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Abstract We consider a 2-layer quasi-geostrophic
ocean model where the upper layer is forced by a
steady Kolmogorov wind stress in a periodic channel
domain, which allows tomathematically study the non-
linear development of the resulting flow. The model
supports a steady parallel shear flow as a response
to the wind stress. As the maximal velocity of the
shear flow (equivalently the maximal amplitude of the
wind forcing) exceeds a critical threshold, the zonal
jet destabilizes due to baroclinic instability and we
numerically demonstrate that a first transition occurs.
We obtain reduced equations of the system using the
formalism of dynamic transition theory and establish
two scenarios which completely describe this first tran-
sition. The generic scenario is that a conjugate pair of
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modes loses stability and aHopf bifurcation occurs as a
result. Under an appropriate set of parameters describ-
ing related midlatitude oceanic flows, we show that
this first transition is continuous: a supercritical Hopf
bifurcation occurs and a stable time periodic solution
bifurcates. We also investigate the case of double Hopf
bifurcations which occur when fourmodes of the linear
stability problem simultaneously destabilize the zonal
jet. In this case, we prove that, in the relevant param-
eter regime, the flow exhibits a continuous transition
accompanied by a bifurcated attractor homeomorphic
to S3. The topological structure of this attractor is ana-
lyzed in detail and is shown to depend on the system
parameters. In particular, this attractor contains (sta-
ble or unstable) time-periodic solutions and a quasi-
periodic solution.

Keywords Quasi-geostrophic flow · Center manifold
reduction · Dynamic transitions · Linear instability

Mathematics SubjectClassification 34C23 · 37N10 ·
37L10

1 Introduction

Baroclinic instability is among themost important geo-
physical fluid dynamical instabilities playing a crucial
role in the dynamics of atmospheres and oceans. In par-
ticular, this instability mechanism is the dominant pro-
cess in atmospheric dynamics shaping the cyclones and
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anticyclones that dominate weather in mid-latitudes,
as well as the mesoscale ocean eddies that play var-
ious roles in oceanic dynamics and the transport of
heat and salt [36]. Much is known on the linear sta-
bility of zonal jets in a horizontally unbounded ocean
in the quasi-geostrophic (QG) flow regime. Classical
models, such as the continuously stratified Eady model
[14] and the two-layer Phillips model [27], have led
to a detailed understanding of the mechanism of baro-
clinic instability of a zonal jet in the inviscid case. Long
waves destabilize the zonal jet with maximum growth
rates occurring for perturbations having wavelengths
on the order of the Rossby deformation radius, typi-
cally 50 − 100 km for the mid-latitude ocean [35].

In case linear friction is included in the two-layer
model, the neutral curve has a minimum at (kc, μc)

where kc is the critical wavenumber and μc the criti-
cal value of the control parameter (e.g., the maximum
speed of the zonal jet). The nonlinear development of
these perturbations has been extensively analyzed in
the weakly nonlinear case [18,25,28,39]. In the regime
|k − kc| = O(ε) and |μ − μc| = O(ε2), [37] showed
that on a long time scale T = ε2t and large spatial
scale X = ε(x − cgt), where cg is the group veloc-
ity of the waves at criticality, the complex amplitude
A of the wave packet destabilizing the jet satisfies a
Ginzburg–Landau equation, written as

∂A

∂T
= γ1A + γ2

∂2A

∂X2 − γ3A|A|2,
where the γi are complex constants. [37] also showed
that the fixed point solution of this equation can become
unstable to sideband instabilities. Subsequent analysis
has shown [13] that upgradient momentum transport
can occur due to the self-interaction of the instabilities
leading to rectification of the zonal jet.

In reality, the ocean basins are zonally bounded by
continents and the midlatitude zonal jets are part of the
gyre system, for example the subpolar gyre and sub-
tropical gyre in theNorthAtlantic, forced by the surface
wind stress throughEkman pumping [26]. The problem
of baroclinic instability of such non-parallel flows is
much more complicated and has so far only been tack-
led numerically. When the wind-forced QG equations
are discretized, the linear stability problem for the gyre
flow results in a large-dimensional generalized eigen-
value problem, typically of dimension 104. There are
many results for the one-layer single- and double-gyre
flows (for an overview, see [11, Chap. 5]), but in this

case there is no baroclinic instability. There are rela-
tively few results for the two-layer case. In [12], it was
shown that in the two-layer case the double-gyre flow
becomes unstable through a sequence of Hopf bifur-
cations. The perturbation flow patterns at criticality
are “banana-shaped,” locally resembling those of baro-
clinic instability in the Philips model. Stable periodic
orbits result from these Hopf bifurcations, typically
given rise to meandering motion of the gyre boundary.

As an intermediate, more analytically tractable case,
we consider here the baroclinic instability of a zonal jet
for a two-layer QG model in a zonally periodic chan-
nel. In this case, the properties of the bounded geom-
etry are somehow represented, as the patterns of the
unstable modes are restricted by the periodicity of the
channel, so a sequence of Hopf bifurcations is expected
just as in themore realistic gyre case. In addition, paral-
lel flow solutions exist in the zonally periodic channel
which simplifies the linear stability problem substan-
tially such that a more detailed nonlinear analysis, akin
to that in the horizontally unbounded case, can be per-
formed. The parallel flow can also be connected to the
surface wind stress, as in the full gyre case, but at the
expense of adding an additional linear friction term
to the upper layer vorticity equation; for more details,
see Sect. 2. In this way, the situation studied is more
relevant for the stability of the Antarctic Circumpolar
Current, than for the midlatitude gyre circulations.

The case specifically studied in the paper is the circu-
lation set up by a time-independent Kolmogorov wind-
stress field (for k = 1, 2, . . .)

τ x (y) = −τ
τ0

kπ
cos kπ

y

L y
; τ y = 0

where τ0 is a characteristic mid-latitude wind-stress
value. This wind stress forces an ocean in a periodic
channel [0,R/(2LxZ)] × [−Ly, Ly] on the β-plane.
The case k = 1 and k = 2 are often referred to as
the single- and double-gyre forcing. The stratification
is modeled in terms of a two-layer system and the wind
stress only directly forces the upper layer.As a response
to this wind stress, the system supports a basic shear
flow ψ s . The amplitude τ that controls the wind-stress
curl, or equivalently the maximal velocity of the shear
flow ψ s is chosen as the bifurcation parameter.

We first perform a numerical linear stability analy-
sis of this basic shear flow; for small values of τ , all
associated eigenvalues have negative real parts such
that the jet is stable. When the aspect ratio of the chan-
nel a = Ly/Lx is large, the eigenvalues remain in
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the left complex plane regardless of the value of τ .
However, when the aspect ratio gets small, the basic
shear flow loses stability at a critical τ in the form
of a single conjugate pair or two conjugate pairs of
eigenvalues crossing the imaginary axis, giving rise to
either a Hopf or a double Hopf bifurcation. We next
use the idea and method of the dynamic transition the-
ory [20,21], which is aimed to determine all the local
attractors near a transition. The approach allows for a
classification near the instability onset of all transitions
into three classes known as continuous, catastrophic
and random types [21]. In this way, our study extends
previous results using this approach on the single-layer
barotropic case [10,32], the two-layer case for constant
zonal jet velocities [3] and the barotropicMunkwestern
boundary layer current profile case [15], to the zonally
periodically bounded two-layer case.

Using the center manifold reduction, we obtain
effective reduced (ordinary differential equation,ODE)
models describing this transition. The dynamic tran-
sition theory identifies then transition numbers that
qualifies the transition’s type and are calculated from
the reduced ODE’s coefficients. The case of a Hopf
bifurcation is generic while the case of a double Hopf
bifurcation is degenerate and requires fine-tuning of the
aspect ratio to critical values where two conjugate pairs
of eigenmodes with consecutive wavenumbers have
their eigenvalues crossing the imaginary axis simul-
taneously. Using standard parameter values describ-
ing the midlatitude related oceanic flows, we perform
numerical computations of the transition number for
the forcing patterns corresponding to k = 1, 2, 3 and
the aspect ratios a ≥ 3. We find that in the parameter
regimes we are interested in, the Hopf bifurcation is
supercritical and a stable limit cycle bifurcates. For the
double Hopf bifurcation, we find that after the corre-
sponding transition takes place, the system exhibits a
bifurcated local attractor [20] near the basic shear flow
which is homeomorphic to the 3D-sphere. The topolog-
ical structure of this attractor is analyzed and depending
on the parameters, it is found to contain a combination
of limit cycles and a quasi-periodic solution.

The paper is organized as follows. In Sect. 2, the
quasi-geostrophic model is presented. This is followed
bySect. 3where the theory and numerical results for the
linear stability problem (Sect. 3.1), theHopf bifurcation
case (Sect. 3.2) and the double-Hopf bifurcation case
(Sect. 3.3) are presented. These results are summarized
and discussed in Sect. 4. Appendices A and B contain

details regarding the proofs of the transition theorems
and the explicit formulas of the corresponding reduced
ODE’s coefficients, in theHopf and double-Hopf cases,
respectively. Appendices C and D, as for them, provide
details about for the numerical treatment of the linear
stability analysis and the practical computation of the
transition numbers. Finally, the set ofmodel parameters
used in the numerical study of the problem is given in
“Appendix E.”

2 The model

We consider two layers of homogeneous fluids, each
with a different and constant density ρ1 and ρ2 andwith
equilibrium layer thicknesses H1 and H2, on a mid-
latitudeβ-planewithCoriolis parameter f = f0+β0y.
The lighter fluid in layer 1 is assumed to lie on top of
the heavier one in layer 2 so that the stratification is
statically stable, i.e., ρ1 < ρ2; bottom topography is
neglected.

This flow can be modeled by the two-layer QG
model [25] using the geostrophic stream function ψi

and the vertical component of the relative vorticity ζi
in each layer (i = 1, 2). The quantities ψi and ζi are
non-dimensionalized by ULy and U/Ly , respectively,
wind stress with τ0, length with Ly , and time with
Ly/U , where U is a characteristic horizontal veloc-
ity. By choosing U = τ0/(ρ0β0LyH1), where ρ0 is a
reference density, the dimensionless equations on the
domain (0, 2/a) × (−1, 1) (with a = Ly/Lx ) become

[
∂

∂t
+ {ψ1, ·}

]
(Δψ1 + F1(ψ2 − ψ1) + βy)

= −r1Δψ1 − τβ sin kπy[
∂

∂t
+ {ψ2, ·}

]
(Δψ2 + F2(ψ1 − ψ2) + βy)

= −r2Δψ2, (1)

where { f, g} = fx gy − fygx is the usual Jacobian
operator and

F1 = −r1Δψ1,

represents the damping of upper layer vorticity due to
frictional processes. In the bottom layer, we include
a linear (Ekman) friction term −r2Δψ2; in both lay-
ers, Laplacian friction terms are neglected due to the
absence of continental boundary layers making such
terms much smaller than the other ones. The expres-
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sions for the dimensional and dimensionless parame-
ters, with their standard values at a latitude 45◦N, are
given in Table 2.

For the boundary conditions, we assume periodicity
in the x-direction and free-slip boundaries in the y-
direction. Hence, the conditions are

ψi |x=0= ψi |x=2/a, i = 1, 2.

ψi |y=±1= ∂2ψi

∂y2
|y=±1= 0, i = 1, 2.

(2)

In actual ocean basins, a steady zonal jet is generated
by the applied wind stress through Ekman pumping, a
Sverdrup balance and a western boundary layer flow
[26]. Due to the periodic boundary conditions used
here, such a flow cannot be captured in this model.
However, due to the presence of the large upper layer
friction, which corrects for the absence of the Sverdrup
balance, the equations allow a steady state of the form

ψ s
1 = Ψ sin kπy, ψ s

2 = 0, (3)

which relates to the wind stress field, when F1 −
τβ sin kπy = 0. In this paper, we will assume that
the wind-stress vorticity input is balanced by vorticity
decay due to the linear friction term F1 = −r1Δψ1,
being aware that a larger friction coefficient r1 is needed
than can be justified from existing dissipative processes
in the ocean. In this case, it follows that

Ψ = τβ

(kπ)2r1
. (4)

The parameter Ψ appearing in (3) can then be chosen
as the control parameter as is the case in this study,
instead of τ . It can be interpreted as themaximal (zonal)
velocity of the shear flow (after taking the derivative in
y of (3)) or equivalently the maximal amplitude of the
wind forcing according to (4).

By considering the perturbation ψ ′
i = ψi − ψ s

i , i =
1, 2,we canwrite the system into the followingoperator
form (after dropping the prime notation)

M∂tψ = Nψ + G(ψ), ψ = (ψ1, ψ2), (5)

where M and N are the linear operators defined as

Mψ =
[
Δψ1 + F1(ψ2 − ψ1)

Δψ2 + F2(ψ1 − ψ2)

]
, (6)

and

Nψ

=
⎡
⎢⎣

Ψ kπ cos kπy
(
(kπ)2

∂ψ1
∂x + F1

∂ψ2
∂x + ∂Δψ1

∂x

)
−β

∂ψ1
∂x − r1Δψ1 − Ψ kπF2cos kπy ∂ψ2

∂x
−β

∂ψ2
∂x − r2Δψ2

⎤
⎥⎦ .

(7)

Lastly, the bilinear nonlinearity is given explicitly by

G(ψ) =
[ −{ψ1,Δψ1 + F1(ψ2 − ψ1)}

−{ψ2,Δψ2 + F2(ψ1 − ψ2)}
]

. (8)

The operators G and N are well-defined mappings,
G : H1 → H−1 and N : H0 → H−1, on the following
functional spaces:

H1 = {ψ = (ψ1, ψ2) ∈ H4(Ω)

× H4(Ω)| ψ satisfies (2)},
H0 = {ψ = (ψ1, ψ2) ∈ H2(Ω)

× H2(Ω)| ψ satisfies (2)},
H−1 = L2(Ω)2.

(9)

Here,

Ω = (0, 2/a) × (−1, 1), with a = Ly/Lx , (10)

and H4(Ω), H2(Ω), L2(Ω) are the usual Sobolev and
Lebesgue function spaces endowed with their natural
inner products. These functional spaces account for
spatial regularity of the solution ψ for which H p(Ω)

denotes the space of square-integrable functions that
possess pth-order derivatives (in the distribution sense)
that are themselves square-integrable; see e.g., [2].
Using this functional framework, it can be shown that
Eq. (5) is well-posed by application of e.g., a standard
approximation method (such as Galerkin) [1].

3 Results

In this section, we first present the linear stability anal-
ysis of the basic shear flow and then we move on to
describe the first transitions due to the instabilities,
covering both the Hopf and double Hopf bifurcations.
Although in realistic ocean basins the aspect ratio a
would be small, we allow here the full range of a to
also study the nonlinear interactions of localized insta-
bilities.

3.1 Linear stability analysis

We first investigate the linear stability of the basic solu-
tion. For this purpose, we denote the eigenmodes of the
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Fig. 1 The first 240
eigenvalues at the critical
parameter when
mc = 2, a = 10, k = 1 and
Ny = 240
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Re(σm,j)
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m
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m = −2mc

m = −mc

m = 0
m = mc

m = 2mc

linear problem by

ψm, j (x, y) = eiαmxY j (y), j ∈ N,m ∈ Z,

αm = amπ.

with eigenvalues σm, j , i.e.,

σm, jMψm, j = Nψm, j . (11)

Since the linear operators M and N are real, we have

σm, j = σ−m, j , ψm, j = ψ−m, j , ∀m ∈ N.

This eigenvalue problem is solved numerically by
means of a standard Legendre–Galerkin method; see
Appendix C. A typical picture of the spectrum near the
criticality is given in Fig. 1. This figure shows thatmany
eigenvalues are clustered near the imaginary axis at the
critical parameter value Ψ = Ψc as defined in (13).

Weassume (as confirmednumerically for the param-
eter regimes considered below) that the eigenvalues are
ordered so that for each integer m, σm,1 has the largest
real part among the σm, j , for any nonnegative integer
j .
For each (nonnegative) wavenumber m, we define

Ψm , when it exists, to be the value of Ψ for which the
eigenvalue σm,1 crosses the imaginary axis, that is

Re(σm,1) = Re(σ−m,1) =

⎧⎪⎨
⎪⎩

< 0, if Ψ < Ψm

= 0, if Ψ = Ψm

> 0, if Ψ > Ψm

. (12)

Hence Ψ = Ψm defines a neutral stability curve in
the (a, Ψ )-plane. In Fig. 2, these neutral curves are
plotted for zonal wave numbers m = 1, 2, 3, 4.

Our numerical analysis suggests that for any m, Ψm

is well-defined only for aspect ratios of the basin char-
acteristic lengths smaller than a threshold am (depend-
ing on m), that is for a < am . The threshold am is

defined by a vertical asymptote condition, namely

lim
a→am− Ψm = ∞.

Moreover, we numerically observe that the am are
ordered such that

∞ > a1 > a2 > · · ·
We define then the critical maximal shear flow’s

velocity, Ψc, and the critical zonal wavenumber, mc,
by

Ψc = min
m∈NΨm, (13)

and,

mc = argmin
m∈N

Ψm, (14)

respectively.
A typical structure of the spectrum at the critical

parameter value, Ψ = Ψc, is shown in Fig. 1 where
a conjugate pair of eigenvalues is about to cross the
imaginary axis. The eigenvalues on the real axis corre-
spond to the wavenumber m = 0 and are always stable
although they may be very close to zero as shown in
Fig. 1.

To describe the solutions near the onset of transition
Ψ = Ψc, we define the spatio-temporal function

fm(x, y, t) = 2Re
(
ei Im(σm,1)tψm,1(x, y)

)
, m ∈ Z,

(15)

where σm,1 is the first eigenvalue and ψm,1 is its
associated eigenfunction. The spatial structure of the
eigenmodes ψmc,1 is shown in Fig. 3, revealing the
well-known “banana-shaped” patterns characteristics
of baroclinic instability.
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Fig. 2 Neutral stability
curves Ψm ,m = 1, 2, 3, 4
defined in (12), for
wind-stress profiles defined
by k = 1, 2, 3. For values of
Ψ > Ψm , the shear flow
(ψ s

1 , ψ
s
2) in (3) becomes

unstable to a perturbation
pattern with wavenumber
αm
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Fig. 3 Real part of the
upper and lower layers of
the time-periodic solution
fmc (or equivalently of the
dominant eigenmode ψmc,1)
at t = 0 for k = 1 and
a = 10 and a = 5,
respectively
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The values ofΨc with respect to the aspect ratio a for
k = 1, 2, 3 is shown in Fig. 4. By the previous remarks,

lim
a→a1−

Ψc = lim
a→a1−

Ψ1 = ∞. (16)

By (16), for a > a1, the system is linearly stable. As is
expected, the neutral stability curves (Fig. 2) approach
the asymptote Ψc → ∞ as a converges to the critical
aspect ratio a1 over which the system is linearly sta-

ble for all Ψ . Our numerical results in Fig. 4 show that
for aspect ratios a in the range 3 ≤ a ≤ 20, the crit-
ical maximal shear velocity Ψc ≈ 0.1, 0.04, 0.03 for
k = 1, 2, 3, respectively. By (4), this value of critical
maximal shear velocity corresponds to an upper layer
friction that is approximately,

r1 ≈ τβ

k2π2Ψc
≈ 103

k
,
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which is indeed much larger than can be justi-
fied from dissipative processes in the ocean but, as
explained in Sect. 2, is needed here to connect the back-
ground zonal jet to the appliedwind stress as a Sverdrup
balance is absent in the original model formulation.

The friction term in the lower layer however is phys-
ical (Ekman friction) and for this study, it is fixed at
r2 = 5.0, see Table 2. Also, from Fig. 2, we see that
for small aspect ratios, many modes become unstable
as Ψc is exceeded.

For a < a1, the system has a first transition at Ψ =
Ψc and exactly one of the following two principal of
exchange of stability (PES) condition holds:

Re(σm,1) = Re(σ−m,1)

⎧⎪⎨
⎪⎩

< 0, if Ψ < Ψc

= 0, if Ψ = Ψc

> 0, if Ψ > Ψc

if m = mc

Re(σm,1) = Re(σ−m,1) < 0 if m �= mc

(17)

Re(σm,1) = Re(σ−m,1)

⎧⎪⎨
⎪⎩

< 0, if Ψ < Ψc

= 0, if Ψ = Ψc

> 0, if Ψ > Ψc

if m ∈ {mc,mc + 1}

Re(σm,1) = Re(σ−m,1) < 0 if m /∈ {mc,mc + 1}.

(18)

According to (17) and (18) either, two or four eigen-
values become unstable as Ψ crosses Ψc. The case of
two critical eigenvalues is generic and results into a
Hopf bifurcation. The case of four critical eigenval-
ues results in a double Hopf bifurcation and requires
the fine-tuning of the aspect ratio a = aDH so that
Ψc = Ψmc = Ψmc+1. The values of aDH where double
Hopf transition occurs is given in Table 1.

Although the double Hopf transition is not generic,
its analysis gives an insight into regimes of moderate
values of Ψ where multiple eigenvalues are unstable.
In Fig. 5, we show the dominant part of the spectrum
of the linearized operator at a critical aspect ratio aDH.

We recall that the neutral stability curves (shown in
Fig. 2) are found by identifying the set of parameter
values (here in the (a, Ψ )-plane) for which the real part
of the critical eigenvalue is zero while the rest of the
eigenvalues have a negative real part, i.e., are associated
with a stable mode. By a continuity argument, we can
thus infer that in a neighborhood of such critical curves
the PES condition is satisfied, for instance when Ψ

crosses the critical value Ψc (depending on a and k)
shown in Fig. 2.

The PES condition (17) has been rigorously verified
for Kolmogorov flows in [22] via a continued fraction
method. This method has later been extended for the
single layer QG model for the k = 1 case in [32] and
for k ≥ 2 in [19]where k is the forcing frequency in (1).
It is still an open problem to rigorously verify the PES
condition for the current problem.

3.2 Hopf bifurcation

Wefirst investigate the genericHopf transition scenario
based on the attractor bifurcation theorem [20, The-

orem 5.2] and the dynamical transition theorem [21,
Theorem 2.1.3]. For proofs of the following lemma
and theorem, see Appendix A).

Lemma 1 Assume that the PES condition (17) holds.
Then, the transition and stability of the steady-state
solution (3) to Eq. (5), in the vicinity of the critical
maximal shear flow’s velocityΨ = Ψc and for any suf-
ficiently small initial data, are equivalent to the stability
of the zero solution of the following reduced equation

dz

dt
= σmc,1z + Pz|z|2 + o(|z|3), (19)

where z(t) denotes the complex amplitude aiming
at approximating the projection of the model’s solu-
tion onto the critical mode ψmc,1. The coefficient P
is defined in Eq. (33) of Appendix A and is called the
transition number.

The analysis of Lemma 1 yields the following theorem.

Theorem 1 Assume that the first critical eigenvalue
is purely complex with a simple multiplicity, that is
the PES condition (17) is satisfied. Then the following
assertions hold true.
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Fig. 4 The critical maximal
shear flow’s velocity Ψc
dependence on the
channel’s aspect ratio a for
k = 1, 2 and k = 3

4 6 8 10 12 14 16 18 20
1 · 10−2

5 · 10−2

0.1
k = 1

k = 2

k = 3

a

Ψ
c

Table 1 The double Hopf transition numbers

k mc aDH Ψc Re(A) Re(B) Re(C) Re(D) δ θ δθ

1 1 11.26 0.10 − 0.25 − 1.00 0.01 − 0.33 − 0.05 3.08 − 0.15

1 2 7.30 0.10 − 0.37 − 1.00 − 0.13 − 0.40 0.36 2.51 0.89

1 3 5.38 0.10 − 0.95 − 1.00 − 0.22 − 0.61 0.23 1.65 0.37

1 4 4.23 0.09 − 0.81 − 1.00 − 0.29 − 0.61 0.36 1.63 0.58

2 1 11.18 0.05 − 0.15 − 1.00 0.12 − 0.23 − 0.77 4.39 − 3.38

2 2 7.20 0.05 − 0.34 − 1.00 − 0.04 − 0.46 0.13 2.20 0.28

2 3 5.27 0.05 − 0.37 − 1.00 − 0.14 − 0.45 0.38 2.24 0.86

2 4 4.14 0.05 − 0.38 − 1.00 − 0.21 − 0.44 0.55 2.25 1.25

Here k = 1, 2 is the wavenumber of the forcing, mc and mc + 1 are the wavenumbers of the first two critical modes which become
unstable simultaneously at the critical aspect ratio aDH. A, B,C, D are the coefficients of the double Hopf transition normalized with
respect to the maximum absolute value of those coefficients. The parameters δ and θ are defined by (24)

Fig. 5 The spectrum near
the double Hopf aspect ratio
aDH = 11.263 for k = 1.
The first four critical
eigenvalues σm,1,m in
{−2,−1, 1, 2}, can be seen
on the imaginary axis

−1 −0.5 0

·10−2

−20

0

20

Re(σm,j)

Im
(σ

m
,j
) m = −2

m = −1

m = 0

m = 1

m = 2

(1) If Re(P) < 0, then Eq. (5) in H1 [see (9)] under-
goes a continuous transition accompanied by a
supercritical Hopf bifurcation on Ψ > Ψc, with
Ψc defined in (13). In particular, the steady-state
solution bifurcates to a stable periodic solution ψ

onΨ > Ψc, satisfyingψ → 0 asΨ → Ψc and has
the following approximation

ψ(x, y, t) =
(−Re(σmc,1)

Re(P)

) 1
2

fmc (x, y, t)

+o
(
|Ψ − Ψc| 12

)
. (20)

The spatial structure of the time periodic solution
ψ is shown at t = 0 for different aspect ratios a
in Fig. 3.

(2) If Re(P) > 0, then Eq. (5) in H1 [see (9)] under-
goes a jump transition on Ψ < Ψc accompanied
by a subcritical Hopf bifurcation. In particular, an
unstable periodic solution ψ given by (20) bifur-
cates on Ψ < Ψc and there is no periodic solution
bifurcating from 0 onΨ > Ψc. Moreover, there is a
singularity separation at someΨs < Ψc generating
an attractor and an unstable periodic solution ψ .

When the PES condition (17) holds, the system
exhibits a Hopf bifurcation as described by Theorem 1.
The type of transition boils down to the determination
of the transition number P given in (33) of “Appendix
A.” For the practical calculation of this number, we
refer to “Appendix D.” A numerical evaluation of P
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Fig. 6 The real part of the
transition number P
compared to the channel
aspect ratio a normalized by
the largest absolute value of
Re P . The parameters are as
set in Table 2 4 6 8 10 12 14 16 18 20
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Fig. 7 The effect of P0 (of
m = 0 modes) compared to
the effect P2 (of 2mc
modes) on the transition
number
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as reported in Fig. 6 shows that for a low-frequency
forcing (k = 1, 2, 3), generally Re(P) < 0 and as
a result only continuous transition (supercritical Hopf
bifurcation) is possible for the parameter regime we
have selected. In Fig. 6, we also display the critical
wavenumber mc. In the range 4 ≤ a ≤ 20, the critical
wavenumber mc is found to range from 1 to 4.

There are discontinuities in P vs a plot in Fig. 6 of
the transition number which are due to the changes in
the critical zonal wavenumber mc. These discontinu-
ities take place at double Hopf bifurcation aspect ratios

where two consecutive zonal wavenumbers become
critical simultaneously which is investigated in the
next section. However, there are also discontinuities
in Fig. 6, k = 1 case (for example near a = 16) whose
origin is mysterious.

As detailed in “Appendix A,” the transition num-
ber P accounts for two types of nonlinear interactions
between the eigenmodes, and is written

P = P0 + P2,

where P0 accounts for nonlinear interactions between
the critical modes and the zonally homogeneous (sta-
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Fig. 8 P0, j/|P0,2| for even
values of j . P0, j = 0 for
odd values of j
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ble) modesm = 0 (see (34)), while P2 accounts for the
interactions between the critical modes and the modes
having a wavenumber twice that of the critical modes
(see (35)). A comparison of typical numerical values of
P0 and P2 shows that P2 is several orders ofmagnitudes
smaller than P0; see Fig. 7. We refer to [4, Theorem
III.1] for a similar transition number diagnosing also
the type of Hopf bifurcations arising, generically, in
delay differential equations, and whose nature is also
characterized by the interactions of linearized modes
through the model’s nonlinear terms.

In our case,

P0 =
∞∑
j=0

P0, j

where P0, j measures the contribution to P of the j-
th mode with zero-wavenumber (m = 0) interacting
with the critical mode; see (34) again. Figure 8 shows

that the dependence of P0, j on j is essentially linear.
We believe the results in Figs. 7 and 8 may help when
choosing themodes to include in a simulation when the
maximal shear velocity is well above the criticality.

We also compare the dimensional time period of the
bifurcated solution (20) to the (dimensional) length of
the channel in Fig. 9. With the default parameters as
chosen in Table 2, our simulations yield a solution with
time period of 180-380 days depending on the channel
length of 100-700kms.

3.3 Double Hopf bifurcation

In this section, we are interested in the transitions
that take place at the critical aspect ratios aDH where
four modes with consecutive wavenumbersmc,mc +1
become unstable as given by the PES condition (18).
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Fig. 9 The (dimensional) time period Tdim = 2π
Im(σmc ,1)

Ly
U com-

pared to the (dimensional) length of the channel Ldim = 2Ly/a
of the both stable and unstable bifurcated time periodic solution
(20) in the Hopf bifurcation case. Here, Ly and U are the char-
acteristic scales defined in Table 2. The jumps in the derivative
of the time period of the bifurcated solution is due to the change
of the imaginary part Im σmc,1 of the critical eigenvalue at the
double Hopf aspect ratios aDH

We first present the reduced equations in this case
(for proofs, see Appendix B).

Lemma 2 Assume that the PES condition (18) holds.
Then, the transition and stability of the steady-state
solution (3) of Eq. (5) in H1 [see (9)], in the vicinity of
the critical zonal shear flow’s velocity, Ψ = Ψc, and
for any sufficiently small initial data are equivalent to
the stability of the zero solution of the following system

dz1
dt

= σmc,1z1 + z1(A|z1|2 + B|z2|2) + o(|z|)3),
dz2
dt

= σmc+1,1z2 + z2(C |z1|2 + D|z2|2) + o(|z|)3),
(21)

where z1(t) and z2(t) denote the complex amplitudes
aiming at approximating the projection of the model’s
solution onto the critical modes ψmc,1 and ψmc+1,1,
respectively.

The transition numbers A, B,C, D are determined
by the nonlinear interactions of these critical modes
with higher modes given by (37). More precisely, the
terms A and D account for the self-interactions among
the critical modes, while the terms B andC account for
the cross-interactions between the critical modes with
the higher modes.

It is known that Eq. (21) exhibits a zoo of dynamical
behaviors. We refer to [16] for a detailed analysis of all
possible cases. Here, we restrict our attention to the
case

Re(A) < 0, Re(B) < 0,Re(B) + Re(C) < 0,Re(D)

< 0, (22)

which is the only case we observe in our numerical
experiments, see Table 1. Under these conditions it is
known that the transition is continuous (see Theorem
2.3 in [17]). For the next theorem, let us define the
numbers

λ1 = Re(σmc,1), λ2 = Re(σmc+1,1). (23)

δ = Re(C)

Re(A)
, θ = Re(B)

Re(D)

η1 =
(

λ1 − θλ2

(θδ − 1)Re(A)

) 1
2

,

η2 =
(

λ2 − δλ1

(θδ − 1)Re(D)

) 1
2

. (24)

Recalling fmc defined in (15) (with m = mc), we
define the following spatio-temporal profiles

ψmc
p (x, y, t) =

(
− λ1

Re(A)

) 1
2

fmc (x, y, t)

+ o
(
|Ψ − Ψc| 12

)
,

ψmc+1
p (x, y, t) =

(
λ2

Re(D)

) 1
2

fmc+1(x, y, t)

+ o
(
|Ψ − Ψc| 12

)
,

ψqp(x, y, t) = η1 fmc (x, y, t) + η2 fmc+1(x, y, t)

+ o
(
|Ψ − Ψc| 12

)

(25)

Theorem 2 Assume that the conditions of Lemma 2 as
well as condition (22) hold. Then Eq. (5) undergoes a
continuous transition at Ψ = Ψc, and an S3 attractor
Σ bifurcates on Ψ > Ψc, which converges to 0 as Ψ

approaches to Ψc from right. Depending on the values
of θ and δ, there are three transition scenarios as shown
in Fig. 10. In each scenario, near the onset of transition
(λ1, λ2) = (0, 0), the λ1 − λ2 plane is dissected into
several regions with distinct topological structures for
the attractor Σ as given in Fig. 11.

Remark 1 1. If z2 = 0 or z1 = 0, Eq. (21) reduces to
the Eq. (19) with A = P or D = P , respectively.
Thus, Lemma 1 and Theorem 1 are special cases of
Lemma 2 and Theorem 2, respectively.

2. We note that the features of the spatial structures
of upper vs lower layer of the bifurcated periodic
solutions in Fig. 3 and the quasi-periodic solution
in Fig. 12 do not alter much. We expect that the

123



1898 M. D. Chekroun et al.
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Fig. 10 The regions in the λ1–λ2 plane with different dynamical
behaviors. In region V, the basic steady state is locally asymp-
totically stable. In regions IV and VI, the system undergoes a
supercritical Hopf bifurcation. The dynamics in regions I, II

and III is the double Hopf bifurcation scenario and the details
are given in Fig. 11. The lines T1 and T2 in the figure have slopes
1/θ and δ (as defined in (24)), respectively
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Fig. 11 The dynamics in the regions given in the first quadrant of Fig. 10. ψmc
p , ψmc+1

p are time-periodic with zonal wavenumbers mc
and mc + 1, respectively. ψqp is the quasiperiodic solution given in (25)

situation would be different if bottom topography is
included.

The transition scenario of double Hopf transition is
given by Theorem 2 by Fig. 10 and Fig. 11. We find
that near the onset of transition, depending on the fluc-
tuations the basic state experiences a transition either
to a time periodic solution or to a quasi-periodic solu-
tion. Our results in Table 1 show that the three scenarios
sketched in Fig. 10 are realizable.

In particular, near a double Hopf transition point,
one of the following three possibilitiesmust occur post-
transition, Ψ > Ψc:

(i) there is only a single stable limit cycle,
(ii) there are two distinct stable limit cycles, and an

unstable quasi-periodic solution
(iii) there is a stable quasi-periodic solution and either

one or two unstable limit cycles.

For the double Hopf transition, Theorem 2 basically
tells that all of the above local structures, the time-
periodic solution and the 2D torus, if they exist,
reside in a local attractor homeomorphic to the three-
dimensional sphere. The existence of this attracting 3D
sphere is guaranteed by the attractor bifurcation theo-
rem; see [20, Theorem 6.1].
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Fig. 12 Real part of the upper and lower layers of the time quasi-
periodic solution ψqp given in Theorem 2 at t = 0 for k = 1 and
a = 5.722 where the first two critical wavenumbers are mc = 1
and mc = 2

4 Summary and discussion

In this paper, we investigated the stability of a par-
allel zonal jet forced by a Kolmogorov-type wind
stress in a periodic zonal channel, using a two-layer
quasi-geostrophic (QG) model. This problem is, in
terms of complexity, situated between the horizontally
unbounded problem [27,37] and the fully bounded gyre
problem [12]. More precisely, the effect of boundaries
is captured by the interactions of only a few modes
(solutions of the linear stability problem), while still
keeping a parallel flow which is connected to the wind-
stress field.

Our results show, in the continuity of earlier works
[3,10,15,19], that the zonal shear flow is linearly stable
if its maximal amplitude Ψ , or equivalently the max-
imal amplitude τ of the wind-stress curl (see (4)), is
below a critical threshold Ψc. Moreover, as this criti-
cal threshold is exceeded, generically a Hopf bifurca-
tion occurs; see Theorem 1. To derive this result, we
approached the problem by means of dynamic transi-
tion theory determining all the attractors near the onset
of instability. These attractors then describe how the
onset of linear instability translates into the emergence
of nonlinear patterns for the actual flow; see (20).

Our approach allows for computing the coefficients
of the Hopf reduced equation (19) by means of explicit
formulas involving the interactions between the critical
mode and the (zonal) stable ones through the nonlinear
terms; see (33)–(35). A numerical examination of these

coefficients reveals that instead of infinitely many (sta-
ble) modes which would affect the type of transition
(supercritical vs subcritical Hopf), the transition is in
fact determined by the interactions between the con-
jugate pair of critical modes losing stability and only
the first few zonally homogeneous (m = 0) modes.
That the interactions with the zonal-mean modes are
the determining factors governing the flow patterns
emerging after the onset of instabilitymay be viewed as
consistent with other works that have shown (in more
turbulent regimes) that baroclinic turbulence statistics
can be well recovered for certain geophysical flows
by omitting the effects of the interactions among the
higher-order modes (eddy-eddy interactions); see e.g.,
[9,23,24,33].

We also investigated the double Hopf bifurcation
scenario which takes place at critical length scales
where four modes with consecutive wavenumbers
become critical. By a rigorous center manifold anal-
ysis, we obtain the coefficients of the 4D-ODE sys-
tem. Our results show that for the parameters we have
considered, there exists a quasi-periodic solution that
bifurcates. This quasi-periodic solution is a linear com-
bination of two periodic solutions and may be stable
depending on the parameters; see Sect. 3.3. From a
transition point of view, in the double Hopf transition,
an attractor homeomorphic to 3D sphere bifurcates; see
Theorem2. This attractor contains stable/unstable limit
cycles and stable/unstable invariant torus (supporting a
quasi-periodic solution).

Overall, our results add more details to the nonlin-
ear development of baroclinic instabilities on a non-
constant parallel zonal jet, in that the periodic solutions
can become unstable to torus bifurcations and give rise
to quasi-periodic behavior. Such a scenario was also
found for the barotropic double gyre flow [38], but
only in a weakly nonlinear framework using a set of
(reduced) amplitude equations. The transition scenario
found for the zonally periodic zonal jet is likely to be
more relevant for the ocean circulation than the side-
band instabilities in the zonally unbounded zonal jet
case which require a nearby band of wavenumbers to
be unstable.

In our set-up, the linear friction coefficient in the
upper layer is relatively large and as explained needed
to balance the vorticity input by the wind stress for
generating the zonal jet.When this friction is decreased,
moremodeswill becomeunstable near the critical point
and their interactions are expected to give a detailed
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view on the development of the unstable modes into
ocean vortices, or eddies, due to baroclinic instabilities.
In that respect, the dynamic transition theory adopted
here, along with extensions based on the variational
approach of [5,6] and its stochastic rectification [7] to
handle regimes beyond the onset of instability, provides
away forward to develop amathematical theory of such
ocean-eddy formation processes. The results derived
here combined with recent advances in the rigorous
analysis of transitions arising in stochastically driven
flows [8] open new prospects for the study of regime
transitions in stochastically forced ocean models [29,
34].
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Appendix A: Proof of Lemma 1 and Theorem 1

We first proceed with the proof of Lemma 1 For this,
we denote the adjoint modes by

ψ∗
m, j = eiαmxY ∗

m(y).

Wedenote the critical eigenmode and the critical eigen-
value by

ψc = ψmc,1, σc = σmc,1.

We denote the bilinear operator G as

G(u) = G2(u, u)

where G2(u, v) is linear in each component. Let us
define now

Gs(u, v) = G2(u, v) + G2(v, u). (26)

The center part of the solution is

uc = z(t)ψc + c.c. (27)

where c.c. stands for complex conjugate of the terms
before.

The evolution of z(t) near the onset of transition is
obtained by the projection onto the critical mode ψc.

ż = σcz + 1

〈Mψc, ψ∗
c 〉 〈G(uc + Φ),ψ∗

c 〉. (28)

whereΦ is the centermanifold function.Wewill obtain
its quadratic approximation Φ2 given by

Φ = Φ2(z, z) + o(2)

Here

o(n) = o
(|(z, z)|n)

denotes higher than n-th order terms in z, z.
Using notation (26), the reduced Eq. (28) can be

written

ż=σcz+ 1

〈Mψc, ψ∗
c 〉 〈Gs(uc, Φ2), ψ

∗
c 〉+o(3). (29)

To obtain a closed system, we need to approximate
the center manifold function. The approximation of the
center manifold in this case reads, see [30],

Φ2 = (2σc − L)−1ΠsG2(zψc, zψc)

+ (σc + σ c − L)−1ΠsG2

(zψc, zψc) + c.c.

(30)

where L = ΠsM−1N and Πs is the projection on
the stable space. Using formula (30), we obtain the
following expansion of the center manifold (see also
[5, Theorem 2])

Φ2 = z2
∑
j≥1

g2mc, jψ2mc, j + |z|2
∑
j≥1

g0, jψ0, j + c.c.

(31)

Here

g0, j = 1

(σc + σ c − σ0, j )〈Mψ0, j , ψ
∗
0, j 〉

〈G2(ψc, ψc), ψ
∗
0, j 〉

g2mc, j = 1

(2σc − σ2mc, j )〈Mψ2mc, j , ψ
∗
2mc, j

〉
〈G2(ψc, ψc), ψ

∗
2mc, j 〉,

(32)

are the coefficients of the center manifold function.
We write (29) as (19), that is

ż = σcz + Pz|z|2 + o(3).

which finishes the proof of Lemma 1.
Recalling the definition ofGs given in (26), the tran-

sition number P can then be written as

P = P0 + P2, (33)
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where

P0 =
∑
j≥1

P0, j , P0, j = 1

〈Mψc, ψ∗
c 〉

(g0, j + c.c.)〈Gs(ψc, ψ0, j ), ψ
∗
c 〉, (34)

denotes the contribution of the zero-wavenumber (sta-
ble) modes ψ0, j while

P2 =
∑
j≥1

P2, j , P2, j = 1

〈Mψc, ψ∗
c 〉

g2mc, j 〈Gs(ψc, ψ2mc, j ), ψ
∗
c 〉, (35)

denotes the contribution of the modes ψ2mc, j on the
transition number, respectively. The transition type
depends on the real part of the transition number P .
The proof of Theorem1 follows from the standardHopf
bifurcation analysis of the reduced equation.

Appendix B: Proof of Lemma 2 and Theorem 2

As the reduction in the case of (18) is similar to the case
of (17) given in the previous section, we will only men-
tion the differences between these two cases. Under
assumption (18), we write the center part of the solu-
tion as

uc = z1(t)ψ1 + z2(t)ψ2 + c.c.

where the first two critical modes are

ψ1 = ψmc,1, ψ2 = ψmc+1,1, ψ−1 = ψ−mc,1,

ψ−2 = ψ−mc−1,1.

with corresponding eigenvalues

σ1 = σmc,1, σ2 = σmc+1,1, σ−1 = σ−mc,1,

σ−2 = σ−mc−1,1

Eq. (29) becomes the system

ż j = σ j z j + 1

〈Mψ j , ψ
∗
j 〉

〈G(uc + Φ2), ψ
∗
j 〉 + o(3),

j = 1, 2. (36)

and the center manifold function (30) is replaced by

Φ2 =
2∑

| j |,|k|=1

z j zkΨ j,k + o(2),

Ψ j,k = (σ j + σk − L)−1ΠsG2(ψ j , ψk),

where Πs denotes the projector onto the stable sub-
space.

Now, Eq. (36) becomes (21) with the coefficients
defined below:

A = g1,1,−1,1 + g1,−1,1,1 + g−1,1,1,1

B = g1,2,−2,1 + g1,−2,2,1 + g2,1,−2,1

+ g2,−2,1,1 + g−2,1,2,1 + g−2,2,1,1

C = g2,1,−1,2 + g2,−1,1,2 + g1,2,−1,2

+ g1,−1,2,2 + g−1,2,1,2 + g−1,1,2,2

D = g2,2,−2,2 + g2,−2,2,2 + g−2,2,2,2

gi, j,k,l = 1

〈Mψl , ψ
∗
l 〉 〈Gs(ψi , Ψ j,k, ψ

∗
l )〉,

Ψ j,k = (σ j + σk − L)−1ΠsG2(ψ j , ψk)

(37)

We note that the above coefficients contain only gi, j,k,l
for which i + j + k = l. The expansion of the center
manifold coefficients can be written more explicitly as
(see also [5, Theorem 2])

Ψ j,k =
∞∑
i=1

〈G2(ψm j , ψmk ), ψ
∗
m j+mk ,i

〉
〈Mψm j+mk ,i , ψ

∗
m j+mk ,i

〉
(σ j + σk − σm j+mk )

−1ψm j+mk ,i

Now we analyze Eq. (21) by first putting them in
polar form

z j = ρi e
iγ j , j = 1, 2

which yields

ρ̇1= Re(σ1)ρ1+ρ1(Re(A)ρ2
1+Re(B)ρ2

2 )+ h.o.t.

ρ̇2= Re(σ2)ρ2+ρ2(Re(C)ρ2
1+Re(D)ρ2

2 )+ h.o.t.

(38)

and

γ̇1 = Im(σ1) + h.o.t.

γ̇2 = Im(σ2) + h.o.t.

For the specific case of (22), Eq. (38) always admits
the solutions which represent the periodic solutions

(ρ1, ρ2) =
(

− Re(σ1)

Re(A)
, 0

)
,

(ρ1, ρ2) =
(
0,− Re(σ2)

Re(D)

)
,

with respective eigenvalues

κ1 = −2σ1, κ2 = σ2 − δσ1

κ1 = −2σ2, κ2 = σ1 − θσ2

123



1902 M. D. Chekroun et al.

Also, Eq. (38) admits the following solution which rep-
resents a quasi-periodic solution

(ρ1, ρ2) =
(

σ1 − θσ2

Re(A)(θδ − 1)
,

σ2 − δσ1

Re(D)(θδ − 1)

)
.

Since the Jacobian matrix of the right-hand side of (38)
at the quasi-periodic solution has determinant

−4(σ2 − δσ1)(σ1 − θσ2)

θδ − 1
.

With this information, the transition scenarios summa-
rized in Figs. 10 and 11 can be obtained by a standard
analysis. To prove the claim on the bifurcation of an
S3-attractor, we need to prove that (ρ1, ρ2) = (0, 0) is
locally stable equilibrium of (38) at Ψ = Ψc, that is
when Re(σ1) = Re(σ2) = 0. In this case by assump-
tion (22), from (38), we can obtain

d

dt
(ρ2

1 + ρ2
2 ) = Re(A)ρ4

1 + (Re(B)

+Re(C))ρ2
1ρ

2
2 + Re(D)ρ4

2 < 0

which proves the claim.

Appendix C: Numerical treatment of the linear sta-
bility problem

To solve the eigenvalue problem numerically, we first
plugin the ansatz

ψ(x, y) = eiαmxY j (y), j ∈ N,m ∈ Z,

αm := amπ. (39)

into the eigenvalue problem

σMψ(x, y) = N (y)ψ(x, y),

to obtain

σM̃Y (y) = Ñ (y)Y (y), Y (y) = (Y1(y),Y2(y))
(40)

Here the linear operators M̃ and Ñ (y) are defined as

M̃ =
[
Δm − F1 F1

F2 Δm − F2

]
, Ñ (y) =

[
N11 N12

N21 N22

]

(41)

where

N11 = c1 cos kπy
(
(kπ)2 + Δm

)
− βiαm − r1Δm

N12 = c1F1 cos kπy

N21 = 0

N22 = −c1F2 cos kπy − βiαm − r2Δm

Δm = D2 − α2
m, D = ∂

∂y
c1 = Ψ kπ iαm . (42)

The eigenvalue problem (40) is supplemented with
the following boundary conditions

Yi (±1) = D2Yi (±1) = 0, i = 1, 2. (43)

We use Legendre–Galerkinmethod to discretize and
solve (40) with boundary conditions (43). We refer to
[31] for the details of the Legendre–Galerkin method
and to [10] for its use in dynamical transition problems.

Let {L j } be the Legendre polynomials and consider
compact combinations of the Legendre polynomials

f j (y) = L j (y) +
4∑

k=1

c jk L j+k(y)

with c jk chosen so that f j satisfy the boundary condi-
tions (43), i.e.,

f j (±1) = D2 f j (±1) = 0.

To discretize the eigenvalue problem, we plug

Y
Ny
i (y)=

Ny−1∑
j=0

y(i)
j f j (y), Ŷi =[y(i)

0 , . . . , y(i)
Ny−1]T ,

i = 1, 2. (44)

into (40) to obtain

σ

[
Δ̂m − F1A3 F1A3

F2A3 Δ̂m − F2A3

] [
Ŷ1
Ŷ2

]

=
[
N̂11 N̂12

N̂21 N̂22

] [
Ŷ1
Ŷ2

]
(45)

N̂11 = c1(kπ)2A5 + c1
(
AT
4 − α2

m A5

)

− βiαm A3 − r1Δ̂m

N̂12 = c1F1A5

N̂21 = 0

N̂22 = −c1F2A5 − βiαm A3 − r2Δ̂m

(46)

Here
A1 = (D4 f j , fk), A2 = (D2 f j , fk),

A3 = ( f j , fk),

A4 = (cos kπyD2 f j , fk), A5 = (cos kπy f j , fk),

Δ̂m = A2 − α2
m A3,

(47)

with ( f, g) = ∫ 1
−1 f (y)g(y) dy. The explicit expres-

sion of the matrices Ai , i = 1, . . . , 5 can be found in
[10].
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Table 2 Set of model parameters used in the numerical study of the problem

Ly Meridional length scale 106 m
H1 Upper layer depth 250m
H2 Upper layer depth 750m
Δρ Density difference ρ2 − ρ1 = 1kgm−3

U Characteristic velocity τ0/(ρ0H1β0Ly) = 0.02ms−1

τ0 Characteristic zonal wind stress 0.1Pa
β0 Planetary vorticity gradient 2 × 10−11 (ms)−1

f0 Reference Coriolis parameter 10−4 s−1

ε0 Bottom friction coefficient 10−7 s−1

g Gravitational acceleration 9.8ms−2

g′ Reduced gravity gΔρ/ρ0 = 0.01ms−2

ρ0 Reference density 103 kgm−3

F1 Upper layer Froude number f 20 L
2
y/(g

′H1) = 4000
F2 Lower layer Froude number f 20 L

2
y/(g

′H2) = 4000/3
β Planetary vorticity factor β0L2

y/U = 1000
τ Wind-stress parameter 1.0
r2 Lower layer linear friction coefficient r2 = ε0Ly/U = 5.0

Appendix D: Practical aspects for the calculation of
the transition number

The practical calculation of the P0-term in (34) and the
P2-term in (35), boils down to the efficient calculation
of the inner and trilinear products involved therein. In
that respect, we provide here explicit expressions of the
latter. They are given by

〈Mψm, j , ψ
∗
m, j 〉 = iαm

∫ 1

−1

(
(D2 − α2

m − F1)Y
1
m, j

+F1DY 2
m, j

)
Y ∗1
m, j dy

+ iαm

∫ 1

−1

(
(D2 − α2

m − F2)Y
2
m, j

+F2DY 1
m, j

)
Y ∗2
m, j dy,

and

〈G2(ψm, j , ψn,k), ψ
∗
p,l〉 = −δm+n−p(∫ 1

−1
G1

2Y
∗,1
p,l + G2

2Y
∗,2
p,l

)
dy,

G1
2 = iαmY

1
m, j

(
D(D2 − α2

n − F1)Y
1
n,k + F1DY 2

n,k

)

− iαn

(
(D2 − α2

n − F1)Y
1
n,k + F1Y

2
n,k

)
DY 1

m, j

G2
2 = iαmY

2
m, j

(
D(D2 − α2

n − F2)Y
2
n,k + F2DY 1

n,k

)

− iαn

(
(D2 − α2

n − F2)Y
2
n,k + F2Y

1
n,k

)
DY 2

m, j .

In practice, the integrals can be evaluated by any
commonly used quadrature rules in which the values

of the integrand are evaluated at quadrature points. In
our calculations, we use

∫ 1

−1
f (y) dy =

Ny∑
n=0

f (yn)ωn,

where yn andωn are Legendre–Gauss–Lobatto quadra-
ture points and weights, respectively.

Appendix E: Model parameters
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