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Abstract Researchers have been interested in the
dynamics and control of pendulums for many decades
since themathematicalmodels of these systems are able
to represent the dynamics of real-world applications
such as satellite launchers and balancing robots. This
paper derives a novel multi-input global predefined-
time sliding mode control strategy for the attitude con-
trol of a 3D pendulum. A different sliding variable is
proposed assuring the convergence of the system to
the equilibrium within a predefined time chosen by the
designer in advance. Numerical simulations are carried
out to evaluate the proposed controller in two different
scenarios: taking the pendulum from the downward
position to the upright position and tracking a sinu-
soidal reference. The results have shown that by using
the proposed controller the system’s dynamics reaches
the desired referenceswithin the predefined time, while
being less conservative than other existing controllers.
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1 Introduction

Inverted pendulum-like systems have been extensively
studied and even today provide a rich source of exam-
ples of challenging nonlinear dynamics. In the vast lit-
erature of dynamics and control, many configurations
can be found, such as the rotary inverted pendulum [1,
2], reaction wheel pendulums [3–6], wheeled inverted
pendulums [7–11], 3D pendulum [12,13], reaction
mass pendulum [14,15], the Cubli [16,17], among
many other examples [18–26]. All these dynamic
systems have contributed to either approximating
the dynamics of real-world systems such as satellite
launchers, cranes, and humanoid robots, or providing
research benchmarks for analysis and design of con-
trollers.

Specifically, this paper investigates the 3D pendu-
lum, thus extending the discussion introduced in refer-
ences [12,27]. This device consists of a rigid body fixed
to a pivot, both subjected to gravity, allowing three rota-
tional degrees of freedom.A controllable 3D pendulum
is a fully actuated dynamic system with three indepen-
dent control torques applied to each rotational degree
of freedom [12,28,29]. The asymptotic stabilization
of the 3D pendulum has been investigated in refer-
ences [28–32]. Chaturvedi et al. [31] have designed
several controllers that either use only angular veloc-
ity feedback for the hanging equilibrium case or angu-
lar velocity feedback and reduced attitude that asymp-
totically stabilize the axially symmetric 3D pendulum

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-022-07542-z&domain=pdf
http://orcid.org/0000-0002-6726-8699


1694 J. F. S. Trentin, D. A. Santos

for both hanging and inverted equilibrium. Zou and
Ge [32] have presented a neural-network-based fuzzy
logic control for a 3D pendulum which also assured
the asymptotic stabilization. In particular, the author
of [13] has proposed a robust finite-time attitude con-
trol law for the tracking control of the 3D pendulum
with the addition of a disturbance observer in order to
exactly estimate the external disturbances acting on the
system. The control strategy proposed in [13] guaran-
tees the finite-time stability, however the settling time
cannot be set in advance by the user independently of
initial conditions.

The sliding mode control (SMC) approach has been
investigated for many decades [33–36]. The main
advantage provided by the SMC, i.e., insensitivity to
bounded uncertainties and unmodeled dynamics, has
popularized it in many control applications [37–40],
including the inverted pendulums [5,6,8,11,23,41]. In
the global sliding mode control (GSMC) design, also
referred to as integral sliding mode, the sliding vari-
able is chosen so as to be zero at the initial condition
[35,42]. Therefore, by ensuring the existence of sliding
mode from the very beginning, the reaching phase of
the conventional design is eliminated, and robustness
is assured from the initial condition [35,42].

The classical SMC design uses a linear surface
which assures the asymptotic convergence of the states
to the equilibrium. The introduction of the terminal
SMC has provided the property of adjustable finite-
time convergence to the origin [43]; however, the bound
for the settling time usually depends on initial condi-
tions, on tunable parameters and it is an unbounded
function. Due to this fact, other sliding mode control
designs have been proposed assuring a stronger form
of stability, known as fixed-time stability [44,45]. The
concept of fixed-time stability has presented a bounded
fixed convergence time independent of initial condi-
tions. However, choosing the settling time for fixed-
time control strategies is still a difficult task due to a
relation between the tuning gains and the fixed stabi-
lization timenot being direct and easy to obtain [46,47].
Furthermore, the bound for the settling-time obtained
for fixed-time controllers can be very conservative, i.e.,
the actual convergence can occur far too early com-
pared to that bound [46,47].

Sánchez-Torres et al. [48] have introduced the con-
cept of predefined-time stability with sliding modes
where the settling time can be set as a design param-
eter. They have also shown the design of first-order

sliding mode control with predefined-time reaching
phase. Jiménez-Rodríguez et al. [46] have investigated
the predefined-time tracking of a class of mechani-
cal systems, for instance, a two-link robot manipula-
tor. However, they only considered the case where no
external disturbances are applied to the system. More-
over, Sánchez-Torres et al. [47] have presented a class
of dynamic systems which are predefined-time stable,
i.e., they are fixed-time stable and the settling time is a
design parameter that can be set in advance. Jiménez-
Rodríguez et al. [49] have studied the variable structure
stabilization of second-order systems with predefined-
time settling time verifying the method’s effectiveness
in a two-link robotic manipulator. Sánchez-Torres et
al. [50] have designed an integral sliding mode control
for second-order systems with predefined settling time.
Recently, the predefined-time control has been studied
for some dynamic systems, for instance, see [51–54].
Only reference [50] have investigated the predefined-
time control combined it with a GSMC approach.

The present paper is concerned with the design and
analysis of a predefined-time global sliding mode con-
trol strategy. For many engineering systems and practi-
cal applications, it is useful that the controller designer
can choose directly the settling time within which the
dynamic system will converge to the desired refer-
ence and also that this parameter be independent of
initial conditions. In this sense, the recent predefined-
time control schemes allow this choice. Combining it
with a global sliding mode can assure the robustness to
bounded disturbances and uncertainties since the ini-
tial time. In summary, to the best of our knowledge,
the main contributions of this paper are: (1) the design
of a novel global predefined-time sliding mode control
for multi-input nonlinear systems in the regular form
and (2) the application of the designed control to the
three-axis attitude control of a 3D pendulum. Different
from other approaches presented in the literature for
the 3D pendulum, the designer can choose in advance
the predefined timewhich is independent of initial con-
ditions, and the states converge to the desired reference
within the time chosen. Additionally, the sliding vari-
able introduced by our work is different from [50], and
the control design is simpler, presenting a novel control
design with predefined settling time for multi-variable
systems.

This paper is organized as follows: Sect. 2 presents
the problem definition. Section 3 shows the design
of the predefined-time global sliding mode controller

123



Predefined-time global sliding mode control design 1695

for the 3D pendulum. Section 4 reports the numerical
results of two different scenarios, taking the pendu-
lum to the upright (inverted) position and tracking a
desired command, to demonstrate the method effec-
tiveness comparing the obtained results to two other
global sliding mode methods. Finally, Sect. 5 brings
forward the concluding remarks of the paper.

2 Problem definition

This section presents the notation used throughout the
paper, describes the mathematical model of the 3D
pendulum, and shows how to obtain the model of this
dynamical system in terms of the attitude and angular
velocity errors described in the regular form. Further-
more, the control objective is defined.

2.1 Notation

Denote an algebraic vector by a lowercase boldface
letter, e.g., a, and a matrix by an uppercase boldface
letter, e.g., A. The notation A � 0 represents a pos-
itive definite matrix. Consider a Cartesian coordinate
system (CCS) Sr = {R; r̂1, r̂2, r̂3}, where r̂1, r̂2, and r̂3
are orthogonal unit three-dimensional vector describ-
ing the space. The representation of a coordinate-free
vector in an arbitrary CCS Sr is denoted by the low-
ercase boldface letter as the corresponding coordinate-
free vector, but with a subscript r , e.g., ar ∈ R

3. The
norm 2 of an algebraic vector or a matrix is denoted by
||.||. Denote the special orthogonal group as

SO(3) �
{
D ∈ R

3×3 : DTD = I3
}

, (1)

where I3 ∈ R
3×3 is an identity matrix. The rela-

tion between the representations of a coordinate-free
vector in two different CCS is ar = Dr/sas , where
Dr/s ∈ SO(3) is the attitude matrix of Sr with respect
to Ss . The inverse of Dr/s is sometimes denoted by
Ds/r and it coincides with its transpose. The symbol
ei denotes a n-dimensional unit vector in R

n . The i-
th component of a is denoted by ai and sometimes by
eTi a. Now, consider two vectors ar and br represented
in Sr . Denote the representation of the cross product
by the matrix multiplication [ar×]br , where [ar×] is

Fig. 1 Generic 3D pendulum

the following skew symmetric matrix

[ar×] =
⎡
⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤
⎦ . (2)

2.2 Dynamic modeling

Consider an inertial and a body-fixed CCS denoted

by Sn �
{
N ; n̂1, n̂2, n̂3

}
and Sb �

{
B; b̂1, b̂2, b̂3

}
,

respectively. Assume that their origins are coincident,
i.e., N = B. Figure 1 shows a generic 3D pendulum
and the CCSs.

Themodified Rodrigues parameters (MRP) are used
to describe the attitude of the 3D pendulum. Consid-
ering its shadow set property, the MRP provides a
3D singularity-free attitude description [55]. TheMRP
p ∈ R

3 is defined as

p � tan
φ

4
ê, (3)

where φ ∈ (−2π, 2π) is the principal angle of rota-
tion, ê is the principal-axis unit vector referring to the
Euler’s principal rotation theorem. The kinematic dif-
ferential equation describing the attitude motion of Sb

with respect to Sn in terms of the MRP is [55]:

ṗb/n = 1

4
Σ

(
pb/n

)
ω
b/n
b , (4)
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where Σ
(
pb/n

) ∈ R
3×3 is given by

Σ
(
pb/n

)
=

(
1 − pTp

)
I3 + 2[p×] + 2ppT (5)

and ω
b/n
b is the body angular velocity with respect to

inertial frame represented in the body frame.
The angular momentum of the 3D pendulum with

respect to point B is given by

hb = Jbω
b/n
b , (6)

where Jb ∈ R
3×3 is the 3D pendulum centroidal inertia

matrix. The Euler’s equation establishes

ḣb + ω
b/n
b × hb = τ b, (7)

where τ b is the resultant external torque acting on the
pendulumwith respect to B. Taking the time derivative
of the angular momentum given in (6) and detailing
the resultant external torque, it is possible to obtain the
following equation of motion for the 3D pendulum:

Jbω̇
b/n
b = −ω

b/n
b × Jbω

b/n
b + �b + ub + db, (8)

where ω̇
b/n
b ∈ R

3 is the body angular acceleration,
ub ∈ R

3 the control torque vector, db ∈ R
3 represents

the unknown disturbances, �b = −mgrcm/n
n × Db/ne3

describes the external torque caused by gravity, where
m is themass of the 3Dpendulum, rcm/n

n ∈ R
3 the posi-

tion vector of the center ofmass represented inSn ,Db/n

is the attitude matrix of Sb w.r.t. Sn , and e3� (0, 0, 1).
Equations (4) and (8) completely describe the

dynamic model of the 3D pendulum.

2.3 Error dynamics

For designing the tracking control law, let us define the
attitude control error in terms of the attitude matrix as

D̃ � Db/n
(
D̄b/n

)T
, (9)

where D̄b/n is the attitude command considering an
implicit reference CCS. Now, consider the following
parametrization of D̃ in terms of MRP:

p̃ = 1

ζ(ζ + 2)

⎡
⎣
D̃23 − D̃32

D̃31 − D̃13

D̃12 − D̃21

⎤
⎦ , (10)

where ζ �
√
trace(D̃) + 1.

On the other hand, define the angular velocity con-
trol error as

ω̃ = ω
b/n
b − D̃ω̄

b/n
b , (11)

where ω̄
b/n
b is the commanded body angular velocity.

The attitude error kinematics in terms of MRP is
then described by

˙̃p = 1

4
Σ(p̃)ω̃. (12)

Differentiating equation (11) with respect to time
yields

˙̃ω = ω̇
b/n
b + [ω̃×]D̃ω̄

b/n
b − D̃ ˙̄ωb/n

b . (13)

By substituting Eq. (8) into Eq. (13), we can finally
obtain the dynamic equation in terms of the attitude
and angular velocity control errors as

˙̃ω = J−1
b

(
−[ωb/n

b ×]Jωb/n
b + �b

)
+ [ω̃×]D̃ω̄

b/n
b +

−D̃ ˙̄ωb/n
b + J−1

b (ub + db) . (14)

Equations (12) and (14) can now be written in the
following regular form:

ẋ1 = f1(x1, x2), (15)

ẋ2 = f2(x1, x2) + Bu + Bd, (16)

where x1 � p̃ denotes the attitude error in terms of the
MRPvector and x2 � ω̃ represents the angular velocity
error. The functions f1(x1, x2) and f2(x1, x2) are given
by

f1(x1, x2) � 1

4
Σ(p̃)ω̃, (17)

f2(x1, x2) � J−1
(
−[ωb/n

b ×]Jωb/n
b + �b

)
+

+[ω̃×]D̃ω̄
b/n
b − D̃ ˙̄ωb/n

b , (18)

and matrix B � J−1
b . Finally, the control input is

u � ub and the disturbance is d � db which includes
bounded matched disturbances and uncertainties.

Assumption 1 Assume that the unknown disturbance
d is bounded according to ‖d‖ ≤ ρ, with known ρ ∈
R+.

Now, we can enunciate the control objective.

Problem 1 The main problem is to design a robust
control law u that ensures sliding mode during all time
and makes the control errors x1 and x2 converge to
zero within a time period predefined by the designer
independent of the initial conditions.
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3 Predefined-time global sliding mode control
design

3.1 Preliminaries

This subsection provides some important definitions
and previous results reported in the literature that aid
in the control design.

Consider the following differential equation

ẋ = f (t, x) , (19)

where x ∈ R
n is the state variable, t ∈ R≥0 is the time,

and f : Rn → R
n with f(t, 0) = 0. Denote the solution

of Eq. (19) from the initial condition x0 � x(0) by
φ(t, x0).

As follows, we present three stability definitions
involving finite-time convergence that are the basis for
the present investigation. Note that they are incremen-
tal.

Definition 1 (Finite-time stability [56–58]) The ori-
gin of the system (19) is said to be finite-time sta-
ble if it is asymptotically stable and for any solution
φ(t, x0) there exists a finite time 0 ≤ τ < ∞, such that
φ(t, x0) = 0, ∀t ≥ τ .

The above definition involves a finite-time conver-
gence. However, the time of convergence, known as
settling time, in general, depends on the initial condi-
tion x0. In this sense, if x0 is far from the origin, we
would expect a larger settling time.

For convenience, let us define a settling-time func-
tion T : Rn → R≥0 as

T (x0) � inf {τ ≥ 0 : φ(t, x0) = 0, ∀t ≥ τ } . (20)

Definition 2 (Fixed-time stability [44,45,57,58]) The
origin of the system (19) is said to be fixed-time stable
if it is finite-time stable and the settling-time function
T is bounded according to

supx0∈Rn T (x0) ≤ Tmax, (21)

for some possibly unknown Tmax ∈ R>0.

Note that, different from Definition 1, the above one
imposes a bound Tmax on the settling time function.
However, it does not allow the flexibility to set that
bound as desired.

Definition 3 (Predefined-time stability [47,57,58])
The origin of the system (19) is is said to be predefined-
time stable if it is fixed-time stable and the settling time
function satisfies

T (x0) ≤ Tc, (22)

where Tc∈ R>0 is a predefined time.

This paper is particularly interested in the latter def-
inition.

Reference [47] has shown that

ẋ = −gp(x), (23)

where

gp(x) � 1

Tc p
exp

(||x||p) x
||x||p , (24)

with 0 < p ≤ 1 and Tc > 0 is globally predefined-
time stable with predefined time Tc. Some important
properties of this function are discussed in [46–48].

The authors of [46] have shown that the derivative
of the stabilizing function presented in (24) along the
trajectories of (23) is

dgp(x)
dt

= −∂gp(x)
∂x

gp(x), (25)

which yields

dgp(x)
dt

= −
(
exp(||x||p)

Tc p

)2 (
p

x
||x||p + (1 − p)

x
||x||2p

)
,

(26)

where 0 < p < 1/2, and dgp(x)/dt is continuous.

3.2 Control design

In this subsection, we present the design of a novel
global predefined-time sliding mode controller. To do
so, we consider the following sliding variable:

s (σ (x1), t) � σ (x1) − P(t)I[0,T]σ (x10), (27)

where

σ (x1) � ẋ1 + gp1(x1), (28)

and x10 � x1(0). The function gp1(x1) is defined as in
(24) and Tc is the predefined time. Moreover, P(t) is
chosen as

P(t) = I3 p(t), (29)

with p(t) = 1− 2t/T + t2/T 2, where T > 0 is a con-
stant design parameter. In the proposed sliding variable
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(27), the function P(t) is multiplied by an indicator
function I[0,T] given by

I[0,T] =
{
1 if t ∈ [0,T]
0 if t /∈ [0,T] , (30)

where one can note that after the time constant T ,
the term P(t)I[0,T]σ (x10) goes to zero and only the
predefined-time term given in (28) remains. Consider-
ing the construction of the sliding variable presented in
(27), the predefined time is such that Tc > T .

Now, consider the following set:

S � {(x1, x2) ∈ R
6 : s (σ (x1), t) = 0,∀t ≥ 0}, (31)

as the eventual sliding set. To assure that all trajectories
are constrained to this set, we propose the following
control law:

u = −Δ

(
∂f1
∂x1

f1 + ∂f1
∂x2

f2−P(t)I[0,T]σ̇ (x10)
)

+

−Δ

(
−Ṗ(t)I[0,T]σ (x10) + ∂gp1

∂x1
gp1 (x1) + κ

s
||s||

)
,

(32)

where κ ∈ R+ is the switching gain, and Δ is denoted
by

Δ =
(

∂f1
∂x2

B
)−1

. (33)

Theorem 1 Considering the error dynamic model
given in (15)–(16), the control law u presented in Eq.
(32) assures that the state errors x1 and x2 converge to
zero within the predefined time Tc, while maintaining
s(σ (x1), t) = 0, ∀t ≥ 0.

Proof let us consider the Lyapunov candidate function
as

V = 1

2
sT s. (34)

Evaluating its derivative yields

V̇ = sT ṡ, (35)

with

ṡ = ∂f1
∂x1

f1 + ∂f1
∂x2

(f2 + Bu + Bd) + ∂gp1 (x1)
∂x1

gp1 (x1) +
−Ṗ(t)I[0,T]σ (x10) − P(t)I[0,T]σ̇ (x10). (36)

Substituting the proposed control law presented in Eq.
(32) into Eq. (36), we can obtain the closed-loop s-
dynamics

ṡ = ∂f1
∂x2

Bd − κ
s

||s|| . (37)

Let us now substitute the closed loop s-dynamics, Eq.
(37), into the derivative of the Lyapunov candidate
function, Eq. (35), which yields

V̇ = sT
∂f1
∂x2

Bd − κ||s||. (38)

The above equation implies

V̇ ≤ −
(

κ −
∣∣∣∣
∣∣∣∣
∂f1
∂x2

∣∣∣∣
∣∣∣∣ ||B||ρ

)
||s||. (39)

Therefore, if

κ >

∣∣∣∣
∣∣∣∣
∂f1
∂x2

∣∣∣∣
∣∣∣∣ ||B||ρ, (40)

equation (39) can be written as

V̇ ≤ −η||s||, (41)

with η > 0, which is sufficient for the existence of
sliding mode.

Now, let us verify the behavior of the sliding variable
at the initial time given by

s (σ (x10), 0) = σ (x10) − P(0)I[0,T]σ (x10). (42)

Note that P(0) = I3, which results

s (σ (x10), 0) = 0, (43)

thus, showing that the slidingmotion is assured at initial
time. Since we have shown that V is a non-increasing
function, one can see that s remains at zero, which guar-
antees the sliding motion from the initial time on.

Furthermore, note that the proposed sliding variable
has a term that assures that the error state x1 goes to
zero within the predefined time Tc, which means that
ẋ1 also converges to zero. From equation (15), we can
see that ẋ1 converging to zero implies that x2 also goes
to zero once 1

4Σ(p̃) 
= 0, implying that ω̃ = 0. Thus,
we can see that both x1 and x2 converge to zero within
the predefined time Tc, thus completing the proof. ��

4 Results and discussion

This section presents the numerical results for con-
trolling the 3D pendulum for two different scenar-
ios, driving the pendulum to the upright position and
tracking a sinusoidal reference. The proposed global
predefined-time sliding mode controller (GPTSMC) is
compared to two other approaches, a classical global
sliding mode controller (GSMC) based on [42] which
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has been investigated for the 3D pendulum in [59], and
a global fast nonsingular terminal sliding mode con-
troller (GFNTSMC) based on [40].

To carry out the numerical simulations, we have set
the following physical parameters for the 3D pendulum
based on [13]: m = 30.5 kg, J = diag(5.3 9.5 14.5)
kgm2, and rcm/n

n = (0, 0, 0.22) m. The script was
coded in MATLAB using Euler integration method
with a time step of 0.001 s. Disturbances are applied as
sinusoidal signals with frequency of 0.5 Hz and ampli-
tude 0.1 Nm for both cases investigated and for the
three controllers.

For driving the 3D pendulum to the upright posi-
tion, the initial condition for the angular position is
(−180◦, 10◦, 10◦) in a 123 Euler angles sequence
which is converted to MRP. For tracking a desired tra-
jectory, the initial condition is (−25◦,−35◦, 25◦) and
the reference command is

p̄ = (0.1 cos(0.5t), 0.1 cos(0.6t), 0.1 cos(0.4t)) .

(44)

The predefined time is chosen as Tc = 4 s, the parame-
ter p1 is selected as p1 = 0.45, the parameter T = 0.8,
and the switching gain is κ = ||d|| + 0.05.

Figure 2 shows the controlled attitude for driving the
pendulum to the upright position. One can note that the
proposed GPTSMC reaches the desired reference for
the three components before the other two controllers
and within the predefined time set. None of the con-
trollers present overshoot.

Let us analyze the norm 2 of the attitude and angular
velocities errors depicted in fig. 3 for this case. We
can observe that the norms have converged to values
very close to zero, but the error norms for the proposed
GPTSMC have presented a better outcome, and they
have converged within the predefined time set.

Since the controllers we have designed are in the
category of global sliding mode control strategies, the
sliding variable must be zero for all the simulation time
in order to assure robustness to bounded disturbances.
Therefore, fig. 4 exhibits the behavior of the sliding
variables for all three controllers and they are very sim-
ilar. As expected, they remained very close to zero. One
of the main drawbacks of SMC strategies is the chat-
tering phenomenon. To cope with that, we have used a
common approximation for the sign function as a sig-
moid s

||s||+0.001 .

(a)

(b)

(c)

Fig. 2 Controlled attitude for upright position command

123



1700 J. F. S. Trentin, D. A. Santos

(a)

(b)

Fig. 3 Norm 2 of attitude and angular velocities errors for
upright position command

Fig. 4 Sliding variables for upright position command

Fig. 5 Control torques for upright position command

Figure 5 presents the control torques for driving the
pendulum to the upright position. Themagnitude of the
torques for the three controllers tested is similar, and
taking into account that the inverted position is a natu-
ral equilibrium point of the 3D pendulum, the control
torques go to values around zero once the system has
reached the equilibrium.

Let us now evaluate the proposed controller perfor-
mance when tracking a sinusoidal command. Figure
6 shows the controlled attitude in terms of the MRPs.
In this case, we can see at the peaks of the trajectory
that the proposed GPTSMC has a better performance
staying closer to the command.

We have also evaluated the norm of the control
errors for this case. Figure 7 (a) exhibits the attitude
error norm, where we can observe that the proposed
GPTSMC presents a smaller magnitude. Figure 7 (b)
depicts the angular velocity error norm, where a similar
behavior for all controllers canbe seen.Weattribute this
oscillation to the disturbances that have been applied
to all controllers.

Figure 8 shows the behavior of the sliding variable
for tracking a sinusoidal command, and, as expected,
the values stayed close to zero as proposed.

The control torques for tracking sinusoidal com-
mand are presented in fig. 9. Note that similar mag-
nitudes are obtained for all controllers. Although these
values are high, they are consistent with the parameters
used for the simulations.
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(a)

(b)

(c)

Fig. 6 Controlled attitude for tracking a sinusoidal command

(a)

(b)

Fig. 7 Norm 2 of attitude and angular velocities errors for track-
ing a sinusoidal command

Fig. 8 Sliding variables for tracking a sinusoidal command
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Fig. 9 Control torques for tracking a sinusoidal command

5 Final remarks

This work has presented the dynamic modeling of the
3D pendulum and the design of a novel predefined-time
global sliding mode control law. The results of the pro-
posed control approach are compared to two other con-
trol laws, a classical global sliding mode control law
and a global fast nonsingular terminal sliding mode
control law. Furthermore, two cases have been inves-
tigated, driving the pendulum to the upright (inverted)
position and tracking a sinusoidal command. For both
cases, the GPTSMC law has outperformed the other
two control approaches reaching the desired reference
faster, presenting no overshoot, and within the prede-
fined time chosen by the user as a tunable parameter.
To the best of our knowledge, such control law has
not been proposed in the literature yet nor designed for
the 3D pendulum. The proposed approach is suitable
for dynamic systems that can be written in the regular
form. Future work includes the experimental applica-
tion of the proposed control approach.
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