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Abstract As a simplified model of structures of

many kinds, the Euler Bernoulli beam has proved

useful for studying vibration suppression. In order to

meet engineering design requirements, inertial non-

linear energy sinks (I-NESs) can be installed on the

boundaries of an elastic beam to suppress its vibration.

The geometric nonlinearity of the elastic beam is here

considered. Based on Hamilton’s principle, the

dynamic governing equations of an elastic beam are

established. The steady-state response of nonlinear

vibration is obtained by the harmonic balance method

and verified by numerical calculation. It is found that

the geometric nonlinearity of the beam principally

affects the first-order main resonance and reduces the

response amplitude. An uncoupled system and the

coupled I-NES system both show strong nonlinear

hardening characteristics. I-NES achieves good vibra-

tion suppression. Finally, the optimal range of param-

eters for different damping is discussed. The results

show that the vibration reduction effect of an

optimized inertial nonlinear energy sink can reach

90%.
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1 Introduction

The Euler Bernoulli beam is a simplified model for

many structures in practical applications, such as

aerospace, shipbuilding, and the automobile industry,

where vibration can lead to structural damage. Study-

ing the suppression of vibration in Euler Bernoulli

beams is therefore important. Vibration control by a

nonlinear energy sink (NES) has attracted more and

more attention and much in-depth research in many

countries. The frequency bandwidth of NES is signif-

icantly greater than that of the traditional linear

vibration damper [1]. In NES, the energy transfer

caused by vibration is unidirectional and irreversible

[2, 3]. Viguié et al. calculated the nonlinear normal

modes of the two-degree-of-freedom nonlinear system

coupled with an NES by numerical continuation

method, and analyzed the mechanism of energy

transfer and dissipation. In this paper, the underlying

Hamiltonian system is first considered [4]. Then, the

transient passive control of nonlinear primary system

with an NES is first exhaustive studied, and a

qualitative tuning methodology is developed [5].

Gourc et al. coupled NES into LO oscillator, analyzed

the dynamic behavior of the system from experiment

and theory under periodic forcing, studied the strongly

modulated response (SMR) of the system, and deter-

mined the range of NES parameters and excitation

amplitude when high amplitude detached resonant

tongue does not occur. The experimental results are
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basically consistent with the theoretical prediction [6].

Without doubt, NES is promising, and it has seen

much practical application, being applied in many

engineering fields [7]. In space-flight applications, for

example, NES plays an important role in vibration

suppression [8, 9]. For applications in civil engineer-

ing, Wang developed a two-phase NES for vibration

suppression of foundation structures, and its vibration

control efficiency is high [10]. In other research, a

combination of theory and experiment has shown the

effectiveness of NES in vibration suppression [11].

Both theoretically and experimentally, Chen showed

that the results are more accurate when NES weight is

considered in the vibration process [12]. A linear

system coupled with NES can achieve good vibration

suppression, and its parameters have been considered

[13]. Zhang found that NES, along with NiTiNOL-

steel wire ropes, can effectively suppress vibration of a

whole satellite system [14]. Lu reviewed and com-

pared three types of nonlinear dissipative devices,

NES, PID, and NVD [15]. Bitar proved the existence

of a third vibration harmonic, and improved the

approximation by an extended complexity method

[16]. As research on nonlinear energy sinks intensifies,

some new nonlinear energy sinks stand out, such as

NES with nontraditional nonlinear restoring forces

[17], a rotating NES [18], a pendulum type NES [19], a

hysteretic NES [20], a tuned bistable NES [21], a

hybrid vibro-impact NES [22], and a lever type NES

[23]. However, mass remains the central inertial

element for most NESs, and large mass is a problem

of that often hinders the engineering applications. It is

therefore of significance and value to conduct research

on small-mass NESs for use in scientific research and

in some engineering application.

An inerter is a particular kind of mechanical

element that provides inertial parameters. It was first

proposed by Smith of Cambridge University and

named inerter [24]. It has two connecting terminals,

which can be used as inertial components with mass.

But unlike a simple massive object, an inerter can

provide a much larger inertial mass than is suggested

by its mass alone, and its inertia can be adjusted.

As an example, a ball screw inerter is shown in

Fig. 1.

The principal formula of a nut rotating ball screw

inerter is

b ¼ 2p
p

� �2

�J ð1Þ

where p is the pitch of the inerter’s lead screw, J is the

moment of inertia of its flywheel, and b is the inertial

mass, expressed in kg. The physical properties of an

inerter are similar to those of a mass block with a mass

equal to the inerter’s inertia. According to Eq. (1), the

inertial mass produced in the process of flywheel

rotation is amplified by the inerter, so that an inertial

mass of hundreds of kilograms can be achieved with a

small flywheel of much less mass. For example, the

mass of a ball screw inerter might be only 1 kg, yet its

inertial mass can be adjusted to be 100 kg, providing

favorable conditions for practical application.

Because of this characteristic, inerters have been

widely studied, for instance in research on grounding

of stay cables [26]. Zhang proposed a new inertial

enhanced NES and showed that an optimal inertia falls

Fig. 1 Ball screw inerter: a Model schematic diagram; b photo of an inerter [25]
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within a certain range [27]. However, there remains a

significant mass problem in traditional NESs. Zhang

proposed an inerter nonlinear energy sink, which

overcomes the defects of large mass in traditional

NES, and showed that the inerter nonlinear energy

sinks have higher damping performance and much

smaller mass than traditional NES [28].

For vibration control of elastic structures, Yang

used NES to suppress excessive vibration of a pipeline

and showed that the effectiveness of NES in this

application [29]. Mamaghani studied the effect of a

smooth NES on vibration suppression of a fixed pipe

[30]. An impact damper has also been used in analysis

of vibration suppression in a cantilever beam, and the

results show that it can effectively suppress multiple

resonance peaks [31]. The Galerkin truncation anal-

ysis of a Timoshenko beam is reported in ref. [32]. For

the condition of 3:1 internal resonance, Ding studied

the steady-state periodic response of the forced

vibration of a moving viscoelastic beam [33]. A

nonlinear vibration isolation system with three linear

springs has also been found to effectively suppress

lateral vibrations [34]. Considering non-ideal bound-

ary support of the beam, the effect of nonlinear

stiffness on the vibration suppression of NES has been

discussed [35]. Zang also proposed a generalized

transitivity method for NES evaluation [36].

Taking advantage of vibration suppression, an

energy acquisition system can concentrate energy.

Lu’s studies of a bistable energy collection mechanism

indicate that a horizontal spring is better than

combined horizontal and vertical springs [37]. In

dynamics and acoustics, strong nonlinearity can also

lead to cross scale energy scattering [38]. Li studied

the coupling of nonlinear energy sinks and energy

collectors [39]. Researchers have shown great interest

in the energy acquisition of piezoelectric structure

with NES. NES vibration reduction analysis applied to

beam structure has been studied more and more

deeply. For linear beams with different boundary

conditions, the robustness of the optimized NES has

been analyzed by Parseh [40]. Under the action of an

impact damper, a cantilever beam and the impact mass

can collide repeatedly to reduce vibration [41]. Taking

temperature and humidity into account, NES can also

effectively suppress the nonlinear vibration of com-

posite beam [42]. It can be seen from a wide range of

research that NES applied to elastic structures can

effectively suppress vibration. Neglecting geometric

nonlinearity, some researchers have revealed the

vibration characteristics of beams with elastic sup-

ports. Zhang installed ten springs at each end of a

pipeline [43]. Li uses a semi-analytical method to

analyze the natural frequencies and mode shapes of an

undamped double-beam system with arbitrary bound-

ary conditions [44]. Ding was the first to discuss

axially moving beams with generalized boundary

conditions [45]. The dynamic stiffness matrices of

axially moving Timoshenko beams and Euler Ber-

noulli beams with generalized boundary conditions

have been established. Wang analyzed the vibration of

a nonlinear support beam under harmonic force, and

used a cubic spring to simulate the nonlinear elastic

boundary [46]. Zang coupled two lever type NESs at

the boundary of elastic beam, which proved the

effectiveness of lever type NES [47]. Zhang coupled

an inertial nonlinear energy sink at the boundary of an

elastic beam, and showed that an inertial nonlinear

energy sink has good damping effect [48]. However,

in engineering applications, large displacement often

exists in structural vibration, and the geometric

nonlinearity of elastic beams cannot be ignored. Ding

proved the necessity of bending vibration and elastic

support for structural vibration isolation, and consid-

ered the geometric nonlinear characteristics of the

beam [49]. Considering geometric nonlinearity, the

resonance of asymmetric elastic boundary beam has

been analyzed [50]. Based on a stable steady-state

response with an initial condition of 0.0001, Ding

defined and gave the flexural vibration transmissibility

of an elastic beam while considering the geometric

nonlinearity of beam transverse vibrations [51].

Mao first studied the nonlinear response of flexible

structures under general nonlinear support conditions,

and analyzed the boundary nonlinearity in detail. It

was found that boundary nonlinearity played an

important role in structural response [52]. A simple

technique of passive vibration isolation for traditional

flexible structures by nonlinear boundary has also been

studied [53].

In the work reported here, a nonlinear boundary

with inertial nonlinear energy sink (I-NES) is placed at

the elastic boundaries of a beam, and the geometric

nonlinearity of the beam in transverse vibration is

studied. The influence of geometric nonlinearity of the

beam on the system response and vibration-suppres-

sion effect under foundation excitation is the principal

focus, and it is compared with the system vibration
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response in the absence of geometric nonlinearity. The

results show that I-NESs with elastic boundaries can

effectively suppress transverse vibration of the beam

when the geometric nonlinearity of the beam is

considered, and optimized I-NESs can reduce the

vibration of the beam by 96%.

2 Dynamic model under foundation excitation

The dynamic model of an elastic beam with vertical

spring supports at both ends is shown in Fig. 2, and

takes into account its geometric nonlinearity. The

quantities L, T and X are length, time and axial

coordinate, respectively. KL and KR are the stiffnesses

of the left and right vertical springs. Only the

transverse displacement of the beam is considered,

which is described asW(X, T). The beam is excited by

displacement from its foundation at both ends. This

displacement excitation is described as

U Tð Þ ¼ U0 cos X � Tð Þ, where U0 and X are, respec-

tively, the amplitude and frequency of the displace-

ment excitation. I-NESs are coupled to the elastic

boundaries at both ends of the beam. The inertial

masses of the I-NESs of the left and right ends are

expressed by bNL and bNR. The linear dampings of the

I-NESs at the left and right ends are expressed by cNL
and cNR. And the cubic nonlinearities of the I-NESs of

the left and right ends are expressed by kNL and kNR.

The inerter can provide larger inertia with small mass,

which makes up for the defects of a massive NES. The

displacements of the I-NESs at the left and right ends

are expressed by UNL Tð Þ and UNR Tð Þ.

Based on the generalized Hamilton’s principle,

variational method and partial integration method, the

dynamic equation of the system is

Z L

0

qAW;TT þ EIW;XXXX þ KIW;XXXXT � 3

2
EAW2

;XW;XX

� �
dX

þ �KLU0 cos XTð Þ þ gLXU0 sin XTð Þ þ kNL WL � UNLð Þ3
h

þcNL WL;X � UNL;T

� ��
d Xð Þ

þ �KRU0 cos XTð Þ þ gRXU0 sin XTð Þ þ kNR WR � UNRð Þ3
h

þcNR WR;X � UNR;T

� ��
d X � Lð Þ ¼ 0

ð2Þ

where WL andWR are the displacement of the left and

right boundaries of the beam.

The dynamic equations for the I-NESs are

expressed as

bNL UNL;TT þ X2U0 cos XTð Þ
	 �

þ kNL UNL �WLð Þ3

þ cNL UNL;T �WL;T

� �
¼ 0;

bNR UNR;TT þ X2U0 cos XTð Þ
	 �

þ kNR UNR �WRð Þ3

þ cNR UNR;T �WR;T

� �
¼ 0

ð3Þ

The boundary conditions of the elastic beam are

WL;XX ¼ 0; EIWL;XXX ¼ �KLWL;

WR;XX ¼ 0; EIWR;XXX ¼ KRWR

ð4Þ

In dimensionless form, the dynamic equation of the

system is

Fig. 2 Model of the beam

123

1262 Z Zhang et al.



Z 1

0

w;tt x; tð Þ þ j2w;xxxx x; tð Þ þ j2kw;xxxxt x; tð Þ
	

� 3

2
w2
;x x; tð Þw;xx x; tð Þ

�
dx þ jNL wL � uNLð Þ3

h

þfNL wL;t � uNL;t
� �

� uL cos xtð Þ
�
d 0ð Þ

þ jNR wR � uNRð Þ3þfNR wR;t � uNR;t
� �h

�uR cos xtð Þ�d 1ð Þ ¼ 0

ð5Þ

The dimensionless boundary conditions are

w;xx 0; tð Þ ¼ 0; w;xxx 0; tð Þ ¼ �jLwL ;

w;xx 1; tð Þ ¼ 0; w;xxx 1; tð Þ ¼ jRwR

ð6Þ

Also in dimensionless form, the dynamic equations

of the I-NESs are

lNL � uNL;tt þ jNL uNL � wLð Þ3þfNL uNL;t � wL;t

� �
þ lNLu0x

2 cos xtð Þ ¼ 0;

lNR � uNR;tt þ jNR uNR � wRð Þ3þfNR uNR;t � wR:t

� �
þ lNRu0x

2 cos xtð Þ ¼ 0

ð7Þ

where

x ¼ X

L
;w ¼ W

L
;wL ¼ WL

L
;wR ¼ WR

L
; uNL ¼ UNL

L
;

uNR ¼ UNR

L
; t ¼ T

L

ffiffiffiffi
E

q

s
;x ¼ XL

ffiffiffiffi
q
E

r
;

j ¼ 1

L

ffiffiffi
I

A

r
; k ¼ K

L

ffiffiffiffiffiffi
1

Eq

s
; jL ¼

KLL
3

EI
; jR ¼ KRL

3

EI
;

uL ¼ KL

EA
U0;

uR ¼ KR

EA
U0; u0 ¼

U0

L
; lNL ¼ bNL

qAL
; lNR ¼ bNR

qAL
;

jNL ¼ L3

EA
kNL; fNL ¼ cNL

A

ffiffiffiffiffiffi
1

Eq

s
; jNR ¼ L3

EA
kNR;

fNR ¼ cNR
A

ffiffiffiffiffiffi
1

Eq

s

ð8Þ

The material of the elastic beam is aluminum alloy;

the physical and geometric parameters of the system

are shown in Table 1. It is worth noting that the inertial

mass is bN = 0.084 kg, while the actual mass is

mb = 0.00084 kg. The dimensionless parameters cal-

culated based on Eq. 8 are shown in Table 2.

3 Steady-state response under foundation

excitation

According to the parameters in Table 1, the modal

function of the beam with elastic support boundaries is

Table 1 system

dimensional parameter
Parameter name Symbol Value

Young’s modulus E 68.9 GPa

Density q 2800 kg/m3

Viscoelasticity K 4 9 106 N s/m2

Length L 1 m

Width b 0.02 m

Hight h 0.01 m

Cross-sectional area A 2 9 10–4 m2

Cross-sectional moment of inertia I 1.67 9 10–9 m4

Inertial mass bNL = bNR 0.084 kg

Mass of the inerter mNL = mNR 0.00084 kg

Cubic nonlinearity kNL = kNR 5 9 107 N/m3

Damping cNL = cNR 1 N�s/m
Linear vertical stiffness on the left KL 5753.15 N/m

Linear vertical stiffness on the right KR 5753.15 N/m
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shown in Eq. (9). Therefore, the first four modal modes

of the beam with elastic support boundaries are

illustrated in Fig. 3. In Fig. 3, it can be found that

the maximum displacement of the first mode appears

at the midpoint of the beam, and the maximum

displacement of the third mode appears at the bound-

aries of the beam. In addition, it can be found that the

first and third modes of the elastic beam are symmet-

rically distributed with respect to the midpoint of the

beam, while the second and fourth modes are

antisymmetrically distributed with respect to the

midpoint. Therefore, in the remainder of this paper,

only the left boundary and the midpoint of the beam

are considered.

/1 xð Þ ¼ cos 2:6844xð Þ þ 4:2977 � sin 2:6844xð Þ
þ ch 2:6844xð Þ � 0:8722 � sh 2:6844xð Þ;

/2 xð Þ ¼ cos 4:0392xð Þ þ 0:4816 � sin 4:0392xð Þ
þ ch 4:0392xð Þ � 1:0359 � sh 4:0392xð Þ;

/3 xð Þ ¼ cos 5:5242xð Þ � 0:3989 � sin 5:5242xð Þ
þ ch 5:5242xð Þ � 0:9921 � sh 5:5242xð Þ;

/4 xð Þ ¼ cos 8:0633xð Þ � 0:8099 � sin 8:0633xð Þ
þ ch 8:0633xð Þ � 1:0006 � sh 8:0633xð Þ

ð9Þ

3.1 The Galerkin method

The partial differential equations (5) and (7) can be

truncated by using the Galerkin method. The Runge–

Kutta numerical method takes the fourth order into

account. Then, it is used to solve the time response of

the system.

It is assumed that the approximate solution of the

transverse vibration displacement of the beam is

w x; tð Þ ¼
XN
n¼1

/n xð Þqn tð Þ ð10Þ

where n is a positive integer, /n(x) is the modal

function of the beam, and qn(t) is the generalized

displacement of the transverse vibration. The potential

function and the weight function of the Galerkin

method are chosen as the modal functions of the beam.

The ordinary differential equation can be expressed as

Z 1

0

XN
n¼1

/n xð Þ€qn tð Þwm xð Þdx þ j2
Z 1

0

XN
n¼1

/ 4ð Þ
n xð Þqn tð Þwm xð Þdx

� 3

2

Z 1

0

XN
n¼1

/n

�
xð Þqn tð Þ

 !2XN
n¼1

/n

��
xð Þqn tð Þum xð Þdx

þ j2k
Z 1

0

XN
n¼1

/ 4ð Þ
n xð Þ _qn tð Þwm xð Þdx

þ jNL
XN
n¼1

/n 0ð Þqn tð Þ � uNL tð Þ
" #38<

:

þfNL
XN
n¼1

/n 0ð Þ _qn tð Þ � _uNL tð Þ
" #)

wm 0ð Þ

þ jNR
XN
n¼1

/n 1ð Þqn tð Þ � uNR tð Þ
" #38<

:

þfNR
XN
n¼1

/n 1ð Þ _qn tð Þ � _uNR tð Þ
" #)

wm 1ð Þ

� uL cosðxtÞwm 0ð Þ � uR cosðxtÞwm 1ð Þ ¼ 0

ð11Þ

Table 2 System dimensionless parameter

Parameter name Symbol Value

Flexural coefficient j 0.0028896

Viscoelasticity coefficient k 0.288

Vertical spring coefficient kL = kR 50

Inertance ratio lNL = lNR 0.15

Nonlinearity coefficient jNL = jNR 3.63

Damping coefficient fNL = fNR 0.00036

Fig. 3 The first four modal modes of the beam with elastic

support boundaries
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lNL €uNL tð ÞþjNL uNL tð Þ �
XN
n¼1

/n 0ð Þqn tð Þ
" #3

þ fNL _uNL tð Þ �
XN
n¼1

/n 0ð Þ _qn tð Þ
" #

þ lNLu0x
2 cosðxtÞ ¼ 0;

lNR €uNR tð ÞþjNR uNR tð Þ �
XN
n¼1

/n 1ð Þqn tð Þ
" #3

þ fNR _uNR tð Þ �
XN
n¼1

/n 1ð Þ _qn tð Þ
" #

þ lNRu0x
2 cosðxtÞ ¼ 0

ð12Þ

where m = 1, 2, 3, 4, and

Z 1

0

/n xð Þwm xð Þdx ¼ 0; n 6¼ m;

Z 1

0

/ 4ð Þ
n xð Þwm xð Þdx ¼ 0; n 6¼ m

ð13Þ

Therefore, Eq. (11) can be written as

Mm €qm tð Þþj2Kmqm tð Þ þ kj2Km _qm tð Þ � 3

2
Dmqm tð Þ3

þ jNL
XN
n¼1

/n 0ð Þqn tð Þ � uNL tð Þ
" #3

þfNL
XN
n¼1

/n 0ð Þ _qn tð Þ � _uNL tð Þ
" #8<

:
9=
;wm 0ð Þ

þ jNR
XN
n¼1

/n 1ð Þqn tð Þ � uNR tð Þ
" #3

þfNR
XN
n¼1

/n 1ð Þ _qn tð Þ � _uNR tð Þ
" #8<

:
9=
;wm 1ð Þ

�uL cosðxtÞwm 0ð Þ � uR cosðxtÞwm 1ð Þ ¼ 0

ð14Þ

where

Mm ¼
Z 1

0

/m xð Þwm xð Þdx; Km ¼
Z 1

0

/ 4ð Þ
m xð Þwm xð Þdx;

Dm ¼
Z 1

0

_/2
m xð Þ €/m xð Þwm xð Þdx

ð15Þ

The initial values are set as follows:

q1 ¼0; _q1 ¼ 0; qj ¼ 0; _qj ¼ 0; j ¼ 2; 3; 4

uNL ¼uNR ¼ 0; _uNL ¼ _uNR ¼ 0
ð16Þ

For the second-, fourth-, and sixth-order Galerkin

truncation, from the time histories under different

excitation frequencies, the amplitude frequency

response curves of the numerical solutions of the

system can be extracted. The steady-state amplitude-

frequency response curves of the numerical solution

are illustrated in Fig. 4. A(0) represents the amplitude

of the left boundary of the beam, and A(L/2) represents

the amplitude of the midpoint of the beam. In Fig. 4,

(a)                                  (b)

Fig. 4 Amplitude frequency response curves of the system for different Galerkin truncation orders: a The left boundary: X = 0; b The

midpoint: X = L/2
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the results of fourth- and sixth-order Galerkin trunca-

tion almost coincide. At the third-order main reso-

nance, the second-order Galerkin truncation does not

show a resonance peak. Therefore, the fourth-order

Galerkin truncation is used in the following studies. In

Fig. 4, it can also be observed that there is an obvious

nonlinear hardening phenomenon and the jump phe-

nomenon at the first-order main resonance of the

system.

3.2 The harmonic balance method

The ordinary differential equations obtained by

Galerkin truncation can be solved by the harmonic

balance method. Considering that the governing

equations contain cubic nonlinearity, only odd terms

are considered when assuming harmonic solutions.

The order of Galerkin truncation is expressed by m,

and the harmonic order is expressed by h. Suppose,

then, that the harmonic solutions are

qm ¼
Xh
i¼0

am;2iþ1 cos 2iþ 1ð Þxt½ � þ bm;2iþ1 sin 2iþ 1ð Þxt½ �
� �

;

uNL ¼
Xh
i¼0

aL;2iþ1 cos 2iþ 1ð Þxt½ � þ bL;2iþ1 sin 2iþ 1ð Þxt½ �
� �

;

uNR ¼
Xh
i¼0

aR;2iþ1 cos 2iþ 1ð Þxt½ � þ bR;2iþ1 sin 2iþ 1ð Þxt½ �
� �

ð17Þ

Taking the first harmonic assumption as an exam-

ple, the dynamic equation of the beam coupled with I-

NESs is

M1 €q1þK1q1 þ C1 _q1 �
3

2
D1q

3
1

þ jNL /L;1q1 � uNL
� �3þfNL /L;1 _q1 � _uNL

� �h i
wL;1

þ jNR /R;1q1 � uNR
� �3þfNR /R;1 _q1 � _uNR

� �h i
wR;1

�uL cosðxtÞwL;1 � uR cosðxtÞwR;1 ¼ 0

ð18Þ

lNL €uNL þ jNL uNL � /L;1q1
� �3þfNL _uNL � /L;1 _q1

� �
þ lNLu0x

2 cosðxtÞ ¼ 0 ;

lNR €uNR þ jNR uNR � /R;1q1
� �3þfNR _uNR � /R;1 _q1

� �
þ lNRu0x

2 cosðxtÞ ¼ 0

ð19Þ

where /L;1 ¼ /1 0ð Þ; wL;1 ¼ w1 0ð Þ; /R;1 ¼ /1 1ð Þ;
wR;1 ¼ w1 1ð Þ.
Suppose the solution of the first harmonic is

q1 ¼ a1;1 cosðxtÞ þ b1;1 sinðxtÞ;
lNL¼aL;1 cosðxtÞ þ bL;1 sinðxtÞ;
lNR¼aR;1 cosðxtÞ þ bR;1 sinðxtÞ

ð20Þ

By substituting Eq. (20) into equation Eq. (18) and

sorting out the coefficient equations corresponding to

each order of harmonics, the following algebraic

equations are obtained.

ð12a31;1 � 1:5a3L;1 � 18a21;1aL;1 þ 9a1;1a
2
L;1 þ 12a1;1b

2
1;1

þ 3a1;1b
2
L;1 � 6aL;1b

2
1;1

� 12a1;1b1;1bL;1 þ 6aL;1b1;1bL;1 � 1:5aL;1b
2
L;1ÞjNL

þ ð12a31;1 � 1:5a3R;1 � 18a21;1aR;1

þ 9a1;1a
2
R;1 þ 12a1;1b

2
1;1 þ 3a1;1b

2
R;1 � 6aR;1b

2
1;1

� 12a1;1b1;1bR;1 þ 6aR;1b1;1bL;1

� 1:5aR;1b
2
L;1ÞjNR þ 32174:37508a31;1

� 15:63232450a1;1x
2 þ 811:6820390

a1;1j
2 þ 4fNRb1;1xþ 4fNLb1;1x

þ 811:6820390kj2b1;1xþ 32174:37508a1;1

b21;1 � 2uL � 2uR � 2fNLbL;1x� 2fNRbR;1x ¼ 0;

ð12a21;1b1;1 � 6a21;1bL;1 þ 3a2L;1b1;1 � 1:5a2L;1bL;1

� 18b21;1bL;1 þ 9b1;1b
2
L;1 þ 12b31;1

� 12a1;1aL;1b1;1 þ 6a1;1aL;1bL;1 � 1:5b3L;1ÞjNL
þ ð12a21;1b1;1 � 6a21;1bR;1 þ 3a2R;1b1;1

� 1:5a2R;1bR;1 � 18b21;1bR;1 þ 9b1;1b
2
R;1

þ 12b31;1 � 12a1;1aR;1b1;1 þ 6a1;1aR;1bL;1

� 1:5b3R;1ÞjNR þ 32174:37508b31;1

� 15:63232450b1;1x
2 þ 811:6820390

b1;1j
2 þ 2fNLaL;1xþ 2fNRaR;1x

� 811:6820390kj2a1;1xþ 32174:37508a21;1

b1;1 � 4fNRa1;1x� 4fNLa1;1x;

ð6a1;1b1;1bL;1 � 3aL;1b1;1bL;1 þ 9a21;1aL;1

� 4:5a1;1a
2
L;1 � 6a31;1 þ 0:75a3L;1 � 6a1;1b

2
1;1

� 1:5a1;1b
2
L;1 þ 3aL;1b

2
1;1 þ 0:75aL;1b

2
L;1ÞjNL

� x2aL;1lNL þ lNLu0x
2 � 2fNLb1;1x

þ fNLbL;1x ¼ 0;

ð�6b31;1 þ 0:75b3L;1 � 6a21;1b1;1 þ 3a21;1bL;1

� 1:5a2L;1b1;1 þ 0:75a2L;1bL;1 þ 6a1;1aL;1b1;1

� 3a1;1aL;1bL;1 þ 9b21;1bL;1 � 4:5b1;1b
2
L;1ÞjNL � x2bL;1lNL

þ 2fNLa1;1x� fNLaL;1x ¼ 0;

ð6a1;1b1;1bR;1 � 3aR;1b1;1bR;1 þ 9a21;1aR;1 � 4:5a1;1a
2
R;1 � 6a31;1 þ 0:75a3R;1 � 6a1;1b

2
1;1

� 1:5a1;1b
2
R;1 þ 3aR;1b

2
1;1 þ 0:75aR;1b

2
R;1ÞjNR � x2aR;1lNR þ lNRu0x

2 � 2fNRb1;1x

þ fNRbR;1x ¼ 0;

ð�6b31;1 þ 0:75b3R;1 � 6a21;1b1;1 þ 3a21;1bR;1 � 1:5a2R;1b1;1 þ 0:75a2R;1bR;1 þ 6a1;1aR;1b1;1

� 3a1;1aR;1bR;1 þ 9b21;1bR;1 � 4:5b1;1b
2
R;1ÞjNR � x2bR;1lNR þ 2fNRa1;1x� fNRaR;1x ¼ 0

ð21Þ

Then the pseudo-arc-length algorithm can be used

to solve the algebraic equations (21), and the ampli-

tude frequency response of the system can be obtained.

Here, assuming that the harmonic solution is of order

4. Using the same method, considering the cubic
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nonlinearity in the equations and ignoring the influ-

ence of even order in the hypothetical solution, the

steady-state amplitude frequency responses of the

system can be obtained.

A comparison of the steady-state amplitude-fre-

quency curves obtained by the harmonic balance

method and the Runge–Kutta method is shown in

Fig. 5. It can be seen from Fig. 5 that the numerical

solution obtained by the Runge–Kutta method has

only one steady-state solution. In the region of

multiple steady-state solutions, all stable steady-state

solutions can be obtained by the harmonic balance

method. The forward and backward results of the

Runge–Kutta method show an obvious nonlinear jump

phenomenon at the first main resonance. Within a

certain range, the approximate analytical results are

basically consistent with the numerical solutions

obtained by the Runge–Kutta method. This implies

that the approximate analytical results are accurate and

reliable.

4 Vibration suppression analysis of I-NES

with or without beam geometric nonlinearity

Au represents the amplitude of the main resonance of

the uncoupled system, and Ac represents the amplitude

of the main resonance of the coupled I-NES system.

Therefore, the vibration suppression evaluation index

of I-NES can be expressed as

RA ¼ Au � Ac

Au
� 100% ð22Þ

4.1 Free vibration response

Let _q1 ¼ 0:5 in Eq. (16) and the other initial values are

still 0, the vibration suppression analysis for the free

vibration response is shown in Fig. 6. As shown in

Fig. 6, the time history curves of the uncontrolled

linear beam and the uncontrolled geometrically non-

linear beam look to an exponential decay. However,

the time history curves of the linear beam coupled

I-NESs and the geometrically nonlinear beam coupled

I-NESs show slopes linear decrease decay. This is the

characteristic of nonlinear energy dissipation by NES.

Moreover, it can be seen from this figure that the

response amplitude caused by considering the geo-

metric nonlinearity of the beam is significantly lower

for both the uncoupled system and the coupled I-NES

system than for the system without considering the

geometrically nonlinearity of the beam. This indicates

that the geometrically nonlinearity of the beam also

affects the time-domain responses. Therefore, the

geometrically nonlinearity cannot be ignored. At the

same time, on the premise of considering the geomet-

rically nonlinearity of the beam, I-NES can make the

amplitude of the system attenuate rapidly, both at the

left boundary and the midpoint of the beam, which has

an obvious vibration suppression effect.

(a)  (b)

Fig. 5 The analytical solution verified by numerical simulation: a The left boundary: X = 0; b The midpoint: X = L/2
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4.2 Steady-state response

In Figs. 7, 8, 9 and 10, the amplitudes of uncoupled

I-NES system are compared whether the geometric

nonlinear characteristics of beam are considered or

not, and the amplitudes of coupled I-NES system are

compared whether the geometric nonlinear character-

istics of beam are considered or not. In order to better

explain the influence of beam geometric nonlinearity

on I-NES vibration suppression without considering

the influence of external excitation amplitude, the

excitation amplitude U0 is set to the same value. For

U0 = 0.0001 m, the vibration suppression effects of

the I-NESs on the steady-state responses are shown in

Table 3. Obviously, the I-NESs have a significant

vibration suppression effect on the main resonance

response of the elastic beam. For the first-order main

resonance of the left boundary, when the geometric

nonlinearity of the beam is not considered, the

vibration suppression percentage of the I-NESs is

76.53%. When the geometric nonlinearity of the beam

is considered, the vibration suppression percentage of

the I-NESs is 57.47%. For the first-order main

resonance at the midpoint of the beam, when the

geometric nonlinearity of the beam is not considered,

the vibration suppression percentage of the I-NESs is

(c)                (d)

(a)                (b)

Fig. 6 Transient response time history under initial displace-

ment excitation: a The left boundary of a linear beam: X = 0;

b The left boundary of a geometrically nonlinear beam: X = 0;

c The midpoint of a linear beam: X = L/2; d The midpoint of a

geometrically nonlinear beam: X = L/2
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74.99%. When the geometric nonlinearity of the beam

is considered, the vibration suppression percentage of

the I-NESs is 54.49%. It can be seen that the I-NESs

have a very good vibration suppression effect whether

the geometric nonlinearity is considered or not. As

shown in Figs. 8a and 10a, when the geometric

nonlinearity of the beam is considered, both the

uncoupled and the coupled I-NESs system show

strong nonlinear hardening characteristics. When

Fig. 7a is compared with Figs. 8a, and 9a is compared

with Fig. 10a, it is seen that geometric nonlinearity

leads to a significant reduction of the vibration

amplitude of the beam. However, compared with the

case without considering geometric nonlinearity, the

vibration suppression of the I-NESs is reduced.

Therefore, the geometric nonlinearity of the beam

cannot be ignored in the process of engineering

research.

For the third-order main resonance of the left

boundary of a beam, when the geometric nonlinearity

(a) (b)

Fig. 7 Vibration suppression analysis of I-NES at the left boundary of a linear beam: a The first-order main resonance: f1 = 16.44 Hz;

b The third-order main resonance: f3 = 69.62 Hz

(a) (b)

Fig. 8 Vibration suppression analysis of I-NES at the left boundary of a geometrically nonlinear beam: a The first-order main

resonance: f1 = 16.44 Hz; b The third-order main resonance: f3 = 69.62 Hz
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of the beam is not considered, the vibration suppres-

sion percentage of the I-NESs is 58.43%. When

considering the geometric nonlinearity of the beam,

the vibration suppression percentage of the I-NESs is

58.18%. For the third-order main resonance at the

midpoint of the beam, when the geometric nonlinear-

ity of the beam is not considered, the vibration

suppression percentage of the I-NESs is 58.41%.

When the geometric nonlinearity of the beam is

considered, the vibration suppression percentage of

the I-NESs is 58.16%. It can be seen that the I-NESs

have a very good vibration suppression effect whether

the geometric nonlinearity is considered or not.

However, as shown in Figs. 7b, 8b, 9b, and 10b, for

either the left boundary or the midpoint of the beam,

compared with the first-order main resonance, the

geometric nonlinearity of the third-order main reso-

nance has little effect on the response of the beam.

(a) (b)

Fig. 9 Vibration suppression analysis of I-NES at the midpoint of a linear beam: a The first-order main resonance: f1 = 16.44 Hz;

b The third-order main resonance: f3 = 69.62 Hz

(a) (b)

Fig. 10 Vibration suppression analysis of I-NES at the midpoint of a geometrically nonlinear beam: a The first-order main resonance:

f1 = 16.44 Hz; b The third-order main resonance: f3 = 69.62 Hz
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5 Parameter optimization of I-NES

Since the amplitude of the first-order main resonance

is larger than that of the third-order main resonance,

only the first-order main resonance of the beam is

considered in the following discussion of the param-

eter of the I-NESs. Taking the damping of the inertial

nonlinear energy sink as a fixed value, the influence of

the change of inertial mass and cubic nonlinear

stiffness on the damping effect of the inertial nonlinear

energy sink is discussed.

Table 3 Influence of

I-NES on steady state

amplitude frequency with or

without geometric

nonlinearity with

U0 = 0.0001 m

Position Main resonance System Au(m) Ac(m) RA(%)

Left boundary f1 = 16.44 Hz Linear 0.0082 0.0019 76.53

Geometrically nonlinear 0.0049 0.0021 57.47

f3 = 69.62 Hz Linear 0.0019 0.00077 58.43

Geometrically nonlinear 0.0018 0.00077 58.18

Midpoint f1 = 16.44 Hz Linear 0.0201 0.005 74.99

Geometrically nonlinear 0.0121 0.0055 54.49

f3 = 69.62 Hz Linear 0.00088 0.00037 58.41

Geometrically nonlinear 0.00088 0.00037 58.16

(a) (b) (c)

Fig. 11 Two-dimensional contour maps near the optimum inertial mass at the left boundary of the beam: a cN = 1 N�s/m; b cN = 2 N�s/
m; c cN = 3 N�s/m

(a) (b) (c)

Fig. 12 Two-dimensional contour maps near the optimum inertial mass at the midpoint of the beam: a cN = 1 N�s/m; b cN = 2 N�s/m;

c cN = 3 N�s/m
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5.1 Optimal range of I-NES for different damping

For the damping cN = 1, 2, and 3 N�s/m, when the

damping and cubic nonlinearity change simultane-

ously, the two-dimensional contour maps near the

optimal inertial mass at the left boundary and midpoint

of the beam are shown in Figs. 11, 12.

The optimal parameters of the inertial nonlinear

energy sink with different damping are shown in

Table 4.

It can be concluded from Table 4 that the optimal

parameters value of the inertial nonlinear energy sink

for the left boundary and the midpoint are the same.

Moreover, the variation trend if the vibration suppres-

sion effect of the inertial nonlinear energy sink on the

left boundary and the midpoint with the parameters is

also the same. As damping increases, the inertial mass

coefficient to achieve the best vibration suppression

effect gradually increases, while the vibration sup-

pression effect is slightly reduced.

5.2 Analysis of the solution response

for the optimal parameters

The optimization parameters of Fig. 11c are selected.

For bN = 0.06 kg, cN = 3 N�s/m and kN = 1 9 109 N/

m3, the vibration suppression effect shown in Fig. 13.

When considering geometric nonlinearity, it can be

seen that the optimized I-NES also has a significant

damping effect, and the first-order main resonance

vibration suppression effect reaches 90%. The third-

order main resonance can also be well suppressed.

Based on the parameters in Fig. 13, the time history

curves of the nonlinear beam with the optimized

I-NESs for f = 16.6 Hz are shown in Fig. 14. It can be

seen that the response of the beam is strong quasi-

periodic response. The response of the I-NES is

strongly modulated response (SMR). This indicated

that the I-NES is activated well.

6 Conclusions

This paper reports a study of the vibration response of

an elastic beam system with I-NESs, in which the

geometric nonlinear characteristic of the beam is

(a)                               (b)

Fig. 13 Vibration suppression effect of the optimal I-NES at damping: a The left boundary; b The midpoint

Table 4 The numerical value of inertial nonlinear energy sink

for the optimal vibration-suppression effect for different

damping

Position cN (N�s/m) bN (kg) kN (N/m3) RA (%)

Left boundary 1 0.03 1 9 109 92.66

2

3

0.045

0.06

1 9 109

1 9 109
90.72

89.19

Midpoint 1 0.03 1 9 109 93.8

2

3

0.045

0.06

1 9 109

1 9 109
91.86

90.27
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considered. The partial differential equation of the

system is discretized by the Galerkin method, and the

steady amplitude-frequency response curve of the

system is approximately solved based on the harmonic

balance method, with numerical verification being

carried out. By adjusting the inertial mass, damping

parameters, and cubic nonlinear stiffness of the

I-NESs, the influence of the change of the parameters

on the vibration reduction effect of the system is

analyzed, and the optimal range of parameters is

discussed. Below are the specific conclusions.

When the geometric nonlinearity of the beam is

considered, the I-NESs applied to the boundaries of an

elastic beam can effectively suppress the transverse

vibration of the beam. Comparison results show that

for the first-order main resonance, the geometric

nonlinearity of the beam strengthens its nonlinear

hardening characteristics and reduces the vibration-

suppression effect of the I-NES. Therefore, the

geometric nonlinearity of the beam cannot be ignored

in engineering research.

Here are the optimization results when considering

geometric nonlinearity: The vibration reduction per-

centage of an optimized I-NES can be as high as 90%.

In that case, the parameters of I-NES are b = 0.06 kg,

cN = 3 N�s/m and kN = 1 9 109 N/m3. For the opti-

mized I-NES, the time series response exhibit the

strongly modulated response (SMR).
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