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Abstract In this paper, we implement the Hirota’s
bilinear method to extract diverse wave profiles to
the generalized perturbed-KdV equation when the
test function approaches are taken into consideration.
Several novel solutions such as lump-soliton, lump-
periodic, single-stripe soliton, breatherwaves, and two-
wave solutions are obtained to the proposed model. We
conduct some graphical analysis including 2D and 3D
plots to show the physical structures of the recovery
solutions. On the other hand, this work contains a cor-
rection of previous published results for a special case
of the perturbedKdV.Moreover, we investigate the sig-
nificance of the nonlinearity, perturbation, and disper-
sion parameters being acting on the propagation of the
perturbed KdV. Finally, our obtained solutions are ver-
ified by inserting them into the governing equation.
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1 Introduction

Finding exact solutions of nonlinear equations plays
an imperative role in understanding the processes and
phenomena of many nonlinear models arising in flu-
ids, dynamics, physical science, and nonlinear optical
fibers. In the theory of solitons, different types of solu-
tions such as bell-shaped, kink, cusp, periodic and oth-
ers are identified by using suggested forms of solutions
either in terms of exponential, trigonometric, or hyper-
bolic functions as in the cases of simplified bilinear
method, tanh expansion, (G ′/G) expansion, Riccati
expansion, sine–cosine function, sech–csch function,
Kudryashov expansion, unified expansion, Lie symme-
try, and many other methods ( [1–10]).

Recently, new types of solitons are produced by
combining the Hirota bilinear method and the Cole–
Hopf transformation u = a(ln f )x or u = b(ln f )xx ,
see ( [11–20]). If f is chosen to be a polynomial, then
the resulting solution u is identified as the lump soliton.
If f is the combination of polynomial and sine/cosine,
then u is of periodic-lump type. The breather-soliton
waves are obtained if f is a combination of sine/cosine
and the exponential functions. Finally, the two-wave
soliton type can be obtained by combining sin–sinh or
cos–cosh with the exponential functions.

In this paper, we investigate new features of soli-
tary wave solutions to the generalized perturbed-KdV
equation which reads as

ut + αux + βuux + γ uxxx = 0, (1.1)
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where u = u(x, t) represents the free surface advance-
ment, α is the perturbation parameter known as the
Coriolis effect, and β, γ are the nonlinearity and
dispersion factors, respectively. The perturbed-KdV
model describes the physical mechanism of sound
propagation in fluid and appears in the applications
of aerodynamics, acoustics, and medical engineering.
Special case of (1.1) has been discussed in [21], for
β = 3

2 and γ = 1
6 . The authors extracted differ-

ent lumps and breather solutions but upon assign-
ing a wrong choice of the Cole–Hopf transformation
u = R(ln f (x, t))xx by taking R = 2.

The motivation of the current work is threefold:
First, we derive the correct value of R that covers,
in particular, the case of [21] and, in general, the
case of (1.1). Second, we assign different choices of
f (x, t), to construct new lump-soliton, lump-periodic,
single-stripe soliton, breather waves, and two-wave
solutions to (1.1). Finally, we investigate the impact
of the involved model’s parameters on the propagation
form of the retrieved solutions to the proposed model.

The paper is organized as follows: Section (2) deals
with the construction of Hirota’s bilinear form to the
perturbed-KdV equation. Then, we derive both lump
and periodic-lump solutions in Sect. (3). The single-
stripe soliton and breather-wave solutions are extracted
in Sects. (4) and (5), respectively. The two-wave solu-
tions are investigated in Sect. (6), and some dynam-
ical aspects are discussed in Sect. (7). Finally, some
concluding remarks based on the obtained results are
presented in Sect. (8).

2 Hirota bilinear form of the perturbed-KdV
equation

To find the Hirota’s form to (1.1), we apply the simpli-
fied bilinear method. First, we start with the following
function

u(x, t) = esx−r t . (2.2)

Then, we substitute (2.2) in the linear terms of (1.1) to
obtain the dispersion relation as

r = αs + γ s3. (2.3)

The second step is to bring the following function

k(x, t) = 1 + C esx−
(
αs+γ s3

)
t , (2.4)

and to apply one of the Cole–Hopf transformations. In
particular, we consider

u(x, t) = R (ln(k(x, t)))xx . (2.5)

To find R, we insert (2.5) in (1.1) to get that

R = 12γ

β
. (2.6)

As the third step, we update the assumption of the func-
tion u to take the following action:

u(x, t) = ψxx (x, t). (2.7)

Substituting (2.7) in (1.1) and simplifying by integra-
tionwith respect to x , we reach at the following relation
regarding the new function ψ

ψxt + αψxx + β

2
(ψxx )

2 + γψxxxx = 0. (2.8)

Then, we choose ψ as

ψ(x, t) = 12γ

β
ln( f (x, t)). (2.9)

Finally, we insert (2.9) in (2.8) to deduce the following
relation:

f fxt − fx ft + α f fxx − α f 2x + γ f fxxxx

−4γ fx fxxx + 3γ f 2xx = 0. (2.10)

By using Hirota’s bilinear operators, (2.10) is written
as

(Dx Dt + αD2
x + γ D4

x ) f. f = 0, (2.11)

where D represents theHirota bilinear operator defined
as

Dl
x D

k
t f.g =

(
∂

∂x
− ∂

∂x ′

)l (
∂

∂t

− ∂

∂t ′

)k

f (x, t)g(x ′, t ′)|x ′=x,t ′=t , (2.12)

and f, g ∈ C∞(R2).

3 Lump-type solutions

In this section, we derive two types of lump solutions to
(1.1) by choosing f to be either quadratic function, or a
combination of quadratic function and cosine function.

3.1 Lump soliton

To obtain lump soliton, we consider the following
assumption

f = XT AX + u0, (3.13)
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where X = (1, x, t)T , A = (ai, j )3×3 is a symmetric
matrix, and ai j , u0 are real constants to be determined.
By expanding (3.13), we get

f (x, t) = a1,1 + a2,1t + a3,1x + x(a1,2 + a2,2t + a3,2x)

+t (a1,3 + a2,3t + a3,3x) + u0. (3.14)

Next, we insert (3.14) in (2.10) and solve for the
unknowns ai j , u0. By doing so, we obtain two cases:

Case I:

a2,3 = −αa2,2 − αa3,3,

u0 = αa21,2 + a3,1(a1,3 + a2,1 + αa3,1) + a1,2(a1,3 + a2,1 + 2αa3,1) − a1,1(a2,2 + a3,3)

a2,2 + a3,3
,

a3,2 = 0,

where a1,1, a1,2, a1,3, a2,1, a2,2, a3,1 and a3,3 are
free parameters. Accordingly,

f = (a1,2 + a3,1 + (a2,2 + a3,3)t)(αa1,2 + a1,3 + a2,1 + αa3,1 + (a2,2 + a3,3)(x − αt))

a2,2 + a3,3
. (3.15)

Recalling (2.7), the first lump soliton to (1.1) is

u1(x, t)

= − 12γ (a2,2 + a3,3)2

β(αa1,2 + a1,3 + a2,1 + αa3,1 + (a2,2 + a3,3)(x − αt))2
.

(3.16)

Case II:

a2,1 = −αa1,2 − a1,3 − αa3,1,

a2,3 = a3,2 = 0,

a3,3 = −a2,2.

Thus,

f = u0 + a1,1 + (a1,2 + a3,1)(x − αt), (3.17)

with a1,1, a1,2, a1,3, a2,2, a3,1 and u0 being free
parameters. By this case, the second lump soliton is

u2(x, t) = − 12γ (a1,2 + a3,1)2

β(u0 + a1,1 + (a1,2 + a3,1)(x − αt))2
.

(3.18)

In Fig. 1, we show the physical structure of the first
lump soliton (3.16), which is similar in shape to (3.18).

3.2 Lump-periodic solution

To construct lump-periodic solution to (1.1), f is to be
chosen as a linear combination of quadratic and cosine
functions, i.e.

f = XT AX + ω cos (p1x + p2t + p3) + σ. (3.19)

We substitute (3.19) in (2.10) and look up for the coeffi-
cients of different polynomials of x, t and trigonomet-

ric functions. Then, we set each coefficient to zero and
solve the resulting system to get the following output:

ω = ∓a1,2 + a3,1
p1

,

p2 = −αp1 + γ p31,

a3,2 = a2,3 = 0,

a3,3 = −a2,2,

a1,3 = −αa1,2 + 3γ p21a1,2 − a2,1 − αa3,1 + 3γ p21a3,1.

(3.20)

Let � = p1(x − αt) + γ p31t + p3, � = σ + a1,1 +
a1,2(x − αt) + a3,1x − αa3,1t and T = a1,2 + a3,1.
Then, f has the following form

f = σ + a1,1 + a2,1t + T x + a2,2xt ± T cos (�)

p1
+t ((3γ p21 − α)T − a2,1 − a2,2x). (3.21)

Therefore, the lump-periodic solution to (1.1) is
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Fig. 1 2D and 3D plots of
u1(x, t) where
α = β = −1, γ = 1,
a2,2 = 2, a3,3 = a1,2 =
a1,3 = a2,1 = a3,1 = 1

u3(x, t) =
12γ T

(
−T (sin (�) ∓ 1)2 ∓ p1 cos (�)

(
� ± cos (�)T

p1
+ 3γ p21T t

))

β(� ± T cos (�)
p1

+ 3γ p21T t)
2

. (3.22)

In Fig. 2, we present the physical structure of the lump-
periodic solution (3.22).

4 Single-stripe soliton solutions

Theapproach forfinding single-stripe solitons is known
as a simplified bilinear method. They are similar to
those steps illustrated earlier and given by (2.2)-(2.6).
However, it can be derived directly using (2.9) and
assume f as

f = 1 + ced1x+d2t+d3, (4.23)

where di , i = 1, 2, 3 and c �= 0 are unknown real
constants to be determined. Substituting of (4.23) in
(2.10) gives that d2 = −αd1 − γ d31 , where d1 and d3
are arbitrary constants. Thus, the single-stripe soliton
solution of (1.1) is

u4(x, t) = 12c γ e(x−αt)d1+γ td31+d3d21
β(eγ td31 + c e(x−αt)d1+d3)2

. (4.24)

5 Breather-wave solution

To find some families of breather-wave solutions, we
consider the following test function

f =ε1 cos (p2(x+b2t))+ε2e
p1(x+b1t)+e−p1(x+b1t).

(5.25)

where εi , pi , bi : i = 1, 2 are real constants to
be determined later. Substituting (5.25) in the bilinear
form (2.10) and equating the coefficients of exponen-
tials or trigonometric functions to zero, we get the fol-
lowing nonlinear algebraic system:

0 = αp21ε1ε2 + b1 p
2
1ε1ε2 + γ p41ε1ε2 − αp22ε1ε2

−b2 p
2
2ε1ε2 − 6γ p21 p

2
2ε1ε2 + γ p42ε1ε2,

0 = αp21ε1 + b1 p
2
1ε1 + γ p41ε1 − αp22ε1 − b2 p

2
2ε1

−6γ p21 p
2
2ε1 + γ p42ε1,

0 = 2αp1 p2ε1ε2 + b1 p1 p2ε1ε2 + b2 p1 p2ε1ε2

+4γ p31 p2ε1ε2 − 4γ p1 p
3
2ε1ε2,

0 = −2αp1 p2ε1 − b1 p1 p2ε1

−b2 p1 p2ε1 − 4γ p31 p2ε1 + 4γ p1 p
3
2ε1,

0 = 4αp21ε2 + 4b1 p
2
1ε2 + 16γ p41ε2 − αp22ε

2
1

−b2 p
2
2ε

2
1 + 4γ p42ε

2
1 .

Solving the above system leads to

b1 = −α − γ p21 + 3γ p22,

b2 = −α − 3γ p21 + γ p22,

ε2 = − p22ε
2
1

4p21
,

with ε1, pi : i = 1, 2 being free parameters. Let λ1 =
p1(−x + αt + γ tp21 − 3γ tp22) and λ2 = p2(x − αt −
3γ tp21 + γ tp22), and we get

f = ε1 cos (λ2) + eλ1 − p22ε
2
1e

−λ1

4p21
. (5.26)
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Fig. 2 2D and 3D plots of
u3(x, t) where
α = β = γ = 1,
a1,1 = a1,2 = a3,1 = σ =
p1 = p3 = 1

Accordingly, the breather-wave solution to (1.1) is

u5(x, t) = (12γ (−(p1e
λ1 + p2ε1 sin (λ2) + p22ε

2
1e

−λ1

4p1
)2

+ (eλ1 + ε1 cos (λ2) − p22ε
2
1e

−λ1

4p21
)(p21e

λ1 + p22ε1
4

(−4 cos (λ2) − ε1e
−λ1 ))))/(β(eλ1 + ε1 cos (λ2)

− p22ε
2
1e

−λ1

4p21
)2).

(5.27)

In Fig. 3, we present the physical structure of the
breather-wave solution (5.27).

6 Two-wave solution

To find the two-wave solution to the perturbed-KdV
equation, we consider the following test function:

f = ω1e
μt+x + ω2e

−(μt+x) + ω3 sin (c1t + x)

+ω4 sinh (c2t + x). (6.28)

To get information about the values of ω j : ( j =
1, 2, 3, 4), c1, c2 and μ, we substitute (6.28) in Eq.
(2.10). Then, we collect the coefficients of same terms
and set each to zero to obtain the following system:

0 = −2αω1ω3 − μω1ω3 − c1ω1ω3,

0 = −4γω1ω3 + μω1ω3 − c1ω1ω3,

0 = 2αω1ω4 + 8γω1ω4 + μω1ω4 + c2ω1ω4,

0 = 2αω2ω3 + μω2ω3 + c1ω2ω3,

0 = −4γω2ω3 + μω2ω3 − c1ω2ω3,

0 = 2αω2ω4 + 8γω2ω4 + μω2ω4 + c2ω2ω4,

0 = −2αω3ω4 − c1ω3ω4 − c2ω3ω4,

0 = −4γω3ω4 − c1ω3ω4 + c2ω3ω4,

0 = 4αω1ω2 + 16γω1ω2 + 4μω1ω2 − αω2
4 − 4γω2

4

−c2ω
2
4 − αω2

3 + 4γω2
3 − c1ω

2
3.

By solving the above system, we retrieve three solu-
tion’s sets:

Set(I): ω2 = − ω2
4

4ω1
, ω3 = 0, c2 = −2α − 8γ − μ.

Then, f explicitly is

f = ω1e
x+μt

−ω2
4e

−x−μt

4ω1
+ ω4 sinh (x − t (2α + 8γ + μ)).

(6.29)

Thus, the sixth recovery solution to (1.1) is

u6(x, t) = 12γ

β
− 12γ (ω1ex+μt + ω4 cosh (x − t (2α + 8γ + μ)) + ω2

4e
−x−μt

4ω1
)2

β(ω1ex+μt + ω4 sinh (x − t (2α + 8γ + μ)) − ω2
4e

−x−μt

4ω1
)2

,

= − 96γω1ω4e2(t (α+4γ )+x)

β
(
ω4e2t (α+4γ ) − 2e2xω1

)
2
. (6.30)

Set(II): ω2 = − ω2
3

4ω1
, ω4 = 0, μ = −α + 2γ, c1 =

−α − 2γ . Then, f explicitly is

f = ω1e
ζ − ω2

3e
−ζ

4ω1
+ ω3 sin (η), (6.31)

where ζ = x − t (α − 2γ ) and η = x − t (α + 2γ ).
Hence, the seventh recovery solution to (1.1) is:
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Fig. 3 2D and 3D plots of
u5(x, t) where
β = γ = −1,
α = p1 = p2 = ε1 = 1

Fig. 4 Propagations of u6(x, t) for different values of: a The perturbation parameter α where t = β = γ = ω1 = ω4 = 1. b The
nonlinearity parameter β where t = α = γ = ω1 = ω4 = 1. c The dispersion parameter γ where t = α = β = ω1 = ω4 = 1

u7(x, t) = 12γ (ω1eζ − ω3 sin (η) − ω2
3e

−ζ

4ω1
)

β(ω1eζ + ω3 sin (η) − ω2
3e

−ζ

4ω1
)

− 12γ (ω1eζ + ω3 cos (η) + ω2
3e

−ζ

4ω1
)2

β(ω1eζ + ω3 sin (η) − ω2
3e

−ζ

4ω1
)2

,

= −96γω1ω3eαt+2γ t+x
(
4ω3ω1eαt+2γ t+x + 4ω2

1e
4γ t+2x cos(η) + ω2

3e
2αt cos(η)

)

β
(−ω2

3e
2αt + 4ω3ω1eαt+2γ t+x sin(η) + 4ω2

1e
4γ t+2x

)
2

. (6.32)

Set(III): ω1 = 0, ω2 = 0, ω3 = −ω4, c1 = −α −
2γ, c2 = −α + 2γ . Then, f explicitly is:

f = −ω4 sin (η) + ω4 sinh (ζ ). (6.33)
Accordingly, the eighth recovery solution to (1.1) is

u8(x, t) = −12γ (−ω4 cos (η) + ω4 cosh (ζ ))2

β(−ω4 sin (η) + ω4 sinh (ζ ))2
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+12γ (ω4 sin (η) + ω4 sinh (ζ ))

β(−ω4 sin (η) + ω4 sinh (ζ ))
(6.34)

7 Dynamics of the perturbed KdV

In this section, we study the impact of the perturbation,
nonlinearity, and dispersion parameters, α, β, γ , being
acting on the propagation of the perturbed KdV. To
achieve this goal, we consider the obtained solution
depicted earlier as the function u6(x, t). We investigate
the physical structures to this function by plotting some
curves for different values of the assigned parameters.
Figure 4 shows the dynamics of propagating u6, and
three observations can be drawn:

• The propagation is symmetric when α changes its
sign.

• The propagation has a reflexive relation when β

changes its sign.
• The propagation is reflexive due to the sign of γ .

8 Conclusion

In this study, we derived theHirota bilinear form for the
generalized perturbed-KdV equation. Then, the Cole–
Hopf transformations are used, and different selections
of the involved test function are elaborated to retrieve
novel types of solitons such as lumps, breather-wave,
and multi-wave solutions. Also, the dynamics of the
model’s parameters, perturbation, nonlinearity, anddis-
persion are investigated.

For future work, we aim to extend the use of Hirota’s
bilinear methods to study other important nonlinear
applications arising in physical and engineering fields
and higher-dimensional models.
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