 9.751

(d) Tapered ANCF MGD30c-x 19.723 19.591 19.590 19.589

ANCF/FFR SSM [46] 27.622 19.667 19.635 19.634

ANSYS BEAM188 [46] 14.165 19.537 19.572 19.573

Nastran CHEXA 15.742 19.547 19.624(4ne) 19.634(16ne)

Nastran CBEAM 13.163 19.486 19.593 19.593

Commercial codes: (i) Beam elements: Nastran CBEAM, ANSYS BEAM188

(ii) Solid elements: Nastran CHEXA, ABAQUS C3D8I
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Fig. 9 Partial mode shapes for a single MGD30c-x-II element of I-section

(b)(a)

Fig. 8 Results of different FEs with an increasing torque Mx for the I-section cantilever beam
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than the commercial codes. Compared with the

frequency of MGD30c-x, the frequency of

MGD30c-x-II is smaller because more cross-sectional

modes make the system more flexible. For the square,

hollow rectangular and tapered cantilever beams, the

frequencies of MGD30c-x agree well with those of

commercial codes. Besides, the beams modeled by

MGD30c-x get the correct solutions via a minimal

mesh, significantly reducing the computational bur-

den. For the tapered beam, the frequency of MGD30c-

x converges faster than the ANCF/FFR SSM in [46].

In Fig. 8, the results of different FEs with an

increasing torque Mx for the I-section cantilever are

presented. The GBT [20] is widely used in assessing

the structural behavior of thin-walled prismatic bars

via deformation modes (shape functions). In Fig. 8a,

the GBT displayed a slightly more flexible response

than GEBF, because the cross-sectional in-plane

modes are considered in GBT [17] but neglected in

GEBF [10]. Recently, the GEBF-based work [14] has

been refined by adding more kinematic DOFs via the

deformation modes of the GBT, leading to more

flexible behavior. While the cross-sectional in-plane

modes are always considered in the ANCF as a 3D-

continuum theory, three conclusions can be drawn:

(1) Fefferred to [81], the linear rotation angle is

h ¼ MxL= GItð Þ, where It ¼
H � 2Tflange
� �

W3
web

�
þ2WflangeT

3
flangeÞg=3, and

g ¼ 1:2 for the I-section. The geometric param-

eters are shown in Fig. 7a, thus

h ¼ MxL= GItð Þ ¼ 7.198Mx

�
105. Literature

[10] pointed out that the nonlinear Wagner

effects increase crucial when the tip end rotation

angle h[ p=12. And the linear and nonlinear

results only match well when the nonlinear

Wagner effects are not significant h	 p=12.
When Mx ¼ 3:637kNm, the corresponding h ¼
15o in the linear analytical results [81] and h ¼
14:2o in the proposed MGD30c-x. As shown in

(a) (b)

(c) (d)

Fig. 10 The free end rotation angle h with an increasing torque Mx of the ROM and FOM
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Fig. 10a, the curves of proposed elements agree

well throughout the whole range h 2 0 p=2½ �
in [10] to demonstrate the correctness of the

proposed elements in the linear (h	 p=12) and
nonlinear rotation (h[ p=12) problems.

(2) The results of BE24c-x and MGD30c-x are

close to [10, 17] only when h	 p=2. When

h[ p=2, the results of BE24c-x and MGD30c-

x become rigid and differ from [10, 17] appar-

ently. Moreover, considering more cross-sec-

tional modes (e.g., warping and stretch), the

results of BE24c-x-II and MGD30c-x-II are

more flexible. Especially, the results of

MGD30c-x-II and GBT coincide throughout

(d)

(b)
(c)

(a)

Fig. 11 The torsional configurations of the studied cantilever beams
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the load range considered in [17]. Although the

contributions of cross-sectional stretch are rel-

atively small, they are crucial for the correct

analysis, especially in the large nonlinear

analysis.

(3) As demonstrated above, considering the full

effects of Green–Lagrange strains in the ANCF,

the continuity of displacement field is always

satisfied. Thus, the maximum rotation h for the

proposed HOBEs can exceed 16 radians, as

depicted in Fig. 8. In contrast, the maximum

rotation h is approximately 5 radians in GBT

[17], even smaller in GEBF [10–12] and com-

mercial FE codes (1.75p and 0.7p accordingly

for ABAQUS C3D8I and ANSYS

SOLID95).

In Fig. 8b, a nonlinear axial shortening phe-

nomenon occurs at the free end accounting forWagner

effects. In the ANCF, Wagner effects are captured

entirely with the full consideration of the Green–

Lagrange strain tensor (more detailed discussions as

shown below Eq. 25). However, most existing com-

mercial FE codes do not consider Wagner effects,

leading to an inaccurate structural behavior under

significant nonlinear torsional actions [9, 25]. For

example, the results of ne(= 2300) ABAQUS C3D8I

(solid elements) are more rigid than [10, 17]. In

addition, for the proposed HOBEs, although the

element DOFs are reduced significantly, it is still

significant to construct the ROM. As shown in Fig. 8,

the ROM named CMS-MGD30c-x-II with nt ¼ 250

modes can fully capture the large nonlinear torsional

(b)(a)

(c) (d)

Fig. 12 Von-Mises stress (Pa) contour and cross-sectional shape for each beam (h = 540�)
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Table 9 Von-Mises stress (Pa) contours of twisted cantilever beams with moderate rotation angles
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behavior of the FOM (495 DOFs), exhibiting high

robustness when Mx 2 0 8000½ � kNm.

The modal analysis is made for a single MGD30c-

x-II element of I-section, and some partial mode

shapes are depicted in Fig. 9. On the one hand, mode

shapes in the first row are the common modes of

MGD30c and MGD30c-x-II. They can only describe

the planar section during deforming, including the

stretch, and thus belong to the lower-order part of

MGD30c-x-II. On the other hand, mode shapes in the

second and third rows are unique in the MGD30c-x-II
and belong to its higher-order part to describe a

complex cross-sectional deformation, especially the

warping. As it can be seen, mode 5 is the torsional

mode, modes 37 and 40 are the warping shear modes,

and modes 43, 44, and 45 are the in-plane shear modes

(the so-called local plate modes in [17]). It is worth

mentioning that the full consideration of the Green–

Lagrange strain tensor leads to many cross-sectional

stretch coupled modes, which is a typical character-

istic of ANCF. For example, mode 7 couples the axial

extension and cross-sectional stretch significantly,

similar to modes 9 and 12. Mode 17 couples the

warping shear and transverse stretch, similar to mode

50. Mode 25 couples the warping shear, axial exten-

sion, and transverse stretch. The cross-sectional

stretch coupled modes may benefit the ROM using

not many modes (or DOFs) to predict the large

deformation correctly, especially in the cases where

the cross-sectional stretch is crucial. For example, to

maintain the accuracy over a medium nonlinear

torsion range h 2 0 5½ �, there are only nt ¼ 120

mostly coupled modes in the ANCF but 726 uncou-

pled modes (a lot of cross-sectional stretch modes) in

GBT [17]. The important effect of coupled modes to

correctly predict the large deformation has been

discussed in [42] for LOBEs. In addition, the modes

must increase to 250 if the nonlinear torsion range

expands as h 2 0 16½ �.
As shown in Fig. 10, the results of the ROM and

FOM are closely matched in all three cantilever

beams. The ROM discards the modes with minimal

contributions, thus showing a slightly rigid behavior

than the FOM near the maximum torque, only

observed in the enlarged view. As shown in Fig. 10a,

similarly, the torsional response of ABAQUS C3D8I

(ne = 1600) shows a slightly rigid behavior compared

with MGD30c-x (ne = 20), and diverges around a

small torque of 9 kNm. In Fig. 10c, the modes can be

reduced gradually to nt ¼ 120 modes when h 2 0 2½ �.
Although not shown, the conclusions related with the

ROM of Fig. 10a, c are applied to the other cantilever

beams studied. The linear results are fefferred to [81],

and the geometric parameters are shown in Fig. 7b, e.

In the square cantilever, h ¼ MxL=GIt, where

It ¼ bHW3, and b ¼ 0:1406. Thus,

h ¼ 3.688Mx

�
104. In the closed thin-walled can-

tilever, h ¼ MxLS=4GAT , where S and A are the

center line length of the wall section and area bounded

by wall section, respectively. Thus,

h ¼ 1.2406Mx

�
103. The nonlinear Wagner effects

increase sharply at a small rotation angle in the thin-

walled box cantilever in Fig. 10d, while increase

slowly in the other three cantilevers and can be

neglected at least when h	 p.
The torsional configurations of the cantilever

beams are depicted in Fig. 11, and h represents the

free end rotation angle. The visible axial shortening at

the free end is due to Wagner effects. When h = 360�,
although the cross sections warp out of their original

plane surfaces, the cross-sectional stretch is not

obvious and the cross-sectional projections almost

retain their original shapes on the section view. The

cross-sectional stretch is visible in Fig. 11b

(h = 2160�) and Fig. 11d (h = 1260�). Although the

stretch affection is not significant in distorting the

local cross-sectional shape, it cannot be neglected due

to the global response, as discussed in Fig. 8a.

The Von-Mises stress (Pa) contour, cross-sectional

shape after warping (h = 540�), and the corresponding

Fig. 13 The schematic of the unbalanced shafts

123

Efficient modeling and order reduction of new 3D beam 2345



rigid shape of each beam are shown in Fig. 12.When h
increases, the cross-sectional projections no longer

retain their original shapes on the YZ view and will be

slightly different due to the cross-sectional stretch and

shear. The distorted boundary of the cross section

deviates visibly from the original/rigid shape in

Fig. 12a, d. The cross-sectional straight boundaries

in Fig. 12a are distorted as curve boundaries due to the

nonlinear strains eyy and ezz in the proposed HOBEs, as
stated below Table 3. The difference between the rigid

shape, planar shape in Eq. (1) and cross-sectional

shape after warping in Eqs. (4) and (8) can be

understood in Fig. 9d. The two adjacent edges of the

rectangle are no longer perpendicular to each other in

the planar shape. As stated in the beginning of Sect. 2,

the ANCF LOBEs in Eq. (1) relax the assumption of a

rigid cross section, and induce parallelogram [74] and

strech deformations. The maximum deviation of the

cross section after warping from a plane surface is

almost up to 80 mm, 7 mm, 15 mm, and 25 mm in the

I-section, square, hollow rectangular, and thin-walled

box cantilevers, respectively.

The Von-Mises stress (Pa) contours of twist beams

and cross sections are plot in Tables 9 and 10; some

conclusions are drawn:

(1) For the I-section cantilever (see Table 9),

although the tip end rotations of MGD30c-x
and ANSYS SOLID95 agree well at a same

torque, the web’s Von-Mises stress ofMGD30c-

x is much smaller. In comparison, concering

more cross-sectional modes, MGD30c-x-II
agrees well with ANSYS SOLID95 in the

predictions of tip end rotation and Von-Mises

stress distribution.

(2) For the square cantilever (see Table 9), only B4

can capture the torsional-warping shape accu-

rately among the HOBEs proposed in [26], but it

caused tremendous end-sectional Von-Mises

stress. In contrast, the MGD30c-x can accu-

rately capture the Von-Mises stress and tor-

sional-warping shape with low computational

burdens, which improves the accuracy and

efficiency of existing HOBEs [26]. It is worthy

to mention that although the free-locking

LOBEs do not generate tremendous end-sec-

tional Von-Mises stress, they generate wrong

distributed Von-Mises stress on the side in the

square cantilever under torsion [26].

(3) The linear analytic solution for square cantilever

and thin-walled box cantilever has been given

below Fig. 10. For the square cantilever, when

(a) (b)

Fig. 14 Results of mid-span point B of the hollow circular shaft, IGA (Tasora et al.) [34] Dymore [32] MGD30c (k2 = k3 =
0.5306) MGD30c (k2 = k3 = 1) MGD30c-x (k2 = k3 = 1) 34X3c (k2 = k3 = 1)
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Mx ¼ 10kNm, h 
 211.3o in the linear analytic

solution, which agrees well with the ANSYS

SOLID95 h 
 210o and the proposed MGD30c-

x h 
 212o. For the closed thin-walled can-

tilever, when Mx ¼ 0:8kNm, h 
 45.8o in the

linear analytic solution [81], which only agrees

well with the proposedMGD30c-x h 
 46o and

much smaller than the ANSYS SOLID95

h 
 60o. For the thin-walled box cantilever

experiencing linear rotations, the proposed

MGD30c-x performs better than ANSYS

SOLID95.

(4) For the cantilevers, although the proposed

HOBEs are meshed much rougher than ANSYS

SOLID95 (8 vs. 1261 FE and 20 vs. hundreds

FE, respectively), their Von-Mises stress con-

tours are basically in good agreement in both the

qualitative and quantitative aspects. Unfortu-

nately, the ANSYS SOLID95 code gradually

diverges after reaching the provided rotation

angles in Table 9, far from the prediction of the

proposed HOBEs with considerable rotation

angles presented in Table 10. In the ANCF, the

excellent torsional capacity benefits from the

full consideration of the Green–Lagrange strain

tensor.

(5) For each symmetric cross section as presented in

Tables 9 and 10, the sectional contours of the

free end are symmetric under a pure torsion.

5.3 The dynamics of an unbalanced shaft

The numerical example of the rotating hollow circular

shaft with an unbalanced disk has been served as a

benchmark in the nonlinear dynamic analysis [32–34].

As shown in Fig. 13, a rigid disk is attached to the

shaft at its mid-span and above the shaft axis by an

offset d and some geometry data and material

parameters are also listed here. In the shaft, the end

C is connected to the rigid ground via a cylindrical

joint, while the end O is driven by a revolute joint at

angular speed X tð Þ, yields

X tð Þ ¼

A1x 1� cosðpt=T1Þ½ �=2; 0	 t	 T1;
A1x; T1\t	 T2;

A1xþ A2 � A1ð Þx 1� cos½p t � T2ð Þ= T3 � T2ð Þ�f g=2; T2\t	 T3;
A2x; t[ T3;

8
>><

>>:

ð30Þ

where A1 = 0.8, A2 = 1.2, T1 = 0.5 s, T2 = 1 s,

T3 = 1.25 s, and x ¼ 60rad/s.

The results of the lateral oscillations of the hollow

circular shaft passing through the critical speeds are

(b)(a)

(c) (d)

Fig. 15 Von-Mises stress (Pa) contours on the external surface of the unbalanced shaft (t = 2.2 s)
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Table 10 Von-Mises stress (Pa) contours of twisted cantilever beams with considerable rotation angles

Table 11 Computation time of the unbalanced shaft (T1: the pre-processing time; T2: the solving time; T3(= T1 ? T2): the total time;

T ¼ T3=T
s
3 � 100%;Ts

3: the total time of the standard one)

MGD30c(k2 = k3 = 0.5306) MGD30c(k2 = k3 = 1) MGD30c-x(k2 = k3 = 1) 34X3c(k2 = k3 = 1)

ne 8 8 20 10

n 156 156 372 930

T1 (s) 84 84 233 17,217

T2 (s) 540 542 1789 4613

T3 (s) 624 626 2022 21,830

T (%) 2.86 2.87 9.26 100
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shown in Fig. 15. The isogeometric analysis (IGA)

[82] uses a spline interpolation in the FE. While the

Dymore [32] (GEBF-based FMBS code) and the

ANCF discretize the continuum using traditional

methods by sharing end nodes. The shear energy is

modified in the LOBEs-based works [32, 34], and the

Dymore [32] serves as the reference solution here.

Three following conclusions are obtained: (i) The

results of C-MGD30c (k2 = k3 = 0.5306 [2]) show the

best agreement with [32], while the results of IGA in

[34] show a relatively large error after t = 1 s. (ii)

Once the FEs do not modify the shear energy, the error

of LOBE, i.e., MGD30c (k2 = k3 = 1), increases

visually after 1.8 s. However, the results of the HOBE,

i.e., MGD30c-x (k2 = k3 = 1), and the Dymore in [32]

match closely. This result again demonstrates that it is

unnecessary to modify the shear energy if the HOBE

can well capture the non-uniform distribution of the

shear stress. (iii) However, the results of 34X3c

deviate the farthest from [32]. Similarly, the 34X3c

was compared with ANSYS BEAM189 in [83] via a

solid circular shaft, and their results did not match

well. These results again demonstrate that it is

unnecessary to modify the shear energy if the HOBE

can well capture the non-uniform distribution of the

shear stress.

In Fig. 15, the Von-Mises stress contours show that

strong forces can be observed in the middle and at both

ends of each shaft, as expected. The Von-Mises stress

contours of MGD30c (k2 = k3 = 0.5306), MGD30c

(k2 = k3 = 1) and MGD30c-x (k2 = k3 = 1) match

well, except for the cross section since only the

MGD30c-x (k2 = k3 = 1) can capture the non-dis-

tributed sheer stress of the unbalanced shaft. While the

cross-sectional Von-Mises stress is minimal for the

planar beams and excessively large for HOBE 34X3c.

The application of the higher-order Lagrange polyno-

mials to describe the cross-sectional deformation can

cause tremendous Von-Mises stress, which has also

been reported for B4 in [26] (as demonstrated in Sect.

5.2 for the square cantilever).

The computation time of the unbalanced shaft is

shown in Table 11. The time consumed for the 34X3c

is taken as the standard one, i.e., Ts
3 ¼ 21830s.

Compared with the propossed MGD30c-x and the

existing HOBE 34X3c, (i) the pre-processing time

consumed is reduced to 1.35% (233 s vs. 17217 s), (ii)

the solving time consumed is reduced to 38.78%

(1789s vs. 4613 s), and (iii) the total time consumed is

reduced to 9.26% (2022s vs. 21830 s). Again, the

proposed MGD30c-x is more accurate and extremely

time-saving than the existing HOBE 34X3c in this

benchmark test.

6 Conclusion

Existing high-order beam elements (HOBEs) for

ANCF require cubic (34X3c [28]) and biquadratic

(B4 [26]) Lagrange polynomials to accurately predict

the benchmarks of bidirectional bending and cross-

sectional warping, respectively. An existing p-node

(low-order beam element) LOBE usually only has 9p,

10p or 12p DOFs per element, while the additional

DOFs increase to 21p and 36p in the cubic and

biquadratic HOBEs, respectively. It is very time-

consuming to increase the accuracy by only increasing

the interpolation order in the HOBEs. What is worse,

the existing HOBEs with accurate deformation

responses cause tremendous Von-Mises stress on the

end-section.

Inspired by the GEBF [8], a new mixed kinematic

description of beam elements is introduced via the

slope vectors and warping functions. To alleviate the

element locking and preserve the coupled modes, the

strain energy formulation is derived via the enhanced

continuum mechanic approach. In contrast to the

classical FE (based on 1D-continuum theory) [8], the

new ANCF HOBEs (based on 3D-continuum theory)

capture the out-of-plane warping, nonlinear cross-

sectional stretch, and nonlinear Wagner effects of

uniform and non-uniform beams straightforwardly.

While for the strain energy formulation obtained with

respect to the relationships of all the kinematic modes

[28, 36, 42, 43], the coupled modes to correctly predict

the large deformation will be missing [42].

The accuracy and efficiency of the proposed

HOBEs are examined on various benchmarks, FE

formulations, commercial codes, and experimental

data. Conclusions are drawn as follows from these

challenging benchmarks:

(1) In contrast to [26, 28], the additional DOFs per

element proposed to describe the out-of-plane

warping can be significantly reduced to

3p. Thus, the efficiency is promoted by one or
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even two orders of magnitude than the existing

34X3c and B4.

(2) The distribution and accuracy of Von-Mises

stress in the proposed HOBEs are significantly

improved compared with the existing HOBEs

and LOBEs, which matches well with the results

from commercial ANSYS SOLID95 codes.

(3) In a significant torsion, the stretch is often

crucial for obtaining correct results and the

coupled modes make the reduced-order model

reserve fewer modes compared with the classi-

cal FE formulations [17].

(4) The proposed HOBEs exhibit excellent agree-

ments with the standard results in all the

provided challenging benchmarks, and

MGD30c-x can be the first choice in simulation.

Moreover, a complete 3D strain state without a

small strain assumption is helped to expand the

torsional range.

(5) The ANCF LOBEs relax the assumption of a

rigid cross section, and parallelogram and

stretch deformations are allowed. In addition,

the locking-free LOBEs are accurate enough in

some benchmarks where the warping and Von-

Mises stress in a twisting condition are uncon-

cerned. The existing HOBEs are accurate

enough in some benchmarks where the compu-

tational efficiency and end-sectional Von-Mises

stress are unconcerned.

The proposed HOBEs will be used to study the

reduced-order model of dynamic systems of compos-

ite structures or folded wings in aviation in future

research.
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Appendix

The existing HOBEs

The existing HOBEs (e.g., B42 [26, 27, 29], 3363 [28],

34X3 [28], and B4 [26]) introduced here are the

complete polynomial based on Pascal’s triangle. And

some existing HOBEs with incomplete polynomial

can be found in the works byMatikainen et al. [24] and

Ebel et al. [28], just to name a few.

The quadratic beam element BE42

To test the performance of locking alleviation, the

higher-order BE42 was studied by the standard CMA

[26, 27] and subsequently studied by the strain split

method [29]. Compared with the BE24, the main

improvement in the BE42 is using the displacement

field given by Eq. (5) with quadratic interpolation in

the transverse directions. As shown in Table 1, the

BE42 possess three additional directional derivatives

for each node of the two-node to describe the cross-

sectional warping. As displayed in Table 2, the vector

of element nodal coordinates is defined as

e ¼ eT1 eT2
� 	T2 R42. Thus

SBE42 ¼ sBE42 � I

¼ ½sBE241 S1;22 S1;23 S1;33|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sBE42
1

� � �|{z}
sBE42
2

� � I 2 R3�42:

ð31Þ

What is more, the beam element BE42 studied in

[26, 27, 29] is also the beam element 3273 studied in

[28].

The cubic beam element 34X3

As shown in Table 2, the beam element 34X3 is

proposed using the displacement field given by Eq. (5)

considering cubic interpolation in the transverse

directions. The vector of nodal coordinates is defined

as e ¼ eT1 eT2
�

eT3 eT4
	T2 R120, where eTI ¼

rTI rTI;y r
T
I;z r

T
I;yy r

T
I;yz r

T
I;zz r

T
I;yyy r

T
I;yyz r

T
I;yzz r

T
I;zzz

h i
,

i ¼ 1; 2; 3; 4. Thus,
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S34X3 ¼ s34X3�
I¼½s34331 S1;22 S1;23 S1;33 S1;222 S1;223 S1;233 S1;333|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

s34X3
1

� � �|{z}
s34X3
2

� � �|{z}
s34X3
3

� � �|{z}
s34X3
4

� � I:

ð32Þ

Warping

Rectangular beam

Assuming that the warping function of the rectangular

cross section takes the form of the product of

hyperbolic and sine functions as follows [11],

x y; zð Þ ¼ yzþ
X1

n¼1;3;5���
cn sin

np
H

z
� �

sinh
np
H

y
� �

;

ð33Þ

where cn ¼ ð�1Þ nþ1ð Þ=2 8H2

n3p3 cosh npW= 2Hð Þð Þ, H and W are

the height and width. For a square beam, H = W holds

in Eq. (33).

I-section beam

The approximate warping function for the I-section is

assumed as follows [10–12, 17],

xtop flange y; zð Þ ¼ y z� h
� �

; xweb y; zð Þ
¼ �yz; xbottom flange y; zð Þ ¼ y zþ h

� �
;

where h ¼ H � Tflange is the distance between the mid-

lines of the flanges and displayed in Fig. 7.

In the I-section beam, the top flange, web, and

bottom flange have their own warping functions. Thus,

the warping-related function S can be written as the

following compact form,

SI ¼ x y; zð ÞfI xð Þ ¼ yzfI xð Þ; ð35Þ

where ztop flange ¼ z� h, zweb ¼ �z and

zbotton flange ¼ zþ h.

In the previous works [10–12], the shear-related

energy part is modified by the approximate warping

function of Eq. (34) and the shear correction factors.

However, a so-called ‘‘geometrically exact cross

section deformable thin-walled beam’’ in [17] was

proposed via more cross-sectional modes than

[10–12]. As a result, it can get a more detailed

description of the cross-sectional deformation and thus

lead to a more flexible torsion response. Similarly, in

this study, BE24c-x and MGD30c-x are examined

with k2 = k3 = 0.3868 [2]. Moreover, to get more

cross-sectional modes, the quadratic elements BE24c-

x-II and MGD30c-x-II are also examined without

shear energy correction. The dimensionless shape

functions related with the additional nodal coordinates

ri;y2 , ri;yz, ri;z2 , ri;y3 , ri;y2z, ri;yz2 , and ri;z3 are depicted in

Table 12, same rules with the BE24c-x-II.

Hollow rectangular beam

According to the work of Chandra et al. [84], the

warping function for the hollow rectangular beam in

Fig. 7c is assumed to be

x y; zð Þ ¼ yz
W � Hð Þ
W þ Hð Þ: ð36Þ

Tapered beam

In the tapered beam of a linearly varying cross section

height, the upper and lower limits of integral terms for

the initial configuration are linear functions of the

axial generalized coordinates [47]. That is, zu ¼
H=2þ ksx and zl ¼ �H=2� ksx, where l, H, and ks

are the length, height, and slope of beam element,

respectively. Thus,

z xð Þ ¼ zu � zl ¼ H þ 2ksx: ð37Þ

It is worth noting that the nonlinear functions of

x for the upper and lower integral limits in Eq. (37) can

account for the beam configuration of a nonlinearly

varying cross section height.

Substituting Eq. (37) into Eq. (33) to get the

warping function of the tapered beam when n = 1 as

follows.

x y; z xð Þð Þ ¼ y H þ 2ksxð Þ

þ 8H2

p3 cosh pW= 2Hð Þð Þ sin
np
H

H þ 2ksxð Þ
� �

sinh
np
H

y
� �

:

ð38Þ
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The integral of an irregular section

The integral of an irregular section is usually divided

into n independent integrals of regular sections. Thus,

the element elastic energy UE in Eq. (26) can be

rewritten as.

UE ¼
Xn

i¼1

UE
i

¼
Xn

i¼1

1

2

Z

Vi

e : E
s

0 : edVi þ TiWi

Z

Li

e : E
s

m : edLi

� 
:

ð39Þ

I-section beam

The I-section is divided into n = 3 rectangular regions

to integrate independently, and the subscript i = 1,

i = 2, and i = 3 in Eq. (39) represents the web, up

flange, and bottom flange, respectively.

T1 ¼ H � 2Tflange, W1 ¼ Wweb, T2 ¼ T3 ¼ Tflange,

and W2 ¼ W3 ¼ Wflange

Hollow rectangular beam

The hollow rectangular is divided into n = 4 rectan-

gular regions to integrate independently, and the

subscript i = 1, i = 2, i = 3, and i = 4 in Eq. (39)

represents the top, bottom, left, and right rectangular

regions. T1 ¼ T2 ¼ T3 ¼ T4 ¼ T , W1 ¼ W2 ¼ W , and

W3 ¼ W4 ¼ H � 2T .
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